
PBW BASES OF IRREDUCIBLE ISING MODULES

DIEGO SALAZAR

Abstract. To every h+N-graded module M over an N-graded conformal vertex algebra V , we
associate an increasing filtration (GpM)p∈Z, which is compatible with the filtrations introduced
by Haisheng Li. The associated graded vector space grG(M) is naturally a module over the
vertex Poisson algebra grG(V ). We study grG(M) for the three irreducible modules over the
Ising model Vir3,4, namely Vir3,4 = L(1/2, 0), L(1/2, 1/2) and L(1/2, 1/16). We obtain an
explicit PBW basis of each of these modules and a formula for their refined characters, which
are related to Nahm sums for the matrix ( 8 3

3 2 ).
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0. Introduction

Modules over the Virasoro Lie algebra, Kac-Moody Lie algebras, vertex algebras, and other
related noncommutative algebraic objects are often equipped with natural filtrations, whose
associated graded spaces bear interesting structures, such as differential structures, Poisson
structures, etc. The prototype of this situation is, of course, the PBW theorem, one formulation
of which is that for a Lie algebra g, the associated graded space gr(U(g)) of the universal
enveloping algebra U(g) with respect to the usual PBW filtration is naturally isomorphic to the
symmetric algebra S(g), i.e., it is a polynomial algebra.
A similar notion in the context of vertex operator algebras has garnered increasing interest in

recent years. For a vertex operator algebra V , there is a natural epimorphism JRV ↠ grF (V )
between the jet algebra of the Zhu C2-algebra RV of V and the associated graded space grF (V )
of V with respect to the Li filtration. If this is an isomorphism, we say V is classically free.
The property of classical freedom, and its failure, are related to problems in representation
theory such as monomial bases of irreducible representations and combinatorial interpretations
of classical number theoretic identities like the Rogers-Ramanujan identity.

The Ising model Vir3,4 is a vertex operator algebra that turns out not to be classically free, as
illustrated in [AVEH22]. However, it is still possible to find a monomial basis of Vir3,4. In this
thesis, we continue the work of Andrews, Van Ekeren and Heluani by studying the irreducible
modules over Vir3,4, their associated graded spaces and their PBW bases. As it turns out, we
have to use a modified version of the PBW filtration when considering modules over Vir3,4.
A vertex superalgebra can be thought of as a vector superspace V together with a distinguished

element |0⟩ ∈ V0, called vacuum vector, and Z-many bilinear products

•(n)• : V × V → V,

(a, b) 7→ a(n)b,

called n-products, such that the generating function

[•λ•] : V × V → V [λ],

[aλb] =
∑
n∈N

(a(n)b)
λn

n!
,

called λ-bracket, satisfies the axioms of a Lie conformal superalgebra, which is very similar to a
Lie superalgebra, together with quasicommutativity, quasiassociativity and the noncommutative
Wick formula. However, a more compact way to define vertex superalgebras is to gather all n-
products into a single generating function

Y (•, z) : V → End(V )[[z±1]],

a 7→ Y (a, z) =
∑
n∈Z

a(n)z
−n−1

satisfying the vacuum axiom, the translation covariance axiom and the locality axiom. Another,
even shorter, way to describe vertex algebras is to require the vacuum axiom and the Borcherds
identity. The equivalence of these definitions is explained in [DSK06, §1].
A common way to create vertex superalgebras is to start from regular formal distribution Lie

superalgebras (g,F, T ), which are just Lie superalgebras g together with a family of g-valued
formal distributions F generating g and a derivation T . Then, we can construct the associated
vertex algebra V (g,F, T ). As we can see, vertex superalgebras are closely related to traditional
Lie superalgebras.

We now introduce the universal Virasoro vertex algebra Virc, where c ∈ C. The Virasoro Lie
algebra, denoted by Vir, is the Lie algebra given by

Vir =
⊕
n∈Z

CLn ⊕ CC.
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These elements satisfy the following commutation relations:

[Lm, Ln] = (m− n)Lm+n + δm,−n
m3 −m

12
C for m,n ∈ Z,

[Vir, C] = 0.

We have an important Vir-valued formal distribution

L(z) =
∑
n∈Z

Lnz
−n−2,

and we can verify that (Vir, {L(z), C}, ad(L−1)) is a regular formal distribution Lie algebra.
A certain quotient of the associated vertex algebra is the universal Virasoro vertex algebra of
central charge c, which we describe now. First, we make the subalgebra Vir≥−1⊕CC act on C
as follows:

Ln1 = 0 for n ≥ −1 and C1 = c.

It turns out that Virc is an induced Vir-module given by

Virc = IndVir
Vir≥−1 ⊕CC(C) = U(Vir)⊗U(Vir≥−1 ⊕CC) C.

By the PBW theorem, a basis of Virc, also known as PBW basis, is given by

{L−ik . . . L−i1 |0⟩ | ik ≥ · · · ≥ i1 ≥ 2}.
The vertex algebra Virc has a unique maximal proper ideal, and the quotient Virc is the simple

Virasoro vertex algebra of central charge c. For a generic value of c ∈ C, Virc = Virc, i.e., Vir
c is

already simple. The smallest case in which this does not happen (other than the one dimensional
vertex algebra C |0⟩) is the Ising model Vir3,4 = Vir1/2. A natural question to ask is: Can an
explicit PBW basis of Vir3,4 be obtained? This is achieved in [AVEH22].
A module over a vertex superalgebra V can be defined as a vector superspace M together

with a linear and parity preserving map Y M : V → End(M)[[z±1]] satisfying the vacuum axiom
and the Borcherds identity. When V is given by a formal distribution Lie superalgebra, modules
over V are just smooth modules over the underlying Lie superalgebra. We often assume that a
V -module M has a grading

⊕
n∈NM(n), which is compatible with the n-products in V . Such

modules are called admissible.
Some of the most common examples of vertex superalgebras encountered in the literature are:

(i) The commutative vertex algebras, which are just differential commutative associative
algebras with unit;

(ii) For c ∈ C, the universal Virasoro vertex algebra Virc and the simple Virasoro vertex
algebra Virc;

(iii) For a Lie superalgebra g with a supersymmetric bilinear form, the universal affine vertex
superalgebra V k(g) of level k ∈ C;

(iv) For a superspace V with an antisupersymmetric bilinear form, the fermionic vertex su-
peralgebra F (V );

(v) For a lattice L of finite rank equipped with a positive-definite symmetric bilinear form,
the lattice vertex algebra VL;

(vi) The Moonshine module vertex algebra V ♮, whose automorphism group is the Monster
sporadic group and started the study of vertex algebras.

In this thesis, we will consider examples (i)–(iv). The Moonshine module is perhaps the most
amazing example of a vertex algebra. However, the Virasoro vertex algebras are foundational
in the sense that most vertex algebras V are required to be conformal, which means there is
a distinguished vector ω ∈ V satisfying the Virasoro commutation relations. Even more, we
usually require vertex algebras to be Z-graded lower truncated or N-graded. Thus, we define
vertex operator algebras as Z-graded lower truncated conformal vertex algebras, and this is often
the object of study, not general vertex algebras.

Vertex algebras are often assumed to be C2-cofinite, which means RV is finite dimensional, and
rational, which means any admissible module is completely reducible. Rational vertex operator
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algebras have finitely many isomorphism classes of irreducible admissible modules, while C2-
cofinite vertex operator algebras have well-behaved modules.

Given a Z-graded vertex algebra V , the Zhu algebra Zhu(V ) is an associative algebra with unit
that describes the irreducible admissible V -modules by doing the following: given an irreducible
admissible V -module M , the space of lowest weight vectors M(0) is a Zhu(V )-module. It turns
out that it is possible to reverse this process, i.e., start with an irreducible Zhu(V )-module and
end up with an irreducible admissible V -module.
In this thesis, we focus on the Ising model Vir3,4, which is conformal, N-graded, C2-cofinite

and rational. The irreducible modules over Vir3,4, called Ising modules, are Vir3,4 = L(1/2, 0),
L(1/2, 1/2) and L(1/2, 1/16), which are irreducible highest weight representations of the Virasoro
Lie algebra. To describe a PBW basis of Ising modules, we study filtrations of vertex algebras and
their modules. These filtrations will yield a vertex Poisson algebra, in the case of vertex algebras,
and a module over a vertex Poisson algebra, in the case of modules over vertex algebras. Thus,
the situation is similar to that of Lie algebras: we start with a Lie algebra g, we make its universal
enveloping algebra U(g), we consider the PBW filtration of U(g), and the resulting associated
algebra gr(U(g)) is canonically isomorphic to the polynomial algebra S(g) (see Appendix A).
In [Li04], Li introduced an increasing filtration (GpV )p∈Z on an arbitrary N-graded vertex

algebra V . The associated graded space grG(V ) with respect to this increasing filtration then
carries the structure of an N-graded vertex Poisson algebra.
Then in [Li05], Li introduced a decreasing filtration (FpV )p∈Z on an arbitrary vertex algebra

V , not necessarily N-graded. The associated graded space grF (V ) with respect to this decreasing
filtration again carries the structure of a vertex Poisson algebra. Li also introduced a decreasing
filtration (FpM)p∈Z for modules M over a vertex algebra V and showed that the associated
graded space grF (M) is a module over the vertex Poisson algebra grF (V ).
In summary, Li constructed three functors:

grG : {N-graded vertex algebras} → {N-graded vertex Poisson algebras},
grF : {vertex algebras} → {vertex Poisson algebras},

grF : {V -modules} → {grF (V )-modules}.
Then Arakawa showed in [Ara12, Proposition 2.6.1] that when V is N-graded, grF (V ) and

grG(V ) are isomorphic as vertex Poisson algebras.
In this thesis, we define an increasing filtration (GpM)p∈Z for h + N-graded modules M over

an N-graded conformal vertex algebra (V, ω). We construct a functor

grG : {h+ N-graded (V, ω)-modules} → {h+ N-graded grG(V )-modules}.
Parallel to what was done in [Ara12], we show that grF (M) and grG(M) are isomorphic as
modules. However, for our purposes, the filtration (GpM)p∈Z is better suited.
In [AVEH22], two theorems about the Virasoro minimal model Vir3,4 are proved.

Theorem 0.1. The refined character of grG(Vir3,4) is given by

chgrG(Vir3,4)(t, q) =
∑

k1,k2∈N

t4k1+2k2
q4k

2
1+3k1k2+k22

(q)k1(q)k2
(1− qk1 + qk1+k2).

Let R0 be the following set of partitions

[r, r, r], [r + 1, r, r], [r + 1, r + 1, r], [r + 2, r + 1, r], [r + 2, r + 2, r], (r ≥ 2)

[r + 2, r, r], (r ≥ 3)

[r + 3, r + 3, r, r], [r + 4, r + 3, r, r], [r + 4, r + 3, r + 1, r], [r + 4, r + 4, r + 1, r], (r ≥ 2)

[r + 6, r + 5, r + 3, r + 1, r], (r ≥ 2)

[5, 4, 2, 2], [7, 6, 4, 2, 2], [7, 7, 4, 2, 2], [9, 8, 6, 4, 2, 2].

Let P 0 be the set of partitions λ = [λ1, . . . , λm] with λm ≥ 2 that do not contain any partition
in R0.
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Theorem 0.2. The set

{L−λ1L−λ2 . . . L−λm |0⟩ | λ = [λ1, . . . , λm] ∈ P 0}

is a vector space basis of Vir3,4.

In this thesis, we prove two similar results about L(1/2, 1/2) and L(1/2, 1/16).

Theorem 0.3. The refined character of grG(L(1/2, 1/2)) is given by

chgrG(L(1/2,1/2))(t, q) = q1/2

( ∑
k1,k2∈N

t4k1+2k2
q4k

2
1+3k1k2+k22

(q)k1(q)k2
(q3k1+2k2 + q5k1+2k2+1t+ q6k1+3k2+2t2)

)
.

Let R1/2 be the following set of partitions

[r, r, r], [r + 1, r, r], [r + 1, r + 1, r], [r + 2, r + 1, r], [r + 2, r + 2, r], (r ≥ 3)

[r + 2, r, r], (r ≥ 3)

[r + 3, r + 3, r, r], [r + 4, r + 3, r, r], [r + 4, r + 3, r + 1, r], [r + 4, r + 4, r + 1, r], (r ≥ 3)

[r + 6, r + 5, r + 3, r + 1, r], (r ≥ 3)

[2], [1, 1, 1], [3, 1, 1], [3, 3], [4, 3, 1], [4, 4, 1], [5, 4, 1, 1], [6, 5, 3, 1].

Let P 1/2 be the set of partitions that do not contain any partition in R1/2.

Theorem 0.4. The set

{L−λ1L−λ2 . . . L−λm |1/2⟩ | λ = [λ1, . . . , λm] ∈ P 1/2}

is a vector space basis of L(1/2, 1/2).

Specializing the character formula in Theorem 0.3 to t = 1, we obtain that the character of
L(1/2, 1/2) is the sum of three Nahm sums for the same matrix ( 8 3

3 2 ) (cf. [Nah07] and [AVEH22]).
The partitions in P 0 also have a combinatorial interpretation, as was noted in [AVEH22] and
[Tsu23]. For example, for n ∈ N, the number of partitions of n in P 0 is the number of partitions
of n with parts congruent to ±2, ±3, ±4 and ±5 modulo 16.

Theorem 0.5. The refined character of grG(L(1/2, 1/16)) is given by

chgrG(L(1/2,1/16))(t, q) = q1/16

( ∑
k1,k2∈N

t4k1+2k2
q4k

2
1+3k1k2+k22

(q)k1(q)k2
(qk1+k2 + q4k1+2k2+1t+ q7k1+3k2+3t3)

)
.

Let R1/16 be the following set of partitions

[r, r, r], [r + 1, r, r], [r + 1, r + 1, r], [r + 2, r + 1, r], [r + 2, r + 2, r], (r ≥ 3)

[r + 2, r, r], (r ≥ 3)

[r + 3, r + 3, r, r], [r + 4, r + 3, r, r], [r + 4, r + 3, r + 1, r], [r + 4, r + 4, r + 1, r], (r ≥ 3)

[r + 6, r + 5, r + 3, r + 1, r], (r ≥ 3)

[2], [1, 1, 1, 1], [3, 1, 1, 1], [3, 3, 1], [4, 3, 1], [4, 4, 1, 1], [5, 4, 1, 1, 1], [5, 5, 1, 1, 1],

[6, 5, 3, 1, 1], [6, 6, 3, 1, 1], [7, 6, 4, 1, 1, 1], [8, 7, 5, 3, 1, 1].

Let P 1/16 be the set of partitions that do not contain any partition in R1/16. The set

{L−λ1L−λ2 . . . L−λm |1/16⟩ | λ = [λ1, . . . , λm] ∈ P 1/16}

is a vector space basis of L(1/2, 1/16).

In this thesis, we develop the theory needed to prove the theorems above. We assume only basic
knowledge about algebra, commutative algebra, Lie algebras and algebraic geometry. Mathe-
matical terms are typeset with italics when they are officially defined.
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This thesis is organized as follows. In §1, we introduce the notion of vertex superalgebras
and their modules while trying to compile several results. In §2, we review the theory of rep-
resentations of the Virasoro Lie algebra with the objective of describing explicitly the maximal
proper subrepresentations of Verma modules. In §3, we quickly review the theory of the Zhu
algebra. In §4, the theory of filtrations of vertex algebras and their modules started by Haisheng
Li is presented, we introduce the standard filtration for modules, and we prove it is compatible
with the definitions already given by Li. Then, we introduce the Zhu C2-algebra and derive
consequences of the C2-cofiniteness condition. In §5, we carry out the computations needed to
obtain the PBW basis of L(1/2, 1/2) and its refined character. We also prove Theorem 0.3 and
Theorem 0.4. In the appendices, we recall some results about almost commutative algebras,
Poisson algebras and Jet algebras, we show the SageMath [Sag22] program used to compute
the exceptional partitions appearing in R1/2, and we briefly consider the case L(1/2, 1/16). The
software systems Mathematica [Inc22] and Singular [DGPS22] were also very useful to verify the
series identities and compute Gröbner bases.

I would like to thank my advisor Reimundo Heluani and Instituto de Matemática Pura e
Aplicada (IMPA) for their support. Jethro Van Ekeren made some valuable suggestions as well.
The author is partially supported by PhD scholarship 155672/2019-3 from Conselho Nacional
de Desenvolvimento Cient́ıfico e Tecnológico (CNPq).

1. Vertex superalgebras and their modules

In this section, we first review formal calculus and Lie conformal superalgebras in a purely
algebraic way, meaning convergence of series is never considered. Next, we study the Virasoro
Lie conformal algebra, the Current Lie conformal superalgebra and the fermionic Lie conformal
superalgebra. Afterward, we specialize the theory of formal calculus to End(V )-valued series,
where V is a vector space. This leads to the concept of fields over vector spaces. Then, the
concept of vertex superalgebra is introduced. It is shown how to construct a vertex superalgebra
from a Lie conformal superalgebra. Later, we introduce Hamiltonians and conformal vectors
of vertex superalgebras, which lead to graded and conformal vertex superalgebras, respectively.
Next, modules over vertex superalgebras are introduced with emphasis on admissible modules.
Finally, we construct a couple of functors from the category of vertex algebras to the category
of Lie algebras.

1.1. Formal calculus. All vector spaces and all algebras are over C, the field of complex
numbers, unless otherwise stated. All tensor products are over C, unless otherwise stated. The
set of natural numbers {0, 1, . . . } is denoted by N, the set of integers is denoted by Z, the set
of positive integers {1, 2, . . . } is denoted by Z+, and the set of negative integers {−1,−2, . . . }
is denoted by Z−.

