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em seu trabalho, caracteŕısticas das quais me inspiro.

Aos meus colegas do IMPA, expresso minha gratidão ao Marcelo, Gabi e Pedro pela
amizade e suporte constante desde o primeiro dia do meu doutorado. Agradeço também
ao Thiago, Thyago, Mateus e Marina pelas profundas discussões sobre filmes de qualidade
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Abstract

The k-systole of a Riemannian manifold is the infimum of the volume over all homo-
logically non-trivial k-cycles. In this work we discuss the behavior of the dimension two
and codimension two systole of the complex projective space for distinguished classes of
metrics, namely the homogeneous metrics and the balanced metrics. In particular, we
argue that every homogeneous metric maximizes the systole in its volume-normalized
conformal class, as well as that each Kähler metric locally minimizes the systole on the
set of volume-normalized balanced metrics. The proof demands the implementation of
integral geometric techniques, and a careful analysis of the second variation of the systole
functional. As an application, we characterize the systolic behavior of almost-Hermitian
1-parameter Zoll-like deformations of the Fubini-Study metric.

Keywords: Minimal surfaces, Hermitian manifolds, homogeneous manifolds.
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Resumo

A k-śıstole de uma variedade Riemanniana é o ı́nfimo do volume sobre todos os k-ciclos
não triviais. Neste trabalho, discutimos o comportamento da śıstole de dimensão dois e
codimensão dois do espaço projetivo complexo para certas classes de métricas, especi-
ficamente métricas homogêneas e métricas Balanceadas. Em particular, provamos que
toda métrica homogênea maximiza a śıstole quando restrita ao conjunto de métricas con-
formes com volume normalizado. Também provamos que toda métrica Kähler minimiza
a śıstole de codimensão dois quando restrita ao conjunto de métricas Balanceadas com
volume normalizado. A prova destes resultados demanda a implementação de técnicas in-
tegrais geométricas, bem como uma análise cuidadosa da segunda variação do funcional
śıstole. Como aplicação, caracterizamos o comportamento sistólico de deformações quase
Hermitianas do tipo Zoll da métrica Fubini-Study.

Palavras-chave: Superf́ıcies mı́nimas, variedades Hermitianas, variedades homogêneas.
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Introduction

The systole of a closed Riemannian manifold is defined as the infimum of the length over
all homotopically non-trivial loops. The interest in this geometric invariant started with C.
Loewner, who proved that for every Riemannian metric on the two-dimensional torus, the
systole is bounded by a universal constant times the square root of the area. This type of
inequality is called isosystolic inequality. Following his work, M. Pu provided an isosystolic
inequality for the two-dimensional real projective space and characterized the equality
case ([Pu52]). The subject of systolic geometry grew in interest with the stunning work
of M. Gromov, who generalized Loewner’s inequality for essential manifolds ([Gro96]).
One of the reasons for such interest is the relation with different areas of mathematics,
as, for instance, the link with isoperimetric inequalities. A friendly introduction to the
subject can be found in the following survey by L. Guth ([Gut10]).

Inspired by the works of C. Loewner and M. Pu, M. Berger proposed a definition
of higher orders systoles ([Ber72]). More concretely, if (Mn, g) is a closed Riemannian
manifold, we define the homological k-systole with integer coefficients, or simply the k-
systole, as:

Sysk(M, g) = inf{volg(C) : where [C] 6= 0 in Hk(M,Z)},

where the volume of a cycle is computed with respect to the k-dimensional Hausdorff
measure induced by the Riemannian metric. From Cartan’s Theorem the 1-systoles are
realized by geodesics. The k-systoles with k > 1, are realized by stable minimal subman-
ifolds, possibly with singularities ([Fed69]). This creates a connection between systolic
geometry and the theory of minimal submanifolds.

Based on the aforementioned works, a natural question is the existence of isosystolic
inequalities for the k-systole. However, perhaps because of the wilder nature of minimal
submanifolds over geodesics, such inequalities are not expected. This phenomenon is
known as systolic freedom ([Ber93],[Kat95]). Therefore, a more approachable problem is
to study the points of local maximum and local minimum of the (volume) normalized
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systole,

Sysnor
k (M, g) =

Sysk(M, g)

vol(M, g)
k
n

,

when restricted to distinguished subsets of Riemannian metrics. Note that the power in
the volume is chosen in such way that the functional is invariant by scaling of the metric.

The first significant contribution in this regard comes from M. Berger ([Ber72]), who
demonstrated that in CPn, the Fubini-Study metric serves as the maximum for the nor-
malized 2k-systole within its conformal class, for all 1 ≤ k < n. It is worth noting that
in CPn, homology is only non-trivial for even dimensions.

More recently, using the machinery of pseudo-holomorphic curves developed by M.
Gromov, Berger also showed that in CP 2, the Fubini-Study metric is a local maximum
for the normalized 2-systole.

Theorem A (Gromov-Berger, cf. [Gro85], section 0.2.B). There exist an open neighbor-
hood gFS ∈ U of the Fubini-Study metric in the space (Riem(CP 2), C∞) of Riemannian
metrics, such that:

Sysnor
2 (CP 2, g) ≤ Sysnor

2 (CP 2, gFS),

for every metric g ∈ U . Moreover, the equality holds if and only if there is an almost
complex structure J such that (CP 2, J, g) is almost Kähler.

In contrast with the global result of M. Pu for RP 2, this local statement is the best
result we can expect in CP 2. In fact, M. Katz and A. Suciu have proven that systolic
freedom holds in this space ([KS99]), excluding the possibility of a global version of this
theorem.

An interesting question is whether this theorem generalizes to the (2n − 2)-systole
in CPn, for n > 2. However, given the significant differences in the character of pseudo-
holomorphic curves and almost complex submanifolds of higher dimensions, this was not
expected. In fact, in [Gro96], M. Gromov proved that this result is false for n > 2, by
exhibiting a family of almost Hermitian metrics approaching the Fubini-Study metric,
each one with normalized systole larger than the Fubini-Study metric.

Nevertheless, one question that remains and motivates part of our work is to charac-
terize the behavior of the normalized (2n − 2)-systole restricted to the set of Hermitian
metrics of CPn, n ≥ 3, that are compatible with the canonical complex structure.

Our first observation is that, even when restricted to this smaller set, the Fubini-
Study metric is not a local maximum for the normalized systole. In fact, we have proven
that this metric represents a point of strict minimum for the normalized codimension two
systole restricted to the class of homogeneous metrics in CP 2n+1. Furthermore, we also
proved that systolic freedom holds within this class (see Theorem 2.0.2).

However, our main observation is that every homogeneous metric is balanced, meaning
that the associated fundamental form is coclosed. In dimension n = 2, every balanced
metric is almost Kähler. In other words, they do not play a role in Gromov-Berger’s
Theorem A. Therefore it is reasonable to ask if the balanced directions are the ones
where the normalized systole increases, for the case n ≥ 3. This question leads us to our
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second result, namely: the Fubini-Study metric is a local minimum for the normalized
(2n−2)-systole in CPn when restricted to the infinite dimensional set of balanced metrics.
Moreover, we characterize the equality case (see Theorem 3.0.1).

Another aspect of the Gromov-Berger Theorem that we can draw inspiration from for
generalizations is the rigidity statement. That is, the theorem guarantees the existence
of an open neighborhood U of the Fubini-Study metric such that, if g ∈ U and

Sysnor
2 (CP 2, g) = Sysnor

2 (CP 2, gFS),

then there exists an almost complex structure J such that (CP 2, J, g) is an almost Kähler
manifold, i.e. its associated fundamental form is closed. By Taubes’ uniqueness Theorem
for symplectic structures on CP 2 ([Tau95]), up to diffeomorphism and scaling we can
assume that the fundamental form associated to the pair (J, g) is the Fubini-Study form.
In this case, the work of Gromov on pseudo-holomorphic curves ([Gro85]) implies that
for every point and every tangent complex line there is a unique J-holomorphic CP 1 that
contains the point and is tangent to the given complex line ([Sik04], [McK06]). Moreover,
each of these surfaces generates the homology of CP 2 and realizes the 2-systole.

Notice the similarity with the classical Zoll condition ([Zol03], [Bes78]), and also
the Ambrozio-Marques-Neves condition ([AMN21]). This motivates us to propose the
following definition.

Definition B. The set Z is defined as the class of almost Hermitian structures (J, g) in
CPn whose admit a family {Σ2n−2

σ }σ∈CPn of (2n−2)-dimensional submanifolds satisfying
the following properties:

a) For every σ ∈ CPn the submanifold Σσ is diffeomorphic to CPn−1, minimal and
J-almost complex.

b) For every (p,Π) ∈ GrJn−1(CPn), in the Grassmannian of J-almost complex hyper-
planes, there exists a unique σ ∈ CPn for which p ∈ Σσ and TpΣσ = Π. Moreover,
the map GrJn−1(CPn) 3 (p,Π) 7→ σ ∈ CPn is a submersion.

c) The map CPn 3 σ 7→ Σσ is smooth in the sense of the graphical convergence.

Moreover, we define the subset Z ′ as the elements (J, g) ∈ Z, for which Σσ generates
H2n−2(CPn,Z) for every σ ∈ CPn. The family {Σ2n−2}σ∈CPn is called the associated Zoll
family.

Recall that, for a given family {Σσ}σ∈CPn of closed smooth submanifolds of (CPn, g),
the map CPn 3 σ 7→ Σσ is said to be smooth in the sense of graphical convergence
if, for every σ0 ∈ CPn, there is an open neighborhood U of σ0 and a smooth map
U 3 σ → ξσ ∈ Γ(NΣσ0) such that Σσ =

{
expp (ξσ(p)) : p ∈ Σσ0

}
for every σ ∈ U .

Therefore, by our previous discussion, we can thus say that, if the metric g in a neigh-
borhood of the Fubini-Study metric satisfies the equality in Gromov-Berger Theorem,
there exists an almost complex structure J such that (J, g) ∈ Z ′. We proved the converse
statement is true (see Theorem 1.0.2). In other words, in a neighborhood of the Fubini-
Study metric, we can characterize the set Z ′ as the points of maximum of the normalized
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systole. This result can be compared with the relation between Zoll metrics and systoles
(i.e. least length closed geodesics) in S2 proved in ([ABHS17]).

Motivated by the previous characterization of the set Z ′ and the results of V. Guillemin
([Gui76]) and Ambrozio-Marques-Neves ([AMN21]) on Zoll deformations of the round
metric in the sphere, we study 1-parameter deformations of the Fubini-Study metric in Z.
In particular, using the classical deformation theory developed by K. Kodaira ([Kod05]),
we were able to show that such deformations must be balanced with respected with the
canonical complex structure. In particular, such type of deformation must not decrease
the normalized codimension two systole.

The investigation of the (2n−2)-systole invariant on CPn leads naturally to the topic
of balanced metrics, which plays a central role in this work. The first systematic work
in this topic is due M.L. Michelson in the seminal article [Mic82]. Since then, balanced
metrics arose in a variety of other contexts. For instance, in the theory of Twistor geom-
etry over 4-dimensional self-dual manifolds ([AHS78],[FZ15]), Twistor geometry over hy-
perkähler manifolds ([Ver09]), Twistor geometry over hypercomplex manifolds ([Tom15]),
and also in the theory of complex Monge-Ampère equations ([FY08]).

Next we describe the structure of the Thesis. In Chapter 1 we classify the almost Her-
mitian manifolds which admit a large family of almost complex submanifolds that are also
minimal submanifolds. In Chapter 2 we study the systole functional for the homogeneous
metrics of the complex projective space. In Chapter 3 we study the normalized systole
restrict to the space of balanced metrics in CPn, for n ≥ 3. In Chapter 4 we combine
the above results to study 1-parameter family of deformations of the Fubini-Study metric
that lies in Z. Finally, in Chapter 5, we discuss two open questions that have arisen from
this thesis. The thesis also contains two appendices, one that discuss the relation of in-
tegral geometric formulas with systolic inequalities, and the other that summarizes some
classical results in the theory of Hermitian geometry. The results here present appeared
as a preprint in [Jun23], and have been submitted for publication.

Instituto de Matemática Pura e Aplicada 4 2024



CHAPTER 1

The Class Wk

Introduction

The criteria of integrability of the almost complex hyperplanes by minimal submanifolds,
in the definition of Z (see definition B), can be view as a variation of the axiom of
holomorphic planes presented in the following paper by K. Yano and I. Mogi ([YM55]),
where they study integrability of complex planes by totally geodesic submanifolds, instead
of minimal ones. On its turn, this is a generalization of the classical axiom of r-planes,
defined and studied by E. Cartan. Moreover, the minimal counterpart of the axiom of
r-planes was characterized by T. Hangan ([Han96], [Han97]).

Therefore, with the objective of better understand the almost Hermitian structures
in Z, we can draw inspiration in these works to propose the following generalization of
the axiom of holomorphic planes.

Definition 1.0.1. Let (M2n, J, g) be a 2n-dimensional almost Hermitian manifold, with
n ≥ 2. For each fixed integer 1 ≤ k ≤ n− 1, we define the set Wk as the class of almost
Hermitian structures (J, g) satisfying the following property: for every (p,Π) ∈ GrJk (M),
there exists a minimal and almost complex submanifold Σ2k

p,Π of M such that p ∈ Σp,Π

and Tp(Σp,Π) = Π.

The Section 1 will be devoted to the proof of the following classification theorem for
almost Hermitian structures that lies in Wk. For the reader less familiarized with the
theory of almost complex geometry, we refer Section 1.1 for definitions.

Theorem 1.0.2. Let (M2n, J, g) be a 2n-dimension almost Hermitian manifold, with
n ≥ 2. Then, we have:

a) The pair (J, g) lies in W1 if and only if (M,J, g) is quasi Kähler.

5
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b) For each fixed 1 < k < n − 1, the pair (J, g) lies in Wk if and only if (M,J, g) is
Kähler.

c) For n ≥ 3, the pair (J, g) lies in Wn−1 if and only if J is integrable and (M,J, g)
is balanced.

The key computations for the proof of this theorem were inspired by the work of
A. Gray ([Gra65]), which contains a comprehensive study the theory of almost complex
geometry. In particular, it contains an important characterization of almost complex
submanifolds that are also minimal.

The technicality provided by the theory of almost complex structures can overshadow
the simplicity of this statement. Therefore, we state the following corollary, with focus in
the integrable case. Incidentally, it clarifies the relation of Theorem 1.0.2 and the theory
of calibrations ([HL82]).

Corollary 1.0.3 (Integrable Case). Let (M2n, J, g) be a 2n-dimension Hermitian mani-
fold, with n ≥ 2, and let ω ∈ Ω2(M) be the associated fundamental form.

a) For each fixed 1 ≤ k < n− 1, we have that (J, g) ∈ Wk if and only if dω = 0.

b) For n ≥ 3, (J, g) ∈ Wn−1 if and only if dωn−1 = 0.

One implication of the proof can be outlined as follows. Provided that J is integrable,
every element of GrJk (M) can be integrated by a germ of a complex submanifold. There-
fore, if ωk is a calibration each of these germs must be a minimal submanifold, implying
that (J, g) ∈ Wk. Hence, the main content of the theorem is to prove that if we have
enough minimal complex 2k-submanifolds, then ωk necessarily defines a calibration.

A classical theorem in complex geometry due to Hirzebruch ([HK57]), Kodaira and
Yau ([Yau77]) states the uniqueness of the Kähler structure in CPn, up to biholomor-
phism. Combining this result with our classification we obtain the following.

Corollary 1.0.4. Let (M2n, J, g) be a 2n-dimension almost Hermitian manifold, with
n ≥ 2. If M is homeomorphic to CPn and the pair (J, g) lies inWk for some 1 < k < n−1,
then (M,J, g) is a Kähler manifold biholomorphic to CPn.

This Corollary confirms our proposal that the relevant scenarios to study a Zoll-like
integrability property in CPn are the cases of pseudo-holomorphic curves and complex
hypersurfaces, because the middle case presents a rigid structure. A counterpart of this
observation for the axiom of (minimal) r-planes was proved by T. Hangan in [Han97].

1.1 Preliminaries

This section will be dedicated to fix notation and recall definitions of complex and almost
complex geometry. This exposition is based in [Gra65].

Definition 1.1.1. Let M be a smooth manifold of dimension 2n. An almost complex
structure on M is an endomorphism J ∈ Hom(TM) such that J2 = −Id. A manifold
(M2n, J) equipped with an almost complex structure is called an almost complex manifold.

Instituto de Matemática Pura e Aplicada 6 2024
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In the context of almost complex geometry, interesting Riemannian metrics to be
studied are those that are compatible with the almost complex structure, in the following
sense.

Definition 1.1.2. Let (M2n, J) be an almost complex manifold. A Riemannian metric
g on M is said to be compatible with the almost complex structure J (or J-compatible)
if g(J ·, J ·) = g(·, ·), and in this case we will write J ∈ Iso(TM, g). An almost complex
manifold (M,J, g) equipped with a Riemannian metric g that is J-compatible is called
an almost Hermitian manifold.

Suppose that (M2n, J, g) is an almost Hermitian manifold. Let us define the funda-
mental 2-form associated to (M,J, g):

ω(·, ·) .
= g(J ·, ·) ∈ Ω2(M).

The anti-symmetry of ω is guaranteed by the compatibility condition J ∈ Iso(TM, g). In
the general case, an almost Hermitian manifold does not satisfy any further compatibility
condition between these two structures. However, it is worth to highlight a few conditions
that arise naturally. For that, we introduce the following tensors.

Before proceeding with definitions, we establish notation: for any Riemannian mani-
fold (N, g), we denote by ∇ the Levi-Cevita connection associated with the metric g.

Definition 1.1.3. Let (M2n, J, g) be an almost Hermitian manifold and X,Y ∈ X(M).
We define:

a) NJ(X,Y ) = [X,Y ] + J [JX, Y ] + J [X, JY ]− [JX, JY ] (the Nijenhuis tensor of J).

b) Q(X,Y ) = (∇XJ)Y + (∇JXJ)JY .

c) H(X,Y ) = (∇XJ)Y − (∇JXJ)JY .

d) S(X,Y ) = (∇XJ)Y − (∇Y J)X.

