Na Folha de S. Paulo: constantes mais famosas da matemática
Reprodução da coluna de Marcelo Viana na Folha de S.Paulo
Anteriormente, tratei aqui de quatro grandes problemas matemáticos:
- Conjectura dos primos gêmeos
- Conjectura de Goldbach
- Conjectura de Collatz
- Hipótese de Riemann
Continuo a lista com dois problemas relativos às três constantes mais famosas da matemática. Eles são estudados desde o século 18, mas ainda não foram resolvidos.
5. O número π+e é racional? Não há dúvida de que π (pronuncie pi) = 3,14159… é a constante mais famosa da matemática, seguido de perto pelo número de Euler-Neper e = 2,71828…
Sabemos que ambos são números irracionais, ou seja, não podem ser escritos como frações p/q de números inteiros. Isso foi provado por Leonhard Euler em 1737, no caso do e, e por Johann Heinrich Lambert, por volta de 1760, no caso do π.
Leia mais: ‘Clima colaborativo’ marca a pós do IMPA, destacam alunos
Centro Pi abre chamada para bolsa de pós-doutorado
Últimos dias para inscrição na 17ª OBMEP
Aliás, sabemos mais: Ferdinand von Lindemann provou em 1882 que tanto π como e são números transcendentes, ou seja, eles não são soluções de nenhuma equação polinomial akxk+ … +a2x2+a1x+a0=0 com coeficientes ak, …, a2, a1, a0 inteiros.
Mas para a maioria dos números construídos a partir deles, tais como π+e, π-e, πe, π/e, ππ, ee e πe, não temos ideia se são racionais ou irracionais. Uma exceção um pouco surpreendente é eπ, que se sabe que é transcendente, logo irracional.
6. O número γ é racional? Na corrida para constante matemática mais famosa, a medalha de bronze vai para o número de Euler-Mascheroni γ (pronuncie gama) =0,57721… Ela apareceu em trabalhos de Leonhard Euler em 1734 e de Lorenzo Mascheroni em 1790.
A definição é a seguinte: some as frações 1/1, 1/2, 1/3, … até 1/N e subtraia o valor do logaritmo neperiano de N; quanto maior for o N, mais próximo o resultado estará do valor de γ. O número γ já foi muito estudado, e sabemos que está relacionado com questões importantes em diferentes áreas da matemática. Também conhecemos mais de 600 bilhões de seus dígitos.
Para ler o texto na íntegra acesse o site do jornal
Leia também: Dois anos depois, alunos voltam a frequentar aulas no IMPA
Festival da Matemática abre inscrições no dia 15/03