The vector space of formal distributions in n ∈ N variables, denoted by C[[x±1
1 , . . . , x±1

n ]], is
the set of functions f : Zn → C, written as f(x1, . . . , xn) =

∑
m1,...,mn∈Z fm1,...,mnx

m1
1 . . . xmn

n , with
the natural operations of addition and multiplication by a scalar. The field of rational functions
in n variables, denoted by C(x1, . . . , xn), is the field of fractions Frac(C[x1, . . . , xn]). The field
of formal Laurent series, denoted by C((x)), is the subspace of elements f(x) ∈ C[[x±1]] such
that there is N ∈ Z with fn = 0 for n ≤ N . We also have C((x)) = Frac(C[[x]]), so C((x)) is
actually a field. The field of joint Laurent series in n variables, denoted by C((x1, . . . , xn)), is
Frac(C[[x1, . . . , xn]]). If V is a vector space, we similarly define V [[x±1

1 , . . . , x±1
n ]] and V ((x)),

but in this case, V ((x)) is only a vector space. We can consider V [[x±1
1 , . . . , x±1

n ]] a module over
the polynomial algebra C[x1, . . . , xn].
Let V be a vector space. The Fourier expansion of a formal distribution a(z) ∈ V [[z±1]],

written as a(z) =
∑

n∈Z anz
n, is conventionally written in the theory of vertex superalgebras as

a(z) =
∑
n∈Z

a(n)z
−n−1,



PBW BASES OF IRREDUCIBLE ISING MODULES 7

where

a(n) = a−n−1.

The residue of a formal distribution a(z) ∈ V [[z±1]] is defined as

resz(a(z)) = a(0) = a−1.

If P ∈ C[[z±1
1 , . . . , z±1

n ]] and Q ∈ C[[w±1
1 , . . . , w±1

m ]], then PQ ∈ C[[z±1
1 , . . . z±1

n , w±1
1 , . . . , w±1

m ]]
is defined in the natural way. However, if both P and Q belong to C[[z±1

1 , . . . , z±1
n ]], we may

encounter difficulties because infinite sums may appear.
An important formal distribution in two variables z and w is the formal delta distribution,

which is defined by

δ(z, w) =
∑
n∈Z

znw−n−1 ∈ C[[z±1, w±1]].

The expansion in the domain |z| > |w| is the field homomorphism iz,w : C((z, w)) →
C((z))((w)) such that the following diagram commutes

C[[z, w]] C((z, w))

C((z))((w))
inc

inc

iz,w

where inc denotes a natural inclusion. Similarly, the expansion in the domain |w| > |z| is the
field homomorphism iw,z : C((z, w))→ C((w))((z)) such that the following diagram commutes

C[[z, w]] C((z, w))

C((w))((z))
inc

inc

iw,z

The diagram

C((z, w))

C((z))((w)) C((w))((z))

C[[z±1, w±1]]

iz,w iw,z

inc inc

does not commute. In fact, the formal delta distribution can be expressed as

δ(z, w) = iz,w

(
1

z − w

)
− iw,z

(
1

z − w

)
,

where we consider iz,w(
1

z−w
) and iw,z(

1
z−w

) as elements of C[[z±1, w±1]]. From now on, we will

consider iz,w and iw,z as mapped into C[[z±1, w±1]].
Let V be a vector space. A formal distribution a(z, w) ∈ V [[z±1, w±1]] is local if there is

N ∈ N such that

(z − w)Na(z, w) = 0.

For example, the formal delta distribution δ(z, w) is local with (z − w)δ(z, w) = 0.

Theorem 1.1.1 ([Kac98, Proposition 2.2]). Let a(z, w) ∈ V [[z±1, w±1]] be a local formal distri-
bution. Then a(z, w) can be written uniquely as a sum

a(z, w) =
∑
j∈N

∂jwδ(z, w)

j!
cj(w),
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where cj(w) ∈ V [[w±1]] are formal distributions given by

cj(w) = resz((z − w)ja(z, w)) for j ∈ N.
In addition, the converse is true.

Let V be a vector space, and let a(z) ∈ V [[z±1]] be a formal distribution. We define

iz,wa(z + w) =
∑
n∈Z

aniz,w((z + w)n).

Proposition 1.1.2 ([Noz08, Proposition 3.4.1]). For a formal distribution a(z) ∈ V [[z±1]], the
usual Taylor series expansion holds, i.e.,

iz,wa(z + w) =
∑
j∈N

∂ja(z)

j!
wj.

We now define the notion of Fourier transform in two cases: in one and two variables. Let V
be a vector space, and let a(z) ∈ V [[z±1]]. We define the Fourier transform in one variable of
a(z) by

F λ
z a(z) = resz(e

λza(z)) ∈ V [[λ]].

Proposition 1.1.3 ([Noz08, Proposition 1.5.2]). The Fourier transform in one variable satisfies
the following properties for a(z) ∈ V [[z±1]]:

(i) F λ
z ∂za(z) = −λF λ

z a(z);
(ii) F λ

z (e
zTa(z)) = F λ+T

z (a(z)), where T ∈ End(V ) and a(z) ∈ V ((z));
(iii) F λ

z (a(−z)) = −F−λ
z a(z);

(iv) F λ
z ∂

n
wδ(z, w) = eλwλn.

Now let a(z, w) ∈ V [[z±1, w±1]]. We define the Fourier transform in two variables of a(z, w)
by

F λ
z,wa(z, w) = resz(e

λ(z−w)a(z, w)) ∈ V [[w±1]][[λ]].

Expanding the definition of F λ
z,w, we obtain another expression

F λ
z,wa(z, w) =

∑
j∈N

λj

j!
cj(w),

where
cj(w) = resz((z − w)ja(z, w)) for j ∈ N.

Proposition 1.1.4 ([Noz08, Proposition 1.5.4]). The Fourier transform in two variables satisfies
the following properties for a(z, w) ∈ V [[z±1, w±1]]:

(i) If a(z, w) is local, then F λ
z,wa(z, w) ∈ V [[w±1]][λ];

(ii) F λ
z,w∂za(z, w) = −λF λ

z,wa(z, w) = [∂w, F
λ
z,w]a(z, w);

(iii) If a(z, w) is local, then F λ
z,wa(w, z) = F−λ−∂w

z,w a(z, w), where we set F−λ−∂w
z,w a(z, w) =

F µ
z,wa(z, w)|µ=−λ−∂w .

Remark 1.1.5. In the theory of vertex superalgebras, one usually has to interpret equations like
in Proposition 1.1.4(iii).

1.2. Lie conformal superalgebras. A vector superspace is a Z2-graded vector space V =
V0 ⊕ V1, where Z2 = Z/2Z = {0, 1}, 0 = 0 + 2Z and 1 = 1 + 2Z. We call V0 the even subspace
of V and V1 the odd subspace of V . Elements of V0 ∪ V1 are called homogeneous. If V is
finite dimensional, we define its superdimension by setting sdim(V ) = dim(V0) − dim(V1). A
superalgebra is a Z2-graded algebra A = A0 ⊕ A1. This means AαAβ ⊆ Aα+β for α, β ∈ Z2.

We set (−1)0 = 1 and (−1)1 = −1. If a ∈ Vα, a ̸= 0 is homogeneous, we set p(a) = α and call
it the parity of a. If a and b are homogeneous, we set p(a, b) = (−1)p(a)p(b). A Lie superalgebra
is a superalgebra g = g0 ⊕ g1 with a bilinear product [•, •] : g × g → g called Lie superbracket
satisfying the following properties for a, b, c ∈ g homogeneous:
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(i) (Graded antisymmetry) [a, b] = −p(a, b)[b, a];
(ii) (Graded Jacobi identity) p(a, c)[a, [b, c]] + p(b, a)[b, [c, a]] + p(c, b)[c, [a, b]] = 0.

In an associative superalgebra A, we can define the superbracket of homogeneous elements
a, b ∈ A by

[a, b] = ab− p(a, b)ba.
It can then be extended by linearity to nonhomogeneous elements. With this superbracket, A
becomes a Lie superalgebra called the underlying Lie superalgebra of A, and it is denoted by [A].

Remark 1.2.1. The even part g0 of a Lie superalgebra g is just a standard Lie algebra. However,
unlike superspaces and superalgebras, a Lie superalgebra is not always a Lie algebra. This is
why we prefer the term Lie superalgebra to Z2-graded Lie algebra.

Remark 1.2.2. When a formula involves p(a), it is assumed that a is a homogeneous with parity
p(a), and the formula is extended to arbitrary a by linearity.

Probably the most important example of an associative superalgebra is the endomorphism
superalgebra of a superspace V , denoted by End(V ), with the Z2-grading given by

End(V )α = {T ∈ End(V ) | for β ∈ Z2, T (Vβ) ⊆ Vα+β} for α ∈ Z2.

We denote gl(V ) = [End(V )].
Let A be a not necessarily associative superalgebra. A superderivation of A is a homogeneous

endomorphism ∂ ∈ End(A) such that

∂(ab) = ∂(a)b+ (−1)p(∂)p(a)a∂(b) for a, b ∈ A.

The subspace of superderivations of A is denoted by Der(A). A differential superalgebra is a
superalgebra A together with a superderivation ∂ of A. A differential algebra is a differential su-
peralgebra with odd subspace equal to 0. A homomorphism f : (A, ∂1)→ (A2, ∂2) of differential
superalgebras is a linear and parity preserving map such that f ◦ ∂1 = ∂2 ◦ f .
We assume g is a Lie superalgebra and ∂ is a superderivation of g. We can form the universal

enveloping superalgebra U(g), which is now an associative superalgebra. The derivation ∂ : g→
g can be extended uniquely to a derivation DU(∂) : U(g) → U(g). We have constructed a
functor

DU : {differential Lie superalgebras} → {associative differential superalgebras},
DU(g, ∂) = (U(g), DU(∂)).

Let g be a Lie superalgebra. We first extend the Lie superbracket on g to the Lie su-
perbracket between two g-valued formal distributions in one variable. Starting from a(z) =∑

m∈Z a(m)z
−m−1 ∈ g[[z±1]] and b(w) =

∑
n∈Z b(n)w

−n−1 ∈ g[[w±1]], we define a new formal
distribution in two variables by defining the superbracket

[a(z), b(w)] =
∑

m,n∈Z

[a(m), b(n)]z
−m−1w−n−1 ∈ g[[z±1, w±1]].

Let g be a Lie superalgebra. A pair (a(z), b(z)) of g-valued formal distributions is said local
if [a(z), b(w)] is local. By Theorem 1.1.1, this means that

[a(z), b(w)] =
∑
j∈N

∂jwδ(z, w)

j!
cj(w),

where cj(w) = resz((z − w)j[a(z), b(w)]) ∈ g[[w±1]] for j ∈ N. Equivalently, we can write this
equation as

[a(m), b(n)] =
∑
j∈N

cj(w)(m+n−j) for m,n ∈ Z. (1.2.1)

Remark 1.2.3. If (a(z), b(z)) is a local pair, then (∂za(z), b(z)) is also a local pair.
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Let g be a Lie superalgebra. A subset F ⊆ g[[z±1]] of formal distributions is called a local
family if all pairs of its elements are local. For j ∈ N, the j-product is the C-bilinear map defined
by

•(j)• : g[[w±1]]× g[[w±1]]→ g[[w±1]],

a(w)(j)b(w) = resz((z − w)j[a(z), b(w)]). (1.2.2)

Expanding the right-hand side, we get

(a(w)(j)b(w))(m) =

j∑
k=0

(
j

k

)
(−1)k[a(j−k), b(m+k)] for j ∈ N and m ∈ Z. (1.2.3)

We define a(w)(j) ∈ End(g[[w±1]]) in the natural way. If (a(z), b(z)) is a local pair, then (1.2.1)
becomes

[a(m), b(n)] =
∑
j∈N

(
m

j

)
(a(w)(j)b(w))(m+n−j) for m,n ∈ Z. (1.2.4)

By Theorem 1.1.1, we also have

[a(z), b(w)] =
∑
j∈N

∂jwδ(z, w)

j!
(a(w)(j)b(w)).

All these identities led us to define the following new algebraic structure that encodes the relevant
information compactly.

Let g be a Lie superalgebra. The λ-bracket is the C-bilinear map given by

[•λ•] : g[[w±1]]× g[[w±1]]→ g[[w±1]][[λ]],

[a(w)λb(w)] = F λ
z,w[a(z), b(w)].

It can easily be shown that the λ-bracket is related to the j-products by

[a(w)λb(w)] =
∑
j∈N

a(w)(j)b(w)
λj

j!
.

This suggests seeing the λ-bracket as the generating function of the j-products. It allows us
to gather all the j-products in one product alone, the price to pay being the additional formal
variable λ. We note that for a local pair, the sum in the expansion of [a(w)λb(w)] in terms of
the j-products is finite, i.e., [a(w)λb(w)] ∈ g[[w±1]][λ].

Theorem 1.2.4 ([Noz08, §2.3]). The j-products and the λ-bracket satisfy the following properties
for a(w), b(w) ∈ g[[w±1]] and j ∈ N:

(i) (∂a(w))(j)b = −ja(w)(j−1)b(w);
(ii) a(w)(j)∂b(w) = ∂(a(w)(j)b(w)) + ja(w)(j−1)b(w);
(iii) ∂(a(w)(j)b(w)) = (∂a(w))(j)b(w) + a(w)(j)∂b(w);
(iv) [∂a(w)λb(w)] = −λ[a(w)λb(w)];
(v) [a(w)λ∂b(w)] = (∂ + λ)[a(w)λb(w)];
(vi) ∂[a(w)λb(w)] = [∂a(w)λb(w)] + [a(w)λ∂b(w)].

Remark 1.2.5. Properties (iii) and (vi) of Theorem 1.2.4 tell us that ∂ : g[[z±1]]→ g[[z±1]] acts
as a derivation on the j-products and the λ-bracket.

Let V be a vector superspace. From now on, all coefficients of a formal distribution are
assumed to have the same parity. Therefore, we can define the parity of a formal distribution
a(z) ∈ V [[z±1]] as p(a(z)) = p(a(n)) for any n ∈ Z.

Theorem 1.2.6 ([Noz08, §2.3]). The j-products and the λ-bracket satisfy the following properties
for a(w), b(w) ∈ g[[w±1]], p,m ∈ Z and j ∈ N:

(i) b(w)(j)a(w) = −p(a(w), b(w))
∑∞

l=0(−1)j+l ∂
l(a(w)(j+l)b(w))

l!
if (a(w), b(w)) is a local pair;

(ii) [a(w)(p), b(w)(m)] =
∑p

k=0

(
p
k

)
(a(w)(k)b(w))(p+m−k);
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(iii) [b(w)λa(w)] = −p(a(w), b(w))[a(w)−λ−∂b(w)] if (a(w), b(w)) is a local pair;
(iv) [a(w)λ[b(w)µc(w)]] = [[a(w)λb(w)]λ+µc(w)] + p(a(w), b(w))[b(w)µ[a(w)λc(w)]];
(v) F λ+µ

z [a(z)λb(z)] = [F λ
z a(z), F

µ
z b(z)].

Let g be a Lie superalgebra. A formal distribution Lie superalgebra is a pair (g,F), where F

is a local family of g-valued formal distributions, denoted by {aj(z) =
∑

n∈Z a
j
(n)z

−n−1}j∈J , such
that the coefficients {aj(n) | j ∈ J, n ∈ Z} span the whole g. A regular formal distribution Lie

superalgebra is a triple (g,F, T ) such that:

(i) (g,F) is a formal distribution Lie superalgebra;
(ii) C[∂z]F is closed under all n-th products for n ∈ N;
(iii) T ∈ Der(g) satisfies

T (aj(z)) = ∂za
j(z) for j ∈ J,

which is equivalent to

T (aj(n)) = −na
j
(n−1) for j ∈ J and n ∈ Z. (1.2.5)

Remark 1.2.7. We note that (1.2.5) and the fact that {aj(n) | j ∈ J, n ∈ Z} spans g imply that if

such T exists, it is even and unique. Thus, we could remove T from the notation, but we will
not.

Let (g,F) be a formal distribution Lie superalgebra. The annihilation subalgebra of (g,F) is

g− = span{aj(n) | j ∈ J, n ∈ N},

and the creation subalgebra of (g,F) is

g+ = span{aj(−n−1) | j ∈ J, n ∈ N}.

By Remark 1.2.3, if (g,F) is a formal distribution Lie superalgebra, then C[∂z]F is a local
family. The notions of j-products and λ-bracket were previously defined from g-valued formal
distributions, with g being a given Lie superalgebra. Those products were shown to satisfy several
properties, coming either from their definition or from the fact that g is a Lie superalgebra. We
now take those properties as axioms of a new algebraic structure, defined intrinsically, without
any reference either to g, nor to formal distributions. For this reason, we write ∂ instead of ∂z
in the following definition.

A C[∂]-module R is called a Lie conformal superalgebra if it is endowed with a C-bilinear map
called λ-bracket

[•λ•] : R×R → R[λ]
satisfying the following properties for a, b, c ∈ R:

(i) (Sesquilinearity) [∂aλb] = −λ[aλb];
(ii) (Skewsymmetry) [bλa] = −p(a, b)[a−λ−∂b];
(iii) (Jacobi identity) [aλ[bµc]] = [[aλb]λ+µc] + p(a, b)[bµ[aλc]].