Now, we proceed with the definition of distinct classes of almost Hermitian manifolds,
which are established through compatibility conditions determined by the previously
introduced tensors.

Definition 1.1.4. Let (M2n, J, g) be an almost Hermitian manifold. We say that (M,J, g)
is:

a) Hermitian, if NJ(X,Y ) = 0.

b) Kähler, if it is Hermitian and ∇J = 0.

c) Almost Kähler, if dω = 0.

d) Quasi Kähler, if Q = 0.

e) Balanced, if dωn−1 = 0.

Instituto de Matemática Pura e Aplicada 7 2024
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Note the following inclusions between the previously defined classes of almost Her-
mitian manifolds: Kähler ⊂ almost Kähler ⊂ quasi Kähler ⊂ balanced. Additionally, if
n = 2, the balanced condition implies the almost Kähler condition. However, if n > 2, all
the inclusions are strict ([Gra80]).

Another important relation for us is that every quasi Kähler manifold that is also
Hermitian is Kähler. The proof of this fact is based on the following proposition.

Proposition 1.1.5. (cf. Corollary 4.2 in [Gra65]) Let (M2n, J, g) be an almost Hermitian
manifold. Then (M,J, g) is Hermitian if and only if H = 0.

Corollary 1.1.6. An almost Hermitian manifold that is quasi Kähler and Hermitian is
Kähler.

Proof. Given X,Y ∈ X(M), we have: (∇XJ)Y = 1
2(Q(X,Y ) + H(X,Y )) = 0, by the

previous result, as claimed.

Moving forward, we collect next some useful identities and properties in almost Her-
mitian geometry.

Proposition 1.1.7. Suppose that (M2n, J, g) is an almost Hermitian manifold and X,Y, Z ∈
X(M). Then:

a) (∇Xω)(Y,Z) = g((∇XJ)Y, Z).

b) (∇Xω)(Y,Z) = −(∇Xω)(Z, Y )

c) (∇Xω)(JY, Z) = (∇Xω)(Y, JZ).

d) (∇Xω)(JY, Y ) = 0.

e) NJ(JX, Y ) = −JNJ(X,Y ).

f) Let p ∈ M , v ∈ TpM and {ei, Jei}ni=1 be an orthonormal basis of TpM . Then the
codifferential of the associated fundamental form ω is given by

δω(v) =

n∑
i=1

g(Q(ei, ei), v).

In order to conclude this section, we describe one of the primary tools that we will
employ in this Chapter, the characterization of minimal submanifolds that are also an
almost complex submanifold. This characterization can be found in the following paper
of A. Gray, ([Gra65]). Before we present this result, lets recall the definition of almost
complex submanifold.

Definition 1.1.8. Let (M2n, J) be an almost complex manifold and Σ2k ↪→ M2n a
submanifold. We say that Σ is an almost complex submanifold if for every p ∈ Σ we have
that J(TpΣ) = TpΣ.

Instituto de Matemática Pura e Aplicada 8 2024
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Then, the aforementioned characterization of almost complex minimal submanifolds
reads as follows.

Proposition 1.1.9. (cf. Theorem 5.6 in [Gra65]) Let (M2n, g, J) be an almost Hermi-
tian manifold, and Σ2k ↪→ M2n an almost complex submanifold. Then Σ is a minimal
submanifold of (M, g) if and only if for every p ∈ Σ and v ∈ T⊥p Σ,

k∑
i=1

g(Q(ei, ei), v) = 0,

where {ei, Jei}ki=1 is an orthonormal basis of TpΣ.

Proof. In fact, the mean curvature vector H of Σ at the point p ∈ Σ is given by:

g(JHp, v) = −
k∑
j=1

g(Q(ej , ej), v),

for every v ∈ T⊥p Σ.

1.2 The Classification Theorem

Before we proceed with the proof of Theorem 1.0.2 we recall the definition of the sets
Wk, in order to facilitate the read.

Definition 1.2.1. Let (M2n, J, g) be a 2n-dimensional almost Hermitian manifold, with
n ≥ 2. For each fixed integer 1 ≤ k ≤ n− 1, we define the set Wk as the class of almost
Hermitian structures (J, g) satisfying the following property: for every (p,Π) ∈ GrJk (M),
there exists a minimal and almost complex submanifold Σ2k

p,Π of M such that p ∈ Σp,Π

and Tp(Σp,Π) = Π.

The first step in the proof of Theorem 1.0.2 is to notice that the property defining the
class Wk imposes restrictions, not only on the metric g, but also on the almost complex
structure J . Indeed, we have the following well-know result.

Proposition 1.2.2. Let (M2n, J, g) be an almost Hermitian manifold.

a) (cf. [NW63]) For every (p,Π) ∈ GrJ1 (M) there exists an almost complex submanifold
Σ2
p,Π such that Tp(Σp,Π) = Π.

b) (cf. Theorem 15 in [Kru03]) Fix 1 < k ≤ n − 1, if (J, g) ∈ Wk then the almost
complex structure J is integrable. In particular (M,J, g) is Hermitian.

A direct consequence of this result is that the proof of Theorem 1.0.2 essentially
reduces to show that (J, g) ∈ Wk implies Q = 0 for k < n− 1 and δω = 0 for k = n− 1.
This conclusion agrees with the intuition presented earlier in the introduction.

The next proposition is the main step in order to translate the condition of being in
Wk into tensorial properties on our manifold.
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Lemma 1.2.3. Let (M2n, J, g) be an almost Hermitian manifold.

a) Fix 1 ≤ k ≤ n− 2. If (J, g) ∈ Wk, then Q is an anti-symmetric tensor.

b) If (J, g) ∈ Wn−1, then δω = 0.

Proof. a) Fix 1 ≤ k ≤ n − 2 and suppose that (J, g) ∈ Wk. We want to show that the
tensorQ is anti-symmetric. But this is equivalent to prove that for all p ∈M and u ∈ TpM
with unitary norm, we have thatQ(u, u) = 0. So we fix p ∈M and u ∈ TpM with |u|g = 1.
First, we observe that, in general, g(Q(u, u), w) = 0, for every w ∈ Span{u, Ju}. Indeed,
suppose that w = au+ bJu, for a, b ∈ R. Then using Proposition 1.1.7 (a), we see that:

g(Q(u, u), w) =a(∇uω)(u, u) + b(∇uω)(u, Ju)

+a(∇Juω)(Ju, u) + b(∇Juω)(Ju, Ju).

However, by (b) and (d) of Proposition 1.1.7, each term of the right hand side vanishes,
which proves our claim.

In light of these observations, it remains to prove that g(Q(u, u), v) = 0 for every v
orthogonal to span{u, Ju}, with |v|g = 1.

Fix such v ⊥ span{u, Ju}. By definition of v, it is always possible to find an orthonor-
mal basis {u, Ju, e1, Je1, ..., en−1, Jen−1} of TpM with e1 = v. Writing γj = g(Q(ej , ej), v),
we have to prove that γ1 = 0. In fact, we will prove at once that γj = 0 for every
1 ≤ j ≤ n− 1.

Take I = {1 ≤ i1 < ... < ik ≤ n − 1}. By the definition of Wk, there exists
a minimal almost complex submanifold Σ2k

I of M , such that p ∈ ΣI and TpΣI =
span{ei1 , Jei1 , ..., eik , Jeik}. Then, noticing that v ⊥ TpΣI and applying Proposition 1.1.9,
we have that

k∑
µ=1

g(Q(eiµ , eiµ), v) = 0.

By the definition of γj , we obtain the following system of equations in terms of γj :

γi1 + ...+ γik = 0, ∀ I = {1 ≤ i1 < ... < ik ≤ n− 1}.

Since k < n−1, the only solution of this system is the trivial one, that is γj = 0 for every
1 ≤ j ≤ n− 1, as claimed.

b) We will prove that for a point p ∈ M and u ∈ TpM with unitary norm, we have
that δω(u) = 0. Using Proposition 1.1.7 (f) this is equivalent to

n∑
i=1

g(Q(ei, ei), u) = 0,

where {ei, Jei}ni=1 is an orthonormal basis of TpM . Since |u|g = 1, we can suppose
that e1 = u. Arguing as in the beginning of the proof of the first item, we have that
g(Q(u, u), u) = 0. Therefore, is enough to show that

n∑
i=1

g(Q(ei, ei), v) = 0, (1.1)
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Applying the hypothesis that (J, g) ∈ Wn−1 together with u ⊥ span{ej , Jej}j≥2, we
conclude the existence of a minimal almost complex submanifold Σu, such that p ∈ Σu

and TpΣu = span{ej , Jej}j≥2. Hence, (1.1) follows from Proposition 1.1.9, completing
the proof.

The previous proposition covers the case were 1 < k = n − 1. However, for 1 ≤ k <
n−1, it is still necessary to prove that Q being anti-symmetric implies that Q is zero. For
that, we need to understand how the tensor ∇J behaves under the commutation of the
first and second variables. Recalling that S is the anti-symmetrization of ∇J , we present
the following.

Lemma 1.2.4. Let (M2n, J, g) be an almost Hermitian manifold. Given X,Y ∈ X(M)
we have

Q(X,Y ) +Q(Y,X) = −2JS(JX, Y )− JNJ(X,Y ).

Proof. The proof is a direct computation. By definition of ∇J and the symmetry of the
connection, we have

Q(X,Y ) +Q(Y,X) = (∇XJ)Y + (∇JXJ)JY + (∇Y J)X + (∇JY J)JX

= ∇XJY − J∇XY +∇JXJ2Y − J∇JY JX
+∇Y JX − J∇YX +∇JY J2X − J∇JXJY

= {∇XJY −∇JYX} − {∇JXY −∇Y JX}
− J{∇JXJY +∇YX +∇JY JX +∇XY }

= [X, JY ]− [JX, Y ]− 2J{∇JXJY +∇YX} − J{[JY, JX] + [X,Y ]}.

On the other hand

∇JXJY +∇YX = ∇JXJY −∇Y J2X

= (∇JXJ)Y + J∇JXY − (∇Y J)JX − J∇Y JX
= S(JX, Y ) + J [JX, Y ].

Therefore combining this two equations we have that

Q(X,Y ) +Q(Y,X) = [X,JY ] + [JX, Y ]− 2JS(JX, Y )− J{[JY, JX] + [X,Y ]}
= −2JS(JX, Y )− JNJ(X,Y ),

concluding the proof.

Corollary 1.2.5. Let (M,J, g) be an almost Hermitian manifold and suppose that Q is
an anti-symmetric tensor. Then we have the following identities

a) (∇JXJ)Y = (∇Y J)JX − 1
2NJ(X,Y )

b) (∇XJ)Y = (∇Y J)X − 1
2JNJ(X,Y ).
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Now using this corollary and Proposition 1.1.7 we can prove a refinement of Proposi-
tion 1.2.3.

Proposition 1.2.6. Let (M2n, J, g) be an almost Hermitian manifold satisfying (J, g) ∈
Wk, for some fixed integer 1 ≤ k < n− 1. Then Q = 0.

Proof. Take X,Y, Z ∈ X(M). By Proposition 1.1.7 and Corollary 1.2.5 we have the fol-
lowing identities

(∇JXω)(JY, Z) = (∇JXω)(Y, JZ)

= g((∇JXJ)Y, JZ)

= g

(
(∇Y J)JX − 1

2
NJ(X,Y ), JZ

)
= −g((∇Y J)X,Z)− 1

2
g(NJ(X,Y ), JZ)

= −g((∇XJ)Y, Z)− 1

2
g(JNJ(X,Y ), Z)− 1

2
g(NJ(X,Y ), JZ)

= −(∇Xω)(Y,Z).

That is, for every X,Y and Z in X(M)

g(Q(X,Y ), Z) = g((∇JXJ)JY + (∇XJ)Y,Z) = 0,

implying that Q = 0, as claimed.

Finally, we concatenate all the previous results to provide a proof of Theorem 1.0.2.

Proof of Theorem 1.0.2. a) If (J, g) ∈ W1, Proposition 1.2.6 implies that Q = 0, so by
definition (M,J, g) is quasi Kähler. Conversely, suppose that (M,J, g) is quasi Kähler.
By Proposition 1.2.2 (a) we have a family {Σp,Π | (p,Π) ∈ GrJ1 (M)} of almost complex
submanifolds of M . By Proposition 1.1.9 every almost complex submanifold of a quasi
Kähler manifold is minimal.

b) Fix 1 < k < n− 1. Suppose that (J, g) ∈ Wk. By Proposition 1.2.2 (b) and Propo-
sition 1.2.6, we have that (M,J, g) is Hermitian and quasi Kähler. Therefore, Corollary
1.1.6 implies that (M,J, g) is Kähler. Conversely, suppose that (M,J, g) is Kähler. Using
complex charts, we construct a family {Σp,Π : (p,Π) ∈ GrJk (M)} of complex submani-
folds with p ∈ Σp,Π and TpΣp,Π = Π. On the other hand, by Proposition 1.1.9 the Kähler
condition implies that each of these complex submanifolds is minimal.

c) Fix n ≥ 3. If (J, g) ∈ Wn−1, then the desired conclusion follows immediately by
Propositions 1.2.2 and 1.2.3. Now, assume that (M,J, g) is balanced and Hermitian. Since
(M,J) is a complex manifold, we can produce a family {Σp,Π | (p,Π) ∈ GrJn−1(M)} of
complex submanifolds of (M,J, g) satisfying p ∈ Σp,Π and TpΣp,Π = Π. Using δω = 0
together with Proposition 1.1.7 (f) and Proposition 1.1.9, we see that every (2n − 2)-
dimensional complex submanifold of (M,J, g) is minimal.
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CHAPTER 2

Systole of Homogeneous Metrics

Introduction

In [Ber72], M. Berger computed the 2k-systole of CPn endowed with the Fubini-Study
metric, for 1 ≤ k ≤ n− 1. Moreover, using the integral geometric argument developed by
M. Pu (see appendix A), Berger also proved that the Fubini-Study metric is a maximum
of the normalized 2k-systole within its conformal class. In section 2, we will generalize
Berger’s results to the family of homogeneous metrics of the complex projective space, in
the context of dimension two and codimension two systoles.

Homogeneous metrics on CPn have been classified by W. Ziller ([Zil82], section 3).
Besides the Fubini-Study metric and its rescalings, other homogeneous metrics exist only
when n is odd. These metrics behave similarly to the Berger metrics on the sphere, and
they can be easily described by means of the Penrose fibration, which is a fibration of
CP 2n+1 over HPn with fibers CP 1.

In fact, if we denote the Penrose fibration by π : CP 2n+1 → HPn, the family of homo-
geneous metrics can be constructed as follows. Consider the decomposition TCP 2n+1 =
Λ0 ⊕ Λ1, with Λ0 = kerdπ and Λ1 = (kerdπ)⊥, where the orthogonal complement is
taken with respect to the Fubini-Study metric. Then, consider the family of metrics
gt = tgFS |Λ0 + gFS |Λ1 for t ∈ R>0. As proved by Ziller, up to scaling and isometries,
they are all the homogeneous metrics in CP 2n+1. Since the normalized systole is invari-
ant by scaling there is no loss of generality to restrict the study of homogeneous metrics
to {gt}t∈R>0 . Geometrically, the parameter t ∈ R>0 in the family {gt}t∈R>0 controls the
volume of the fiber CP 1 in CP 2n+1.

This family displays a number of interesting properties. However, the most relevant
for our work is the fact that each of these metrics is balanced. Hence, for every metric, the
calibration argument implies that the complex submanifolds are area minimizing within
their homology class. This fact, combined with the simplicity of the homology of the
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complex projective space, allows us to explicitly find the submanifold that realizes the
dimension and codimension two systole for those metrics.

Proposition 2.0.1. Suppose that (CPm, Jcan, g), m ≥ 2, is balanced. Then, its codimen-
sion two systole satisfies

Sys2m−2(CPm, g) = areag(CPm−1
σ ), (2.1)

where CPm−1
σ

.
= {[p] ∈ CPm : p ∈ S2m+1 and p ⊥ σ}, for each complex line σ ∈ CPm.

The above Proposition settles the computation of the systole for the homogeneous
metrics in the codimension two case. The dimension two case reduces to a comparison of
the area of the fiber of the Penrose fibration against a linear CP 1 that is traversal to the
fibers. Combining these observations, we obtain the following.

Theorem 2.0.2. The dimension and codimension two normalized systole functional for
the family of homogeneous metrics {gt}t∈R>0 in CP 2n+1, n ≥ 1, satisfies the following:

a) Sysnor
2 (CP 2n+1, gt) =


(

1
(2n+1)!

) 1
2n+1

t
2n

2n+1 , for t ≤ 1,(
1

(2n+1)!

) 1
2n+1

t
2n

2n+1
−1 , for t ≥ 1.

b) Sysnor
4n (CP 2n+1, gt) =

(
1

(2n+1)!

) 1
2n+1 (

2n+ 1
t

)
t

1
2n+1 .

The explicitness of the formulas presented in Theorem 2.0.2, enables to derive two
significant observations about the codimension two normalized systole of CP 2n+1. The
first is the minimality of the Fubini-Study metric over the set of homogeneous metrics.
The second is the presence of the phenomena of systolic freedom within this set, both as
t goes to 0 and +∞.

We remark, that the systolic freedom in the class of Hermitian metrics was already
observed by M. Berger ([Ber93]) and M. Gromov ([Gro96]).

The construction that leads to the Theorem 2.0.2 provides the minimal submanifolds
that realize the systole for each case studied. This allows us to construct integral geometric
formulas in the context of homogeneous metrics. Consequently, applying M. Pu and M.
Berger’s arguments we proved that each homogeneous metric maximizes the normalized
systole within its conformal class. This generalizes Berger’s result about the of Fubini-
Study metric.

Theorem 2.0.3. Let g be a homogeneous Riemannian metric in CP 2n+1, for n ≥ 1, and
ḡ a metric in the conformal class of g. For k = 1, 2n we have

Sysnor
2k (CP 2n+1, ḡ) ≤ Sysnor

2k (CP 2n+1, g).

