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How predictable are turbulent flows? Here, we use theoretical estimates and shell model simulations to
argue that Eulerian spontaneous stochasticity, a manifestation of the nonuniqueness of the solutions to the
Euler equation that is conjectured to occur in Navier-Stokes turbulence at high Reynolds numbers, leads to
universal statistics at finite times, not just at infinite time as for standard chaos. These universal statistics are
predictable, even though individual flow realizations are not. Any small-scale noise vanishing slowly
enough with increasing Reynolds number can trigger spontaneous stochasticity, and here we show that
thermal noise alone, in the absence of any larger disturbances, would suffice. If confirmed for Navier-
Stokes turbulence, our findings would imply that intrinsic stochasticity of turbulent fluid motions at all
scales can be triggered even by unavoidable molecular noise, with implications for modeling in
engineering, climate, astrophysics, and cosmology.
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Spontaneous stochasticity is a recently discovered phe-
nomenon [1–3] in turbulent flows [4,5], whereby solutions
of model fluid equations remain unpredictable and sto-
chastic due to diverging Lyapunov exponents in the high
Reynolds number limit, even though random perturbations
to the flow are negligible asymptotically. It is an open
question as to whether or not it occurs in real fluids or in the
Navier-Stokes equations. Here, we report that at large (but
finite) Reynolds numbers, a stochastic wave propagating
from small to large scales, as first postulated by Lorenz [6],
rapidly randomizes the large-scale flow, even if the only
sources of noise to trigger the wave are molecular
fluctuations at small scales. Going beyond Lorenz, we
show that flow fluctuations at large scales exhibit universal
statistics due to spontaneous stochasticity and not directly
due to whatever small-scale noise triggers the stochastic
wave. Spontaneous stochasticity is not inevitable; for it to
be triggered, the small-scale noise must become negligible
in the large Reynolds number limit sufficiently slowly.
The surprise is that even thermal noise satisfies this
condition. These new indirect effects at large scales are
distinct from a growing body of work showing that thermal
noise directly alters the turbulent dissipation range
below the Kolmogorov scale [7–16], and, in fact, other
small-scale disturbances, typically much larger than ther-
mal agitation, will produce indistinguishable large-scale
stochasticity. To demonstrate our claim that the probability
distributions of relevant flow quantities have a universal,

non-delta-function form at large but finite Reynolds num-
bers, we are forced to employ a simplified but well-studied
dynamical model [17] of turbulence, since the Navier-
Stokes equations are computationally unfeasible at the
large Reynolds numbers required for convincing conver-
gence to universal statistics. These results suggest an
essential indeterminism of turbulent flows at scales of
practical interest, with potentially far-ranging implications
for engineering, geophysics, and astrophysics.
Fluctuating hydrodynamics.—The fluctuating hydrody-

namics of Landau-Lifshitz [18] describes the effect of
thermal noise in fluid flows by including fluctuating
stresses into the Navier-Stokes equation. It is expressed
in a form nondimensionalized by large-scale velocityU and
outer or integral length L as

∂tuþ ðu ·∇Þu ¼ −∇pþ 1

Re
△uþ

ffiffiffiffi
Θ

p ∇ · ξ þ Ff; ð1Þ

where the fluctuating stress is modeled as a Gaussian
random field ξ with mean zero and covariance

hξijðx; tÞξklðx0; t0Þi ¼
�
δikδjl þ δilδjk −

2

3
δijδkl

�

× δ3ðx − x0Þδðt − t0Þ: ð2Þ

Here, the Reynolds number is defined as Re≡UL=ν,
where U is the large-scale velocity of the flow, L is the
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forcing scale at which energy is injected, and ν is kinematic
viscosity. Θ≡ 2νkBT=ρL4U3 appears due to the presence
of noise and characterizes its strength according to the
fluctuation-dissipation relation. kB is Boltzmann’s constant,
T is absolute temperature, and ρ is mass density. To drive
turbulence, we have added an external forcing f non-
dimensionalized by rms value frms, with prefactor F ¼
Lfrms=U2 setting the magnitude. Strictly speaking, Eq. (1)
describes a coarse-grained velocity field on length scale
Λ−1 larger than the mean free path, and some care is needed
to interpret this mathematically; see Supplemental Material
(Sec. I) [19] for details [41–44].
Using flow parameters characteristic of the atmos-