If we write

[aλb] =
∑
j∈N

(a(j)b)
λj

j!
,

where a(j) ∈ End(R), these properties translate in terms of j-products as follows:

(i) (∂a)(j) = −ja(j−1);

(ii) b(j)a = −p(a, b)
∑∞

l=0(−1)j+l ∂
l(a(j+l)b)

l!
;

(iii) [a(p), b(m)] =
∑p

k=0

(
p
k

)
(a(k)b)(p+m−k).

Proposition 1.2.8 ([Noz08, Remark 2.5.3]). Let R be a Lie conformal superalgebra, and let
a, b ∈ R. Then

[aλ∂b] = (∂ + λ)[aλb]

or, equivalently,
a(j)∂b = ∂(a(j)b) + ja(j−1)b for j ∈ N.
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In particular, ∂ is a derivation of the λ-bracket.

We have previously shown that any regular formal distribution Lie superalgebra (g,F, T )
was given the structure of Lie Conformal superalgebra R, with R = C[∂z]F, ∂ = ∂z and
[a(w)λb(w)] = F λ

z,w([a(z), b(w)]). It turns out that the process can be reverted: to any Lie
conformal superalgebra, we can associate a regular formal distribution Lie superalgebra. Ac-
cording to the definition of a formal distribution Lie superalgebra, we first have to define a Lie
superalgebra, denoted by Lie(R), and then associate to it a conformal family R of Lie(R)-valued
formal distributions, whose coefficients span Lie(R), so that (Lie(R),R) is then the expected
formal distribution Lie superalgebra. We proceed in two steps.

We first consider the space R̃ = R[t, t−1] = R ⊗ C[t, t−1] with ∂̃ = ∂ ⊗ IdC[t,t−1] +IdR⊗∂t.
This space is called the affinization of R. Its generating elements can be written a⊗ tm, where
a ∈ R and m ∈ Z. For clarity, we will use the notation atm for its elements, and we write

∂̃ = ∂ + ∂t. We define the commutation relation on R̃ as

[atm, btn] =
∑
j∈N

(
m

j

)
(a(j)b)t

m+n−j for a, b ∈ R and m,n ∈ Z,

which gives R̃ the structure of algebra, denoted by (R̃, [•, •]).
Now the second step. We have to check that the commutator verifies the antisymmetry and

Jacobi identities, considering that the terms a(j)b of the definition of [•, •] satisfy the axioms of
a Lie conformal superalgebra. The latter ones are not sufficient. Another constraint has to be

imposed on elements of R̃, namely ∂̃(atm) = 0. The algebraic formulation of the latter condition

is as follows: the space R̃ has to be quotiented by the subspace I spanned by the elements of the

form {(∂a)tn+natn−1 | n ∈ Z}. Using ∂̃, we can write I = ∂̃R̃. This process has two goals: first

transferring on R̃/∂̃R̃ the structure of algebra of (R̃, [•, •]), and then endowing (R̃/∂̃R̃, [•, •])
with the structure of Lie superalgebra. The first goal is not direct because ∂̃R̃ has to be a

two-sided ideal of the algebra (R̃, [•, •]), which is the case.

Lemma 1.2.9 ([Noz08, Proposition 2.6.1]). ∂̃R̃ is a two-sided ideal of the algebra (R̃, [•, •]).

We define the homomorphism ϕ : R̃ → R̃/∂̃R̃ as the natural quotient map. The commutator

between two elements of ∂̃R̃ is defined by

[ϕ(atm), ϕ(btn)] =
∑
j∈N

(
m

j

)
ϕ((a(j)b)t

m+n−j) for a, b ∈ R and m,n ∈ Z.

Proposition 1.2.10 ([Noz08, Proposition 2.6.3]). (R̃/∂̃R̃, [•, •]) is a Lie superalgebra.

We set
Lie(R) = R̃/∂̃R̃.

Abusing notation, we define the family R of Lie(R)-valued formal distributions, whose coeffi-
cients span Lie(R), by

R =

{∑
n∈Z

ϕ(atn)z−n−1 | a ∈ R

}
.

Theorem 1.2.11 ([Noz08, Proposition 2.6.4]). Let R be a Lie conformal superalgebra. Then
(Lie(R),R,−∂t) is a regular formal distribution Lie superalgebra.

Remark 1.2.12. We have not defined the category of regular formal distribution Lie superalgebras
nor the category of Lie conformal superalgebras. But it is clear how they should be, and they
are equivalent categories

{regular formal distribution Lie superalgebra} ↔ {Lie conformal superalgebra},
(g,F, T ) 7→ (C[∂z]F, F λ

z,w([•, •])),
(Lie(R),R,−∂t)←[ R.
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Theorem 1.2.13. Let R be a Lie conformal superalgebra, let a, b ∈ R, and let j,m ∈ N. Then

(a(j)b)(m) =

j∑
k=0

(
j

k

)
(−1)k[a(j−k), b(m+k)].

Proof. This is just (1.2.3) in the language of Lie conformal superalgebras. □

We now show three examples of regular formal distribution Lie superalgebras and their re-
spective Lie conformal superalgebras.

Example 1.2.14 (Virasoro Lie conformal algebra). The Virasoro Lie algebra, denoted by Vir, is
the Lie algebra given by

Vir =
⊕
n∈Z

CLn ⊕ CC.

These elements satisfy the following commutation relations:

[Lm, Ln] = (m− n)Lm+n + δm,−n
m3 −m

12
C for m,n ∈ Z,

[Vir, C] = 0.
(1.2.6)

We construct a Vir-valued formal distribution by setting

L(z) =
∑
n∈Z

L(n)z
−n−1 with L(n) = Ln−1 for n ∈ Z.

We usually write L(z) as

L(z) =
∑
n∈Z

Lnz
−n−2.

In terms of formal distributions, the commutation relations become:

[L(z), L(w)] = δ(z, w)∂wL(w) + ∂wδ(z, w)2L(w) + ∂3wδ(z, w)
C

12
,

[L(z), C] = 0,
(1.2.7)

where C denotes the constant formal distribution equal to C ∈ Vir. In terms of the j-products,
the commutation relations become:

L(z)(0)L(z) = ∂zL(z),

L(z)(1)L(z) = 2L(z),

L(z)(3)L(z) =
C

2
,

L(z)(j)L(z) = 0 for j ̸= 0, 1, 3,

L(z)(j)C = 0 for j ∈ N.

(1.2.8)

In terms of the λ-bracket, the commutation relations become:

[L(z)λL(z)] = (∂ + 2λ)L(z) +
λ3

12
C,

[L(z)λC] = 0.
(1.2.9)

By Theorem 1.1.1, {L(z), C} is a local family. Therefore, (Vir, {L(z), C}) is a formal distribution
Lie algebra. Moreover, we can verify directly that (Vir, {L(z), C}, ad(L−1)) is regular. We obtain
a Lie conformal algebra R = C[∂]L+ CC, with L = L(z), ∂C = 0 and ∂ = ∂z. This is actually
a direct sum, and we get the Virasoro Lie conformal algebra

Vir = C[∂]L⊕ CC.

Remark 1.2.15. The notation L(z) =
∑

n∈Z Lnz
−n−2 is contradictory with the notation we wrote

in §1.1. However, this notation will acquire a meaning when we treat the notion of weight of an
eigendistribution. In fact, this notation usually simplifies calculations, as we will see later.



14 DIEGO SALAZAR

Let g be a Lie superalgebra, and let C ∈ g. A Virasoro formal distribution of central charge
C is a g-valued formal distribution L(z) ∈ g[[z±1]] satisfying (1.2.6) or, equivalently, (1.2.7),
(1.2.8) or (1.2.9).

Example 1.2.16 (Current Lie conformal superalgebra). Let g = g0⊕ g1 be a Lie superalgebra. A
supersymmetric bilinear form is a bilinear map (•|•) : g× g→ C such that

(a|b) = (−1)p(a)(b|a) for a, b ∈ g, a homogeneous.

Alternatively, we can define a supersymmetric bilinear form as a bilinear form that vanishes
on g0 ⊕ g1 and g1 ⊕ g0, symmetric on g0 ⊕ g0 and antisymmetric on g1 ⊕ g1. A bilinear form
(•|•) : g× g→ C is said invariant if

([a, b]|c) = (a|[b, c]) for a, b, c ∈ g.

Let g be a Lie superalgebra endowed with a supersymmetric invariant bilinear form (•|•). The
associated loop algebra of g is the superalgebra g̃ = g ⊗ C[t, t−1] = g[t, t−1], endowed with the
superbracket defined by

[a⊗ f(t), b⊗ g(t)] = [a, b]⊗ f(t)g(t) for a, b ∈ g and f(t), g(t) ∈ C[t, t−1],

and with parity given by p(a ⊗ f(t)) = p(a). This makes g̃ into a Lie superalgebra. Replacing
a⊗ tn by atn for brevity, the commutation relations become

[atm, btn] = [a, b]tm+n for a, b ∈ g and m,n ∈ Z.

The central extension of the loop algebra is the algebra ĝ = g̃ ⊕ CK with the superbracket
defined by:

[atm, btn] = [a, b]tm+n +mδm,−n(a|b)K for a, b ∈ g and m,n ∈ Z,
[ĝ, K] = 0,

and with parity given by p(K) = 0. This makes ĝ into a Lie superalgebra called the affinization
of g. If g is a finite-dimensional simple Lie superalgebra, then the affinization of g leads to a
Kac-Moody affinization. We now construct ĝ-valued formal distributions by setting

a(z) =
∑
n∈Z

atnz−n−1 for a ∈ g.

These formal distributions are called currents. In terms of currents, the commutation relations
become:

[a(z), b(w)] = δ(z, w)[a, b](w) + ∂wδ(z, w)K(a|b),
[a(z), K] = 0.

In terms of the λ-bracket, the commutation relations become:

[a(z)λb(z)] = [a(z), b(z)] + (a|b)Kλ,
[a(z)λK] = 0.

By Theorem 1.1.1, {a(z) | a ∈ g} ∪ {K} is a local family. Therefore, (ĝ, {a(z) | a ∈ g} ∪ {K})
is a formal distribution Lie superalgebra. Moreover, we can verify directly that (ĝ, {a(z) | a ∈
g}∪{K},−∂t) is regular. Similarly to the Virasoro Lie conformal algebra, we obtain the current
Lie conformal superalgebra

Cur(g) = C[∂]g⊕ CK.

Let g be an abelian Lie superalgebra. In that case, Cur(g) is known as the conformal algebra
of free bosons associated with the free bosons algebra ĝ, the latter being endowed with the
relations [atm, btn] = m(a|b)δm,−nK.
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Example 1.2.17 (Fermionic Lie conformal superalgebra). Let V = V0 ⊕ V1 be a superspace. A
bilinear form ⟨•, •⟩ : V × V → C is antisupersymmetric if it satisfies the relation

⟨a, b⟩ = −(−1)p(a)⟨b, a⟩ for a, b ∈ V , a homogeneous.

Alternatively, we can define an antisymmetric bilinear form as a bilinear form that vanishes on
V0 ⊕ V1 and V1 ⊕ V0, is antisymmetric on the even part V0 ⊕ V0 and symmetric on the odd part
V1 ⊕ V1.

The Clifford affinization of V is defined by

V̂ = V [t, t−1]⊕ CK

with the superbracket defined by:

[atm, btn] = δm,−n−1⟨a, b⟩K for a, b ∈ V and m,n ∈ Z,

[V̂ ,K] = 0,

and with parity given by p(atn) = p(a) and p(K) = 0. This makes V̂ into a Lie superalgebra.

We now construct V̂ -valued formal distributions by setting

a(z) =
∑
n∈Z

atnz−n−1 for a ∈ V .

In terms of formal distributions, the commutation relations become:

[a(z), b(w)] = δ(z, w)⟨a, b⟩K,
[a(z), K] = 0.

In terms of the λ-bracket, the commutation relations become:

[a(z)λb(z)] = ⟨a, b⟩K,
[a(z)λK] = 0.

As before, we obtain a regular formal distribution Lie superalgebra (V̂ , {a(z) | a ∈ V } ∪
{K},−∂t), from which we obtain the fermionic Lie conformal superalgebra

F (V ) = C[∂]V ⊕ CK.

1.3. Fields over vector spaces. In this subsection, we fix a vector superspace V = V0 ⊕ V1,
and all formal distributions are End(V )-valued, unless otherwise stated. Let a(z) be a formal
distribution. We set

a(z)+ =
∑
n≤−1

a(n)z
−n−1,

a(z)− =
∑
n≥0

a(n)z
−n−1.

Let a(z), b(z) be two formal distributions. We define the normal product between a(z) and
b(z) as the following formal distribution in two variables

: a(z)b(w) := a(z)+b(w) + p(a(z), b(z))b(w)a(z)−.

Theorem 1.3.1 ([Noz08, Proposition 3.2.3]). Let (a(z), b(z)) be a pair of local formal distribu-
tions. The following identities are known as the operator product expansion of a(z) and b(w):

a(z)b(w) =
∑
j∈N

a(w)(j)b(w)iz,w

(
1

(z − w)j+1

)
+ : a(z)b(w) :,

p(a, b)b(w)a(z) =
∑
j∈N

a(w)(j)b(w)iw,z

(
1

(z − w)j+1

)
+ : a(z)b(w) : .
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A formal distribution a(z) is a field if

a(z)b =
∑
n∈Z

a(n)bz
−n−1 ∈ V ((z)) for b ∈ V .

The vector space of fields over V is denoted by F(V ). We note that

F(V ) = Hom(V, V ((z))).

Therefore, we can define a field a(z) by defining a(z)b ∈ V ((z)) for b ∈ V .

Proposition 1.3.2 ([Noz08, Proposition 3.3.2]). Let a(z), b(z) ∈ F(V ) be two fields. Then
: a(z)b(z) :∈ End(V )[[z±1]] is again a field, where : a(z)b(z) : is defined by

: a(z)b(z) : c = a(z)+b(z)c+ p(a, b)b(z)a(z)−c for c ∈ V .

We thus defined the notion of normal ordered product between fields a(z), b(z) ∈ F(V ), denoted
by : a(z)b(z) :. In general, the operation of normal ordered product is neither commutative nor
associative. We follow the convention that the normal ordered product is read from right to left,
so that, by definition,

: a(z)b(z)c(z) :=: a(z)(: b(z)c(z) :) : .

We define the normal ordered product of a single field as the field itself, and the normal ordered
product of no fields as the identity field IdV , so we have:

: a(z) : = a(z),

:: = IdV .

The identity field IdV acts as an identity for the normal ordered product, i.e.,

: IdV a(z) :=: a(z) IdV := a(z).

Lemma 1.3.3 ([Noz08, Proposition 3.3.3]). Let a(z), b(z) ∈ F(V ) be two fields. Their normal
ordered product is written explicitly as

: a(z)b(z) :=
∑
j∈Z

: a(z)b(z) :(j) z
−j−1,

with

: a(z)b(z) :(j) c =
∑
n≤−1

a(n)b(j−n−1)c+ p(a(z), b(z))
∑
n≥0

b(j−n−1)a(n)c for c ∈ V .

Lemma 1.3.4. Let V be a purely even vector space. We consider s fields a1(z), . . . , as(z) ∈
F(V ), with s ≥ 2, and let b ∈ V . For l ∈ Z,

: a1(z)a2(z) . . . as(z) :(l) b =
∑

n1,...,ns−1∈N

s−1∑
k=0

Rl,k
n1,...,ns−1

(a1(z), . . . , as(z))b,

where Rl,k
n1,...,ns−1

(a1(z), . . . , as(z)) is the sum of
(
s−1
k

)
terms given by

Rl,k
n1,...,ns−1

(a1(z), . . . , as(z)) =∑
1≤i1<···<ik≤s−1

1≤j1<···<js−1−k≤s−1
{i1,...,ik}∪{j1,...,js−1−k}={1,...,s−1}

aj1(−nj1
−1) . . . a

js−1−k

(−njs−1−k
−1)a

s
(l−k−

∑k
r=1 nir+

∑s−1−k
r=1 njr )

aik(nik
) . . . a

i1
(ni1

).
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Proof. We do this by induction on s ≥ 2. The base case s = 2 follows from Lemma 1.3.4 and by
replacing n by −n− 1 ∈ N in the following computation

: a1(z)a2(z) :(l) =
∑
n≤−1

a1(n)a
2
(l−n−1) +

∑
n≥0

a2(l−n−1)a
1
(n)

=
∑
n∈N

a1(−n−1)a
2
(l+n) +

∑
n∈N

a2(l−1−n)a
1
(n)

=
∑
n∈N

Rl,0
n (a1(z), a2(z)) +

∑
n∈N

Rl,1
n (a1(z), a2(z))

=
∑
n∈N

1∑
k=0

Rl,k
n (a1(z), a2(z)).