Moreover, a metric ḡ attains the optimal bound if and only if is homothetic to g.
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An analogous result for homogeneous metrics on RP 3 was proven in ([AM20], Theorem
1.1).

This Chapter will be structured as follows. In Section 2.1, we will present a description
of the homogeneous metrics along with its properties. Section 2.2 contains the proofs of
Theorems 2.0.2 and 2.0.3 for the dimension two case, while Section 2.3 focuses on the
proofs for the codimension two case.

2.1 Construction of Homogeneous Metrics

As mentioned in the introduction, W. Ziller ([Zil82]) classified the homogeneous metrics
on complex projective space. Specifically, he proved that the only group acting transitively
on CPm with non trivial isotropy representation is Sp(n+ 1), for m = 2n+ 1. The main
objective of this preliminary section is to established that each of these metrics is balanced
with respect to the canonical complex structure. To accomplish that, we first describe
this action along with a detailed construction of the associated homogeneous metrics.

Recall that the group Sp(n+ 1) ⊂ U(2n+ 2), for n ≥ 1, is given by

Sp(n+ 1) =

{
U =

(
A −B̄
B Ā

)
: A,B ∈Mn+1(C), U∗U = Id

}
.

This group acts transitively on S4n+3 ⊂ C2n+2, where the stabilizer subgroup of e1 =
(1, 0, ..., 0) is isomorphic to Sp(n). Since Sp(n + 1) ⊂ U(2n + 2), this action induces a
transitive action on CP 2n+1, with base point o = [e1], and stabilizer group Sp(n)×U(1).
More specifically

Sp(n)×U(1) =

{(
eiθ 0
0 U0

)
∈ Sp(n+ 1) : U0 ∈ Sp(n), eiθ ∈ U(1)

}
.

Consequently, CP 2n+1 has the structure of the homogeneous space Sp(n+1)/Sp(n)×U(1).
At the level of Lie algebras, we have a decomposition sp(n+ 1) = sp(n)×u(1)⊕m, where
we can identify m with ToCP 2n+1. Moreover, m can be choose invariant by the adjoint
action of Sp(n)×U(1) on sp(n+ 1), and this action induces an irreducible decomposition
m = m0 ⊕m1. Explicitly, these spaces are given by:

sp(n+ 1) =

{(
X −Y ∗
Y −XT

)
: X,Y ∈Mn+1(C), Y = Y T , X∗ = −X

}
; (2.2)

m0 =

{(
0 −Y ∗
Y 0

)
: Y =

(
y 0
0 0

)
, y ∈ C

}
;

m1 =

{(
X −Y ∗
Y −XT

)
: X =

(
0 −z̄
zT 0

)
, Y =

(
0 w
wT 0

)
, z, w ∈ Cn

}
.
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Finally the identification m ∼= ToCP 2n+1 is given by

m→ ToCP 2n+1 ⊂ Te1S4n+3

(y, z, w) 7→ (0, z, y, w).
(2.3)

Once we have all the proper identifications, it is trivial to verify the next result.

Proposition 2.1.1. With respect to the Fubini-Study metric gFS on CP 2n+1, the decom-
position m = m0 ⊕ m1 is orthogonal. Moreover, the induced metrics on m0 and m1 are
invariant by the adjoint action of Sp(n)×U(1).

Remark 2.1.2. In what follows, gFS will always denote the Fubini-Study metric on the
complex projective space and Ω will denote the associated fundamental form. Moreover,
we assume that the Fubini-Study metric is normalized to satisfy

�
CP 1 Ω = 1.

We are now in position to introduce the family of homogeneous metrics in CP 2n+1.
The invariant decomposition m = m0⊕m1 suggests the following family of metrics on m:

gt|m = tgFS |m0
+ gFS |m1

,

for t ∈ R>0. As a consequence of the previous propositions these metrics extend to a family
of Riemannian metrics on CP 2n+1, which we will denote by {gt}t∈R>0 . Furthermore, this
family exhaust the set of homogeneous metric on CP 2n+1, up to isometries and homothety,
as proved by W. Ziller in [Zil82].

In what follows, we present an alternative construction for this family. First, we note
that the inclusions Sp(n)×U(1) ⊂ Sp(n)× Sp(1) ⊂ Sp(n+ 1), induces a fibration:

Sp(1)

U(1)
→ Sp(n + 1)

Sp(n)×U(1)

π−→ Sp(n + 1)

Sp(n)× Sp(1)
.

This fibration is know as the Penrose fibration. Up to canonical identifications, it is given
by:

CP 1 → CP 2n+1 π−→ HPn

[z0 : ... : zn : w0 : ... : wn] 7→ [z0 + w0j : ... : zn + wnj].
(2.4)

The relation between the Penrose fibration and the aforementioned invariant decom-
position of the tangent space of CP 2n+1 can be understood in the subsequent manner.
Let Λ0 = kerdπ be the horizontal distribution defined by the submersion π, and Λ1 its
orthogonal complement with respect to the Fubini-Study metric. Given p ∈ CP 2n+1 and
U ∈ Sp(n+ 1), with U · o = p, we have

Λ0
p = dLU |o(m0), Λ1

p = dLU |o(m1).

In particular, Λ0
o = m0 and Λ1

o = m1. Consequently, the family of metrics {gt}t∈R>0

can be expressed as:
gt = tg0 + g1, (2.5)

where g0
.
= gFS |Λ0 and g1

.
= gFS |Λ1 .
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An immediate consequence of this approach, is that for the Fubini-Study metric gHPn

of HPn the projection π : (CP 2n+1, gt) → (HPn, gHPn) is a Riemannian submersion for
every t ∈ R>0.

Notice the similarity in construction between the family of metrics {gt}t∈R>0 and the
Berger metrics on RP 3. As for instance, the parameter t > 0 controls the volume of the
fiber of the Penrose fibration. This comparison allows us to draw parallels between our
results and those presented by L. Ambrozio and R. Montezuma in [AM20].

Subsequently we focus in proving that (CP 2n+1, Jcan, gt) is balanced for every t > 0.
We begin by justifying the compatibility condition of the canonical complex structure
Jcan with the metrics {gt}t∈R>0 , and describing its fundamental forms.

Using the identification (2.3), we can observe that the decomposition m = m0⊕m1 is
preserved by the canonical complex structure Jcan and by the family {gt}t∈R>0 . Conse-
quently, (CP 2n+1, Jcan, gt) defines a Hermitian manifold. Furthermore, the decomposition
TCP 2n+1 = Λ0 ⊕Λ1 also enjoys this invariance. Therefore, denoting the orthogonal pro-
jections onto the spaces Λi, by Πi : TCP 2n+1 → Λi, we can decompose Ω, the fundamental
form of the Fubini-Study metric, in the following factors:

Ω0(·, ·) = Ω(Π0·,Π0·), Ω1(·, ·) = Ω(Π1·,Π1·). (2.6)

It follows straightaway from the definition of the family of homogeneous metrics {gt}t∈R>0

on CP 2n+1 that the associated fundamental forms are given by:

ωt(·, ·)
.
= gt(J ·, ·) = tΩ0(·, ·) + Ω1(·, ·),

for every t > 0.
The previous decompositions provide the necessary tools to prove the balanced prop-

erty.

Lemma 2.1.3. If π :
(
CP 2n+1, gFS

)
→ (HPn, gHPn) is the Penrose fibration, then Ω2

0 = 0
and Ω2n

1 = (2n)!π∗dVgHPn .

Proof. Take X1, ..., X4 ∈ X(CP 2n+1). By definition of Ω0,

Ω2
0(X1, ..., X4) = Ω2

0(Π0X1, ...,Π0X4).

However the vector bundle Λ0 has rank 2, so that {Π0X1, ...,Π0X4} must be a linear
dependent set. Therefore Ω2

0(X1, ..., X4) = 0, as desired.
Now fix p ∈ CP 2n+1. Since kerdπ = Λ0, the linear forms Ω2n

1

∣∣
p

and π∗dVgHPn |p are of

top degree in Λ1
p. Hence, there must exist a ∈ R such that:

Ω2n
1

∣∣
p

= aπ∗dVgS4
∣∣
p
.

Evaluating these 4n-forms on a complex orthonormal basis of Λ1
p, and using that dπ|p :

(Λ1
p, gFS)→ (Tπ(p)HPn, gHPn) is an isometry that preserves orientation, we conclude that

a = (2n)!, completing the proof.
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Proposition 2.1.4. For every t ∈ R>0, the Hermitian manifold (CP 2n+1, Jcan, gt) is
balanced.

Proof. We will check that dω2n
t = 0 for every t ∈ R>0. By Proposition 2.1.3

ω2n
t = (tΩ0 + Ω1)2n

=
2n∑
k=0

(
2n

k

)
tkΩk

0Ω2n−k
1

= 2ntΩ0Ω2n−1
1 + Ω2n

1

= 2ntΩ0Ω2n−1
1 + (2n)!π∗dVgHPn .

Therefore, dω2n
t = 2nt d(Ω0Ω2n−1

1 ) for every t ∈ R>0. However, for the Fubini-Study
metric Ω = ω1, we have

0 =
1

2n
dω2n

1 = d(Ω0Ω2n−1
1 ).

Hence, dω2n
t = 2nt d(Ω0Ω2n−1

1 ) = 0 for every t > 0.

Remark 2.1.5. For the case n = 1, the Hermitian manifold (CP 3, Jcan, gt) can be viewed
as the Twistor space over the anti-self-dual manifold (S4, gcan). Therefore, ([FZ15], The-
orem 3.1) gives another proof of the fact that this space is balanced.

2.2 2-Systole

Having established the notation and properties of the family {gt}t∈R>0 of homogeneous
metrics on the complex projective space CP 2n+1, for n ≥ 1, we now proceed to demon-
strate Theorems 2.0.2 and 2.0.3 for the dimension two systole case.

We intend to prove a stronger version of Theorem 2.0.2 by explicitly exhibiting the
submanifold that realizes the systole. Taking inspiration in the well-studied case of the
Fubini-Study metric [Ber72] and [Gro96], together with the fact that the homogeneous
family {gt}t∈R>0 is parameterized by the volume of the fiber of the Penrose fibration,
it is intuitive to guess that, for t ≤ 1, the systole should be achieved at the fiber of
this fibration. On the other hand, since there exists a linear projective plane in CP 2n+1

with tangent bundle contained in the distribution Λ1 by Proposition 2.2.1, the intuition
suggests that this linear projective plane should realize the systole for t ≥ 1.

Subsequently, we properly verify that the intuitions above are corrected. This entails
analyzing the two distinct cases t ≤ 1 and t ≥ 1. As suggested, these cases differ signif-
icantly in nature, and their dichotomy will persist throughout the section. We begin by
exhibiting the aforementioned linear projective plane.

Proposition 2.2.1. There exists a linear projective plane CP 1
T ⊂ CP 2n+1 such that

TCP 1
T ⊂ Λ1. Moreover, there exists a subgroup SpT (1) of Sp(n+ 1) isomorphic to Sp(1),

such that CP 1
T is invariant under its action, and the action is transitive.
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Proof. Define CP 1
T = {[p0 : p1 : 0 : ... : 0] ∈ CP 2n+1}. Therefore, o = [e1] ∈ CP 1

T and

ToCP 1
T = {(0, ξ, 0, 0) ∈ Te1S4n+3 : ξ ∈ C} ⊂ m1.

Consider the subgroup SpT (1) ⊂ Sp(n+ 1), given by:

SpT (1) =

{(
A 0
0 Ā

)
: A =

(
A0 0
0 Idn−1

)
, A0 ∈ Sp(1)

}
.

Clearly CP 1
T is invariant by the action of the subgroup SpT (1) of Sp(n+1), and moreover

the action is transitive. Hence for each p ∈ CP 1
T exist U ∈ SpT (1), such that U · o = p,

and then TpCP 1
T = dLU |o(ToCP 1

T ) ⊂ Λ1
p, as desired.

Formalizing our intuition above, our candidates to realize the two-dimensional systole
of the family {gt}t∈R>0 are CP 1

b
.
= π−1(b) for t ≤ 1 and CP 1

T for t ≥ 1, where π :
CP 2n+1 → HPn is the Penrose fibration and b ∈ HPn. Incidentally, we observe that,
by the Koszul Formula, these families of linear projective planes are totally geodesic in
(CP 2n+1, gt) for every t ∈ R>0.

Now that we have well-understood our contestants to realize the systole, and since the
volume of (CP 2n+1, gt) can be readily computed to be volgt(CP 2n+1) = tvolgFS (CP 2n+1),
for every t ∈ R>0, we can formulate the following refined version of Theorem 2.0.2.

Theorem 2.2.2. Let π : CP 2n+1 → HPn be the Penrose fibration, and for every b ∈ HPn
set CP 1

b = π−1(b). Hence

a) If 0 < t ≤ 1 then Sys2(CP 2n+1, gt) = |CP 1
b |gt = t;

b) If t ≥ 1 then Sys2(CP 2n+1, gt) = |CP 1
T |gt = 1.

We set forth the proof noticing that CP 1
b and CP 1

T are linear projective planes in
CP 2n+1, for every b ∈ HPn. Therefore, they homology classes are non-trivial, and the
following bound follows by the definition of systole:

Sys2(CP 2n+1, gt) ≤ min{|CP 1
b |gt , |CP 1

T |gt}. (2.7)

This simple observation leads to the following result.

Lemma 2.2.3. For every b ∈ HPn and t > 0, we have:

a) Sys2(CP 2n+1, gt) ≤ |CP 1
b |gt = t.

b) Sys2(CP 2n+1, gt) ≤ |CP 1
T |gt = 1.

Proof. From (2.7) it is clear that the desired result follows by computing the volume of
these submanifolds. Since CP 1

b is a complex submanifold of (CP 2n+1, Jcan), with TCP 1
b ⊂

Λ0 for every b ∈ HPn, we have

|CP 1
b |gt =

�
CP 1

b

ωt = t

�
CP 1

b

Ω0 = t

�
CP 1

b

Ω = t
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for every b ∈ HPn and t> 0. Again, CP 1
b is a complex submanifold of (CP 2n+1, Jcan).

However, since CP 1
T is transversal to the fiber of the Penrose fibration, the following

identity holds

|CP 1
T |gt =

�
CP 1

T

ωt =

�
CP 1

T

Ω1 =

�
CP 1

T

Ω = 1,

for every t > 0.

It is clear, by Lemma 2.2.3, that Theorem 2.2.2 is equivalent to equality in (2.7).
In order to prove that the equality must hold, we will follow the approach presented in
[Gro96] and show that if a closed 2-cycle C ⊂ CP 2n+1 has less area than the bound given
in (2.7), then C has a trivial homology class in H2(CP 2n+1,Z). The foundation of this
argument is the following Crofton formula.

Lemma 2.2.4. Let C ⊂ CP 2n+1 be a closed 2-cycle. Then

[C] · [CP 2n] =

�
C

Ω,

where · : H2(CP 2n+1,Z)×H4n(CP 2n+1,Z)→ Z denotes the intersection pairing.

Proof. Let C be a closed 2-cycle. Since [CP 1] is the generator of H2(CP 2n+1,Z), there
exists a 3-chain R and an integer k such that, in homology, C = kCP 1+∂R. Consequently

[C] · [CP 2n] = k[CP 1] · [CP 2n] + [∂R] · [CP 2n] = k,

since [CP 1] · [CP 2n] = 1 and [∂R] = 0. On the other hand, by Stokes’ Theorem,

�
C

Ω =

�
kCP 1+∂R

Ω = k

�
CP 1

Ω = k,

which concludes the proof.

Recalling the Wirtinger inequality, we obtain the following.

Corollary 2.2.5. Let C ⊂ CP 2n+1 be a closed 2-cycle. Then∣∣[C] · [CP 2n]
∣∣ ≤ |C|gFS .

Finally, we provide the demonstration for Theorem 2.2.2.

Proof of Theorem 2.2.2. In view of Lemma 2.2.3, it is enough to prove that we have an
equality in equation (2.7). Or, equivalently to prove that if C is a closed 2-cycle satisfying
|C|gt < min{1, t}, then [C] = 0 in homology.

Consider initially the case t ≤ 1, and assume |C|gt < t. Given X ∈ X(CP 2n+1), we
can compare the metrics gt and gFS as follows:

gt(X,X) = tg0(X,X) + g1(X,X) ≥ tg0(X,X) + tg1(X,X) ≥ tgFS(X,X).

Instituto de Matemática Pura e Aplicada 20 2024



Luciano L. Junior Balanced metrics, Zoll deformations and isosystolic inequalities in CPn

This implies the comparison between volumes t|C|gFS ≤ |C|gt . Hence, applying Corollary
2.2.5 we have ∣∣[C] · [CP 2n]

∣∣ ≤ |C|gFS ≤ 1

t
|C|gt < 1.

Now, since [C]·[CP 2n] is an integer, it must be zero. However, we know that the homology
H4n(CP 2n+1,Z) is generated by [CP 2n], and the intersection paring is non-degenerated,
so we must have [C] = 0, as claimed.

For the case t ≥ 1, a similar argument as before shows that∣∣[C] · [CP 2]
∣∣ ≤ |C|gFS ≤ |C|gt .

Then again, we conclude that [C] = 0 if |C|gt < 1.

Our next goal is, still in the context of the 2-systole, to prove Theorem 2.0.3. This
theorem asserts that every homogeneous metric maximizes the normalized systole in
its conformal class. Inspired by the works [Ber72] and [AM20], our strategy will be to
parametrize nicely the previously exhibited linear projective planes that realize the systole
and employ the coarea formula to prove that they admit an integral geometric formula, as
defined in Appendix A. Consequently, Theorem 2.0.3 will naturally follow as a corollary
of Theorem A.2.

Recalling the classification of homogeneous metrics proved by W. Ziller and the fact
that the normalized systole is invariant under isometries and homothety, we can summa-
rize our objective into the following.