pheric boundary layer (ABL) [45] T ¼ 300° K, ν ¼
1.5 × 10−5 m2= sec, ρ¼1.2 kg=m3, ε¼4×10−2m2=sec3,
L ¼ 103 m, and U ¼ 3.42 m= sec, where ε is the mean
energy dissipation per mass, we find Θ ≃ 2.59 × 10−39,
naively justifying dropping the fluctuating stress term from
the Landau-Lifshitz equations and supporting the conven-
tional wisdom that physically relevant turbulent fluid flows
are well modeled by the deterministic (cutoff) Navier-
Stokes equations. This conclusion is consistent with
numerical findings [12–14] that the turbulent steady-state
statistics at scales larger than the Kolmogorov length η ¼
ν3=4ε−1=4 are unchanged by molecular fluctuations but not
addressing the issue of the flow predictability.
Fully developed fluid turbulence in the ABL has

Re ≃ 2.28 × 108, justifying dropping as well the viscous
term proportional to Re−1 from the equations [46].
However, the limiting equations with no viscosity, no wave
number cutoff, and no thermal noise are the continuum
Euler equations, which do not have unique solutions and
are formally ill posed [47–49]. Such nonuniqueness or
“flexibility” of solutions suggests an intrinsic unpredict-
ability of turbulent fluid motions at high Reynolds numbers
known as Eulerian spontaneous stochasticity [3,50] and
provides a possibility for tiny thermal noise to influence the
predictability of all scales of the flow up to the largest.
Spontaneous stochasticity.—Spontaneous stochasticity

can be given a precise meaning through a probability
distribution on solutions of the governing stochastic differ-
ential equation. In the case of Eulerian spontaneous
stochasticity triggered by thermal noise, the corresponding
equation is (1). The solution of this equation may be
expressed in terms of a transition probability density
PRe;Θðuf; tfjui; tiÞ as follows:

PRe;Θðuf;tfÞ¼
Z

DuiPRe;Θðuf;tfjui;tiÞPRe;Θðui; tiÞ; ð3Þ

where PRe;Θðui=f; ti=fÞ is a probability distribution of
velocity fields at the initial or final time. The transition
probability PRe;Θðuf; tfjui; tiÞ satisfies the Fokker-Planck
equation corresponding to Langevin equation (1), and it is

parametrized by the nondimensional numbers Re and Θ. In
the limit of zero noise Θ → 0 with Re fixed, the transition
probability becomes deterministic, that is, expressed as a
delta distribution on the unique solution of the limiting
deterministic problem. The issue of uniqueness of solutions
plays the central role in emergence of spontaneous sto-
chasticity: See Supplemental Material Sec. II [19] for more
details. Note that the limiting equations for the fluctuating
hydrodynamics of Landau-Lifshitz in the limit Θ → 0 are
Navier-Stokes equations with the finite cutoff Λ, so that
uniqueness of solutions to the Cauchy initial-value problem
is then elementary and well known. This physically
necessary cutoff is crucial, since the uniqueness of Leray
solutions of the continuum Navier-Stokes equations is a
major open problem in pure mathematics [51]. However, if
the zero-noise limit is taken together with Re → ∞ and
Λ ∝ Re → ∞, it leads to singular Euler dynamics with no
unique solutions. Then the limiting transition probability
may cease to become deterministic:

PRe;Θðuf; tfjui; tiÞ ⟶
Θ→0

Re→∞
P∞ðuf; tfjui; tiÞ: ð4Þ

If such a nontrivial limiting transition probability exists, the
limit is called spontaneously stochastic and corresponds to
stochastic behavior of a formally deterministic Euler
system, which each realization of the limiting distribution
satisfies in a weak sense [1,3,50,52,53].
Because the spontaneously stochastic limit is a double

limit Re−1, Θ → 0, there is no unique way to arrive at it.
Furthermore, if the noise strength is taken to zero suffi-
ciently fast, the limit becomes deterministic. In many cases
of practical importance, such as turbulent flows past a grid
or a cylinder, experimental evidence [54,54,55] points at a
nonvanishing energy dissipation with the limiting dissipa-
tion rate satisfying a relation first proposed by Taylor [56]
ε ¼ CU3=L, where C is a dimensionless constant. In this
scenario, we can control the macroscopic flow parameters
U (or ε) and L, while ν, T, and ρ are fixed material
parameters of the fluid. These considerations motivate as a
“canonical limit” the one obtained by fixing the ratioU3=L,
along with ν, T, and ρ, while taking Re → ∞. This leads us
to define the second nondimensional number as θη ¼
2kBT=ρν11=4ε−1=4 (see [12]) and consider the limit Θ ¼
Re−15=4θη → 0 with θη held constant. This is the physically
relevant continuum limit in which also Λ ∝ Re → ∞,
describing fully developed 3D hydrodynamic turbulence.
Numerical verification of Eulerian spontaneous stochas-