We now assume our desired formula for s− 1, with s ≥ 3, and we prove it for s. We observe
that in the sum Rl,k

n1,...,ns−1
(a1(z), . . . , as(z)), either i1 = 1 or j1 = 1. Therefore, by the induction

hypothesis and the base case s = 2, we have

: a1(z)a2(z) . . . as(z) :(l) =: a1(z)(: a2(z) . . . as(z) :) :(l)

=
∑
n1∈N

a1(−n1−1)(: a
2(z) . . . as(z) :)(l+n1)

+
∑
n1∈N

(: a2(z) . . . as(z) :)(l−1−n1)a
1
(n1)

=
∑
n1∈N

a1(−n1−1)

∑
n2,...,ns−1∈N

s−2∑
k=0

Rl+n1,k
n2,...,ns−1

(a2(z), . . . , as(z))

+
∑
n1∈N

∑
n2,...,ns−1∈N

s−2∑
k=0

Rl−1−n1,k
n2,...,ns−1

(a2(z), . . . , as(z))a1(n1)

=
∑

n1,...,ns−1∈N

s−2∑
k=0

a1(−n1−1)R
l+n1,k
n2,...,ns−1

(a2(z), . . . , as(z))

+
∑

n1,...,ns−1∈N

s−2∑
k=0

Rl−1−n1,k
n2,...,ns−1

(a2(z), . . . , as(z))a1(n1)

=
∑

n1,...,ns−1∈N

s−1∑
k=0

Rl,k
n1,...,ns−1

(a1(z), . . . , as(z)). □

We now extend the j-products. Let a(w), b(w) ∈ F(V ) be two fields. For j ∈ N, ∂jwa(w) is
also a field, and we define

a(w)(−j−1)b(w) =
: (∂jwa(w))b(w) :

j!
. (1.3.1)

Theorem 1.3.5 ([Noz08, Proposition 3.4.3]). The j-products (1.2.2) and (1.3.1) are special
cases of the following generalized j-product defined by

a(w)(j)b(w)c = resz(iz,w((z − w)j)a(z)b(w)c− p(a(z), b(z))iw,z((z − w)j)b(w)a(z)c) for c ∈ V .
The usual properties of j-products for j ∈ N carry over to the generalized j-products.

Proposition 1.3.6 ([Noz08, Proposition 3.4.4]). Let a(z), b(z) ∈ F(V ) be two fields. For j ∈ Z:
(i) (∂za(z))(j)b(z) = −ja(z)(j−1)b(z);
(ii) ∂z(a(z)(j)b(z)) = (∂za(z))(j)b(z) + a(z)(j)∂zb(z).

Lemma 1.3.7 (Dong’s lemma [Kac98, Lemma 3.2]). If a(z), b(z) and c(z) are pairwise mutually
local fields, then (a(z), b(z)(n)c(z)) is a local pair of fields as well for n ∈ Z.
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Let L(z) be a formal distribution. An eigendistribution of weight ∆a(z) with respect to L(z) is
a formal distribution a(z) satisfying

[L(z)λa(z)] = (∂ +∆a(z)λ)a(z) +O(λ2), (1.3.2)

where O(λ2) denotes sums of terms of monomials tλj with j ≥ 2 and t ∈ C. If L(z) is a Virasoro
formal distribution, ∆a(z) is called the conformal weight. Clearly, a(z) is an eigendistribution
in the sense that it is an eigenvector of the endomorphism L(1) whose action is defined by
L(1)(b(z)) = L(z)(1)b(z). Indeed, (1.3.2) implies L(z)(1)a(z) = ∆a(z)a(z). We note that, by
definition, a Virasoro formal distribution L(z) is an eigendistribution of conformal weight 2 with
respect to itself.

Theorem 1.3.8 ([Noz08, Proposition 3.7.4]). If a(z) and b(z) have weights ∆a(z) and ∆b(z) with
an even formal distribution L(z), then ∆a(z)(n)b(z) = ∆a(z) + ∆b(z) − n − 1 with respect to L(z).
In particular, ∆:a(z)b(z): = ∆a(z) +∆b(z) and ∆∂a(z) = ∆a(z) + 1.

The expansion of an eigendistribution a(z) of weight ∆a(z) is often adapted as follows

a(z) =
∑

n∈Z−∆a(z)

anz
−n−∆a(z) .

This justifies the way we wrote the Virasoro formal distribution when we defined the Virasoro
Lie conformal algebra. By comparison with the usual way of writing a(z) =

∑
m∈Z a(m)z

−m−1,
we must have

a(m) = am−∆a(z)+1 for m ∈ Z
or the other way

an = a(n+∆a(z)−1) for n ∈ Z−∆a(z).

One of the interesting features of this change of notation is that it reveals the grading of the
superbracket.

Proposition 1.3.9 ([Noz08, Proposition 3.7.6]). In the new notation, we can write

[am, bn] =
∑
j∈N

(
m+∆a(z) − 1

j

)
(a(j)b)m+n.

An eigendistribution a(z) is called primary of conformal weight ∆a(z) if

[L(z)λa(z)] = (∂z +∆a(z)λ)a(z),

where L(z) is a Virasoro formal distribution.
Let us fix an operator T ∈ End(V )0. A formal distribution a(z) is called covariant with

respect to T if

[T, a(z)] = ∂za(z).

Theorem 1.3.10 ([Kac17, Lemma 1]). Assume that |0⟩ ∈ V0 is such that T |0⟩ = 0. Then:

(i) For any translation covariant field a(z), we have a(z) |0⟩ ∈ V [[z]].
(ii) Let a(z) be a translation covariant field, and we set a = a(−1) |0⟩. Then

a(z) |0⟩ = eTza =
∞∑
n=0

T na

n!
zn.

Let

Ftc = {a(z) ∈ F(V ) | [T, a(z)] = ∂za(z)}
be the subspace of translation covariant fields.

Lemma 1.3.11 ([Kac17, Lemma 3]). Ftc contains IdV , it is ∂z-invariant and is closed under
all n-products, i.e., ∂za(z), a(z)(n)b(z) ∈ Ftc for a(z), b(z) ∈ Ftc and n ∈ Z.
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By Theorem 1.3.10(i), we can define a linear map

fs : Ftc → V,

fs(a(z)) = a(z) |0⟩ |z=0

called the field-state correspondence.

Lemma 1.3.12 ([Noz08, Proposition 4.3.2]). Let A be a linear operator on a linear space V .
The formal differential equation

df(z)

dz
= Af(z) for f(z) ∈ V [[z]]

admits a unique solution, given an initial condition f(0) = f0.

Theorem 1.3.13. Let a(z), b(z) ∈ Ftc, a = fs(a(z)), b = fs(b(z)), and let n ∈ Z. We write
a(z) =

∑
j∈Z a(j)z

−j−1 and b(z) =
∑

j∈Z b(j)z
−j−1. Then:

(i) fs(IdV ) = |0⟩;
(ii) fs(∂za(z)) = Ta;
(iii) (n-product identity) fs(a(z)(n)b(z)) = a(n)b;
(iv) T (a(n)b) = −na(n−1)b+ a(n)Tb;
(v) eTwa(z)e−Tw = iz,wa(z + w);
(vi) (Borcherds identity) If a(z) and b(z) are local, then for c ∈ V ,

iz,w(z − w)na(z)b(w)c− p(a, b)iw,z(z − w)nb(w)a(z)c =
∑
j∈N

∂jwδ(z, w)

j!
a(w)(n+j)b(w)c;

(vii) (Skewsymmetry) If a(z) and b(z) are local, then

a(z)b = p(a, b)eTzb(−z)a.

Proof.

(i) Clear.
(ii)

fs(∂za(z)) = [T, a(z)] |0⟩ |z=0

= (Ta(z)− p(a(z), T )a(z)T ) |0⟩ |z=0

= Ta.

(iii) By definition, we have

fs(a(z)(n)b(z)) = a(z)(n)b(z) |0⟩ |z=0,

and the right-hand side, by Theorem 1.3.5, is equal to

resw(a(w)b(z)iw,z((w − z)n) |0⟩−p(a, b)b(z)a(w)iz,w((w − z)n) |0⟩)|z=0.

Now, since a(w) |0⟩ ∈ V [[w]] and iz,w((w − z)n) has only nonnegative powers of w, we
have

resw(b(z)a(w)iz,w((w − z)n) |0⟩) = 0.

For the first term, since b(z) |0⟩ ∈ V [[z]], we can let z = 0 before we calculate the residue,
which gives

resw(a(w)b(z)iw,z((w − z)n) |0⟩)|z=0 = resw(a(w)bw
n) = a(n)b.

(iv) This follows from [T, a(n)] = −na(n−1), which is equivalent to translation covariance of
the field a(z).
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(v) We set b1(z, w) = iz,wa(z + w) and b2(z, w) = eTwa(z)e−Tw. By Proposition 1.1.2 and
translation covariance:

∂b1(z, w)

∂w
=
∑
j∈N

∂j+1
z a(z)

j!
wj =

∑
j∈N

∂j[T, a(z)]

j!
= [T, b1(z, w)],

b1(z, 0) = a(z),

∂b1(z, w)

∂w
= TeTwa(z)e−Tw + eTwa(z)(−T )e−Tw = [T, b2(z, w)],

b2(z, 0) = a(z).

By Lemma 1.3.12, b1(z, w) = b2(z, w).
(vi) The left-hand side of the Borcherds identity is a local formal distribution in z and w

applied to c. Apply Theorem 1.1.1 to it to get that it is equal to∑
j∈N

∂jwδ(z, w)

j!
cj(w)c,

where

cj(w)c = (resz((z − w)j(iz,w((z − w)n)a(z)b(w)− p(a, b)iw,z((z − w)n)b(w)a(z))))c
= resz((iz,w((z − w)n+j)a(z)b(w)c− p(a, b)iw,z((z − w)n+j)b(w)a(z)c))

= a(w)(n+j)b(w)c.

(vii) By locality, there is N ∈ Z such that

(z − w)Na(z)b(w) = p(a, b)(z − w)Nb(w)a(z).

Apply |0⟩ to both sides; by Theorem 1.3.10, we get

(z − w)Na(z)eTwb = p(a, b)(z − w)Nb(w)eTza.

We now use (v) and Proposition 1.1.2,

RHS = p(a, b)(z − w)NeTze−Tzb(w)eTza = p(a, b)(z − w)NeTziw,zb(w − z)a.

For N big enough, this is a formal power series in (z − w), so we can set w = 0 and get

LHS = zNa(z)b = p(a, b)eTzzNb(−z)a = RHS,

which proves the desired formula. □

Lemma 1.3.14. Let F ′ ⊆ Ftc and a(z) ∈ Ftc. We assume that:

(i) fs(a(z)) = 0;
(ii) a(z) is local with any element in F ′;
(iii) fs(F ′) = V .

Then a(z) = 0.

Proof. Let b(z) ∈ F ′. By the locality of a(z) and b(z), we have (z − w)N [a(z), b(w)] = 0, for
some N ∈ N. Apply |0⟩ to both sides to get

(z − w)Na(z)b(w) |0⟩ = ±(z − w)Nb(w)a(z) |0⟩ .

By the property (i), we have a(−1) |0⟩ = 0 and a(z) is translation covariant, hence by Theo-
rem 1.3.10(i), b(w) |0⟩ ∈ V [[w]], so we can let w = 0 and get zNa(z)b = 0, which means a(n)b = 0
for any n ∈ Z. This is true for any b ∈ V by the property (iii). So in fact, we have a(z) = 0. □
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1.4. Vertex superalgebras. A vertex superalgebra is the data consisting of four elements
(V, |0⟩, T, Y ) satisfying the following properties:

(i) V is a vector superspace called the state space;
(ii) |0⟩ ∈ V0 is called the vacuum vector ;
(iii) T ∈ End(V )0 is called the translation operator ;
(iv) Y : V → F(V ) is a linear and parity preserving map called the state-field correspondence,

which is commonly written as Y (a, z) =
∑

n∈Z a(n)z
−n−1 for a ∈ V .

By parity preserving map we mean that for a ∈ V homogeneous, p(a(n)) = p(a) for n ∈ Z. The
operator Y (a) = Y (a, z) ∈ End(V )[[z±1]] for a ∈ V is sometimes called a vertex operator. The
data must satisfy the following axioms for a ∈ V :

(i) (Vacuum axiom)

Y (|0⟩, z) = IdV ,

Y (a, z) |0⟩ ∈ V [[z]],

Y (a, z) |0⟩ |z=0 = a,

T |0⟩ = 0;

(ii) (Translation covariance) [T, Y (a, z)] = ∂zY (a, z);
(iii) (Locality) {Y (b, z) | b ∈ V } is a local family of fields.

Remark 1.4.1. Writing Y (a, z) =
∑

n∈Z a(n)z
−n−1 for a ∈ V , the first two vertex superalgebra

axioms imply that for a ∈ V :

|0⟩(n) a = δn,−1a for n ∈ Z,
a(n) |0⟩ = δn,−1a for n ∈ N ∪ {−1},
[T, a(n)] = −na(n−1) for n ∈ Z.

A vertex superalgebra with odd subspace equal to 0 is called a vertex algebra.

Remark 1.4.2. The even part V0 of a vertex superalgebra V is a vertex algebra.

Remark 1.4.3. The translation covariance axiom together with Theorem 1.3.10(ii) permit us to
express T by

Ta = a(−2) |0⟩ . (1.4.1)

As a consequence, the data of the translation operator T is redundant. The original definition
with T appears to be more natural, though.

A vertex superalgebra homomorphism f : (V1, |0⟩1, T1, Y1) → (V2, |0⟩2, T2, Y2) is a linear and
parity preserving map f : V1 → V2 such that f(|0⟩1) = |0⟩2 and for a, b ∈ V1,

f(Y1(a, z)b) =
∑
n∈Z

f(a(n)b)z
−n−1 =

∑
n∈Z

f(a)(n)f(b)z
−n−1 = Y2(f(a), z)f(b).

We obtain the category of vertex superalgebras.
Let V1 and V2 be two vertex algebras. The tensor product V1⊗V2 is a vertex algebra with the

vacuum vector |0⟩V1
⊗ |0⟩V2

, the translation operator TV1 ⊗ IdV2 +IdV1 ⊗TV2 and the state-field
correspondence Y (a⊗ b, z) = YV1(a, z)⊗ YV2(b, z) for a ∈ V1 and b ∈ V2.

Let V1, . . . , Vn be vertex algebras. The direct sum V1 ⊕ · · · ⊕ Vn is a vertex algebra with
the vacuum vector (|0⟩V1

, . . . , |0⟩Vn
), the translation operator (TV1 , . . . , TVn) and the state-field

correspondence Y ((a1, . . . , an), z) = (Y (a1, z), . . . , Y (an, z)) for a1 ∈ V1, . . . , an ∈ Vn.

Example 1.4.4 (Commutative vertex algebras). A vertex algebra V is called commutative if all
vertex operators Y (a, z), a ∈ V commute with each other.
Suppose we are given a commutative vertex algebra V . Then for a, b ∈ V ,

Y (a, z)b = Y (a, z)Y (b, w) |0⟩ |w=0 = Y (b, w)Y (a, z) |0⟩ |w=0.
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But by the vacuum axiom, the last expression has no negative power of z. Therefore, Y (a, z)b ∈
V [[z]] for a, b ∈ V , so Y (a, z) ∈ End(V )[[z]] for a ∈ V . Conversely, suppose that we are given
a vertex algebra V in which Y (a, z) ∈ End(V )[[z]] for a ∈ V . Observe that if the equality
(z − w)Nf1(z, w) = (z − w)Nf2(z, w) holds for f1(z, w), f2(z, w) ∈ V [[z, w]] and N ∈ N, then
necessarily f1(z, w) = f2(z, w). Therefore, we obtain that [Y (a, z), Y (b, w)] = 0 for a, b ∈ V , so
V is commutative.

Thus, a commutative vertex algebra may be defined as one in which all Y (a, z) belong to
End(V )[[z]].

We denote by Ya the endomorphism of a commutative vertex algebra V which is the constant
term of Y (a, z) for a ∈ V , and we define a bilinear operation ◦ on V by setting a ◦ b = Yab. By
construction, YaYb = YbYa. This implies both commutativity and associativity of ◦. Furthermore,
the vacuum vector |0⟩ is a unit, and the operator T is a derivation with respect to this product.
Thus, we have the structure of a differential commutative associative algebra with unit on V .

Conversely, let V be a differential commutative associative algebra with unit 1 and derivation
T . Then V becomes a vertex algebra by setting |0⟩ = 1 and

Y (a, z) = eTza for a ∈ V .

It is straightforward to check that all the axioms of a commutative vertex algebra are satisfied.
Therefore, we obtain an isomorphism between the category of differential commutative asso-

ciative algebras with unit and the category of commutative vertex algebras.

Let V be a vertex superalgebra. A vertex subalgebra of V is a subspace of W of V , which
contains |0⟩, and such that Y (a, z)b ∈ W ((z)) for a, b ∈ W . Because Ta = a(−2) |0⟩ and |0⟩ ∈ W ,
this implies that T (W ) ⊆ W . Thus, (W, |0⟩, T |W : W → W,Y |W : W → F(W )) is a vertex
superalgebra in its own right. Let S ⊆ V be a subset. The vertex subalgebra generated by S is
the smallest vertex subalgebra containing S, which is the intersection of all vertex subalgebras
containing S. It is denoted by ⟨S⟩, and we can prove that

⟨S⟩ = span{a1(n1)
. . . as(ns) |0⟩ | s ∈ N, a1, . . . , as ∈ S, n1, . . . , ns ∈ Z}.

The vertex superalgebra V is strongly generated by S ⊆ V if

V = span{a1(−n1−1) . . . a
s
(−ns−1) |0⟩ | s, n1, . . . , ns ∈ N, a1, . . . , as ∈ S}.

An ideal of V is a subspace I of V such that Y (a, z)b ∈ I((z)) and Y (b, z)a ∈ I((z)) for a ∈ V
and b ∈ I. For example, the kernel of a vertex superalgebra homomorphism is an ideal. A vertex
superalgebra is simple or irreducible if 0 is the only proper ideal.

It follows that for any ideal I, V/I inherits a natural quotient vertex superalgebra structure
(V/I, |0⟩+I, TV/I : V/I → V/I, YV/I : V/I → F(V/I)). Let S ⊆ V be a subset. The ideal
generated by S is the smallest ideal containing S, which is the intersection of all ideals containing
S. It is denoted by (S), and we can prove that

(S) = span{b(n)Tma | b ∈ V, n ∈ Z,m ∈ N, a ∈ S}.