Proposition 2.2.6. For a fixed t ∈ R>0, there exists a family {Σσ}σ∈B of linear complex
projective spaces with complex dimension 1 in (CP 2n+1, gt), parameterized by a closed
Riemannian manifold (B, gB), such that, for every function ϕ ∈ C∞(CP 2n+1), the fol-
lowing formula holds:

�
B

(�
Σσ

ϕdAgt

)
dVgB =

�
CP 2n+1

ϕdVgt .

Moreover, for each σ ∈ B, we have that Sys2(CP 2n+1, gt) = |Σσ|gt .

As seen previously, we can explicitly find the linear projective planes that realize
the 2-systole for each t ∈ R>0. Therefore, we have natural candidates to comprise those
families (see Theorem 2.2.2). Inherently, we will have to analyze two cases: 0 < t ≤ 1
and t ≥ 1. In the first case, the Penrose fibration provides a simple way to perform this
construction, as show next.

Proof of Proposition 2.2.6 (case 0 < t ≤ 1). First fix 0 < t ≤ 1. Recall that, the Penrose
fibration π : (CP 2n+1, gt)→ (HPn, gHPn) is a Riemannian submersion. Therefore, by the
coarea formula, for each function ϕ ∈ C∞(CP 2n+1), the following identity holds:

�
HPn

(�
CP 1

b

ϕdAgt

)
dVgHPn =

�
CP 2n+1

ϕdVgt .
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Here CP 1
b = π−1(b) for each b ∈ HPn. Finally, Theorem 2.2.2 ensures that the fibers of

the Penrose fibration realize the 2-systole. That is, Sys2(CP 2n+1, gt) = |CP 1
b |gt for each

b ∈ HPn.

Let us proceed to the case t ≥ 1. In this situation, the 2-systole is realized by the
linear projective space CP 1

T (see Proposition 2.2.1 and Theorem 2.2.2). As before, our
objective is to find a parameterized family of linear projective spaces that are isometric
to CP 1

T and admit an integral geometric formula. In order to do so, we will apply the
double fibration argument, which was already known and well-understood by M. Pu and
M. Berger (see, for instance, [Ber93]).

Following [APF07], Definition 2.6 and subsequently Example 3, we have that the
inclusions Sp(n)×U(1), SpT (1) ⊂ Sp(n + 1) induces the double fibration:

E
.
= Sp(n+1)

L

ν

yy

ρ

''

CP 2n+1 N
.
= Sp(n+1)

SpT (1)

(2.8)

where L
.
= (Sp(n)×U(1)) ∩ SpT (1) ∼= U(1).

Note that the fibers of ρ : E → N are modeled by CP 1
T = SpT (1)/U(1). Therefore,

the parameterized family {ν(ρ−1(σ))}σ∈N consists of linear complex projective planes,
each one diffeomorphic to CP 1

T by a left translation of Sp(n + 1). Now, the existence of
an integral geometric formula will follow from this parameterized family, by applying the
coarea formula twice in the double fibration (2.8). However, first we need to introduce
appropriate Riemannian metrics on the manifolds E and N .

Proposition 2.2.7. For each t ≥ 1 there are Riemannian metrics gE and gN on the
manifolds E and N such that:

a) gE and gN are Sp(n+ 1)-invariants;

b) The Jacobian associated to the maps ρ : (E, gE) → (N, gN ) and ν : (E, gE) →
(CP 2n+1, gt) are constant;

c) For each σ ∈ N , ν|ρ−1(σ) : (ρ−1(σ), gE)→ (CP 2n+1, gt) is an isometric embedding.

Moreover, Σσ
.
= ν(ρ−1(σ)) is isometric to CP 1

T , for all σ ∈ N .

Proof. We begin by constructing the metrics gN and gE . First, we define gN as any
Sp(n+ 1)-invariant metric. Since the Lie group Sp(n+ 1) is compact such metric exists.

In order to define the metric gE we recall that, by Example 3 in [APF07], we can
regard E as a submanifold of CP 2n+1×N . Therefore we define gE as the induced metric
from the product metric gt × gN .

Property (a) follows directly by construction. Property (b) is a simple consequence
of property (a) together with the fact that Sp(n + 1) acts transitively in CP 2n+1, N
and E. Therefore, it remains only to prove (c). However, under the identification E ⊂

Instituto de Matemática Pura e Aplicada 22 2024



Luciano L. Junior Balanced metrics, Zoll deformations and isosystolic inequalities in CPn

CP 2n+1×N , the projections ν and ρ are given by the projections on the first and second
variables. Therefore (c) is a simple consequence of the construction of the metric gE .

Now we are in conditions to prove Proposition 2.2.6, for the case t ≥ 1.

Proposition 2.2.6 (case t ≥ 1). Applying the coarea formula for ρ and ν in the double
fibration 2.8, and using that the Jacobian associated to the maps ρ : (E, gE) → (N, gN )
and ν : (E, gE)→ (CP 2n+1, gt) are constant, we obtain

1

|Jacρ|

�
N

(�
ρ−1(σ)

ϕ̃dAgE

)
dVgN =

�
E
ϕ̃dVgE =

1

|Jacν|

�
CP 2n+1

(�
ν−1(p)

ϕ̃dAgE

)
dVgt ,

for every ϕ̃ ∈ C∞(E). Since the metric gE is Sp(n + 1)-invariant, the fibers of ν : E →
CP 2n+1 have the same area. Therefore, for a given ϕ ∈ C∞(CP 2n+1), defining ϕ̃ = ν∗ϕ,
we obtain

|Jacν|
|Jacρ|

�
N

(�
ρ−1(σ)

ν∗ϕdAgE

)
dVgN = |ν−1(o)|gE

�
CP 2n+1

ϕdVgt .

On the other hand, since ν : (ρ−1(σ), gE) → (Σσ, gt) is an isometry, for each σ ∈ N , we
can rewrite the above formula as

�
CP 2n+1

ϕdVgt =
|Jacν|

|Jacρ||ν−1(o)|gE

�
N

(�
ρ−1(σ)

ν∗ϕdAgE

)
dVgN

=
|Jacν|

|Jacρ||ν−1(o)|gE

�
N

(�
Σσ

ϕdAgt

)
dVgN .

To conclude the proof, we define (B, gB) as (N,λgN ), where the constant λ is defined as(
|Jacν|/|Jacρ||ν−1(o)|gE

)− 2
dim(N) is constant. The fact that every Σσ, for σ ∈ N , realizes

the systole follows from Proposition 2.2.7 (c) and Theorem 2.2.2.

2.3 4n-Systole

Following what was done in the previous section, we will complete the demonstrations of
Theorems 2.0.2 and 2.0.3, by studying the 4n-systole case.

As we will see, Theorem 2.0.2 is a simple consequence of a classical calibration argu-
ment based on the fact that each homogeneous metric is balanced.

Proposition 2.3.1. Given t ∈ R>0,

Sys4n(CP 2n+1, gt) = |CP 2n
σ |gt =

2nt+ 1

(2n+ 1)!
,

where CP 2n
σ

.
= {[p] : p ∈ S4n+3 and p ⊥ σ}, for each σ ∈ CP 2n+1.
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Proof. Fix t ∈ R>0 and σ ∈ CP 2n+1. Since (CP 2n+1, Jcan, gt) is a balanced manifold, the
2-form ωt(·, ·) = gt(Jcan·, ·) satisfies that ω2n

t is closed.
Now, every homologically non-trivial, closed 4n-cycle C in CP 2n+1 can be decomposed

as C = kCP 2n
σ + ∂R, where k is a non-zero integer and R is a (4n+ 1)-cycle. Therefore,

by the Wirtinger inequality and the Stokes’ Theorem, we have

|C|gt ≥
|k|

(2n)!

�
CP 2n

σ

ω2n
t +

1

(2n)!

�
∂R
ω2n
t = |k| |CP 2n

σ |gt .

Hence, as k is non-zero, the previous inequality implies that Sys4n(CP 2n+1, gt) = |CP 2n
σ |gt .

It remains to compute the volume of CP 2n
σ . For that, we recall that Ω, the Kähler form

associated to the Fubini-Study metric, was normalized so that
�
CP 2n

σ
Ω2n = 1, and also

that Ω2n = 2nΩ0Ω2n−1
1 + Ω2n

1 , where Ω0 and Ω1 are defined in (2.6). Therefore, we have
the following identities:

|CP 2n
σ |gt =

1

(2n)!

�
CP 2n

σ

ω2n
t

=
1

(2n)!

(�
CP 2n

σ

2ntΩ0Ω2n−1
1 + Ω2n

1

)

=
1

(2n)!

(�
CP 2n

σ

tΩ2n + (1− t)Ω2n
1

)

=
1

(2n)!

(
t+ (1− t)

�
CP 2n

σ

Ω2n
1

)
.

So it is enough to compute
�
CP 2n

σ
Ω2n

1 . But since Sp(n+ 1) acts transitively in CP 2n+1 by

gt-isometries, it suffices to compute the integral for a fixed σ0 ∈ CP 2n+1. For convenience
we take σ0 generated by en+2 ∈ C2n+2.

Now, by Proposition 2.1.3 we have Ω2n
1 = (2n)!π∗dVgHPn , where π : CP 2n+1 → HPn

is the Penrose fibration. So bearing in mind the following commutative diagram

C2n

Φ

ww

Ψ

""
CP 2n

σ0 ⊂ CP 2n+1
π

// HPn

where Φ : C2n → CP 2n
σ0 , (x1, .., xn, y1, ..., yn) 7→ [1 : x1 : ... : xn : 0 : y1 : ... : yn], and

Ψ : C2n → HPn, (x1, .., xn, y1, ..., yn) 7→ [1 : x1 + jy1 : ... : xn + jyn], are coordinates
charts with dense image, we have that

1

(2n)!

�
CP 2n

σ0

Ω2n
1 =

�
CP 2n

σ0

π∗dVgHPn =

�
Φ(C2n)

π∗dVgHPn =

�
Ψ(C2n)

dVgHPn = |HPn|gHPn .

Applying the coarea formula to the Riemannian submersion π : (CP 2n+1, gFS)→ (HPn, gHPn),
we have |HPn|gHPn = 1

(2n+1)! , concluding the proof.
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We conclude this section proving Theorem 2.0.3 in the context of the 4n-systole. Sim-
ilarly to Section 2.2, we present a family of linear projective spaces admitting an integral
geometric formula. Therefore, once more, the desired result will follow from Theorem A.2.
As before, the integral geometric formula is derived through an argument using a double
fibration and the coarea formula.

In light of Proposition 2.3.1 the natural choice for the family of linear projective spaces
is {CP 2n

σ }σ∈CP 2n+1 , since every element of the family realizes the 4n-systole. Moreover, in
order to assist the construction of the integral geometric formula, we define the incidence
set I = {(p, σ) ∈ CP 2n+1×CP 2n+1 : p ∈ CP 2n

σ }. It is a well-known fact that the incidence
set I induces the double fibration

I
ν

{{

ρ

##
CP 2n+1 CP 2n+1

(2.9)

where ν and ρ are, respectively, the projections onto the first and second coordinates
([APF07]). For every t ∈ R>0, the inclusion I ⊂ (CP 2n+1 × CP 2n+1, gt × gt), induces a
Riemannian metric g̃t in the incidence set. In what follows, we underline some properties
of these double fibration and its Riemannian metrics.

Proposition 2.3.2. Let t ∈ R>0. The following assertions hold:

a) The action of Sp(n + 1) on CP 2n+1 × CP 2n+1 induces an action by isometries on
(I, g̃t);

b) For each (p, σ) ∈ CP 2n+1 × CP 2n+1, the maps ν|ρ−1(σ) : (ρ−1(σ), g̃t) → (CP 2n
σ , gt)

and ρ|ν−1(p) : (ν−1(p), g̃t)→ (CP 2n
p , gt) are isometries;

c) The map CP 2n+1 3 p 7→
�
ν−1(p)

|Jacρ|
|Jacν|dAg̃t ∈ R is constant.

Proof. We provide a proof for (c), which is the only part not straightforward to check.
Firstly, due to the Sp(n+1)-invariance of the metrics gt and g̃t, the Jacobians |Jacν|, |Jacρ| :
I → R are also Sp(n + 1)-invariant. Now, fix p = U · o ∈ CP 2n+1, for U ∈ Sp(n + 1).
Using that ρ|ν−1(p) : (ν−1(p), g̃t)→ (CP 2n

p , gt) is an isometry, we obtain

�
ν−1(p)

|Jacρ|
|Jacν|

dAg̃t =

�
CP 2n

p

|Jacρ|
|Jacν|

(p, σ)dAgt(σ)

=

�
CP 2n

o

|Jacρ|
|Jacν|

(p, U · η)dAgt(η)

=

�
CP 2n

o

|Jacρ|
|Jacν|

(o, η)dAgt(η) =

�
ν−1(o)

|Jacρ|
|Jacν|

dAg̃t ,

as desired.
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A straightforward application of the coarea in the double fibration (2.9) allows us to
prove the existence of an integral geometric formula for the family {CP 2n

σ }σ∈CP 2n+1 .

Proposition 2.3.3. For each t ∈ R>0, there exists a Riemannian metric ĝt homothetic
to gt such that, for each ϕ ∈ C∞(CP 2n+1), the following formula holds:

�
CP 2n+1

(�
CP 2n

σ

ϕdAgt

)
dVĝt(σ) =

�
CP 2n+1

ϕdVgt . (2.10)

Proof. Applying the coarea formula twice in the double fibration (2.9) and Proposition
2.3.2 (b), for every ϕ ∈ C∞(CP 2n+1), we obtain

�
CP 2n+1

(�
CP 2n

σ

ϕdAgt

)
dVgt(σ) =

�
CP 2n+1

(�
CP 2n

p

|Jacρ|
|Jacν|

dAg̃t

)
ϕdVgt(p).

Moreover, Proposition 2.3.2 (c) establishes that CP 2n+1 3 p 7→
�
ν−1(p)

|Jacρ|
|Jacν|dAg̃t ∈ R

is the constant function. As a result, calling this constant θ = θ(t) and defining ĝt
.
=

(θ)
1

2n+1 gt we obtain the desired result.
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CHAPTER 3

Systole of Balanced Metrics

Introduction

In Chapter 2 we proved that the Fubini-Study metric is the global minimum, among
homogeneous metrics, of the normalized (2n − 2)-systole functional on CPn, n ≥ 3.
A crucial step of the proof was to determine the submanifold that realizes the systole
for each homogeneous metric, which was possible due to the fact that each of these
metrics is balanced. Therefore, a natural question is if the Fubini-Study metric remains a
point of minimum for the normalized (2n− 2)-systole functional among all the balanced
metrics, that are balanced with respect to the canonical complex structure of complex
projective space. This section is devoted to study this problem. More precisely, we will
prove Theorem 3.0.1, which is stated below after introducing notation.

Let B denote the space of smooth balanced metrics with respect to the canonical
complex structure of CPn. We endow this space with the C2-topology. We denote by
K ⊂ B the subspace of smooth Kähler metrics.

Theorem 3.0.1. Let n ≥ 3. There exists an open set K ⊂ U ⊂ B, in the C2-topology,
such that for every metric g ∈ U ,

Sysnor
2n−2(CPn, g) ≥ Sysnor

2n−2(CPn, gFS).

Moreover, g ∈ U satisfies the equality if and only if g ∈ K .

The proof of this theorem relies on an analysis of the Taylor expansion of the functional
Sysnor

2n−2 : B → R over the set of Kähler metrics. In order to formalize this argument, we
must first endow the spaces of Kähler and balanced metrics with structures of smooth
Banach manifolds, in such a way that the inclusion is an embedding in a neighborhood
of each smooth metric. The next section is devoted to define these structures.
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3.1 Manifold Structure of the space of Balanced Metrics

In this section, we fix n ≥ 3 and set J to be the canonical complex structure of CPn.
Accordingly, the Hermitian condition will always be defined with respect to the canonical
complex structure.

In order to endow the space of balanced metrics with a structure of Banach manifold,
rather than a structure of Fréchet manifold, we will have to be less restrictive and work
in the space of C1,ν Riemannian metrics, for some 0 < ν < 1 fixed. We choose to work in
the Hölder topology instead of directly work in the C2-topology to facilitate the use of
regularity theorems.

Let (Riem1,ν(CPn), C1,ν) denote the space of C1,ν Riemannian metrics endowed with
the C1,ν-topology. With the purpose of not generating confusion with the notation already
established, we will denote by K 1,ν , B1,ν and H 1,ν the spaces of Kähler, balanced and
Hermitian metrics with regularity C1,ν , respectively, equipped with the subset topology
induced by inclusion in (Riem1,ν(CPn), C1,ν).

Recall that we have a duality between the space of Hermitian metrics H 1,ν and the
space of differential forms. Indeed, endowing the space of C1,ν complex valued differential
forms (C1,ν(Λ•C), C1,ν) with the C1,ν-topology, we have the following homeomorphism:

J : C1,ν(Λ1,1
+ )→H 1,ν

ω 7→ gω(·, ·) .
= ω(·, J ·),

(3.1)

where

Λp,p+ = {α ∈ Λp,pR : α(v1, ..., vp, Jv1, ..., Jvp) > 0, for every {vj , Jvj}pj=1 l.i. set},

denotes the open cone of positive (p, p)-forms inside Λp,pR , the bundle of real (p, p)-forms.
Thus, in order to define the manifold structure for the set of balanced metrics it is

enough to define a Banach manifold structure in the space B of balanced forms (of class
C1,ν):

B .
= J −1

(
B1,ν

)
= {ω ∈ C1,ν(Λ1,1

+ ) : dωn−1 = 0}.

Proposition 3.1.1. The space of balanced forms B has a structure of smooth Banach
manifold modelled over C1,ν

cl

(
Λn−1,n−1
R

)
, the Banach space of real closed (n − 1, n − 1)-

forms.

Remark 3.1.2. Note that the closeness property of differential forms is a closed condition
in the C1,ν-topology. Therefore, the space C1,ν

cl (Λp,pR ) of real and closed (p, p)-forms is a
closed subspace of C1,ν(Λp,pR ), consequently, a Banach vector space.