ticity.—In order to check that the limit (4) is indeed
spontaneously stochastic, we need to simulate Landau-
Lifshitz equations at very high Reynolds numbers. State-of-
the-art simulation can achieve only Re ≈ 500 [14,57] for
incompressible flows, so we use here the Sabra model [17],
a simplified dynamical model of turbulent cascade that
preserves many key features of Navier-Stokes equations (1)
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but discretizes length scales as ln ¼ 2−nL and keeps only
one complex mode un to represent velocity increments
δlu ∝ junj at scale ln. We also include a stochastic term to
model thermal noise and a deterministic forcing fn that acts
only at large scales. In nondimensionalized form, this
modified Sabra model is given by the stochastic ordinary
differential equations:

dun
dt

¼ i

�
knþ1unþ2u�nþ1 −

1

2
knunþ1u�n−1 þ

1

2
kn−1un−1un−2

�

−
1

Re
k2nun þ

ffiffiffiffi
Θ

p
knξnðtÞ þFfn; n¼ 1;…;N; ð5Þ

where kn ¼ 1=ln, covariance of the white noise
hξ�nðtÞξmðt0Þi ¼ 2kαnδnmδðt − tÞ, and the second nondimen-
sional number group is Θ ¼ Re−βθη, β ¼ 3ðαþ 2Þ=4.
Here, we take the number of shells N ∝ 3

4
log2ðReÞ,

sufficient to resolve a few shells above the Kolmogorov
wave number kη ¼ 1=η. The choice α ¼ 3 in the noise
covariance is dimensionally identical to 3D Landau-
Lifshitz, with β ¼ 15=4, and it produces also an energy
spectrum ∝ k2 in the dissipation range, the same as for 3D
fluids, but violates the shell-model fluctuation-dissipation
relation. On the other hand, the choice α ¼ 0 preserves this
relation, although the equipartition energy spectrum in the
dissipation range is ∝ k−1 rather than ∝ k2. Since it is
impossible to match exactly all relevant properties of 3D
Landau-Lifshitz equations with a single choice of α, we
investigated both choices α ¼ 0 and α ¼ 3, and we find the
overall results are insensitive to this choice. We emphasize
that for either choice of α the noise does not serve as a large
scale forcing, and, in fact, together with the viscous
damping, it becomes vanishingly small in the limit
Re → ∞. For more details on the numerical simulations,
including the forcing fn used and the choice of α, see
Supplemental Material, Secs. III–VI [19].

We study the Cauchy problem for (5) with two different
deterministic but “quasisingular” initial data that are not
smooth uniformly in Reynolds number. It is convenient to
study spontaneous stochasticity with such quasisingular
initial data, since with large-scale initial data independent
of Re one would otherwise have to wait for singularities
to form by finite-time blowup [50]. The first is the
Kolmogorov initial datum un ¼ −iAε1=3k−1=3n , which is
an exact stationary (but unstable) solution of the inviscid,
deterministic Sabra model if suitable deterministic forces
fn are added to the two lowest shells n ¼ 1, 2 [58]. The
other initial datum is a “burst” state selected from the
ensemble of turbulent steady states of the Sabra model at
very high Re (see Supplemental Material, Sec. V [19]).
This particular initial datum has approximately a power-law
form un ∝ k−hn in the inertial range, with Hölder exponent
h ≃ 0.258; by construction, this is not intended to be the
scaling of the statistical steady state. Both of these initial
data are quasisingular with exponent h < 1, regularized
only at very high wave number either by the cutoff N or by
viscosity ν. The numerical details of how Re was varied
differs for the two initial data: See Supplemental Material,
Sec. IV for the K41 case and Sec. VI for the burst case [19].
The key statistical quantities which we calculate are the

probability density functions (PDFs) of local-in-scale
variables, such as the absolute values of velocities at a
fixed shell numbers n, fixed time tf, at an increasing
sequence of Reynolds numbers. These reduced PDFs are
integrals over the transition probability densities in (3).
Without external noise, these are delta distributions; see
Supplemental Material, Sec. VII [19]. Presented in Fig. 1 are
plots of the PDFs for shelln ¼ 18 and time tf ¼ 1 (a),(b) and
tf ¼ 1.477 × 10−3 (c), where Figs. 1(a) and 1(b) are for the
K41 initial datum with noise exponents α ¼ 0 and α ¼ 3,
respectively, and Fig. 1(c) is for the burst initial datum with
α ¼ 0.As seen clearly, thePDFs convergewith increasingRe
to nondelta distributions and, therefore, do not become

(a) Self-similar initial state with noise
scaling α = 0.