The theory done in §1.3 is translated into the language of vertex superalgebras, as the following
theorem shows.

Theorem 1.4.5. Let V be a vertex superalgebra. For a, b, c ∈ V and m,n ∈ Z:
(i) Y : V → F(V ) is injective;
(ii) Y (a, z) |0⟩ ∈ V [[z]] and Y (a, z) |0⟩ = eTza, so T na = n!a(−n−1) |0⟩;
(iii) Y (Ta, z) = ∂zY (a, z) or, equivalently, (Ta)(n) = −na(n−1);
(iv) (n-product identity) Y (a, z)(n)Y (b, z) = Y (a(n)b, z);

(v) [a(m), b(n)] =
∑

j∈N
(
m
j

)
(a(j)b)(m+n−j);

(vi) T (Y (a, z)b) = Y (Ta, z)b+ Y (a, z)Tb;
(vii) eTwY (a, z)e−Tw = iz,wY (a, z + w);
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(viii) (Borcherds identity)

iz,w((z−w)n)Y (a, z)Y (b, w)c−p(a, b)iw,z((z−w)n)Y (b, w)Y (a, z)c =
∑
j∈N

∂jwδ(z, w)

j!
Y (a(n+j)b, w)c;

(ix) (Skewsymmetry) Y (a, z)b = p(a, b)eTzY (b,−z)a;
(x) (a(m)b)(n)c =

∑
j∈N(−1)j

(
m
j

)
(a(m−j)b(n+j)c− (−1)mp(a, b)b(m+n−j)a(j)c).

Remark 1.4.6. We note that a right ideal I is automatically T -invariant (T (I) ⊆ I) because of
(1.4.1). Also, right ideals and T -invariant left ideals are automatically two-sided ideals because
of skewsymmetry. However, to prove that a subspace is an ideal, it is usually easier to check
that it is T -invariant and a left ideal.

Theorem 1.4.7 (Original Borcherds identity). Let V be a vertex superalgebra. For a, b, c ∈ V
and m,n, k ∈ Z,∑
j∈N

(−1)j
(
n

j

)(
a(m+n−j)(b(k+j)c)− (−1)np(a, b)b(n+k−j)(a(m+j)c)

)
=
∑
j∈N

(
m

j

)
(a(n+j)b)(m+k−j)c,

or, equivalently, for a, b, c ∈ Z and F (z, w) = zmwn(z − w)k, where m,n, k ∈ Z,
resz−w(iw,z−wF (z, w)Y (Y (a, z − w)b, w)c) =
resz(iz,wF (z, w)Y (a, z)Y (b, w)c)− resz(iw,zF (z, w)Y (b, w)Y (a, z)c).

We do not have examples of vertex superalgebras other than the ones coming from differential
algebras. It turns out that it is not an easy task to construct nontrivial vertex superalge-
bras. We need a preliminary concept to do that task. A pre-vertex superalgebra is a quadru-
ple (V, |0⟩, T,F), where V = V0 ⊕ V1 is a vector superspace, |0⟩ ∈ V0, T ∈ End(V )0, and
F = {aj(z) =

∑
n∈Z a

j
(n)z

−n−1}j∈J is a collection of End(V )-valued fields such that for j ∈ J , all
aj(n) for n ∈ Z have the same parity. The above data satisfies the following axioms:

(i) (Vacuum axiom) T |0⟩ = 0;
(ii) (Translation covariance) [T, aj(z)] = ∂za

j(z) for j ∈ J ;
(iii) (Locality) ai(z) and aj(z) are mutually local for i, j ∈ J ;
(iv) (Completeness) span{aj1(n1)

. . . ajs(ns)
|0⟩ | s ∈ N, ji ∈ J, ni ∈ Z} = V .

Let (V, |0⟩, T,F) be a pre-vertex superalgebra. We define the following subspaces of F(V ):

Fmin = span{aj1(z)(n1)(a
j2(z)(n2) . . . (a

js(z)(ns) IdV ) . . . ) | s ∈ N, ni ∈ Z, ji ∈ J},
Fmax = {a(z) ∈ F(V ) | [T, a(z)] = ∂za(z) and for j ∈ J , (a(z), aj(z)) is a local pair}.

We have inclusions

F ⊆ Fmin ⊆ Fmax ⊆ Ftc.

The first inclusion is because for a(z) ∈ F , a(z)(−1) IdV = a(z) ∈ Fmin. The second inclusion is
by Lemma 1.3.11 and Dong’s Lemma. The last inclusion is by definition.

Now we come to a very fundamental theorem, which allows us to construct noncommutative
vertex superalgebras and is the backbone of several of our most important examples of vertex
superalgebras.

Theorem 1.4.8 (Extension theorem). Let (V, |0⟩, T,F) be a pre-vertex superalgebra, and let
Fmin,Fmax be defined as above. Then:

(i) Fmin = Fmax;
(ii) The linear map

fs : Fmax → V,

fs(a(z)) = a(z) |0⟩ |z=0

is well-defined and bijective, and we denote by Y : V → F(V ) the inverse map;
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(iii) (V, |0⟩, T, Y ) is a vertex superalgebra, with Y : V → F(V ) given explicitly by

Y (aj1(n1)
aj2(n2)

. . . ajs(ns)
|0⟩) = aj1(z)(n1)(a

j2(z)(n2) . . . (a
js(z)(ns) IdV ) . . . ) (1.4.2)

for s ∈ N, j1, . . . , js ∈ J and n1, . . . , ns ∈ Z;
(iv) The vertex superalgebra V is generated by {aj(−1) |0⟩ | j ∈ J};
(v) The only vertex superalgebra structure on V with Y (aj(−1) |0⟩, z) = aj(z) for j ∈ J is the

one given by (1.4.2).

Proof. By Theorem 1.3.10, the map fs is well-defined as was noted already in §1.3. By Theo-
rem 1.3.13(i) and Theorem 1.3.13(iii), fs |Fmin

: Fmin → V is given by

fs |Fmin
(aj1(z)(n1)(a

j2(z)(n2) . . . (a
js(z)(ns) IdV ) . . . )) = aj1(n1)

aj2(n2)
. . . ajs(ns)

|0⟩ .

The completeness axiom of pre-vertex superalgebras implies that fs |Fmin
is surjective.

The map fs : Fmax → V is injective using Lemma 1.3.14 with F ′ = Fmin. Recall the inclusion
Fmin ⊆ Fmax. We know that fs |Fmin

is surjective and fs is injective, so we can conclude that is
in fact bijective and Fmin = Fmax. This proves (i) and (ii).

For (iii), we need to show that Y (a, z) is translation covariant for a ∈ V , and that each pair
(Y (a, z), Y (b, w)) is local for a, b ∈ V . Translation covariance comes from Lemma 1.3.11, and
locality comes from Dong’s lemma.

We note that we have Y (aj(−1) |0⟩, z) = aj(z) for j ∈ J . Therefore, (aj(−1) |0⟩)(n) = aj(n) for

j ∈ J and n ∈ Z. By the completeness axiom, we get (iv).
Uniqueness of the vertex superalgebra structure follows from the completeness axiom of pre-

vertex superalgebras, the n-product identity and the fact that |0⟩ 7→ IdV in any vertex superal-
gebra homomorphism. This finishes (v) and the proof of the theorem. □

Corollary 1.4.9. Let V be a vertex superalgebra, let s ∈ N, a1, . . . , as ∈ V , and let n1, . . . , ns ∈
Z. Then

Y (a1(n1)
a2(n2)

. . . as(ns) |0⟩, z) = Y (aj, z)(n1)(Y (a2, z)(n2) . . . (Y (as, z)(ns) IdV ) . . . ).

In particular, for s, n1, . . . , ns ∈ N and a1, . . . , as ∈ V ,

Y (a1(−n1−1) . . . a
s
(−ns−1) |0⟩, z) =

: ∂n1
z Y (a1, z) . . . ∂ns

z Y (as, z) :

n1! . . . ns!
.

If V is given by a pre-vertex superalgebra (V, |0⟩, T,F) as in the Extension Theorem, where
F = {aj(z)}j∈J , then for s, n1, . . . , ns ∈ N and j1, . . . , js ∈ J ,

Y (aj1(−n1−1) . . . a
js
(−ns−1) |0⟩, z) =

: ∂n1
z a

j1(z) . . . ∂ns
z a

js(z) :

n1! . . . ns!
.

Let (g,F, T0) be a regular formal distribution Lie superalgebra with F = {aj(z)}j∈J , and let g−
be the annihilation subalgebra. Since T0(g−) ⊆ g−, DU(T0) : U(g) → U(g) is a (U(g), U(g−))-
bimodule homomorphism. We consider the trivial representation 0 : g− → gl(C), and we define:

V = Indg
g−(C) = U(g)⊗U(g−) C,

π = Indg
g−(0) : g→ gl(V ),

|0⟩ = 1⊗ 1 ∈ V,
T = DU(T0)⊗ IdC ∈ End(V )0,

F =

{
π(aj(z)) =

∑
n∈Z

π(aj(n))z
−n−1 | j ∈ J

}
.

Theorem 1.4.10. With the notation above, F consists of fields, and (V, |0⟩, T,F) is a pre-vertex
superalgebra.
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Proof. First, we prove that π(aj(z)) is a field for j ∈ J . We do this by induction on s in
v = aj1(n1)

. . . ajs(ns)
|0⟩, where s ∈ N, n1, . . . , ns ∈ Z− and j1, . . . , js ∈ J . By the PBW theorem,

these elements form a spanning set of V . For s = 0, we have v = |0⟩ and

π(aj(z)) |0⟩ =
∑
n∈Z

aj(n) |0⟩ z
−n−1 =

∑
n∈Z−

aj(n) |0⟩ z
−n−1 ∈ V ((z)).

The last equality is true because a(n) |0⟩ = 0 for n ∈ N. We now proceed by proving the induction
step:

π(aj(z))v =
∑
n∈Z

aj(n)a
j1
(n1)

. . . ajs(ns)
|0⟩ z−n−1

=
∑
n∈Z

[aj(n), a
j1
(n1)

]aj2(n2)
. . . ajs(ns)

|0⟩ z−n−1 ±
∑
n∈Z

aj1(n1)
aj(n)a

j2
(n2)

. . . ajs(ns)
|0⟩ z−n−1. (1.4.3)

By the induction hypothesis, the second sum in (1.4.3) is in V ((z)), so we only need to show
that the first sum is also in V ((z)). By (1.2.4),

[aj(n), a
j1
(n1)

] =
∑
k∈N

(
n

k

)
(aj(z)(k)a

j1(z))(n+n1−k). (1.4.4)

The regularity property implies that aj(z)(k)a
j1(z) ∈ C[∂z]F, thus we can assume that

aj(z)(k)a
j1(z) =

∑
l∈J

fk
l (∂z)a

l(z),

for some polynomials fk
l . Since (aj(z), aj1(z)) is a local pair, there exists N ∈ N such that

aj(z)(k)a
j1(z) = 0 for k ≥ N . This allows us to rewrite (1.4.4) as

[aj(n), a
j1
(n1)

] =
∑

0≤k≤N

(
n

k

)(∑
l∈J

fk
l (∂z)a

l(z)

)
(n+n1−k)

.

Therefore, we can rewrite the first sum in (1.4.3) as

∑
0≤k≤N

∑
n∈Z

(
n

k

)(∑
l∈J

fk
l (∂z)a

l(z)

)
(n+n1−k)

aj2(n2)
. . . ajs(ns)

|0⟩ z−n−1.

By the induction hypothesis, for each k,

∑
n∈Z

(
n

k

)(∑
l∈J

fk
l (∂z)a

l(z)

)
(n+n1−k)

aj2(n2)
. . . ajs(ns)

|0⟩ z−n−1 ∈ V ((z)).

Finally, the first sum in (1.4.3) is also in V ((z)).
We now verify the four axioms of a pre-vertex superalgebra:

(i) T |0⟩ = DU(T0)⊗ IdC(1⊗ 1) = DU(T0)(1)⊗ 1 = 0⊗ 1 = 0.
(ii) We recall that T is an even endomorphism. For j ∈ J ,

[T, π(aj(z))] =

[
T,
∑
n∈Z

π(aj(n))z
−n−1

]
=
∑
n∈Z

[T, π(aj(n))]z
−n−1 =

∑
n∈Z

Tπ(aj(n))− π(a
j
(n))T.
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For x ∈ U(g),

Tπ(aj(n))(x⊗ 1) = T (aj(n)x⊗ 1)

= DU(T0)(a
j
(n)x)⊗ 1

= (T0(a
j
(n))x+ aj(n)T0(x))⊗ 1

= (−naj(n−1)x+ aj(n)T0(x))⊗ 1

= −naj(n−1)(x⊗ 1) + π(aj(n))T (x⊗ 1).

The last two equalities imply that for j ∈ J , [T, π(aj(z))] = ∂zπ(a
j(z)).

(iii) We note that for i, j ∈ J and N ∈ N,

(z − w)N [π(ai(z)), π(aj(z))] = (z − w)Nπ([ai(z), aj(z)]) = π((z − w)N [ai(z), aj(z)]).

(iv) This was already done. □

By Theorem 1.4.10 and the Extension theorem, V is a vertex superalgebra, denoted by
V (g,F, T0), and by the PBW theorem, it is explicitly given by

V = span{aj1(−n1−1) . . . a
js
(−ns−1) |0⟩ | s, n1, . . . , ns ∈ N, j1, . . . , js ∈ J}, (1.4.5)

which means V is strongly generated by {aj(−1) |0⟩}j∈J .

Remark 1.4.11. The PBW theorem for Lie superalgebras is actually more precise than (1.4.5).
Let ≤ be a total order on J . Then

V = span{aj1(−n1−1) . . . a
js
(−ns−1) |0⟩ | s, n1, . . . , ns ∈ N, j1, . . . , js ∈ J and for k = 1, . . . , s− 1,

if ajk(nk)
, a

jk+1

(nk+1)
∈ V1, then jk < jk+1}.

Remark 1.4.12. We have constructed a functor

V A : {regular formal distribution Lie superalgebras} → {vertex superalgebras},
V A(g,F, T0) = V (g,F, T0).

By Remark 1.2.12, we could have constructed a functor (see [Li04, Theorem 2.15])

V A : {Lie conformal superalgebras} → {vertex superalgebras}.

Usually, we need to quotient the vertex superalgebras obtained this way. Let (g,F, T0) be a
regular formal distribution Lie superalgebra, and let λ : h→ C be a linear functional, where h is
a subalgebra of g+ with h ⊆ ker(T0). We denote by Iλ the g-submodule of V (g,F, T0) generated
by the vectors (a− λ(a)) |0⟩ for a ∈ h. For a ∈ h and x ∈ U(g),

T (x(a− λ(a)) |0⟩) = DU(T0)(x(a− λ(a)))⊗ 1

= (DU(T0)(x)(a− λ(a)) + xDU(T0)(a− λ(a)))⊗ 1

= DU(T0)(x)(a− λ(a))⊗ 1

= DU(T0)(x)(a− λ(a)) |0⟩ .

Thus, Iλ is T -invariant. By Theorem 1.4.10, {aj(−1) |0⟩}j∈J strongly generates V , and from this,

we see that Iλ is a left ideal. By Remark 1.4.6, Iλ is an ideal of V (g,F, T0). Taking the quotient,
we get a vertex superalgebra, denoted by

V λ(g,F, T0) = V (g,F, T0)/I
λ.

Let Cλ be the representation of g− ⊕ h on which g− acts as 0 and a acts as λ(a) for a ∈ h.
Using the universal property of the induced representation, we find a g-module homomorphism
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Indg
g−(C)→ Indg

g−⊕h(Cλ). By the universal property of the quotient, we find a g-module homo-

morphism f : V λ(g,F, T0)→ Indg
g−⊕h(Cλ) such that the following diagram commutes

Indg
g−(C) V λ(g,F, T0)

Indg
g−⊕h(Cλ)

f

Using again the universal property of the induced representation, we find a g-module homo-
morphism g : Indg

g−(C) → V λ(g,F, T0). We can verify that f and g are inverses of each other.

Therefore, it is better to think of V λ(g,F, T0) as being Indg
g−⊕h(Cλ) = U(g)⊗U(g−⊕h) C. We now

use this construction to obtain several important examples of vertex superalgebras.

Remark 1.4.13. The vertex superalgebra V λ(g,F, T0) comes equipped with a vertex superalge-
bra epimorphism π : V (g,F, T0) ↠ V λ(g,F, T0) that satisfies π(a |0⟩) = λ(a) |0⟩ for a ∈ h and
is universal with this property, i.e., if f : V (g,F, T0) → W is a vertex superalgebra homomor-
phism such that f(a |0⟩) = λ(a) |0⟩ for a ∈ h, then there exist a unique vertex superalgebra
homomorphism f : V λ(g,F, T0)→ W such that the following diagram commutes

V (g,F, T0) V λ(g,F, T0)

W
f

π

f

Example 1.4.14 (Universal Virasoro vertex algebra of central charge c). We pick c ∈ C. We take
(Vir, {L(z), C}, ad(L−1)) as the regular formal distribution Lie superalgebra as constructed in
Example 1.2.14 and λ : CC → C, λ(C) = c as the linear functional. The resulting vertex algebra
is the universal Virasoro vertex algebra of central charge c, denoted by Virc.

A partition (of n ∈ N) is a sequence λ = [λ1, . . . , λm] such that λi ∈ Z+ for i = 1, . . . ,m,
λ1 ≥ · · · ≥ λm (and λ1 + · · · + λm = n). We also consider the empty partition ∅, which is the
unique partition of 0. By Remark 1.4.11, for c ∈ C, a basis of Virc is given by

{L−λ1 . . . L−λm |0⟩ | [λ1, . . . , λm] is a partition with λm ≥ 2}.