Proof. Regarding C1,ν(Λ1,1
+ ) and C1,ν(Λn−1,n−1

+ ) as open sets of Banach vector spaces, it
is easily seen that the following map is smooth

Φ : C1,ν
(
Λ1,1

+

)
→ C1,ν

(
Λn−1,n−1

+

)
ω 7→ ωn−1.
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This map is also known to be bijective, see [Mic82]. Even more, for each ω ∈ C1,ν
(
Λ1,1

+

)
the

map dΦ|ω : C1,ν(Λ1,1
R )→ C1,ν(Λn−1,n−1

R ), α 7→ (n−1)α∧ωn−2, is continuous. On the other
hand, Theorem B.4 (a) implies that this map is also bijective. Hence, it is a Banach space
isomorphism. Therefore, by the inverse function theorem for Banach spaces, the map Φ is
a smooth diffeomorphism. In particular, denoting by C1,ν

cl (Λn−1,n−1
+ ) the space of positive,

closed (n − 1, n − 1)-forms, we have that Φ : B → C1,ν
cl (Λn−1,n−1

+ ) is a homeomorphism.

Since C1,ν
cl

(
Λn−1,n−1

+

)
⊂ C1,ν

cl

(
Λn−1,n−1
R

)
is an open set of a Banach vector space, the map

Φ|B : B → C1,ν
cl

(
Λn−1,n−1

+

)
defines a global chart. Then, the space of balanced forms has

a structure of smooth Banach manifold modelled over C1,ν
cl

(
Λn−1,n−1
R

)
.

Corollary 3.1.3. The space of balanced metrics B1,ν has a structure of smooth Banach
manifold such that the map

Φ̂ : B1,ν → C1,ν
cl

(
Λn−1,n−1

+

)
g 7→ Φ (g(J ·, ·))

defines a smooth diffeomorphism onto the open set C1,ν
cl

(
Λn−1,n−1

+

)
⊂ C1,ν

cl

(
Λn−1,n−1
R

)
.

Corollary 3.1.3 establishes the manifold structure of the space of balanced metrics.
Therefore, it remains to prove that the space of Kähler metrics has a structure of Banach
manifold with the property that the inclusion ι : K 1,ν ↪→ B1,ν is a smooth embedding
around every smooth metric.

Since the space of Kähler forms (of class C1,ν) K .
= J −1

(
K 1,ν

)
= C1,ν

cl

(
Λ1,1

+

)
is

an open set of the Banach space C1,ν
cl

(
Λ1,1
R
)
, it has a natural smooth Banach manifold

structure, in such a way that the inclusion ι : K ↪→ B is a topological embedding. The
aforementioned smooth embedding property can be stated as the following proposition.
The remaining portion of this section will be dedicated to proving it.

Proposition 3.1.4. Let j
.
= Φ ◦ ι : K → C1,ν

cl

(
Λn−1,n−1

+

)
. For each smooth Kähler form

ω0 ∈ K, there exists a closed subspace Aω0 ⊂ Tω0B, open neighborhoods U ⊂ K of ω0

and V ⊂ Aω0 of 0, and an open set W containing j(ω0) in C1,ν
cl

(
Λn−1,n−1

+

)
, along with a

smooth diffeomorphism ρ : U × V →W , satisfying the following properties:

a) Tω0B = Tω0K ⊕Aω0;

b) ρ(ω0, 0) = j(ω0);

c) ρ (U × {0}) = W ∩ j (U);

d) For every (ω, ξ) ∈ U × V and η ∈ Aω0, we have that dρ|(ω,ξ) · η = dΦ|ω0
· η.

The non-trivial aspect of Proposition 3.1.4 lies in finding the appropriate complement
of the tangent space of K. To accomplish this, we begin by presenting a characterization
of these tangent spaces.

Lemma 3.1.5. Let K and B denote, respectively, the Banach manifolds of Kähler forms
and balanced forms, endowed with the C1,ν-topology. Then:
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a) For each ω ∈ K, we have TωK = C1,ν
cl

(
Λ1,1
R
)
;

b) For each ω ∈ B, we have TωB =
{
η ∈ C1,ν

(
Λ1,1
R
)

: d(η ∧ ωn−2) = 0
}

;

c) For each ω ∈ K, the map dιω : TωK → TωB is given by the canonical inclusion.

Proof. The prove of (a) follows immediately from the fact that K is an open set of

C1,ν
cl

(
Λ1,1
R
)
. To prove (b), fix ω ∈ B and let Vω =

{
η ∈ C1,ν

(
Λ1,1
R
)

: d(η ∧ ωn−2) = 0
}

. The

desired isomorphism is explicit given by

Tω : Vω → TωB
η 7→ [η̂],

where η̂ is the only curve in B defined by η̂(t)n−1 = ωn−1 + t(n − 1)η ∧ ωn−2, for |t|
sufficiently small. Finally, (c) follows by (a) and (b).

In [ME56], B. Morrey and J. Eells generalized the Hodge decomposition theorem for
forms with distinct types of regularity. In particular, since the space of harmonic two-
forms in CPn is one dimensional they proved that for any smooth Kähler metric gω ∈ K ,
the space C1,ν

(
Λ2
R
)

can be decomposed as follows:

C1,ν
(
Λ2
R
)

= Rω ⊕ Imd⊕ Imδω,

where the exterior derivative has domain C2,ν
(
Λ1
R
)
, and δω is the codifferential induced

by gω, with domain C2,ν
(
Λ3
R
)
.

On the other hand, by Lemma 3.1.5 (a) we have that TωK = (Rω ⊕ Imd)∩C1,ν
(
Λ1,1
R
)
.

Therefore, the aforementioned Hodge decomposition Theorem implies the splitting TωB =
TωK ⊕ (Imδω ∩ TωB), under the assumption that the projection πδω : C1,ν

(
Λ2
R
)
→ Imδω

preserves the subspace TωB. In the next result, we prove that this assumption is satisfied,
thus proving the first part of Proposition 3.1.4.

Lemma 3.1.6. Let ω ∈ K be a smooth Kähler form and η ∈ TωB. Then, if πδω :
C1,ν

(
Λ2
R
)
→ Imδω denotes the projection into the space of coexact forms, induced by the

Hodge decomposition, we have that

a) πδω(η) ∧ ωn−1 = 0;

b) πδω(η) ∈ TωB.

In particular, TωB = TωK ⊕Aω for Aω
.
= Im(δω) ∩ TωB.

Proof. Let ω and η be as in the statement. Consider also η = aω + dα + δωθ the Hodge
decomposition of η, where a ∈ R, α ∈ C2,ν(Λ1

R), and θ ∈ C2,ν(Λ3
R).

First, we prove (a). According to the Lefschetz decomposition Theorem (see Theorem
B.4), it is enough to establish that Λω(δωθ) = 0, where Λω denotes the dual of the Lef-
schetz operator associated with the Kähler structure ω (see Definition B.2). Nevertheless,
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since η ∈ TωB, we observe that dδωθ ∧ ωn−2 = 0. Consequently, invoking again the Lef-
schetz decomposition Theorem, we see that this condition is equivalent to Λω(dδωθ) = 0.
Moreover, we can commute the operators d and Λω by means of Proposition B.8, leading
to

0 = (Λωd)(δωθ) = (dΛω − δcω)(δωθ) = dΛωδωθ + δωδ
c
ωθ,

where the operator δcω is given by Definition B.7, and we have applied the identity δωδ
c
ω =

−δcωδω. Since Im(d) ⊥L2 Im(δω), we further obtain

dΛωδωθ = 0 = δωδ
c
ωθ. (3.2)

To conclude that the constant function Λω(δωθ) is zero, it suffices to show that it has
zero mean. But, indeed�

CPn
Λωδωθ dVgω =

�
CPn

Λωδωθ ∧ ?gω1 =

�
CPn

θ ∧ (?gωdω) = 0,

where ?gω denote the Hodge star associated with the metric gω.
Now, let us proceed to the proof of (b). To demonstrate that δωθ ∈ TωB, we need

to prove that d(δωθ ∧ ωn−2) = 0 and δωθ ∈ C1,ν
(
Λ1,1
R
)
. However, recalling the Hodge

decomposition of η and using the fact that ω is a closed form, we obtain

0 = d(η ∧ ωn−2) = d
(
(aω + dα) ∧ ωn−2

)
+ d

(
δωθ ∧ ωn−2

)
= d

(
δωθ ∧ ωn−2

)
.

Therefore, it only remains to show that δωθ is of type (1, 1). Denoting the projection into
the space of (p, q)-forms by [·]p,q : Λ•C → Λp,q, we observe that [dα+δωθ]2,0 = [η−aω]2,0 =
0. Since, d = ∂ + ∂̄ and α = [α]1,0 + [α]0,1 we reach the following equality

∂[α]1,0 = −[δωθ]2,0. (3.3)

On the other hand, ∂∗ = 1
2(δω − iδcω), once that δω = ∂∗ + ∂̄∗ and δcω = i(∂∗ − ∂̄∗), where

∂∗ and ∂̄∗ denote the L2-dual operators of ∂ and ∂̄, respectively. Hence, by (3.2) we see
that ∂∗(δωθ) = 0. Decomposing the form δωθ, we further obtain

0 = ∂∗(δωθ) = ∂∗([δωθ]2,0) + ∂∗([δωθ]1,1) + ∂∗([δωθ]0,2).

Keeping in mind that ∂∗
(
C1,ν(Λp,q)

)
⊂ C0,ν(Λp−1,q), the above equality translates to

∂∗[δωθ]2,0 = 0. (3.4)

Since the Hodge Laplacian in a Kähler manifold can be written as 1
2∆ = ∂∂∗ + ∂∗∂

(Proposition 3.1.12, [Huy05]), by (3.3) and (3.4) the form [δωθ]2,0 is harmonic in CPn.
However, since every harmonic form in CPn is of type (1, 1), the form [δωθ]2,0 must be

zero. Additionally, [δωθ]0,2 = [δωθ]2,0 = 0, completing the argument.

The previous Lemma establishes the property that, over smooth forms, the tangent
space of the Kähler forms is complemented in the tangent space of balanced forms. As a
consequence, the proof of Proposition 3.1.4, that we provide bellow, reduces to a simple
application of the inverse function theorem for Banach spaces.
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Proof of Proposition 3.1.4. Fix ω0 ∈ K a smooth Kähler form. And consider the global
chart of the space of balanced metrics Φ : B → C1,ν

cl (Λn−1,n−1
+ ), defined in Proposition

3.1.1, also let j = Φ ◦ ι : K → C1,ν
cl (Λn−1,n−1

+ ) be its restriction to the space of Kähler
forms, and finally let Aω0 be the complement of Tω0K as defined in Lemma 3.1.6.

Since C1,ν
cl (Λn−1,n−1

+ ) is an open set of the Banach vector space C1,ν
cl (Λn−1,n−1

R ) we can
define the following smooth map

ρ : K ×Aω0 → C1,ν
cl

(
Λn−1,n−1
R

)
(ω, η) 7→ j(ω) + dΦω0(η),

whose derivative at the point (ω0, 0) ∈ K ×Aω0 is given by

dρ|(ω0,0) : Tω0K ⊕Aω0 → C1,ν
cl

(
Λn−1,n−1
R

)
(α, η) 7→ dΦ|ω0

(
dι|ω0

α+ η
)
.

(3.5)

Therefore, combining the decomposition TωB = TωK ⊕ Aω with Proposition 3.1.1 we
conclude that dρ|(ω0,0) is a Banach space isomorphism. By the inverse function theorem
for Banach spaces, there exist open neighborhoods U ⊂ K of ω0 and V ⊂ Aω0 of 0,
such that W

.
= ρ(U × V ) is an open set and the map ρ : U × V → W is a smooth

diffeomorphism. The listed properties of this diffeomorphism follows directly from its
explicit definition.

3.2 First and Second variation of the normalized Systole

As mentioned earlier in this section, in order to establish Theorem 3.0.1, we must study
the Taylor expansion of the normalized systole function. To proceed with this analysis,
we require the formulas for the first and second derivatives of this map.

Before we carry on with these computations, it is necessary to establish and fix some
notations. We begin by noticing that our definition of systole naturally extends to metrics
of lower regularity. More specifically, if g is a metric in Riem(CPn)1,ν , we set

Sysk(M, g) = inf{volg(C) : where [C] 6= 0 in Hk(M,Z)},

where the volume of a cycle is computed with respect to the Hausdorff measure induced
by the distance function of the C1,ν Riemannian manifold (CPn, g).

With a consistent definition of the normalized systole Sysnor
2n−2 : B1,ν → R in the

space of C1,ν balanced metrics, we can employ the balanced condition to establish its
smoothness in the Fréchet sense.

Lemma 3.2.1. Let gω ∈ B1,ν be a balanced metric, then

Sysnor
2n−2(CPn, gω) =

(n!)
n−1
n

(n− 1)!

�
CPn−1 ω

n−1(�
CPn ω

n
)n−1

n

. (3.6)

In particular, Sysnor
2n−2 : B1,ν → R is a smooth map in the Fréchet sense.
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Proof. The formula (3.6) follow from a similar argument as the done in Proposition 2.3.1.
The smoothness is direct consequence of the given formula.

For our purposes, the most suitable way to approach the calculations of the first and
second derivatives, and further on, the Taylor expansion of the normalized systole, is by
doing it in charts. To achieve this, we rewrite the map Sysnor

2n−2 : B1,ν → R, modulo

constants, in terms of the global chart Φ̂ : B1,ν → C1,ν
cl (Λn−1,n−1

+ ) (see Corollary 3.1.3),
leading to the following definition:

F : C1,ν
cl (Λn−1,n−1

+ )→ R

σ 7→
�
CPn−1 σ(�

CPn σ ∧Ψ(σ)
)n−1

n

,
(3.7)

where Ψ
.
= Φ−1 : C1,ν

cl (Λn−1,n−1
+ ) → B. Below, we will elucidate basic properties of the

functional F .

Proposition 3.2.2. The functional F : C1,ν
cl (Λn−1,n−1

+ )→ R satisfies the following prop-
erties:

a) F is invariant under homothety;

b) F is constant over the Kähler forms, i.e., within the set Φ(K).

Proof. The prove of (a) follow from the homothety invariance of the normalized systole
together with the fact that Φ(λω) = λn−1Φ(ω), for every λ > 0 and ω ∈ B.

In order to prove (b), fix ω ∈ K. The Hodge decomposition Theorem implies that
ω = aΩ + dβ. Here Ω denotes the fundamental form of the Fubini-Study metric, as
always. Therefore by Stoke’s Theorem

F (Φ(ω)) =

�
CPn−1 ω

n−1(�
CPn ω

n
)n−1

n

=
an−1

�
CPn−1 Ωn−1(

an
�
CPn Ωn

)n−1
n

= F (Φ(Ω)) .

The last piece of notation that we will introduce is the space of normalized Balanced
forms

B1
.
=

{
ω ∈ B :

�
CPn

ωn = 1

}
.

Given the invariance of F under homothety, considering normalized balanced forms im-
poses no restriction and greatly simplifies the computations. Moreover, recall that we
have normalized the Fubini-Study form Ω to ensure its inclusion within this space.

Once we settle the notation, we follow through with the computations of the first and
second derivatives of the functional F : C1,ν

cl (Λn−1,n−1
+ )→ R.
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Theorem 3.2.3 (First Variational Formula of F). If ω ∈ B1 and µ ∈ C1,ν
cl (Λn−1,n−1

R ),
then

dF|Φ(ω) · µ =

(�
CPn−1

µ

)
−
(�

CPn−1

ωn−1

)(�
CPn

µ ∧ ω
)
,

where Φ : B → C1,ν
cl (Λn−1,n−1

+ ), is given by Φ(ω) = ωn−1. .

Proof. We start by defining the smooth curve t 7→ µt = ωn−1 + tµ in C1,ν(Λn−1,n−1
+ ),

for a short time interval. Making use that Φ is a diffeomorphism we also can define the
smooth curve t 7→ ωt ∈ B satisfying ωn−1

t = µt. Now, introducing the auxiliary functions

φ(t) =

�
CPn−1

µt and ψ(t) =

(�
CPn

µt ∧ ωt
)n−1

n

,

we can express the functional F along the curve µt as F(µt) = φ(t)/ψ(t). Since, the
functional F is Fréchet differentiable and the curve t 7→ µt has initial conditions µ0 = Φ(ω)
and µ̇0 = µ, the first derivative of F is expressed as

dF|Φ(ω) · µ =
d

dt
F(µt)

∣∣∣∣
t=0

= φ′(0)− φ(0)ψ′(0),

where we used that ψ(0) = 1.
A straightforward computation shows that φ′(t) and ψ′(t) can be expressed as

φ′(t) =

�
CPn−1

µ,

ψ′(t) =
n− 1

n

(�
CPn

µt ∧ ωt
)− 1

n
(�

CPn
µ ∧ ωt + µt ∧

∂

∂t
ωt

)
.

(3.8)

Taking a derivative of the equation µt = ωn−1
t , we obtain µ = (n−1)ωn−2

t ∧ ∂
∂tωt. Wedging

this equality with ωt, we further obtain

1

n− 1
µ ∧ ωt = ωn−1

t ∧ ∂

∂t
ωt = µt ∧

∂

∂t
ωt,

allowing us to reach the following simplification of ψ′(t):

ψ′(t) =

(�
CPn

µt ∧ ωt
)− 1

n
(�

CPn
µ ∧ ωt

)
. (3.9)

Finally, evaluating the equations (3.8) and (3.9) at t = 0 together with the fact that
(µt ∧ ωt)|t=0 = ωn, we obtain

dF|Φ(ω) · µ = φ′(0)− φ(0)ψ′(0) =

(�
CPn−1

µ

)
−
(�

CPn−1

ωn−1

)(�
CPn

µ ∧ ω
)
,

as desired.
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An immediate consequence of the first variational formula is that the Kähler metrics
are critical points for the normalized systole functional.

Corollary 3.2.4. Every Kähler metric is a critical point for the normalized systole func-
tional Sysnor

2n−2 : B1,ν → R.

Proof. In view of the previous identifications, is enough to show that dF|Φ(ω) ≡ 0 for every
ω ∈ K. Even more, since F is invariant under homothety, there is no lost of generality in
restring ourselves to the space of normalized Kähler forms.