(b) Self-similar initial state with noise
scaling α = 3.

(c) “Burst” initial state with noise scaling
α = 0.

FIG. 1. Transition probability density function for the absolute values junj at a single fixed shell number n ¼ 18 and time tf ¼ 1 (a),(b)
and tf ¼ 1.477 × 10−3 (c) in inertial units for Reynolds numbers spanning almost two decades. The bottom axis represents the inertial
range units, while the top axis represents the SI units for the ABL parameters. All the errors are estimated as standard errors using the
bootstrap method. Reference [19] contains details on how the Reynolds number was varied, Sec. IV for the K41 initial condition and
Sec. VI for the “burst” initial condition.
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deterministic. The direct effects of thermal fluctuations at this
scale can be estimated from θη, and the resulting rms velocity
fluctuations are 4–5 orders of magnitude smaller than the
ones shown in Fig. 1. Thus, the universal statistics reflect
spontaneous stochasticity, not direct effects of thermal noise.
We have obtained similar results for the PDFs of other scale-
local variables, e.g., energy flux Πn (see Supplemental
Material, Sec. VIII [19]).
These observations constitute our crucial numerical

evidence for Eulerian spontaneous stochasticity triggered
by thermal noise in the Sabra model and, presumably, for
the Landau-Lifshitz equations. The two cases in Figs. 1(a)
and 1(b) correspond to the same initial datum and the same
limiting equations when Re → ∞ but a different scale-by-
scale approach toward it. Nevertheless, the limiting prob-
ability distributions are the same and independent of the
type of regularization and the type of noise that triggers
random perturbations.
Inverse error cascade and stochastic wave.—What

causes this unpredictability if the direct effects of thermal
noise are too small? The mechanism was first suggested by
Lorenz: an inverse cascade of error [6] that has since been
extensively studied [59–62]. Perhaps the simplest way to
illustrate this mechanism is to look at the time-dependent
variances Var½un� ¼ E½jun − E½un�j2� calculated across an
ensemble of noise realizations with fixed initial datum.
These are shown in Fig. 2 for the K41 datum. Initially,
variances at all scales exhibit diffusive linear growth in
time, with higher rate at larger kn. Next, modes become
chaotic scale by scale, starting from high wave numbers,
and eventually the variance for a particular shell saturates
when it reaches twice the average energy at that scale. In the
early stage of development of the stochastic wave, the
total variance of the system VarðuÞ ¼ P

n VarðunÞ grows

exponentially (see Supplemental Material, Sec. IX [19]),
and this regime is fully consistent with the work of
Ruelle [10] on the effects of thermal noise in predictability
of developed turbulence. However, when the stochastic
front starts to propagate across the inertial range [50,63],
the system enters the spontaneously stochastic regime. In
the case of a self-similar initial state u0;n ∝ Ak−hn , the front
is self-similar, located at length scale lðtÞ ¼ ðAtÞ1=ð1−hÞ
with amplitude uðtÞ ¼ ðAthÞ1=ð1−hÞ at time t. Plotted as
VarðunÞ=u2ðtÞ versus knlðtÞ, the curves collapse for the
three late times t ¼ 12.14, 48.56, 194.24 s. For more details
on the stages of the stochastic wave formation and
propagation, see Supplemental Material, Sec. IX [19].
Furthermore, after the stochastic front passes some scale,
the statistics of Kolmogorov multipliers [64] at that scale
converges to the steady state distribution. Such super-
universality has been observed before in [50]; see
Supplemental Material, Sec. X [19]. We draw attention
to the striking resemblance of our Fig. 2 to Fig. 2 of
Lorenz [6], which he obtained for two-dimensional
Euler equations using a turbulence closure model. For
the analogous plot with the burst initial state, see
Supplemental Material, Sec. XI [19], where the same
picture holds qualitatively, although there is no exact
self-similarity. The large spontaneous fluctuations illus-
trated in Fig. 1(a) are, thus, due to effects of thermal noise
in the dissipation range which are propagated up into the
inertial range by nonlinear error cascade and not due to the
direct local effects of thermal noise.
An important feature of this “inverse error cascade”

is that in the inertial range the universal statistical distri-
butions are achieved at each length scale l in a time which
is a constant multiple of the eddy-turnover time τl ¼ l=ul,
indifferent to the noise magnitude. This should be
contrasted with a predictability horizon in conventional
chaotic systems, which is dependent on the noise