When we deal with conformal vertex superalgebras, we will explain why this vertex algebra is
called universal.

Example 1.4.15 (Universal affine vertex superalgebra of level k). We pick k ∈ C. We take
(ĝ, {a(z) | a ∈ g}∪ {K},−∂t) as the regular formal distribution Lie superalgebra as constructed
in Example 1.2.16 and λ : CK → C, λ(K) = k as the linear functional. The resulting vertex
superalgebra is the universal affine vertex superalgebra of level k, denoted by V k(g).

Example 1.4.16 (Fermionic vertex superalgebra). We take (V̂ , {a(z) | a ∈ V } ∪ {K},−∂t) as the
regular formal distribution Lie superalgebra as constructed in Example 1.2.17 and λ : CK →
C, λ(K) = 1 as the linear functional. The resulting vertex superalgebra is the fermionic vertex
superalgebra, denoted by F (V ).

Let V be a vertex superalgebra. We can naturally endow V with the structure of a Lie
conformal superalgebra by taking ∂ = T , and by defining the following λ-bracket

[•λ•] : V × V → V [λ],

[aλb] = F λ(a(z)b) =
∑
j∈N

(a(j)b)
λj

j!
.
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To verify the Lie conformal superalgebra axioms, we do the following. We set G = {Y (a, z) |
a ∈ V }. Then G ⊆ F(V ) is a Lie conformal superalgebra, and the following diagram commutes

V × V G × G

V [λ] G[λ]

[•λ•]V

Y×Y

[•λ•]G
Y [λ]

As Y : V → F(V ) is injective, we obtain that V itself is a Lie conformal superalgebra. We have
constructed a functor

LCA : {Vertex superalgebras} → {Lie conformal superalgebras},
LCA(V ) = (V, T, [•λ•]).

Remark 1.4.17. Recall the functor V A constructed in Remark 1.4.12. We could prove that
(V A,LCA) is an adjoint pair of functors, i.e., that for a vertex superalgebra V and a Lie
conformal superalgebra R, we have a natural isomorphism

Hom(V A(R), V ) ∼= Hom(R, LCA(V )).

1.5. Graded and conformal vertex superalgebras. Let V be a vertex superalgebra. A
Hamiltonian operator of V is a diagonalizable operator H ∈ End(V ) such that

[H,Y (a, z)] = z∂zY (a, z) + Y (Ha, z) for a ∈ V . (1.5.1)

A vertex superalgebra with a Hamiltonian is called graded. The grading of V is the eigenspace
decomposition of H

V =
⊕
∆∈C

V∆,

where
V∆ = ker(H −∆IdV ) for ∆ ∈ C.

If a is an eigenvector of H, it is called homogeneous, its eigenvalue is called the conformal weight
of a, and it is denoted by ∆a. Condition (1.5.1) is equivalent to

[H, a(n)] = −(n+ 1)a(n) + (Ha)(n) for a ∈ V and n ∈ Z (1.5.2)

and to
[H, a(n)] = (∆a − n− 1)a(n) for a ∈ V homogeneous and n ∈ Z. (1.5.3)

For a ∈ V homogeneous with conformal weight ∆a, we write, as was done with eigendistribu-
tions, Y (a, z) =

∑
n∈Z−∆a

anz
−n−∆a , which is equivalent to

a(n) = an−∆a+1 for n ∈ Z. (1.5.4)

With this notation, (1.5.3) is equivalent to

[H, an] = −nan for a ∈ V homogeneous and n ∈ Z−∆a. (1.5.5)

Remark 1.5.1. When a formula involves ∆a, it is assumed that a is an eigenvector of H with
eigenvalue ∆a, and the formula is extended to arbitrary a by linearity. We have two meanings
of the word homogeneous, one related to the Hamiltonian, and the other related to the parity.
The context will clarify the meaning.

Theorem 1.5.2 ([Kac98, §4.9]). Let V be a graded vertex superalgebra with Hamiltonian H and
grading V =

⊕
∆∈C V∆. Then:

(i) H |0⟩ = 0, which means that ∆|0⟩ = 0;
(ii) [H,T ] = T and HT n = nT n + T nH for n ∈ N;
(iii) [T, an] = (−n−∆a + 1)an−1 for a ∈ V homogeneous and n ∈ Z−∆a;
(iv) an(V∆) ⊆ V∆−n for a ∈ V homogeneous, ∆ ∈ C and n ∈ Z−∆a;
(v) T (V∆) ⊆ V∆+1 for ∆ ∈ C or, equivalently, ∆Ta = ∆a + 1 for a ∈ V homogeneous;
(vi) ∆a(n)b = ∆a +∆b − n− 1 for a, b ∈ V homogeneous and n ∈ Z.
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A Z or N-graded vertex superalgebra V is a graded vertex superalgebra V such that V∆ = 0
for ∆ /∈ Z or N, respectively.

Homomorphisms of graded vertex superalgebras are assumed to respect the gradings, i.e., if
f : V1 → V2 is a homomorphism of graded vertex superalgebras, then f ◦HV1 = HV2 ◦ f , where
HV1 is the Hamiltonian of V1, and H

V2 is the Hamiltonian of V2.
Let V be a vertex superalgebra. A conformal vector of central charge c ∈ C of V is a vector

ω ∈ V such that Y (ω, z) =
∑

n∈Z Lnz
−n−2 satisfies:

(i) Y (ω, z) is a Virasoro formal distribution of central charge C = c IdV ;
(ii) L−1 = T ;
(iii) L0 is diagonalizable.

A conformal vertex superalgebra (of central charge c) is a vertex superalgebra V together with
a conformal vector ω (of central charge c). We denote the conformal superalgebra by (V, ω) if
we want to emphasize the conformal vector.

Remark 1.5.3. Because of property (ii), a conformal vector ω is necessarily even. We note that

ω(n) = Ln−1 for n ∈ Z.
If (V, ω) is a conformal vertex superalgebra, and I is an ideal of V , then (V/I, ω + I) is a
conformal vertex superalgebra of the same central charge.

Theorem 1.5.4. If ω is a conformal vector of a vertex superalgebra V , then L0 is a Hamiltonian
of V , and for a ∈ V , Y (a, z) is an eigendistribution of conformal weight ∆a with respect to
Y (ω, z) if and only if a is homogeneous of conformal weight ∆a. Moreover, ω has conformal
weight 2.

Proof. By Theorem 1.4.5(iii) and Theorem 1.4.5(v), for a ∈ V and n ∈ Z,
[L0, a(n)] = [ω(1), a(n)]

=
∑
j∈N

(
1

j

)
(ω(j)a)(1+n−j)

= (ω(0)a)(n+1) + (ω(1)a)(n)

= (Ta)(n+1) + (L0a)(n)

= −(n+ 1)a(n) + (L0a)(n).

By (1.5.2), this is equivalent to L0 being a Hamiltonian of V .
The n-product identity for vertex superalgebras and Theorem 1.4.5(iii) show that for a ∈ V ,

[Y (ω, z)λY (a, z)] =
∑
j∈N

Y (ω, z)(j)Y (a, z)

j!
λj

=
∑
j∈N

Y (ω(j)a, z)

j!
λj

= Y (Ta, z) + Y (L0a, z)λ+O(λ2)

= ∂zY (a, z) + Y (L0a, z)λ+O(λ2).

Because Y : V → F(V ) is injective, this implies that

[Y (ω, z)λY (a, z)] = ∂zY (a, z) + ∆aY (a, z)λ+O(λ2) if and only if L0a = ∆aa.

As Y (ω, z) has conformal weight 2 with respect to itself, ω has conformal weight 2. □

A conical vertex superalgebra is an N-graded vertex superalgebra with V0 = C |0⟩. A vertex
operator superalgebra is a Z-graded conformal vertex superalgebra such that:

(i) For n ∈ Z, dim(Vn) <∞;
(ii) There is N ∈ Z satisfying Vn = 0 for n ≤ N .
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Remark 1.5.5. A vertex superalgebra can have many different conformal vectors (see [FBZ01,
Example 2.5.9]).

Example 1.5.6. It is straightforward to verify that for c ∈ C, Virc is a conformal vertex algebra
of central charge c with conformal vector ω = L−2 |0⟩.
Example 1.5.7 (Sugawara construction [Kac98, Theorem 5.7]). We recall the universal affine
vertex superalgebra of level k of Example 1.4.15, and we assume that g is simple and finite
dimensional. Let (ai)i∈I , (a

i)i∈I be dual bases of (•|•), which means (ai|aj) = δij for i, j ∈ I. We
denote by cg =

∑
i∈I a

iai ∈ U(g) the universal Casimir element of g. Let 2h∧ be the eigenvalue
of ad(cg) ∈ End(g) in the adjoint representation, i.e., ad(cg) =

∑
i∈I ad(a

i) ad(ai) = 2h∧ IdV .
We assume k ̸= −h∧ and set

ω =
1

2(k + h∧)

∑
i∈I

ai(−1)ai(−1) |0⟩ ∈ V k(g).

Then ω is a conformal vector of central charge k sdim(g)
k+h∧ , and for a ∈ g, a(z) is a primary eigendis-

tribution of conformal weight 1.

Example 1.5.8 ([Kac98, Proposition 4.10]). We recall the fermionic vertex superalgebra of Ex-
ample 1.4.16. Let (ai)i∈I and (ai)i∈I be a pair of dual bases of V , i.e., ⟨ai, aj⟩ = δij for i, j ∈ I.
We set

ω =
1

2

∑
i∈I

ai(−2)ai(−1) |0⟩ ∈ F (V ).

Then ω is a conformal vector of central charge −1
2
sdim(V ), and all fields a(z), where a ∈ V , are

primary of conformal weight 1/2.

A conformal vertex superalgebra homomorphism (V1, ω1) → (V2, ω2) is a homomorphism of
vertex superalgebras V1 → V2 such that ω1 7→ ω2.

Remark 1.5.9. Because homomorphisms of conformal vertex superalgebras respect the conformal
vectors, they automatically respect the gradings as well.

Theorem 1.5.10 (Universal property of Virc). Let V be a conformal vertex superalgebra with
conformal vector ω of central charge c. There exists a unique homomorphism of conformal vertex
superalgebras (Virc, L−2 |0⟩)→ (V, ω).

Proof. Let Vir also denote the Virasoro Lie conformal algebra. Because V is conformal, the map

g : Vir→ LCA(V ),

g(L) = ω,

g(C) = c |0⟩
gives a homomorphism of Lie conformal superalgebras. By Remark 1.4.17, we obtain a homo-
morphism

f : V A(Vir)→ V,

f(L−2 |0⟩) = ω,

f(C |0⟩) = c |0⟩ .

Using Remark 1.4.13 with Virc, we obtain our desired homomorphism of vertex superalgebras f :
Virc → V such that f(L−2 |0⟩) = ω. As {L−2 |0⟩} strongly generates Virc, and a homomorphism
of conformal vertex superalgebras is required to send L−2 |0⟩ to ω, f is the only homomorphism
of conformal vertex superalgebras (Virc, L−2 |0⟩)→ (V, ω).

Alternatively, we could use Theorem 1.6.5 ahead to obtain a state-field correspondence f :
Virc → F(V ). Actually, the image of f is contained in the image of the state-field correspondence
Y V : V → F(V ). Because Y V is injective, we can simply define f = (Y V )−1 ◦ f . □

We recall some basic facts about diagonalizable operators.
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Lemma 1.5.11 ([HK71, §6.2]). Let V be a vector space, H ∈ End(V ), and for ∆ ∈ C, we set
V∆ = ker(H −∆IdV ). Then the family of subspaces (V∆)∆∈C is linearly independent.

Lemma 1.5.12 ([KRR13, Corollary 1.1]). Let V be a vector space (not necessarily a vertex
superalgebra), and let H ∈ End(V ) be a diagonalizable operator with eigenspace decomposition
V =

⊕
∆∈C V∆. Let U be an H-invariant subspace of V , which means H(U) ⊆ U . Then U is

graded, i.e.,

U =
∑
∆∈C

U ∩ V∆.

We can generalize and combine the previous two lemmas as follows. Let k be a field, let
P ⊆ k[x] be a set of representatives of the irreducible polynomials in k[x] (for example, if k is
algebraically closed, then we may take P = {x −∆ | ∆ ∈ k}), let V be a vector space over k,
and let H ∈ End(V ). For p(x) ∈ P , we define the generalized eigenspace of H with respect to
p(x) as

V Gen
p(x) = {a ∈ V | there is k ∈ N such that p(H)ka = 0}.

We also define the subspace

V Gen =
∑

p(x)∈P

V Gen
p(x) .

When k is algebraically closed, we write V Gen
∆ instead of V Gen

x−∆ for ∆ ∈ k, and we call that
subspace the generalized eigenspace of H with eigenvalue ∆.

Lemma 1.5.13. With notation as above, we have:

(i) The family of subspaces (V Gen
p(x) )p(x)∈P is linearly independent;

(ii) H(V Gen
p(x) ) ⊆ V Gen

p(x) for p(x) ∈ P and H(V Gen) ⊆ V Gen;

(iii) If U is an H-invariant subspace of V Gen, then U is graded, i.e.,

U =
∑

p(x)∈P

U ∩ V Gen
p(x) .

An ideal I of a graded vertex superalgebra V with Hamiltonian H is called graded if it is
H-invariant or, equivalently, I =

∑
∆∈C I ∩ V∆ (see Lemma 1.5.12).

Lemma 1.5.14. Let V be a graded vertex superalgebra with grading V =
⊕

∆∈C V∆ such that
V0 = C |0⟩. Then V has a unique maximal proper graded ideal Imax and V/Imax is the unique
simple graded quotient of V , this means that for a proper graded ideal I of V , V/I is simple if
and only if I = Imax.

Proof. All proper ideals of V do not contain |0⟩ because an ideal containing |0⟩ is all of V . Let
Imax be the sum of all graded proper ideals. Then Imax is a graded ideal of V , and Imax ̸= V
because |0⟩ /∈ Imax. Therefore, Imax is the unique maximal proper graded ideal of V . □

Lemma 1.5.15. In a conformal vertex superalgebra V such that V0 = C |0⟩, all ideals are graded,
and there is a unique maximal proper ideal Imax and a unique simple quotient V/Imax.

Proof. Let ω be the conformal vector of V , and let I be an ideal of V . As L0(I) = ω(1)(I) ⊆ I,
I is a graded ideal. The result follows from Lemma 1.5.14. □

The conformal vertex algebra Virc satisfies Virc0 = C |0⟩. We denote by Virc the unique simple
quotient, and we call it the simple Virasoro vertex algebra of central charge c. Let p, q ≥ 2 be
relatively prime integers, and we set

cp,q = 1− 6(p− q)2

pq
.

Let V be a Vir-module. We say V is smooth if L(z) =
∑

n∈Z Lnz
−n−2 ∈ End(V )[[z±1]] is a

field. We say V is of central charge c ∈ C if the central element C acts as multiplication by c.
A vector u in V is called singular if it is nonzero and

Lnu = 0 for n ∈ Z+.
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Theorem 1.5.16 ([GK07]). The following are equivalent:

(i) Virc is not simple, i.e., Virc ̸= Virc;
(ii) c is of the form cp,q for some p, q ≥ 2 relatively prime integers.

Moreover, the maximal proper ideal of Vircp,q is generated by a singular vector of conformal
weight (p− 1)(q − 1), denoted by ap,q. In the expression

ap,q =
∑

i1≥···≥ik≥2
i1+···+ik=(p−1)(q−1)

ci1...ikL−i1 . . . L−ik |0⟩,

where ci1...ik ∈ Q, the coefficient of L
(p−1)(q−1)/2
−2 is nonzero.

We assume p, q ≥ 2 are relatively prime integers and denote Vircp,q by Virp,q. For p = 2 and
q = 3, we have c2,3 = 0 and Vir0 = C |0⟩ (the one dimensional vertex algebra) because in this
case, ω = L−2 |0⟩ is the singular vector generating the maximal proper ideal. Thus, the smallest
case is not very interesting. The next case is the Ising model Vir3,4 = Virc3,4 = Vir1/2. In this
thesis, we study the Ising model and its irreducible admissible modules called Ising modules. By
Theorem 1.5.16, the maximal proper ideal of Vir3,4 is generated by the singular vector

a3,4 = (L3
−2 +

93
64
L2
−3 − 27

16
L−6 − 33

8
L−4L−2) |0⟩ (1.5.6)

of conformal weight (3− 1)(4− 1) = 6 (see §2.3 ahead for more details).

1.6. Modules over vertex superalgebras. Let V be a vertex superalgebra. A module over
V , V -module or representation of V is a vector superspace M together with a linear and parity
preserving map

Y M(•, z) : V → F(M),

a 7→ Y M(a, z) =
∑
n∈Z

aM(n)z
−n−1

satisfying:

(i) Y (|0⟩, z) = IdM ;
(ii) (Borcherds identity) For a, b ∈ V , u ∈M and m,n, k ∈ Z,∑

j∈N

(−1)j
(
n

j

)(
aM(m+n−j)(b

M
(k+j)u)− (−1)np(a, b)bM(n+k−j)(a

M
(m+j)u)

)
=
∑
j∈N

(
m

j

)
(a(n+j)b)

M
(m+k−j)u.

Remark 1.6.1. What we call V -modules are sometimes called weak V -modules by some authors
(for example, in [DLM98] and [ABD03]). Since this is the minimum requirement for a module,
I think it is a better idea to just call them modules and add adjectives as we require more
assumptions.