Therefore, fix ω ∈ K ∩ B1 and µ ∈ C1,ν
cl (Λn−1,n−1

R ). Since both forms are closed
and ω is normalized, the Hodge decomposition Theorem implies the existence of a ∈ R,
α ∈ C2,ν(Λ1

R) and β ∈ C2,ν(Λ2n−3
R ), such that ω = Ω + dα and µ = aΩn−1 + dβ. Now

recalling that
�
CPk Ωk = 1, for every k ≥ 1, and applying the first variational formula for

F together with Stokes’ Theorem, we obtain

dF|Φ(ω) · µ =

(�
CPn−1

µ

)
−
(�

CPn−1

ωn−1

)(�
CPn

µ ∧ ω
)

= a

(�
CPn−1

Ωn−1

)
− a

(�
CPn−1

Ωn−1

)(�
CPn

Ωn

)
= 0.

Since µ ∈ C1,ν
cl (Λn−1,n−1

R ) is arbitrary we conclude the proof.

We proceed with the computation of the second derivative of the functional F .

Theorem 3.2.5 (Second variational formula of F). If ω ∈ B1, η ∈ TωB and µ = dΦ|ω ·η ∈
C1,ν
cl (Λn−1,n−1

R ), then

d2F
∣∣
Φ(ω)

(µ, µ) = 2

(�
CPn−1

ωn−1

)(�
CPn

µ ∧ ω
)2

− 2

(�
CPn−1

µ

)(�
CPn

µ ∧ ω
)

+

(�
CPn−1

ωn−1

)(
1

(n− 1)

(�
CPn

µ ∧ ω
)2

−
�
CPn

µ ∧ η

)
,

where Φ : B → C1,ν
cl (Λn−1,n−1

+ ), is given by Φ(ω) = ωn−1.

Proof. Keeping in mind the notation of Theorem 3.2.3, and making use that F is smooth
in the Fréchet sense together with the fact that t 7→ µt is a linear variation, we have that

d2F
∣∣
Φ(ω)

(µ, µ) =
d2

dt2
F(µt)

∣∣∣∣
t=0

.

Since ψ(0) = 1, φ′′(0) = 0, ω is normalized and (3.8) holds, we can take the derivative of
dF(µt)
dt = (φ′(t)ψ(t)− φ(t)ψ′(t))/ψ2(t) at t = 0 to obtain

d2

dt2
F(µt)

∣∣∣∣
t=0

= −2ψ′(0)
(
dF|Φ(ω) · µ

)
− φ(0)ψ′′(0). (3.10)
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All the terms on the right-hand side of this equation have already been computed, with the
exception of ψ′′(0). To calculate this term, we refer back to formula (3.9) and differentiate
it:

ψ′′(t) = − 1

n

(�
CPn

µt ∧ ωt
)−1−n

n
(�

CPn
µ ∧ ωt + µt ∧

∂

∂t
ωt

)(�
CPn

µ ∧ ωt
)

+

(�
CPn

σt ∧ ωt
)− 1

n
(�

CPn
µ ∧ ∂

∂t
ωt

)
.

By retrieving the identities (µt ∧ ωt)|t=0 = ωn and
(
µt ∧ ∂

∂tωt
)∣∣
t=0

= 1
(n−1)µ ∧ ω, we

further obtain

ψ′′(0) = − 1

(n− 1)

(�
CPn

µ ∧ ω
)2

+

(�
CPn

µ ∧
(
∂

∂t
ωt

∣∣∣∣
t=0

))
.

Additionally, by definition of µ, we observe that dΦ|ω · η = µ = dΦ|ω ·
(
∂
∂tωt

∣∣
t=0

)
,

which implies that η = ∂
∂tωt

∣∣
t=0

. Hence,

ψ′′(0) = − 1

(n− 1)

(�
CPn

µ ∧ ω
)2

+

(�
CPn

µ ∧ η
)
. (3.11)

Therefore, the desired result follows by combining (3.9), (3.10), and (3.11), as well as the
first variation formula in Theorem 3.2.3.

A non-trivial consequence of the second variational formula is that the Hessian of F ,
over a Kähler form, is coercive in the L2-norm when restricted to the transversal direction
of the Kähler forms. To show this, we apply Theorem 3.2.5 to the case of Kähler metrics.

Lemma 3.2.6. Let ω ∈ K be a normalized Kähler form, η ∈ TωB and µ = dΦ|ω · η ∈
C1,ν
cl (Λn−1,n−1

R ). Then:

a) 1
(n−1)d

2F
∣∣
Φ(ω)

(µ, µ) =
(�

CPn η ∧ ω
n−1
)2 − �

CPn η ∧ η ∧ ω
n−2;

b) If α ∈ TωK, then d2F
∣∣
Φ(ω)

(dΦ|ω · α, µ) = 0,

where Φ : B → C1,ν
cl (Λn−1,n−1

+ ), is given by Φ(ω) = ωn−1.

Proof. First we prove (a). Let ω ∈ K∩B1. Then, by Corollary 3.2.4, we see that dF|Φ(ω) ≡
0. Therefore, by recollecting equations (3.10) and (3.11), we have

d2F
∣∣
Φ(ω)

(µ, µ) =

(�
CPn−1

ωn−1

)(
1

(n− 1)

(�
CPn

µ ∧ ω
)2

−
�
CPn

µ ∧ η

)
.

On the other hand, since ω is Kähler and normalized, we can apply the Hodge Decom-
position Theorem to write it as ω = Ω+dβ, implying that

�
CPn−1 ω

n−1 = 1. Furthermore,
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by the definition of µ, we have µ = dΦ|ω · η = (n − 1)η ∧ ωn−2, leading to the desired
equality.

Now we prove (b). Since α ∈ TωK and η ∈ TωB, the forms α and η ∧ ωn−2 are closed.
Then, again by the Hodge Decomposition Theorem, we can express them as α = aΩ +dβ
and η ∧ ωn−2 = bΩn−1 + dβ̃. Hence, by (a) and Stokes’ Theorem, we see that

1

(n− 1)
d2F

∣∣
Φ(ω)

(dΦ|ω · α, µ) =

(�
CPn

α ∧ ωn−1

)(�
CPn

η ∧ ωn−1

)
−
�
CPn

α ∧ η ∧ ωn−2

=

(
a

�
CPn

Ωn

)(
b

�
CPn

Ωn

)
− ab

�
CPn

Ωn = 0,

as intended.

Corollary 3.2.7. Let ω ∈ K be a normalized smooth Kähler form, and let η ∈ TωB.
Suppose that η has the Hodge decomposition with respect to the metric gω given by η =
aω + dα+ δωθ. Then, if µ = dΦ|ω · η, we have

1

(n− 1)
d2F

∣∣
Φ(ω)

(µ, µ) =

�
CPn
||δωθ||2gωdVgω . (3.12)

Here, Φ : B → C1,ν
cl (Λn−1,n−1

+ ), is given by Φ(ω) = ωn−1, and the Riemannian metric gω
has been extended to the space of differential forms.

Proof. Let ω ∈ K be a normalized smooth Kähler form, and η = aω+dα+δωθ. By Lemma
3.1.6, we have that δωθ ∈ TωB. Moreover, applying Lemma 3.2.6 (b) and observing that
aω + dα ∈ TωK, we obtain the following simplification for the Hessian of F :

1

(n− 1)
d2F

∣∣
Φ(ω)

(µ, µ) =
1

(n− 1)
d2F

∣∣
Φ(ω)

(dΦ|ω · δωθ, dΦ|ω · δωθ)

=

(�
CPn

δωθ ∧ ωn−1

)2

−
�
CPn

δωθ ∧ δωθ ∧ ωn−2

= −
�
CPn

δωθ ∧ δωθ ∧ ωn−2.

In the last equality, we used the fact that δω is the L2-dual of d, and ω is closed. Moreover,
the term −δωθ ∧ δωθ ∧ ωn−2 represents the Riemann-Hodge pairing of δωθ (see definition
B.5). Since δωθ is a primitive form of type (1, 1), as stated in Lemma 3.1.6, the desired
result follows as a consequence of Theorem B.6.

3.3 Main Theorem

Gathering the results of Sections 3.1 and 3.2 we present a proof of Theorem 3.0.1. How-
ever, before providing a rigorous demonstration, we will discuss a useful intuition. For
convenience, we start by summarizing the previous results in the following Lemma.
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Lemma 3.3.1. Let F : C1,ν
cl

(
Λn−1,n−1

+

)
→ R denote the normalized systole functional

under the global chart Φ : B → C1,ν
cl

(
Λn−1,n−1

+

)
. Then, for a fixed smooth normalized

Kähler form ω0 ∈ K, there exist open neighborhoods U ⊂ K of ω0 and V ⊂ Aω0 of 0,
along with a smooth diffeomorphism ρ : U × V → ρ(V × U) ⊂ C1,ν

cl (Λn−1,n−1
+ ), such that

the map F
.
= F ◦ ρ : U × V → R satisfies the following properties:

a) F is constant over the set U × {0}.

b) dF |ω ≡ 0, for every ω ∈ U .

c) The Hessian map d2F
∣∣
ω0

: Tω0K ⊕ Aω0 × Tω0K ⊕ Aω0 → R is a symmetric, semi-
positive definite bilinear form. Moreover, its kernel is given by Tω0K.

d) Given (ω, ξ) ∈ U × V , the restriction d2F
∣∣
(ω,ξ)

: Aω0 ×Aω0 → R is given by

d2F
∣∣
(ω,ξ)

(η, η) = d2F
∣∣
ρ(ω,ξ)

(
dΦ|ω0

· η, dΦ|ω0
· η
)
, (3.13)

for every η ∈ Aω0. Hence, d2F
∣∣
ω0

(η, η) = (n − 1)||η||2L2
gω0

, where ||η||2L2
gω0

is given

by L2-norm induced by the Kähler metric gω0 associated to the Kähler form ω0.

Proof. Fix a smooth normalized Kähler form ω0 ∈ K. Then, the desired conditions are
satisfied by the open neighborhoods U ⊂ K of ω0 and V ⊂ Aω0 of 0, along with the
smooth diffeomorphism ρ : U × V → ρ(V × U) provided in Proposition 3.1.4.

Indeed, (a) and (b) are a direct consequence of Proposition 3.2.2 and Corollary 3.2.4.
Furthermore, to prove (c), we notice that Φ(ω0) is a critical point of F , and the Hessian
of F is given by

d2F
∣∣
ω0

((α, η), (α, η)) = d2F
∣∣
Φ(ω0)

(
dρ|ω0

· (α, η), dρ|ω0
· (α, η)

)
,

for every α ∈ Tω0K and η ∈ Aω0 . Therefore, (c) result from equation (3.5) and Corollary
3.2.7.

In order to prove (d), note that for η ∈ Aω0 , the definition of ρ in (3.5) implies that

d

dt
F (ω, ξ + tη) = dF|ρ(ω,ξ+tη)

(
dΦ|ω0

· η
)
.

Then, the transformation law given in (3.13) follows by taking a derivative of the above
equation. The second part of (d) is derived from the equation just proven, along with the
definition of Aω0 .

It is interesting to observe, as an intuition, that if G : U × V ⊂ K × Aω0 → R is a
smooth map that satisfies properties (a) through (c) of Lemma 3.3.1, together with the
fact that the restriction d2G

∣∣
(ω,ξ)

: Aω0 ×Aω0 → R is coercive in the C1,ν-topology, then

G(ω, η) ≥ G(ω0) in a neighborhood of ω0.
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In fact, since G : U × V → R is smooth in the Fréchet sense with respect to the
C1,ν-norm, the second-order Taylor expansion with Lagrange remainder around ω ∈ U
implies the existence of a constant λ = λ(η) ∈ (0, 1), resulting in the following bound:

G(ω, η) = G(ω) + dG|ω · η +
1

2
d2G

∣∣
(ω,λη)

(η, η)

= G(ω) + dG|ω · η +
1

2
d2G

∣∣
ω0

(η, η) +
1

2

(
d2G

∣∣
(ω,λη)

(η, η)− d2G
∣∣
ω0

(η, η)
)

≥ G(ω) + dG|ω · η + C||η||2C1,ν +
1

2

(
d2G

∣∣
(ω,λη)

(η, η)− d2G
∣∣
ω0

(η, η)
)
,

where the constant C = C(ω0) > 0 arises form the coercivity condition. Now, by the
assumed properties of the map G together with the continuity of d2G in the C1,ν-topology,
we further obtain

G(ω, η) ≥ G(ω) + dG|ω · η + C||η||2C1,ν +
1

2

(
d2G

∣∣
(ω,λη)

(η, η)− d2G
∣∣
ω0

(η, η)
)

≥ G(ω0) + C||η||2C1,ν −
C

2
||η||2C1,ν

= G(ω0) +
C

2
||η||2C1,ν ,

after shrinking U and V , if necessary. Therefore, the desired result follows from classical
arguments in view of the last inequality.

In the situation we want to analyze, however, the function F : U ×V ⊂ K×Aω0 → R
has a Hessian that is not coercive in the C1,ν-topology, but satisfies the weaker property
stated in Lemma 3.3.1 (d) instead. In order to bypass this problem, our strategy is to
estimate the L2-norm of the Hessian, and then mimic the previous argument. Specifically,
we present the following.

Lemma 3.3.2. Let ω0 ∈ K be a smooth and normalized Kähler form. Then, there exist a
neighborhood N ⊂ B of ω0, in the C1,ν-topology, such that for each ω ∈ N and η ∈ Tω0B
the equality ∣∣∣d2F

∣∣
Φ(ω0)

(µ, µ)− d2F
∣∣
Φ(ω)

(µ, µ)
∣∣∣ ≤ n− 1

2
||η||2L2

gω0

,

holds, where µ = dΦ|ω0
· η ∈ C1,ν

cl

(
Λn−1,n−1
R

)
.

Proof. We begin by observing that it is enough to prove the existence of a neighborhood
N1 ⊂ B1 of ω0, such that∣∣∣d2F

∣∣
Φ(ω0)

(µ, µ)− d2F
∣∣
Φ(ω)

(µ, µ)
∣∣∣ ≤ n− 1

4
||η||2L2

gω0

, (3.14)

for every ω ∈ N1 and η ∈ Tω0B.
Indeed, consider the continuous map v : B → R>0 defined by v(ω) =

�
CPn ω

n, which

allows us to normalize any balanced form ω ∈ B as ω̃
.
= v(ω)−

1
nω ∈ B1. Furthermore, the
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homothety invariance property of F implies the following relation between the Hessians
over ω and ω̃

d2F
∣∣
Φ(ω)

= v(ω)
2n
n−1d2F

∣∣
Φ(ω̃)

.

Consequently, for every ω in the open set N ′ .
=
{
ω ∈ B : v(ω)−

1
nω ∈ N1

}
and µ =

dΦ|ω0
· η ∈ C1,ν

cl

(
Λn−1,n−1
R

)
, the following inequality holds∣∣∣d2F

∣∣
Φ(ω0)

(µ, µ)− d2F
∣∣
Φ(ω)

(µ, µ)
∣∣∣ ≤ ∣∣∣1− v(ω)

2n
n−1

∣∣∣ (d2F
∣∣
Φ(ω0)

(µ, µ)
)

+ v(ω)
2n
n−1

∣∣∣d2F
∣∣
Φ(ω0)

(µ, µ)− d2F
∣∣
Φ(ω̃)

(µ, µ)
∣∣∣

≤
∣∣∣1− v(ω)

2n
n−1

∣∣∣ (d2F
∣∣
Φ(ω0)

(µ, µ)
)

+
(n− 1)

4
v(ω)

2n
n−1 ||η||2L2

gω0

≤ (n− 1)

(∣∣∣1− v(ω)
2n
n−1

∣∣∣+
v(ω)

2n
n−1

4

)
||η||2L2

gω0

,

where we have applied (3.14) along with Lemma 3.3.1 (c) and (d). On the other hand,
since v is continuous and v(ω0) = 1, we can choose the desired neighborhood as N .

={
ω ∈ N ′ :

∣∣∣1− v(ω)
2n
n−1

∣∣∣+ 1
4v(ω)

2n
n−1 < 1/2

}
.

It remains to prove the existence of the neighborhood N1 ⊂ B1. Fix ω ∈ B1 and

µ = dΦ|ω0
· η ∈ C1,ν

cl

(
Λn−1,n−1
R

)
. By Theorem 3.2.5, we can write the Hessian of F over

ω as

d2F
∣∣
Φ(ω)

(µ, µ) = 2Pω(µ, µ) +
1

(n− 1)
R1
ω(µ, µ) +R2

ω(µ, µ),

where the operators Pω, R1
ω and R2

ω are given by

Pω(µ, µ) =

(�
CPn

µ ∧ ω
)((�

CPn−1

ωn−1

)(�
CPn

µ ∧ ω
)
−
(�

CPn−1

µ

))
,

R1
ω(µ, µ) =

(�
CPn−1

ωn−1

)(�
CPn

µ ∧ ω
)2

,

R2
ω(µ, µ) =

(�
CPn−1

ωn−1

)(�
CPn

µ ∧ dΨ|Φ(ω) · µ
)
,

where, Ψ = Φ−1 : C1,ν
cl (Λn−1,n−1

+ )→ B.
As showed in Corollary 3.2.4 we have that Pω0 = 0, since ω0 is Kähler. This leads to

the estimate∣∣∣d2F
∣∣
Φ(ω0)

(µ, µ)− d2F
∣∣
Φ(ω)

(µ, µ)
∣∣∣ ≤ 2 |Pω(µ, µ)|+ 1

(n− 1)

∣∣R1
ω0

(µ, µ)−R1
ω(µ, µ)

∣∣
+
∣∣R2

ω0
(µ, µ)−R2

ω(µ, µ)
∣∣ .

Therefore, it suffices to study each of the terms on the right-hand side independently.
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We start with the operator Pω. First, note that every given closed form α ∈ C1,ν(Λ2n−2)
can be written as α = aωn−1

0 +dξ. Therefore, by applying Stokes’s Theorem and recalling
that ω0 is normalized, we have that

�
CPn−1

α = a

�
CPn−1

ωn−1
0 =

�
CPn

α ∧ ω0.

