Equações Diferenciais Parciais: Teoria Linear

Pré-requisito:  Análise Funcional

Espaços de Sobolev : aproximação por funções diferenciáveis; derivada fraca; extensão; traço. Espaços de Hölder. Inclusões de Sobolev. Compacidade de Kondrachov. Equações elípticas de segunda ordem: soluções fracas; teorema de Lax-Milgram; alternativa de Fredholm; teoria de regularidade; princípio do máximo. Desigualdade de Poincaré. Problemas de autovalor.  Equações lineares de evolução : equações parabólicas; equações hiperbólicas; teoria de semigrupos. Outros tópicos e aplicações.

Referências:
EVANS, L. C. – Partial Differential Equations (Graduate Studies in Mathematics), volume 19. American Mathematical Society, 1998.
MCOWEN, R. – Partial Differential Equations: Methods and Applications, Prentice Hall (2002).