Let V be a vertex superalgebra, and let M1, M2 be V -modules. A V -module homomorphism
f :M1 →M2 is a linear and parity preserving map such that for a ∈ V and u ∈M1,

f(Y M1(a, z)u) =
∑
n∈Z

f(aM1

(n)u)z
−n−1 =

∑
n∈Z

aM2

(n)f(u)z
−n−1 = Y M2(a, z)f(u).

We obtain the category V -Mod of V -modules, which is abelian.
The vertex superalgebra V is clearly a V -module, and it is called the adjoint representation of

V . A submodule of M is a subspace N ofM such that Y M(a, z)u ∈ N((z)) for a ∈ V and u ∈ N ,
i.e., aM(n)u ∈ N for n ∈ Z. The quotient module M/N is defined in the usual way. A module
whose only proper submodule is 0 is called simple or irreducible. Let T ⊆ M be a subset. The
submodule generated by T is the smallest submodule containing T , which is the intersection of
all submodules containing T . It is denoted by (T ), and we can prove that

(T ) = span{a1M(n1)
. . . asM(ns)u | s ∈ N, a1, . . . , as ∈ V, n1, . . . , ns ∈ Z, u ∈ T}.
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We say M is strongly generated over V by T ⊆M if

M = span{a1M(−n1−1) . . . a
sM
(−ns−1)u | s, n1, . . . , ns ∈ N, a1, . . . , as ∈ V, u ∈ T}.

Most of the theorems about vertex superalgebras and their proofs carry over to modules over
vertex superalgebras (cf. Theorem 1.4.5 and Corollary 1.4.9), as the following theorem shows.

Theorem 1.6.2. Let V be a vertex superalgebra, and let Y M : V → F(M) be a V -module. For
a, b ∈ V , u ∈M and m,n ∈ Z:

(i) (|0⟩)M(n) = δn,−1 IdM ;

(ii) Y M(Ta, z) = ∂zY
M(a, z) or, equivalently, (Ta)M(n) = −naM(n−1);

(iii) All fields {Y M(a, z)}a∈V are mutually local;
(iv) (n-product identity) Y M(a, z)(n)Y

M(b, z) = Y M(a(n)b, z);
(v) [aM(m), b

M
(n)] =

∑
j∈N(a(j)b)

M
(m+n−j);

(vi) eTwY M(a, z)e−Tw = iz,wY
M(a, z + w);

(vii) (Borcherds identity)

iz,w((z − w)n)Y M(a, z)Y M(b, w)u− p(a, b)iw,z((z − w)n)Y M(b, w)Y M(a, z)u =∑
j∈N

∂jwδ(z, w)

j!
Y M(a(n+j)b, w)u;

(viii) (a(n)b)
M
(m)u =

∑
j∈N(−1)j

(
n
j

)
(aM(n−j)b

M
(m+j)u− (−1)np(a, b)bM(n+m−j)a

M
(j)u);

(ix) For s, n1, . . . , ns ∈ N and a1, . . . , as ∈ V ,

Y M(a1(−n1−1) . . . a
s
(−ns−1) |0⟩, z) =

: ∂n1
z Y

M(a1, z) . . . ∂ns
z Y

M(as, z) :

n1! . . . ns!
.

Remark 1.6.3. In contrast to vertex superalgebras, the map Y M : V → F(M) is in general not
injective for a module M over a vertex superalgebra V . Moreover, we do not have the property
of skewsymmetry for modules.

Proposition 1.6.4 ([DLM98, §3]). Let V be a vertex superalgebra. A V -module is equivalently
a superspace M together with a linear and parity preserving map Y M : V → F(M), written as
Y M(a, z) =

∑
n∈Z a

M
(n)z

−n−1, such that for a, b ∈ V , u ∈M and m,n ∈ Z:

(|0⟩)M(n) = δn,−1 IdM , (1.6.1)

[aM(m), b
M
(n)] =

∑
j∈N

(a(j)b)
M
(m+n−j), (1.6.2)

(a(n)b)
M
(m)u =

∑
j∈N

(−1)j
(
n

j

)
(aM(n−j)b

M
(m+j)u− (−1)np(a, b)bM(n+m−j)a

M
(j)u). (1.6.3)

Let V be a vertex superalgebra, and let M be a V -module. We say TM ∈ End(M) is a
differential of M if

[TM , aM(n)] = −naM(n−1) for a ∈ V and n ∈ Z

or, equivalently,

[TM , Y M(a, z)] = Y M(Ta, z) for a ∈ V .

A differential V -module is a V -module equipped with a differential.
Let (g,F, T0) be a regular formal distribution Lie superalgebra with F = {aj(z)}j∈J . A smooth

(g,F, T0)-module is a g-module M such for j ∈ J and u ∈ M , aj(z)u ∈ M((z)). Let λ : h → C
be a linear functional, where h is a subalgebra of g+ with h ⊆ ker(T0). We say h acts as λ if for
h ∈ h and u ∈M , hu = λ(h)u.
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Theorem 1.6.5 ([Li04, Theorem 2.15]). Let (g,F, T0) be a regular formal distribution Lie su-
peralgebra with F = {aj(z)}j∈J . Given a smooth (g,F, T0)-module M , there is a unique module
structure Y M : V (g,F, T0)→ F(M) such that

Y M(aj(−1) |0⟩, z) = aj(z) for j ∈ J.

Let λ : h → C be a linear functional, where h is a subalgebra of g+ with h ⊆ ker(T0).
Given a smooth (g,F, T0)-module M where h acts as λ, there is a unique module structure
Y M
λ : V λ(g,F, T0) → F(M) such that Y M

λ factors through Y M , i.e., such that the following
diagram commutes

V (g,F, T0) V λ(g,F, T0)

F(M)
Y M

Y M
λ

where the horizontal arrow is the quotient map.

Remark 1.6.6. We can define naturally the categories {smooth (g,F, T0)-modules} and {smooth
(g,F, T0)-modules where h acts as λ}. Theorem 1.6.5 constructs a pair of functors:

{smooth (g,F, T0)-modules} → V (g,F, T0)-Mod,

{smooth (g,F, T0)-modules where h acts as λ} → V λ(g,F, T0)-Mod,

which are actually isomorphisms.

LetM be a module over a graded vertex superalgebra V with Hamiltonian H. A Hamiltonian
operator of M is a diagonalizable operator HM ∈ End(M) such that

[HM , Y M(a, z)] = z∂zY
M(a, z) + Y M(Ha, z) for a ∈ V . (1.6.4)

A V -module together with a Hamiltonian is called graded. The grading of M is the eigenspace
decomposition of HM

M =
⊕
∆∈C

M∆,

where

M∆ = ker(HM −∆IdM).

If u is an eigenvector of HM , it is called homogeneous, its eigenvalue is called the conformal
weight of u, and it is denoted by ∆u. Condition (1.6.4) is equivalent to

[HM , aM(n)] = −(n+ 1)aM(n) + (Ha)M(n) for a ∈ V and n ∈ Z

and to

[HM , aM(n)] = (∆a − n− 1)aM(n) for a ∈ V homogeneous and n ∈ Z. (1.6.5)

We usually write Y M(a, z) =
∑

n∈Z−∆a
aMn z

−n−∆a when a ∈ V is homogeneous with conformal
weight ∆a, which is equivalent to

aM(n) = aMn−∆a+1 for n ∈ Z.

With this notation, (1.6.5) is equivalent to

[HM , aMn ] = −naMn for a ∈ V homogeneous and n ∈ Z−∆a. (1.6.6)

Theorem 1.6.7. Let V be a graded vertex superalgebra with Hamiltonian H, and let M be a
graded V -module with Hamiltonian HM . Then:

(i) aMn M∆ ⊆M∆−n for a ∈ V homogeneous and n ∈ Z−∆a;
(ii) ∆aM

(n)
u = ∆a +∆u − n− 1 for a ∈ V homogeneous, u ∈M and n ∈ Z;
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(iii) (Graded Borcherds identity) For a, b ∈ V homogeneous, u ∈M , m ∈ Z−∆a, k ∈ Z−∆b

and n ∈ Z,∑
j∈N

(−1)j
(
n

j

)
(aMm+n−j(b

M
k+j−nu)− (−1)np(a, b)bMk−j(a

M
m+ju)) =

∑
j∈N

(
m+∆a − 1

j

)
(a(n+j)b)

M
m+ku.

Proof.

(i) The proof of Theorem 1.5.2(iv) also works here.
(ii) The proof of Theorem 1.5.2(vi) also works here.
(iii) The graded Borcherds identity is simply a change of notation in the usual Borcherds

identity. □

A homomorphism of graded modules over a graded vertex superalgebra is assumed to respect
the gradings.

Theorem 1.6.8 ([LL04, Proposition 4.1.5 and (4.1.18)]). Let V be a conformal vertex algebra
of central charge c with conformal vector ω, and let M be a V -module. We write Y M(ω, z) =∑

n∈Z L
M
n z

−n−2. For a ∈ V and m,n ∈ Z:

[LM
−1, Y

M(a, z)] = Y M(L−1a, z) = ∂zY
M(a, z),

[LM
m , L

M
n ] = (m− n)LM

m+n + δm,−n
m3 −m

12
c IdM ,

[LM
0 , Y

M(a, z)] = z∂zY
M(a, z) + Y M(L0a, z).

In particular, M is a differential V -module with LM
−1 as differential, and M is a smooth Vir-

module of central charge c. If LM
0 is diagonalizable, then M is graded by LM

0 and:

[LM
0 , L

M
−1] = LM

−1,

LM
−1(M∆) ⊆M∆+1 for ∆ ∈ C.

Remark 1.6.9. Theorem 1.6.8 is analogous to Theorem 1.5.2 with LM
−1 in place of T and LM

0 in
place of H.

Let V be a conformal vertex algebra with conformal vector ω. It is better to use the notation
(V, ω) for now because of Remark 1.5.5. By Theorem 1.6.8, the following definition makes
sense. A (V, ω)-module is a V -module M such that LM

0 is diagonalizable, where we write
Y M(ω, z) =

∑
n∈Z L

M
n z

−n−2. The (V, ω)-modules form a subcategory of V -Mod. In particular,
M is a differential module with differential LM

−1 and is graded by LM
0 . A (V, ω)-module M is

called a positive energy representation of (V, ω) if M =
⊕

n∈NMh+n for some h ∈ C, and in this
case, we also say that M is h+N-graded. The subspace Mh is called a top degree component of
M . When we require Mh ̸= 0, the number h and the top degree component are well-defined.

Remark 1.6.10. Let (V, ω) be a conformal vertex algebra, and let M1 and M2 be (V, ω)-modules.
A homomorphism f : M1 → M2 automatically respects the gradings of M1 and M2 given by
LM1
0 and LM2

0 .

Let V be a Z-graded vertex superalgebra. An admissible V -module is a V -moduleM together
with a grading M =

⊕
n∈ZM(n), such that:

(i) M(n) = 0 for n ∈ Z−;
(ii) aM(n)M(m) ⊆M(m+∆a − n− 1) for a ∈ V homogeneous and m,n ∈ Z or, equivalently,

aMn M(m) ⊆M(m− n) for a ∈ V homogeneous and m,n ∈ Z.
Thus, an admissible V -module is a pair (M,

⊕
n∈ZM(n)) satisfying the above conditions,

though we often omit the grading from the notation. If M ̸= 0, we set n0 = min{n ∈ N |
M(n) ̸= 0}. The subspace M(n0) is called the top degree component of M . The top degree
component of the zero module 0 is 0.
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A homomorphism of admissible V -modules is a homomorphism of V -modules, no condition
on the grading is imposed. We have defined the category of admissible V -modules, which is
abelian. Arbitrary direct sums of admissible V -modules always exist.
We note that shifting the grading of an admissible V -module gives an isomorphic admissible

V -module, and that submodules of admissible V -modules are not necessarily graded. When
M ̸= 0 is an admissible V -module, we can always shift the grading so that M(0) ̸= 0.
A simple or irreducible admissible V -module is an admissible V -module M such that 0 is the

only proper graded submodule of M . We note that we ask for graded submodules, not just
submodules, in the definition of irreducible. An object in the category of admissible V -modules
is completely reducible if it is a direct sum of irreducible admissible V -modules. The completely
reducible admissible V -modules form a full subcategory of the category of admissible V -modules.
Let V be a Z-graded conformal vertex algebra, and let M be a module over V . As usual,

we write Y M(ω, z) =
∑

n∈Z L
M
n z

−n−2. We consider the endomorphism LM
0 ∈ End(M), which in

general is not diagonalizable. By Lemma 1.5.13(i), we have a direct sum decomposition

MGen =
⊕
∆∈C

MGen
∆ ,

where

MGen
∆ = {a ∈ V | there is k ∈ N such that (LM

0 −∆IdM)ka = 0}.

We define:

ΛM = {∆ ∈ C |MGen
∆ ̸= 0 and for n ∈ Z+, M

Gen
∆−n = 0},

MGen(n) =

{⊕
∆∈ΛM MGen

∆+n if n ≥ 0;

0 if n < 0.

(1.6.7)

We often consider V -modules M satisfying the following condition

for ∆ ∈ C, there is N ∈ N such that for n ∈ N with n ≥ N , MGen
∆−n = 0. (1.6.8)

This condition resembles the definition of vertex operator superalgebras.

Proposition 1.6.11. Let V be a Z-graded conformal vertex algebra, and let M be a module over
V . Then:

(i) If M is admissible with grading
⊕

n∈ZM(n) such that for n ∈ Z, dim(M(n)) <∞, then
M =MGen;

(ii) If a ∈ V is homogeneous, n ∈ Z and u ∈MGen
∆ , then aMn u ∈MGen

∆−n;
(iii) MGen is a submodule of M ;
(iv) IfM satisfies (1.6.8), thenMGen is an admissible V -module with grading given by (1.6.7);
(v) If f : M1 → M2 is a homomorphism of V -modules, then f(MGen

1∆ ) ⊆ MGen
2∆ for ∆ ∈ C

and f(MGen
1 ) ⊆MGen

2 .

Proof. We omit superscripts in this proof.

(i) For n ∈ Z, L0(M(n)) ⊆ M(n). By [HK71, §6.8 Theorem 12], for n ∈ Z, M(n) =
M(n)Gen, and this implies the assertion.

(ii) From the formula [L0, an] = −nan given in (1.6.6), we inductively get the formula

Lk
0an =

∑
j∈N

(
k

j

)
(−n)janLk−j

j for k ∈ N.
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By definition, there is k ∈ N such that (L0 −∆IdM)ku = 0. We now compute

(L0 − (∆− n) IdM)kanu =

(
k∑

i=0

(
k

i

)
Lk−i
0 (−(∆− n))i IdM

)
anu

=
k∑

i=0

(
k

i

)
(−(∆− n))iLk−i

0 anu

=
k∑

i=0

(
k

i

)
(−(∆− n))i

k−i∑
j=0

(
k − i
j

)
(−n)janLk−i−j

0 u

= an

(
k∑

i=0

k−i∑
j=0

k!

i!j!(k − i− j)!
(−(∆− n))i(−n)jLk−i−j

0 u

)
= an((L0 − (∆− n) IdM −n IdM)ku)

= an((L0 −∆IdM)ku)

= 0.

This means anu ∈MGen
∆−n.

(iii) From (ii), we immediately get that MGen is a submodule of M .
(iv) If this condition is satisfied, then we haveMGen =

⊕
n∈ZM

Gen(n). From (ii), we get that
this grading makes MGen into an admissible V -module.

(v) This follows straight from the definitions. □

We have constructed a functor

Gen : {V -modules satisfying (1.6.8)} → {admissible V -modules}.
For a Z-graded vertex algebra V , we have a natural forgetful functor

For : {admissible V -modules} → V -Mod.

Remark 1.6.12. We followed [DLM98] when we defined admissible modules and their homomor-
phisms. In [Zhu96], homomorphisms of admissible modules are required to shift the grading
by a fixed integer k, i.e., a morphism f : M1 → M2 between admissible modules M1 and M2

must satisfy f(M1(n)) ⊆ M2(n + k) for n ∈ Z. However, with Zhu’s definition, direct sums of
admissible modules might not exist. For example, if M ̸= 0 is an admissible module, then we
may define the admissible module M ′, which is equal to M but has grading shifted by 1. Then
we run into trouble while defining M ⊕M ′ because the identity map M ⊕M → M ⊕M ′ does
not shift the grading by a fixed integer.

Furthermore, our definition of irreducible admissible V -module is not the same as the usual
definition of irreducible object in an abelian category. As we will see in §4.5, under certain
conditions on V , both Gen and For are equivalences of categories, and an admissible module is
irreducible if and only if it is irreducible as an object in the category of V -modules.

Let V be a Z-graded conformal vertex algebra, and let M be a (V, ω)-module. As usual, we
write Y M(ω, z) =

∑
n∈Z L

M
n z

−n−2. We say M is ordinary if:

(i) dim(M∆) <∞ for ∆ ∈ C;
(ii) For ∆ ∈ C, there is N ∈ N such that for n ∈ N with n ≥ N , M∆−n = 0.

The ordinary V -modules form a subcategory of V -Mod, and they satisfy (1.6.8). By Proposi-
tion 1.6.11, we can make an ordinary module into an admissible module. Thus, we can think of
the following inclusions of categories

{ordinary V -modules} ⊆ {admissible V -modules} ⊆ {V -modules}.
A positive energy representation M of the conformal vertex algebra (V, ω) is ordinary if for

n ∈ N, dim(Mh+n) < ∞, where Mh is a top degree component of M . For an ordinary positive
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energy representation M , the character of M is a formal power series defined by

chM(q) =
∑
n∈N

dim(Mh+n)q
h+n ∈ qhC[[q]].