Consequently, we can rewrite Pω as

Pω(µ, µ) =

(�
CPn

µ ∧ ω
)((�

CPn−1

ωn−1

)(�
CPn

µ ∧ ω
)
−
(�

CPn
µ ∧ ω0

))
To further simplify notation, we introduce the continuous map: w : B → R, given by

w(ω) =
�
CPn−1 ω

n−1. This implies that

|Pω(µ, µ)| =
∣∣∣∣(�

CPn
µ ∧ ω

)∣∣∣∣ ∣∣∣∣w(ω)

(�
CPn

µ ∧ ω
)
−
(�

CPn
µ ∧ ω0

)∣∣∣∣
=

∣∣∣∣(�
CPn

µ ∧ ω
)∣∣∣∣ ∣∣∣∣�

CPn
µ ∧ (w(ω)ω − ω0)

∣∣∣∣ .
Recall that for any top form ξ ∈ C1,ν(Λ2n

R ), it holds that
∣∣�

CPn ξ
∣∣ ≤ �

CPn ||ξ||gω0dVgω0 .
Furthermore, since the complex projective space is compact, there exists a universal
constant C > 0 such that ||α ∧ β||gω0 ≤ C||α||gω0 ||β||gω0 . Moreover, C > 0 will also
denote a constant that may possibly change throughout the calculations but depends
only on ω0 and n. Considering the previous observations, we have

|Pω(µ, µ)| =
∣∣∣∣(�

CPn
µ ∧ ω

)∣∣∣∣ ∣∣∣∣�
CPn

µ ∧ (w(ω)ω − ω0)

∣∣∣∣
≤ C

(�
CPn
||µ||gω0 ||ω||gω0

)(�
CPn
||µ||gω0 ||w(ω)ω − ω0||gω0

)
≤ C||ω||C1,ν ||w(ω)ω − ω0||C1,ν

(�
CPn
||µ||gω0

)2

.

However, µ = dΦ|ω0
· η = (n− 1)ωn−2

0 ∧ η. Hence, applying Hölder inequality we can find
a new constant C > 0, such that

|Pω(µ, µ)| ≤ C||ω||C1,ν ||w(ω)ω − ω0||C1,ν

(
(n− 1)

�
CPn
||ω0||n−2

gω0
||η||gω0

)2

≤ C||ω||C1,ν ||w(ω)ω − ω0||C1,ν ||η||2L2
gω0

.

Noticing that the function B1 3 ω 7→ C||ω||C1,ν ||w(ω)ω − ω0||C1,ν ∈ R is continuous
and vanishes at ω0, there exists a neighborhood W1 ⊂ B1 of ω0, where the following
inequality holds

|Pω(µ, µ)| ≤ n− 1

12
||η||2L2

ω0
,
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for any ω ∈ W1 and µ = dΦ|ω0
· η ∈ C1,ν

cl

(
Λn−1,n−1
R

)
.

Now, we estimate the operator R1. Upon noticing that w(ω0) = 1 and employing the
same reasoning as before, we obtain for each ω in the non-empty open set {ω ∈ B1 :
w(ω) > 0}, and for µ = dΦ|ω0

· η = (n− 1)η ∧ ωn−2
0 , where η ∈ Tω0B that

∣∣R1
ω(µ, µ)−R1

ω0
(µ, µ)

∣∣ =

∣∣∣∣∣w(ω)

(�
CPn

µ ∧ ω
)2

−
(�

CPn
µ ∧ ω0

)2
∣∣∣∣∣

=

∣∣∣∣(�
CPn

µ ∧ (w(ω)
1
2ω + ω0)

)(�
CPn

µ ∧ (w(ω)
1
2ω − ω0)

)∣∣∣∣
≤ C||w(ω)

1
2ω − ω0||C1,ν ||w(ω)

1
2ω + ω0||C1,ν

(�
CPn

µ

)2

≤ C||w(ω)
1
2ω − ω0||C1,ν ||w(ω)

1
2ω + ω0||C1,ν ||η||2L2

ω0
.

As before, notice that the map ω 7→ C||w(ω)
1
2ω−ω0||C1,ν ||w(ω)

1
2ω+ω0||C1,ν is a contin-

uous function that vanishes at ω0. We can define a neighborhood W2 ⊂ B1 of ω0, in such
way that ∣∣R1

ω(µ, µ)−R1
ω0

(µ, µ)
∣∣ ≤ n− 1

12
||η||2L2

gω0

,

for every ω ∈ W2 and µ = dΦ|ω0
· η ∈ C1,ν

cl

(
Λn−1,n−1
R

)
.

Finally we estimate the operator R2. Once more, taking ω ∈ B1 such that w(ω) > 0,
and µ = dΦ|ω0

· η = (n− 1)η ∧ ωn−2
0 , where η ∈ Tω0B ⊂ C1,ν

(
Λ1,1
R
)
, we have

∣∣R2
ω(µ, µ)−R2

ω0
(µ, µ)

∣∣ =

∣∣∣∣w(ω)

(�
CPn

µ ∧ dΨ|Φ(ω) · µ
)
−
(�

CPn
µ ∧ η

)∣∣∣∣
=

∣∣∣∣�
CPn

µ ∧
(
w(ω)dΨ|Φ(ω) · µ− η

)∣∣∣∣ . (3.15)

Turning our attention to the map dΦ|ω, we recall that it is induced by the bundle iso-

morphism Λ1,1
R 3 α 7→ (n − 1)α ∧ ωn−2 ∈ Λn−1,n−1

R . Therefore, its inverse is induced by
the inverse of this bundle isomorphism. Consequently, if we denote such bundle map by
Sω : Λn−1,n−1

R → Λ1,1
R , we obtain the following pointwise bound

||w(ω)dΨ|Φ(ω) · µ− η||gω0 = ||w(ω)Sωµ− η||gω0
≤ ||Sω||gω0 ||w(ω)µ− S−1

ω η||gω0
= (n− 1)||Sω||gω0 ||w(ω)η ∧ ωn−2

0 − η ∧ ωn−2||gω0
≤ C||Sω||gω0 ||w(ω)ωn−2

0 − ωn−2||gω0 ||η||gω0 .

Using the compactness of the complex projective space and the equivalence of Eu-
clidean products, we can obtain a neighborhood W3 ⊂ B1 of ω0 such that ||Sω||gω0 ≤
2||Sω||gω at every point. Moreover, since we can put any linear Kähler form in canoni-
cal form, and S−1

ω is wedging with the fundamental form, we conclude that ||Sω||gω =
||Sω0 ||gω0 for every ω ∈ B.
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Combining the aforementioned pointwise information with (3.15), we obtain the fol-
lowing inequality for every ω ∈ W3

∣∣R2
ω(µ, µ)−R2

ω0
(µ, µ)

∣∣ =

∣∣∣∣w(ω)

(�
CPn

µ ∧ dΨ|Φ(ω) · µ
)
−
(�

CPn
µ ∧ η

)∣∣∣∣
≤ C

�
CPn
||η||gω0 ||w(ω)dΨ|Φ(ω) · µ− η||gω0

≤ C
�
CPn
||η||gω0

(
||Sω0 ||gω0 ||w(ω)ωn−2

0 − ωn−2||gω0 ||η||gω0
)

≤ C||w(ω)ωn−2
0 − ωn−2||C1,ν

(�
CPn
||η||2gω0

)
≤ C||w(ω)ωn−2

0 − ωn−2||C1,ν ||η||2L2
gω0

,

where, in the last line, we applied Hölder inequality, and C > 0 is a constant that depends
of n, ω0 and W3. As the map W3 3 ω → C ′||w(ω)ωn−2

0 − ωn−2||C1,ν ∈ R is continuous
and vanishes at ω0, we can shrink W3 to ensure that∣∣R2

ω(µ, µ)−R2
ω0

(µ, µ)
∣∣ ≤ n− 1

12
||η||2L2

gω0

,

for every ω ∈ W3 and µ = dΦ|ω0
·η ∈ C1,ν

cl

(
Λn−1,n−1
R

)
. We can conclude the proof defining

N1 =W1 ∩W2 ∩W3.

Now that Lemma 3.3.2 is established, we can apply the computations provided in the
beginning of the section to give a proof of Theorem 3.0.1. Which we restate below in
terms of the finer topology C1,ν and of the functional F : C1,ν

cl

(
Λn−1,n−1

+

)
→ R.

Theorem 3.3.3. There is an open set Φ
(
K ∩ Ω1,1(CPn)

)
⊂ U ⊂ C1,ν

cl

(
Λn−1,n−1

+

)
, in the

C1,ν-topology, such that for every form σ ∈ U

F(σ) ≥ F(Ωn−1).

Moreover, σ ∈ U satisfies the equality if and only if σ ∈ Φ (K).

Proof. Let ω0 be a smooth Kähler form, and let ρ : U ×V → ρ(U ×V ) ⊂ C1,ν
cl

(
Λn−1,n−1

+

)
be the smooth diffeomorphism given in Lemma 3.3.1. Furthermore, we denote the the
functional F under this identification, by F

.
= F ◦ ρ : U × V → R .

If N ⊂ B denotes the neighborhood provided in Lemma 3.3.2, we can assume that
U ⊂ K and V ⊂ Aω0 are open convex sets which satisfying Wω0

.
= ρ(U × V ) ⊂ Φ (N ).

The second-order Taylor expansion with the Lagrange remainder for F : U × V → R
around ω ∈ U implies that for each η ∈ V , there exists λ = λ(η) ∈ (0, 1) such that the
following equality holds

F (ω, η) = F (ω) + dF |ω · η +
1

2
d2F

∣∣
(ω,λη)

(η, η)

= F (ω) + dF |ω · η +
1

2
d2F

∣∣
ω0

(η, η) +
1

2

(
d2F

∣∣
(ω,λη)

(η, η)− d2F
∣∣
ω0

(η, η)
)
.
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Since we are under the hypothesis of Lemmas 3.3.1 and 3.3.2 we further obtain

F (ω, η) = F (ω0) +
n− 1

2
||η||2L2

gω0

+

+
1

2

(
d2F

∣∣
ρ(ω,λη)

(
dΦ|ω0

· η, dΦ|ω0
· η
)
− d2F

∣∣
Φ(ω0)

(
dΦ|ω0

· η, dΦ|ω0
· η
))

≥ F (ω0) +
n− 1

2
||η||2L2

gω0

− n− 1

4
||η||2L2

gω0

= F (ω0) +
n− 1

4
||η||2L2

gω0

.

Applying Proposition 3.2.2 to ensure that F is constant along the Kähler forms, we
conclude that for every form σ = ρ(ω, η) ∈ Wω0 , the following inequality holds

F(σ) ≥ F(Ωn−1) +
n− 1

4
||η||2L2

gω0

.

Even more, if equality holds η = 0, that is, σ = ρ(ω, 0) = Φ(ω) ∈ Φ(K). Conversely,
applying Proposition 3.2.2, if σ ∈ Φ(K) then equality holds.

In conclusion, we constructed the desired neighborhood around each smooth and
normalized Kähler form. To complete the proof, we need to extend this construction to
non-normalized forms. For that, we recall that by Proposition 3.2.2, the functional F
is invariant under homothety, allowing us to construct the aforementioned neighborhood
using dilatation. Finally, we can take U as the union ofWω0 , for each ω0 ∈ K∩Ω1,1(CPn).
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CHAPTER 4

Deformations in Z

Introduction

In [AMN21], L. Ambrozio, F. Marques, and A. Neves explored the properties of Rie-
mannian metrics on the n-dimensional sphere that admit a family of closed, minimal
hypersurfaces, integrating the family of hyperplanes in Grn−1(TSn). These metrics nat-
urally appear as a generalization of the notion of Zoll metrics ([Bes78]). In this chapter,
we will adapt the Ambrozio-Marques-Neves condition to the context of almost complex
structures in the complex projective space and apply the results of chapters 1 and 3 to
classify 1-parameter deformations of such structures.

4.1 Classification of deformations in Z
In order to facilitate the reading we recollect the definition of the set Z.

Definition 4.1.1. The set Z is defined as the class of almost Hermitian structures
(J, g) in CPn whose admit a family {Σ2n−2

σ }σ∈CPn of (2n− 2)-dimensional submanifolds
satisfying the following properties:

a) For every σ ∈ CPn the submanifold Σσ is diffeomorphic to CPn−1, minimal and
J-almost complex;

b) For every (p,Π) ∈ GrJn−1(CPn), in the Grassmannian of J-almost complex hyper-
planes, there exists a unique σ ∈ CPn for which p ∈ Σσ and TpΣσ = Π. Moreover,
the map GrJn−1(CPn) 3 (p,Π) 7→ σ ∈ CPn is a submersion;

c) The map CPn 3 σ 7→ Σσ is smooth in the sense of the graphical convergence.

The family {Σ2n−2
σ }σ∈CPn is called the associated Zoll family.
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Following the ideas in [AMN21], our interest is to classify 1-parameter deformations of
the Fubini-Study metric that lie in the set Z. More concretely, a smooth family t 7→ (Jt, gt)
of almost Hermitian structures is said to be a 1-parameter deformation of the Fubini-Study
metric in Z if (Jt, gt) ∈ Z for every t, and there exists a family of Zoll families {Σσ,t}σ∈CPn
such that the map (σ, t) 7→ Σσ,t is continuous in the sense of graphical convergence, and
moreover (J0, g0) and {Σσ,0}σ∈CPn are given by (Jcan, gFS) and {CPn−1

σ }σ∈CPn .
The first step to classify these deformations is to notice that the notion of (J, g) ∈ Z

presented in the previous definition is a stronger version of the concept of belonging in
Wn−1, as defined earlier in Chapter 1 (see Definition 1.2.1). In other words, we always
have that Z ⊂ Wn−1. Therefore, we can apply Theorem 1.0.2 to derive basic properties
of almost Hermitian structures that are in Z.

Proposition 4.1.2. Let (J, g) be an almost Hermitian structure in CPn, for n ≥ 2, that
belongs to Z. Then:

a) If n = 2, the almost Hermitian structure (J, g) is Almost-Kähler.

b) If n ≥ 3, the almost complex structure J is integrable and the Riemannian metric
g is balanced with respect to J .

A consequence of the previous proposition is that each element Σσ in the Zoll family
of (J, g) ∈ Z is non-trivial in H2n−2(CPn,Z). In fact, if Σσ were trivial Stokes’ Theorem
would imply that volg(Σσ) = 1

(2n−2)!

�
Σσ
ωn−1 = 0, since ωn−1 is closed.

From these preliminary properties we can use the classical theory of deformations
of complex manifolds develop by K. Kodaira ([Kod05]) and A. Frölicher, A. Nijenhuis
([FN57]) to prove the following classification theorem.

Theorem 4.1.3. Fix n ≥ 3. Let R 3 t 7→ (Jt, gt) ∈ Z be a smooth 1-parameter defor-
mation of the Fubini-Study metric in Z. Then, there exists ε > 0 and a continuous map
(−ε, ε) 3 t 7→ θ(t) ∈ Diff(CPn), such that, module isotopy, for every |t| < ε the following
properties are satisfied.

a) The almost complex structure Jt is constant and equal to Jcan;

b) The metric gt is balanced with respect to Jcan;

c) The family {Σσ,t}σ∈CPn is given by
{
CPn−1

θ(t,σ)

}
σ∈CPn

.

Proof. Applying Proposition 4.1.2, we conclude that Jt is integrable, and gt is balanced
with respect to Jt for every t ∈ R. Since t 7→ Jt is a smooth family of complex structures
in CPn, the deformation Theorem of Kodaira (see Theorem 4.12, §4.2 in [Kod05]) implies
that there exists an ε > 0 and a smooth isotopy φ : CPn × (−ε, ε) → CPn such that
φ∗t (Jt) = Jcan. Therefore, up to the action of this isotopy, there is no loss of generality
in assuming that Jt is constant, given by the canonical complex structure, and that gt is
balanced with respect to Jcan for every |t| < ε.

It remains to show that the family {Σσ,t}σ∈CPn is a re-parametrization of the equato-
rial family {CPn−1

σ }σ∈CPn . Since (σ, t) 7→ Σσ,t is continuous in the sense of the graphical
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convergence, we can assume that the second fundamental form of the complex subman-
ifold Σσ,t of (CPn, Jcan) is sufficiently close to the second fundamental form of CPn−1

σ

for every σ ∈ CPn and |t| < ε. Hence, using the rigidity of complex submanifolds of
(CPn, gFS) with sufficiently small second fundamental form ([Ogi70]), we can assume
that each Σσ,t is totally geodesic, possibly reducing ε > 0. Said differently, there is a map
θ : CPn × (−ε, ε) → CPn satisfying Σσ,t = CPn−1

θ(σ,t), for every σ ∈ CPn and |t| < ε. On

the other hand, by part (b) of Definition 4.1.1, the map θ(t, ·) is bijective and by part
(c), is also smooth. Therefore, reducing ε > 0 once more, we can assume that each one of
these maps is a diffeomorphism. Finally, the continuity of t 7→ θ(t) ∈ Diff(CPn) follows
once more from the continuity of (σ, t) 7→ Σσ,t.

The combination of the previous classification Theorem with our analysis of the nor-
malized systole over balanced metrics (Theorem 3.0.1) allow us to understand the nor-
malized systole along a 1-parameter deformation of the Fubini-Study metric in Z.

Corollary 4.1.4. Fix n ≥ 3. Let R 3 t 7→ (Jt, gt) ∈ Z be a smooth 1-parameter defor-
mation of the Fubini-Study metric in Z. Then there exists an ε > 0 such that, for every
t ∈ (−ε, ε),

Sysnor
2n−2(CPn, gt) ≥ Sysnor

2n−2(CPn, gFS).
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CHAPTER 5

Future Works

Introduction

In this final section, we provide a discussion on two problems that remain open. Our
conception is that any significant advancement in either of these would greatly enhance
our comprehension of the relations between systoles and Zoll metrics.

