Navegar

An Invitation to Web Geometry

An Invitation to Web Geometry
Autor(es) : Jorge Vitório Pereira e Luc Pirio
Páginas : 213
Publicação : IMPA-Springer 2015
ISBN: 978-3-319-14561-7
1ª edição

DESCRIÇÃO

Inclui um breve levantamento da história da Geometria da Web
A apresentação é elementar e clara.
Permite ao leitor ter uma visão global do que foram e quais são as principais questões sobre o assunto.

CONTEÚDO

1 Local and Global Webs

1.1 Basic Definitions
1.2 Planar 3-Webs
1.3 Singular and Global Webs
1.4 Examples

2 Abelian Relations

2.1 Definition
2.2 Determining the Abelian Relations
2.3 Bounds for the Rank
2.4 Conormals of Webs of Maximal Rank

3 Abel’s Addition Theorem

3.1 Abel’s Theorem I: Smooth Curves
3.2 Abel’s Theorem II: Arbitrary Curves
3.3 Algebraic Webs of Maximal Rank
3.4 Webs and Families of Hypersurfaces

4 The Converse to Abel’s Theorem

4.1 The Converser to Abel’s Theorem
4.2 Proof of Theorem 4.1.1
4.3 Algebraization of Smooth 2n-Webs
4.4 Double-Translation Hypersurfaces

5 Algebraization of Maximal Rank Webs

5.1 Trépreau’s Theorem
5.2 Maps Naturally Attached to W
5.3 Poincaré-Blaschke’s Map
5.4 Poincaré-Blaschke’s Surface
5.5 A Counterexample in Dimension Two

6 Exceptional Webs

6.1 Criterion for Linearizability
6.2 Infinitesimal Automorphisms
6.3 Pantazi-Hénaut Criterion
6.4 Classification of CDQL-Webs
6.5 Further Examples

Appendix On the History of Web Geometry
Bibliography
Index

SOBRE OS AUTORES

Jorge Vitório Pereira
Luc Pirio

COMPRE ON-LINE

Loja virtual da Springer