FIG. 2. Twice ensemble average energy E½ϵn� (orange) for
ϵn ¼ 1

2
junj2 and velocity variances (blue, green, and black) across

the ensemble as a function of wave number in SI units for four
increasing times. The smallest time in the variances plots the
initial non-self-similar transient, and the subsequent three times
show the self-similar propagation of the stochastic wave toward
large scales. 2E½ϵn� is almost unchanged in time and forms the
envelope of the propagating wave.

FIG. 3. Local randomization times trðnÞ as a function of length
scale ln ¼ 2−nL for the K41 initial datum. trðnÞ is defined as the
time in which the nth shell’s variance reaches the ensemble
average energy E½ϵn�. The inset plot depicts trð18Þ as a function of
the Reynolds number.
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strength [3,6,65,66]. To illustrate this point, Fig. 3 shows
the randomization time trðnÞ, defined as the time when
the nth shell’s variance reaches its ensemble average
energy, plotted versus index n. As is clear from the figure,
the randomization times above the length scale of 10 cm
for the flow parameters of the ABL are given by trðnÞ ¼
3.4ε−1=3l2=3

n . Therefore, we conclude that the length scales
of about the size of a coffee mug and above in 3D ABL
turbulence behave in a spontaneously stochastic fashion. In
Supplemental Material, Sec. XII [19], we provide a
theoretical estimate on dimensional grounds of that length
scale as a function of Re and Θ. Crucially, we observe that
trðnÞ approaches the asymptotic value ∝ ε−1=3l2=3

n for any
shell n in the limit Re → ∞: See the inset in Fig. 3. Thus,
all scales are spontaneously stochastic in that ideal-
ized limit.
Discussion.—It is important to emphasize our finding

that the spontaneous large-scale statistics are universal with
respect to the small-scale noise that triggers them, as long
as the noise amplitude becomes negligible with respect to
the deterministic equation more slowly than some
Re-dependent threshold. On dimensional grounds, we
estimate this threshold to be ∼ expð− ffiffiffiffiffiffi

Re
p Þ as Re → ∞

(see Supplemental Material, Sec. XII [19]). Even the
inevitably present molecular noise satisfies this criterion,
and our simulations suggest that it is sufficient to trigger
spontaneous stochasticity. In one turnover time of the
largest 3D turbulent eddies, the unknown molecular
motions will impact the evolution, rendering only statistical
predictions possible.
Our work has implications for turbulence across multiple

scales. For climate models, even if the projected goal of
1 km horizontal resolution in the next decade is achieved
[66], such refined resolution will not obviate the need for
stochastic models [65–68]. For the dynamics of galaxy
formation, it has already been shown that microscale chaos
and stochasticity lead to large variations in star-formation
histories and distribution of stellar mass [69], and our
results suggest that these effects may be even more severe
than currently thought. At the large scale of hydrodynamic
simulations of cosmological galaxy formation, the sensi-
tivity of simulations to minute perturbations has also been
examined with regard to chaotic dynamics [70] and would
be expected to be amplified further by the results we have
discussed [71]. Closer to home, there have been recent
efforts to reconstruct best-fit individual solution trajectories
of Navier-Stokes equations using variational data assimi-
lation techniques [72,73]. It is already recognized that
these reconstruction problems are highly ill conditioned
due to chaotic dynamics. The inclusion of spontaneous
stochasticity into this program poses even more severe
limitations and implies that a well-posed problem is instead
the reconstruction of statistical ensembles of solutions
[74,75]. These examples show that there are many potential
ramifications of spontaneous stochasticity in turbulence

and related phenomena. It will be important to determine if
our findings, based admittedly on a shell model, are valid
beyond the necessary simplifications entailed in our work.

This work was partially supported by the Simons
Foundation through Targeted Grant “Revisiting the
Turbulence Problem Using Statistical Mechanics”
[Grants No. 663054 (G. L. E.) and No. 662985 (N. G.)].
A. A. M. was supported by the National Council for
Scientific and Technological Development CNPq Grant
No. 308721/2021-7 and Fundação Carlos Chagas Filho de
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