The first problem revolves around establishing an explicit relation between Zoll-like
metrics in CP 2 and the local extrema of the normalized 2-systole, thus providing a gen-
eralization to the Gromov-Berger Theorem. The second problem regards an extension of
Theorem 4.1.3 beyond 1-parameter deformations.

5.1 Normalized Systole of CP 2

In [ABHS17], Umberto L. Hryniewicz and his collaborators have proven that a metric
in S2, satisfying a explicit pinching condition, is a maximum for the normalized systole
(i.e., the least length closed geodesics) if and only if the metric is Zoll. Previously in
the introduction, we explained how the Gromov-Berger Theorem (Theorem A) can be
understood as analogue version of their result in our context. Hence, a natural question
is to given a more explicit characterization of the local neighborhood which the Gromov-
Berger Theorem is valid. We conjecture that this neighborhood should contain all the
Zoll-like metrics.

Conjecture 5.1.1. Let Z ′0 ⊂ Riem(CP 2) be the subset of metrics g such that (g, J) ∈ Z ′
for some almost complex structure J . There exists an open set Z ′0 ⊂ U ⊂ Riem(CP 2), in
the C∞-topology, such that for every metric g ∈ U ,

Sysnor
2 (CP 2, g) ≤ Sysnor

2 (CP 2, gFS).
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Moreover, g ∈ U satisfies the equality if and only if g ∈ Z ′0.

In order to further enrich our discussion we will provide a sketch of the proof of the
Gromov-Berger Theorem. The original proofs can be found in [Gro85] and [Gro96]. We
start by recalling the duality in CP 2 between the set of almost Kähler structures A K
(see definition 1.1.4) and the set Z ′ of Zoll-like structures (see definition B).

Proposition 5.1.2. A K = Z ′.

Proof. The inclusion Z ′ ⊂ A K is a direct consequence of Proposition 4.1.2. Now let
(J, g) be an almost Kähler structure. By Taubes’ Uniqueness Theorem for symplectic
structures on CP 2 ([Tau95]), we can assume that the fundamental form associated to the
pair (J, g) is the Fubini-Study form, up to scaling. In this case, the existence of the Zoll
family that generates the integer homology is guaranteed by the work of M. Gromov on
pseudo-holomorphic curves [Gro85] (see also [Sik04] and [McK06], Theorem 4).

Remark 5.1.3. When regarding the duality A K = Z ′ we will understand that the asso-
ciated Zoll family is the one given by the M. Gromov construction on pseudo-holomorphic
curves.

The crucial step in the proof of the Gromov-Berger Theorem is to show that the
integral geometric formula (see definition A.1) for the Fubini-Study metric is an open
condition around the Fubini-Study metric on the set A K .

Proposition 5.1.4. There exists an open neighborhood of the Fubini-Study structure in
the C∞-topology in the space of almost Kähler structures. Such that, for every pair (J, g)
in this neighborhood, the Zoll family of this pair admits an integral geometric formula.

For the moment lets assume this Proposition and give a sketch of the proof of the
Gromov-Berger Theorem (Theorem A).

Scketh of the Proof. The first and main step of the proof is to construct an open neigh-
borhood N ⊂ Riem(CP 2) of the Fubini-Study metric with the following property: given
a metric g ∈ N there exist a metric g′, conformal to g, such that g′ is almost Kähler.

For that, consider the continuous map A : Riem(CP 2) 3 g 7→ A(g)
.
= ωg ∈ Ω2

cl(CP 2),
where ωg is the unique 2-form satisfying:{

∆gωg = 0�
CP 2 ωg = 1.

(5.1)

Recall that, by classical Hodge theory and the fact that the second Betti number of
CP 2 is one, equation (5.1) has a unique solution. Moreover, recalling our normalization
of the Fubini-Study metric, we observe that A(gFS) = Ω. Hence, by the continuity of the
map A, we can define our desired neighborhood as

N .
= {g ∈ Riem(CP 2) : A(g) is non-degenerate}. (5.2)
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It remains to prove that this neighborhood satisfies the desired property. Fix g ∈ N ,
and let T ∈ Hom(TCP 2) be the unique application satisfying g(T ·, ·) = ωg(·, ·). Since ωg
is g-harmonic in CP 2, it is also g-self-dual. Hence, by direct computations we have that
T 2 = −|ωg|2Id. As ωg is non-degenerate the function |ωg| is a positive and J = 1

|ωg |T is an

almost complex structure. Consequently, defining g′ = |ωg|g, we obtain that (J, g′) is an
almost Kähler structure. In fact, the associated fundamental form is given by ωg, which
is closed.

Now, we move on to the second part of the proof. Consider the continuous function

C : N 3 g → |ωg |√
2
g ∈ A K . By construction, C(gFS) = gFS . Now, by continuity of C and

Proposition 5.1.4, we can obtain a new neighborhood of the Fubini-Study metric U ⊂ N
for which, for every metric g ∈ U , the Zoll family of the metric C(g) ∈ A K = Z ′ admits
an integral geometric formula.

Since for each g ∈ U the Zoll family of the metric C(g) admits an integral geometric
formula Theorem A.2, implies that C(g) maximizes the normalized 2-systole within its
conformal class. Moreover, through an argument similar to that of Proposition 3.2.2, we
can show that the normalized 2-systole is constant over the set of almost Kähler metrics.
Combining this facts, we obtain the following:

Sysnor
2 (CP 2, g) ≤ Sysnor

2 (CP 2, C(g)) = Sysnor
2 (CP 2, gFS).

Finally, if the above inequality holds, Theorem A.2 implies that |ωg| is constant. Clearly,
this implies that g itself is almost Kähler, completing the proof.

Note that the only obstacle to generalize this proof to a proof of Conjecture 5.1.1
is the use of Proposition 5.1.4. Therefore, one possible approach to our conjecture is to
study the following general version of Proposition 5.1.4.

Conjecture 5.1.5. For every pair (J, g) ∈ Z ′, the associated Zoll family admits an
integral geometric formula.

A noteworthy observation is that, if we apply the above approach to prove Conjecture
5.1.1, we can explicitly identify the neighborhood U of the set Z ′ given in the sketch of
the prove of Gromov-Berger Theorem. In fact, is precisely given by the set N defined in
(5.2).

The rest of this section will be devoted to sketch a proof for Proposition 5.1.4 which
may inspire possible ways to reduce the Conjecture 5.1.5 to more tangible problems.

Fix (J, g) ∈ Z ′ and let {Σσ}σ∈CP 2 be the associated Zoll family, we define the The
Radon transform associated to the pair (J, g) as the following transformation.

R : C0(CP 2)→ C0(CP 2)

f 7→ R(f) : CP 2 3 σ 7→ R(f)(σ)
.
=

�
Σσ

f dAg.

Note that the Radon transform induces a dual Radon transform in the space of Radon
measures of CP 2, which we denote by R∗ :M(CP 2)→M(CP 2). In fact, given a Radon
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measure µ ∈M(CP 2), the Riesz representation theorem implies the existence of a unique
Radon measure R∗(µ) satisfying:�

CP 2

f R∗(µ) =

�
CP 2

R(f) dµ, ∀f ∈ C0(CP 2).

Where M(CP 2) represents the space of Radon measures.

Remark 5.1.6. The Radon transform can be defined in a more general context, for
instance, in the case of double fibrations. For references on the Radon transform and its
properties, see [GS77] and [Hel99].

Now we have all the necessaries tolls to provide a sketch for the proof of Proposition
5.1.4. We will follow the ideas presented in [Gro96], Section 4.A.2.

Proof of Proposition 5.1.4. Let RFS denote the Radon transform associated with the
Fubini-Study Hermitian structure and R∗FS its dual. The classical work of S. Helgason
on the Radon transform for symmetric spaces states that, for an appropriate space of
functions, the operators RFS and R∗FS are bijective ([Hel99], Chapter 3, Section 2, The-
orem 2.2). Furthermore, the general theory developed by V. Guillemin and S. Sternberg
on the Radon transforms asserts that RFS and R∗FS are also integral Fourier operators
([GS77], Chapter 6, Section 6). This general theory guarantees that the bijective property
is preserved under small perturbations.

Based on the preceding argument, there exists a neighborhood V of the Fubini-Study
Hermitian structure in Z ′ such that, for every pair (J, g) ∈ V, the associated dual Radon
transform is bijective. Therefore, for any element (J, g) in V, there exists a unique Radon
measure µ(J,g) satisfying the following equation:

R∗
(
µ(J,g)

)
= dVg.

Additionally, by shrinking V if necessary, we can assume that µ(J,g) is a positive
measure.

Now we claim that every element of the previously defined neighborhood admits an
integral geometric formula. In fact, let (J, g) ∈ V and take φ ∈ C∞(CP 2). Then, by
definition of µ(J,g), we obtain

�
CP 2

(�
Σσ

φdAg

)
dµ(J,g)(σ) =

�
CP 2

R(φ) dµ(J,g) =

�
CP 2

φR∗(µ(J,g)) =

�
CP 2

φdVg.

Remark 5.1.7. Regarding Conjecture 5.1.5, it is important to note that for a given
element (J, g) ∈ Z ′, the surjectiveness of the dual Radon transform does not necessarily
imply the existence of an integral geometric formula. Instead, we must prove the more
refined statement that R∗ : M>0(CP 2) → M>0(CP 2) is surjective, where M>0(CP 2)
denotes the space of positive Radon measures.

For readers interested in the Radon transform for projective spaces, further references
can be found in [Str81], [Qui81] and [Mck05].
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5.2 Uniqueness of the complex structure in CP n

The uniqueness of the complex structure in CPn is a well-known open problem. This
problem becomes more approachable when we study families of complex structures that
are compatible with other geometric structures. For instance, Hirzebruch ([HK57]), Ko-
daira and Yau ([Yau77]) have proven the uniqueness of the Kähler structure in CPn, up
to biholomorphism. Therefore, it is reasonable to conjecture the following generalization
of Hirzebruch-Kodaira-Yau Theorem.

Conjecture 5.2.1. Let J ∈ Hom(TCPn) be a complex structure such that there exists
a Riemannian metric g ∈ Riem(CPn) for which (J, g) is balanced. Then (CPn, J) is
biholomorphic to (CPn, Jcan).

Such result would fit in the frame of our research by providing a possible generalization
of Theorem 4.1.3. In fact, if the conjecture is true, we would be able to improve our
statement, from 1-parameter deformations to a local property around the Fubini-Study
metric.

For interested readers, one prove of the Hirzebruch-Kodaira-Yau Theorem can be
found in the survey of V. Tosatti [Tos17].
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APPENDIX A

Integral Geometric Formulas and Systolic Inequalities

Definition A.1. Let (Mn, g) be a closed Riemannian manifold, and {Σk
σ}σ∈G a family

of closed smooth k-submanifolds continuously parameterized by a closed manifold G. We
say that the family {Σk

σ}σ∈G admits an integral geometric formula, if G admits a positive
Radon measure dµ that satisfies the following two properties:

a) For every φ ∈ C∞(M) the map G 3 σ 7→
�

Σσ
φdAg ∈ R is continuous;

b) The following integral equation holds for each smooth function φ ∈ C∞(M),
�
G

(�
Σσ

φdAg

)
dµ(σ) =

�
M
φdVg. (A.1)

Let the parameterized family {Σk
σ}σ∈G be as defined above. An interesting consequence

of the existence of an integral geometric formula is the denseness of the family {Σk
σ}σ∈G ,

meaning that the closed set ∪σ∈GΣσ covers M . In fact, otherwise, we can choose a positive
function φ ∈ C∞(M) with support in the non-empty open set M \ ∪σ∈GΣσ, leading to a
contradiction with the formula (A.1).

Despite the aforementioned property of integral geometric formulas our main interest
rest in its connection with systolic inequalities. This relation was conceived by M. Pu
in one of the earliest papers in systolic geometry ([Pu52]) and since then was largely
replicated ([Ber72],[Gro96], [APF07]). Next we adapt his argument to our context.

Theorem A.2. Let (Mn, g) be a closed Riemannian manifold, and suppose that there
exists a family {Σk

σ}σ∈G of closed smooth k-submanifolds parameterized by a closed mani-
fold G admitting an integral geometric formula. Moreover, suppose that Σσ is homological
non-trivial and Sysk(M, g) = volg(Σσ) for every σ ∈ G. Then, for every Riemannian
metric ḡ in the conformal class of g, we have

Sysnor
k (M, ḡ) ≤ Sysnor

k (M, g).
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Moreover, equality holds if and only if ḡ is homothetic to the metric g.

Proof. Let φ ∈ C∞>0(M) be the conformal factor of ḡ, that is ḡ = φg. Then for each σ ∈ G,

volḡ(Σσ) =

�
Σσ

φk/2dAg.

Therefore, the integral geometric formula and the fact that Sysk(M, g) = volg(Σσ) gives

�
G

volḡ(Σσ)dµ =

�
M
φk/2dVg

≤ volg(M)
n−k
n

(�
M
φn/2dVg

) k
n

= volg(M)
n−k
n volḡ(M)

k
n .

Where we used Hölder’s inequality. On the other hand, by part (a) of definition A.1, the
map G 3 σ 7→ volḡ(M) ∈ R is continuous, hence Sysk(M, ḡ) ≤ −

�
G volḡ(Σσ)dµ. However,

inserting the constant function ψ ≡ 1 in equation (A.1) we see that µ(G) Sysk(Σσ, g) =
volg(M). Consequently, the following inequality holds:

Sysk(M, ḡ) ≤ Sysk(M, g)

volg(M)

(�
G

volḡ(Σσ)dµ

)
≤ Sysnor

k (M, g)volḡ(M)
k
n ,

thus proving the desired result. The equality case happens if and only if equality holds
in the Hölder inequality, therefore we must have φ constant in this case.
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APPENDIX B

Miscellanea of Hermitian Geometry

Here we compile classical theorems of Hermitian geometry. We begin by considering the
linear case. Let (V 2n, 〈·, ·〉) be a real Euclidean vector space of dimension 2n, endowed
with a compatible linear (almost) complex structure I ∈ End(V ). The fundamental 2-
form associated to (V 2n, 〈·, ·〉, I) is given by:

ω(·, ·) .
= 〈I·, ·〉.

In order to fix notation, we recall that the linear complex structure I induces a decom-
position on ΛV ∗C

.
= ΛV ∗ ⊗ C, the space of complex-valued forms, given by:

ΛV ∗C = ⊕2n
k=0 ⊕p+q=k Λp,qV ∗,

where Λp,qV ∗ denote the space of forms of type (p, q). On the other hand, the fundamental
form ω defines the Lefschetz operator, which has a central role in this theory.

Definition B.1. The Lefschetz operator L : ΛV ∗C → ΛV ∗C is defined by u 7→ u ∧ ω.

As usual, we can extend the Euclidean product of V to ΛV ∗. This allows the definition
of the dual Lefschetz operator, as follows.

Definition B.2. The dual Lefschetz operator is the unique map Λ : ΛV ∗ → ΛV ∗ that
satisfies:

〈Λu, v〉 = 〈u, Lv〉,

for every u, v ∈ ΛV ∗. We also denote by Λ : ΛV ∗C → ΛV ∗C , the C-linear extension of the
dual Lefschetz operator.

Associated to the dual Lefschetz operator is the concept of primitive forms.
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Definition B.3. A k-form u ∈ ΛkV ∗C is called primitive if Λu = 0, and we denote the
subspace of these forms by P kC, and the space of real primitive k-forms will be denoted
by P k. Moreover, we also define the space of primitive forms of type (p, q) as P p,q =
P p+qC ∩ Λp,qV ∗.

In the subsequent proposition we present some properties of the set of primitive forms.
These properties usually are embedded in a deeper theorem called the Lefschetz Decom-
position Theorem (Proposition 1.2.30, [Huy05]).

Theorem B.4. Let (V 2n, 〈·, ·〉, I) be a real euclidean vector space endowed with a com-
patible linear complex structure. Then:

a) The map Ln−k : ΛkV ∗ → Λ2n−kV ∗ is bijective, for every k ≤ n.

b) If k ≤ n, then P k = {u ∈ ΛkV ∗ : Ln−k+1u = 0}.

To conclude the review of the linear part we introduce another important operator,
called the Riemann-Hodge pairing.

Definition B.5. For each k ≤ n, we define the Riemann-Hodge pairing as the bilinear
form RH : ΛkV ∗ × ΛkV ∗ → R given by:

RH(u, v) = (−1)
k(k−1)

2 u ∧ v ∧ ωn−k,

where we identify Λ2nV ∗ with R using the euclidean product. We also denote by RH the
C-linear extension of the Riemann-Hodge paring.

The next theorem, know as the Riemann-Hodge bilinear relations, tell us how the
Riemann-Hodge pairing acts over primitive forms (Corollary 1.2.36, [Huy05]).

Theorem B.6. Let RH : ΛV ∗C × ΛV ∗C → C denote the Riemann-Hodge paring. Then

RH
(

Λp,qV ∗,Λp
′,q′V ∗

)
= 0,

whenever (p, q) 6= (q′, p′). Moreover, if p+ q ≤ n, then

(
√
−1)p−qRH(u, ū) = (n− (p+ q))! · ||u||2,

for every u ∈ P p,q.

In what follows (M2n, g, J, ω) denotes a closed and connected Kähler manifold. Clearly,
the pointwise theory developed earlier generalizes to forms on the manifold M . Therefore,
we have well-defined the Lefschetz operator and its dual.

An important question is how these operators commute with the differential and
codifferential on M . The Kähler condition imposes important relations between these
operators, which are called Kähler identities. In what follows, we present some of these
relations. However, before that, we need to introduce the δc operator.
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Definition B.7. For each 1 ≤ k ≤ 2n, we define δc : Ωk
C(M) → Ωk−1

C (M) as δc =
i(∂∗ − ∂̄∗).

The next proposition shows how Λ commutes with the exterior differential and δ with
δc.

Proposition B.8. (cf. Proposition 3.1.12 in [Huy05]) Let (M2n, g, J, ω) be a closed and
connected Kähler manifold, and Λ the dual Lefschetz operator. Then:

a) [Λ, d] = −δc;

b) δ ◦ δc + δc ◦ δ = 0.
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