Example 1.6.13. Let M be a highest weight representation of Vir with highest weight (c, h) (see
§2 ahead) and highest weight vector v. Then M is a smooth Vir-module of central charge c.
We note that L0 is diagonalizable. By Theorem 1.6.5 and Theorem 1.6.8, M is an h+N-graded
(Virc, L−2 |0⟩)-module. We setM(n) =Mh+n for n ∈ Z. By Theorem 1.6.7(ii),M =

⊕
n∈ZM(n)

is an admissible Virc-module with top degree component Cv. Furthermore, M is an ordinary
positive energy representation of Virc.

Let V be a vertex operator algebra. We say that V is rational if every admissible V -module
is completely reducible, i.e., a direct sum of simple admissible V -modules. We say that V is
regular if every V -module is a direct sum of simple ordinary V -modules. Regularity is a stronger
form of complete reducibility of modules.

The definition of ordinary and admissible modules is similar to that of vertex operator algebras
(in the sense that we required them to be lower truncated) except that modules are not required
to be Z-graded. Indeed, one of our objectives is to study L(1/2, 1/2) and L(1/2, 1/16), which
are Q-graded.

Theorem 1.6.14 ([DLM98]). If V is a rational vertex operator algebra, then there are only
finitely many simple admissible modules up to isomorphism, and any simple admissible module
is an ordinary module.

Example 1.6.15. It was proved in [Wan93] that Virp,q is rational when p, q ≥ 2 are relatively
prime integers. In fact, as we will see in Theorem 3.3.4, a complete list of all the irreducible
modules over Virp,q is given in that article. Actually, we will see later that in that case, Virp,q is
regular.

1.7. Lie algebras associated to vertex algebras.

Lemma 1.7.1. For a vertex algebra V , V/TV is a Lie algebra with bracket

[a+ TV, b+ TV ] = a(0)b+ TV for a, b ∈ V .
Proof. The skewsymmetry of the bracket follows from skewsymmetry of vertex algebras. The
Jacobi identity follows from Theorem 1.4.5(x) with m = n = 0. □

Lemma 1.7.2. Let V be a vertex algebra, and let (R, ∂) be a differential commutative associative
algebra with unit. Then

Lie(V,R) = (V ⊗R)/(T ⊗ IdR +IdV ⊗∂)(V ⊗R)
is a Lie algebra with bracket

[a⊗ r, b⊗ s] =
∑
j∈N

a(j)b⊗
(
∂jr

j!

)
s for a, b ∈ V and r, s ∈ R.

Proof. Since R is a commutative vertex algebra (see Example 1.4.4), V ⊗ R is a vertex algebra
with translation operator T ⊗ IdR +IdV ⊗∂. The assertion follows by applying Lemma 1.7.1 to
the vertex algebra V ⊗R. □

The Borcherds Lie algebra associated with a vertex algebra V is the Lie algebra

[V ] = Lie(V,C[t, t−1]),

where C[t, t−1] is viewed as a differential algebra with the derivation ∂t. For a ∈ V and n ∈ Z,
let a(n) be the class of a⊗ tn ∈ V ⊗ C[t, t−1]. By definition, we have

[a(m), b(n)] =
∑
j∈N

(
m

j

)
(a(j)b)(m+ n− j) for a, b ∈ V and m,n ∈ Z, (1.7.1)

(Ta)(n) = −na(n− 1) for a ∈ V and n ∈ Z. (1.7.2)
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We note that these are exactly the same formulas as in Theorem 1.4.5(iii), (v).
Therefore, we have constructed a functor

[•] : {Vertex algebras} → {Lie algebras}.

Lemma 1.7.3. Any V -module M is a [V ]-module by setting

[V ]→ gl(M),

a(n) 7→ aM(n) for a ∈ V and n ∈ Z.

Proof. First, this map is well-defined because of Theorem 1.6.2(ii). It is a Lie algebra homomor-
phism because of Theorem 1.6.2(v). □

Therefore, we have constructed a functor

[•] : V -Mod→ [V ]-Mod.

We now assume that V is a Z-graded vertex algebra with Hamiltonian H. Then [V ] is a
graded Lie algebra by defining H ∈ End([V ]) as

H(a(n)) = −(n+ 1)a(n) + (Ha)(n) for a ∈ V and n ∈ Z.

This operator is diagonalizable because for a ∈ V homogeneous and n ∈ Z, H(a(n)) = (∆a −
n− 1)a(n). This means that

∆a(n) = ∆a − n− 1 for a ∈ V homogeneous and n ∈ Z.

Moreover, we can verify that H is a derivation of [V ]. We have a Z-grading

[V ] =
⊕
n∈Z

[V ]n

and a triangular decomposition

[V ] = [V ]+ ⊕ [V ]0 ⊕ [V ]−,

where

[V ]± =
⊕
n∈Z+

[V ]±n.

Remark 1.7.4. We note that ([V ], {
∑

n∈Z a(n)z
−n−1}a∈V , T ) is a regular formal distribution Lie

algebra. I have not found any use of this, though.

We observe that [V ]0 is spanned by elements of the form a(∆a − 1) for a ∈ V homogeneous,
and it is a Lie subalgebra of [V ]. By (1.7.1) and Theorem 1.5.2(vi), the bracket in [V ]0 is given
by

[a(∆a − 1), b(∆b − 1)] =
∑
j∈N

(
∆a − 1

j

)
(a(j)b)(∆a(j)b − 1) for a, b ∈ V homogeneous. (1.7.3)

We consider the surjective linear map

ψ : V ↠ [V ]0,

ψ(a) = a(∆a − 1).

Lemma 1.7.5. We have

ker(ψ) = (T +H)V.

Proof. If a ∈ V is homogeneous, then by Theorem 1.5.2(v) and (1.7.2),

ψ((T +H)(a)) = ψ(Ta+∆aa) = (Ta)(∆Ta− 1)+∆aa(∆a− 1) = (Ta)(∆a) +∆aa(∆a− 1) = 0.

Thus, (T +H)V ⊆ ker(ψ).
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We now assume a = am + am+1 + · · · + an ∈ ker(ψ), where ai ∈ Vi for i = m,m + 1, . . . , n,
am ̸= 0 and an ̸= 0. Unwinding the definitions, we see that a ∈ ker(ψ) means that there exist
br, br+1, . . . , bs ∈ V such that br ̸= 0, bs ̸= 0 and

am⊗tm−1+am+1⊗tm+· · ·+an⊗tn−1 = (T⊗IdC[t,t−1] +IdV ⊗∂t)(br⊗tr+br+1⊗tr+1+· · ·+bs⊗ts).
The last equation implies r ≤ m and s ≥ n − 1, and it is equivalent to the following system of
equations in V :

rbr = 0

Tbr + (r + 1)br+1 = 0

. . .

T bm + (m+ 1)bm+1 = am

Tbm+1 + (m+ 2)bm+2 = am+1

. . .

T bn−1 + nbn = an

. . .

T bs−1 + sbs = 0

Tbs = 0.

For i = r, r + 1, . . . , s, let ci be the component of bi in Vi. The last system of equations in V
implies:

Hcr = 0

Tcr +Hcr+1 = 0

. . .

T cm +Hcm+1 = am

Tcm+1 +Hcm+2 = am+1

. . .

T cn−1 +Hcn = an

. . .

T cs−1 +Hcs = 0

Tcs = 0.

Adding these equations, we get

(T +H)(cr + cr+1 + · · ·+ cs) = am + am+1 + · · ·+ an = a,

which implies a ∈ (T +H)V . □

By Lemma 1.7.5, we are led to define

Lie0(V ) = V/(T +H)V,

whose bracket is given by

[a+ (T +H)V, b+ (T +H)V ] =
∑
j∈N

(
∆a − 1

j

)
a(j)b+ (T +H)V for a, b ∈ V .

From what we have done, there is a natural Lie algebra isomorphism

Lie0(V )
∼−→ [V ]0,

a+ (T +H)V 7→ a(∆a − 1) for a ∈ V homogeneous,

and we have another functor

Lie0 : {Z-graded vertex algebras} → {Lie algebras}.
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2. Highest weight representations of the Virasoro Lie algebra

In this section, we start by reviewing some well-known facts about forms on complex vector
spaces. Then, we consider highest weight representations of the Virasoro Lie algebra with
particular interest on the Verma modules M(c, h) and the irreducible representations L(c, h).
Afterward, we construct a contravariant form on an arbitrary highest weight representation.
Next, we present the Kac determinant formula, which allows us to determine L(c, h) explicitly by
determining the generating singular vectors of the maximal proper subrepresentation ofM(c, h).

2.1. Unitary and contravariant representations of Lie algebras. Let V be a vector space.
A (sesquilinear) form on V is a function

⟨•|•⟩ : V × V → C,
(u, v) 7→ ⟨u|v⟩

such that for u, v, w ∈ V and t ∈ C:
(i) ⟨tu+ v|w⟩ = t⟨u|w⟩+ ⟨v|w⟩;
(ii) ⟨u|tv + w⟩ = t⟨u|v⟩+ ⟨u|w⟩.

All forms are assumed to be sesquilinear.
A Hermitian form on V is a form ⟨•|•⟩ satisfying

⟨u|v⟩ = ⟨v|u⟩ for u, v ∈ V .
Let S ⊆ V be a subset of a vector space V equipped with a form ⟨•|•⟩. We define the

orthogonal complement of S as the subspace

S⊥ = {v ∈ V | for u ∈ S, ⟨u|v⟩ = 0}.
A form ⟨•|•⟩ on V is called nondegenerate if V ⊥ = 0, and it is called positive-definite if it is

Hermitian and
⟨v|v⟩ > 0 for v ∈ V with v ̸= 0.

An inner product space is a vector space together with a positive-definite form.

Lemma 2.1.1 ([HK71, §8.2 Theorem 5]). Let V be an inner product space, and let W be a finite
dimensional subspace of V . Then W ⊕W⊥ = V .

Let V be a vector space. A map ω : V → V is antilinear if for u, v ∈ V and t ∈ C:
ω(u+ v) = ω(u) + ω(v),

ω(tu) = tω(u).

Let g be a Lie algebra. A map ω : g → g is an antilinear anti-involution if ω is antilinear and
for a, b ∈ g:

ω([a, b]) = [ω(b), ω(a)],

ω(ω(a)) = a.

We note that this means we can extend ω to the universal enveloping algebra U(g) of g, obtaining
a map ω : U(g)→ U(g) that is still an antilinear anti-involution, i.e., for a, b ∈ U(g):

ω(ab) = ω(b)ω(a),

ω(ω(a)) = a.

We shall be mostly interested in the Virasoro Lie algebra Vir, which has the following antilinear
anti-involution

ω : Vir→ Vir,

ω(Ln) = L−n for n ∈ Z,
ω(C) = C,

which is extended by antilinearity.
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Let g be a Lie algebra with an antilinear anti-involution ω : g→ g, and let V be a g-module
with a Hermitian form ⟨•|•⟩. We say ⟨•|•⟩ is contravariant if

⟨au|v⟩ = ⟨u|ω(a)v⟩ for a ∈ g and u, v ∈ V .
We further say this representation is unitary if, in addition, it is positive-definite.

2.2. Verma modules. A highest weight representation of Vir is a Vir-module V , which has a
nonzero vector v such that there exist complex numbers c, h ∈ C satisfying:

(i) Cv = cv;
(ii) L0v = hv;
(iii) V = span{L−ik . . . L−i1v | ik ≥ · · · ≥ i1 > 0}.

The numbers c and h are uniquely determined, and the pair (c, h) is called the highest weight of
V . The vector v is not uniquely determined; it can be replaced by any nonzero scalar multiple
of it, and we call v a highest weight vector of V .

For ∆ ∈ C, we set V∆ = ker(L0−∆IdV ). We observe that all vectors of the form L−ik . . . L−i1v
with ik ≥ · · · ≥ i1 > 0 and a fixed value of j = i1 + · · · + ik belong to Vh+j. By axiom (iii),
V =

∑
j∈N Vh+j, and by Lemma 1.5.11, this is in fact a direct sum

V =
⊕
j∈N

Vh+j. (2.2.1)

By axiom (ii),
Vh = Cv.

We note that
LnVh+j ⊆ Vh+j−n for n ∈ Z and j ∈ N.

In particular, we have
Lnv = 0 for n ∈ Z+. (2.2.2)

For j ∈ N, let p(j) denote the number of partitions of n. It is clear that

dim(Vh+j) ≤ p(j) for j ∈ N, (2.2.3)

with equality if and only if all vectors of the form L−ik . . . L−i1v, with ik ≥ · · · ≥ i1 > 0 and
j = i1 + · · · + ik, are linearly independent. By axiom (i), C acts on V as multiplication by c
because it commutes with every Ln for n ∈ Z. Thus, a highest weight representation of Vir with
highest weight (c, h) is necessarily smooth and of central charge c.

Lemma 2.2.1. Let V be a highest weight representation of Vir with highest weight (c, h), highest
weight vector v and grading V =

⊕
j∈N Vh+j. Then:

(i) Any subrepresentation U of V is graded

U =
⊕
j∈N

U ∩ Vh+j;

(ii) V is indecomposable, i.e., we cannot find nontrivial subrepresentations U,W such that

V = U ⊕W ;

(iii) V has a unique maximal proper subrepresentation Jmax, and V/Jmax is the unique irre-
ducible quotient of V , which is also a highest weight representation with highest weight
(c, h).

Proof.

(i) This is Lemma 1.5.12 with H = L0.
(ii) We assume we have found such a decomposition. Both U andW are graded subrepresen-

tations, and therefore we must have either v ∈ U or v ∈ W , which implies either U = V
or W = V .

(iii) We just take Jmax as the sum of all proper subrepresentations of V . □
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Let V be a highest weight representation of Vir with highest weight (c, h). The character of
V is a formal power series defined by

chV (q) =
∑
j∈N

dim(Vh+j)q
h+j ∈ qhC[[q]].

The character of V satisfies the inequality

chV (q) ≤
qh∏

k∈Z+
(1− qk)

=
qh

(q)∞
.

A Verma representation is a highest weight representation of Vir in which all vectors of the
form L−ik . . . L−i1v, with ik ≥ · · · ≥ i1 > 0, are linearly independent. Since all vectors of the form
L−ik . . . L−i1v, with ik ≥ · · · ≥ i1 > 0, in a Verma representation V are linearly independent,
it follows that they form a basis of V . Consequently, there is a homomorphism from V to any
other highest weight representation of Vir with the same highest weight (c, h), mapping a highest
weight vector to a highest weight vector. In particular, for any pair (c, h) of complex numbers,
there is at most one Verma representation having (c, h) as its highest weight.
We now show we do have a Verma representation for each pair (c, h) of complex numbers

using standard Lie algebra techniques. We set Vir≥0 =
⊕

n∈N CLn. The subalgebra Vir≥0⊕CC
of Vir acts on C as follows:

Ln1 = 0 for n ∈ Z+, L01 = h and C1 = c.

Then

M(c, h) = IndVir
Vir≥0 ⊕CC(C) = U(Vir)⊗U(Vir≥0 ⊕CC) C

is a Vir-module, where Vir acts by left multiplication. We set |c, h⟩ = 1⊗ 1.
For a partition λ = [λ1, . . . , λm], we define

Lλ = L−λ1 . . . L−λm ∈ U(Vir).

By the PBW theorem, the set

{Lλ|c, h⟩ | λ is a partition}

is a vector space basis of M(c, h). Therefore, M(c, h) is a Verma representation of Vir with
highest weight (c, h) and highest weight vector |c, h⟩. We usually simplify |c, h⟩ to just |h⟩ when
c is understood. By (2.2.3), the character of a Verma representation is given by

chM(c,h)(q) =
qh

(q)∞
.

Any other highest weight representation V with highest weight (c, h) is a quotient of M(c, h):
we simply map v to a highest weight vector of V , the resulting homomorphism is surjective, and
V is isomorphic to M(c, h) quotiented by the kernel of this homomorphism.

By Lemma 2.2.1(iii), M(c, h) has a unique maximal proper subrepresentation, denoted by
J(c, h). The quotient

L(c, h) =M(c, h)/J(c, h)

is an irreducible highest weight representation with highest weight (c, h). Actually, this is the
unique irreducible highest weight representation with highest weight (c, h) because if V is such
a representation, then V is isomorphic to M(c, h)/U for some proper subrepresentation U of
M(c, h) which has to be maximal, implying U = J(c, h). We wish to determine when L(c, h) is
equal to M(c, h).

Lemma 2.2.2. Let V be a Vir-module. If u ∈ V is nonzero and L1u = L2u = 0, then u is a
singular vector.

Proof. The condition L1u = L2u = 0 implies, using induction, that Lnu = 0 for n ≥ 3. □
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Remark 2.2.3. By (2.2.2), a highest weight vector is singular. By (2.2.1), we can write a singular
vector u as u =

∑
j∈N uj, where uj ∈ Vh+j for j ∈ N. Then all the nonzero vectors uj are also

singular vectors. Therefore, we can focus on homogeneous singular vectors.

Theorem 2.2.4. Let V be a highest weight representation of Vir with a contravariant form
⟨•|•⟩. Then all eigenspaces of L0 are pairwise orthogonal. Let U be a subrepresentation of V .
Then U⊥ is a subrepresentation of V . Moreover, if ⟨•|•⟩ is unitary, then U ⊕ U⊥ = V .

Proof. Let (c, h) be the highest weight of V , and let v be a highest weight vector of V . We have
the decomposition V =

⊕
j∈N Vh+j. First, we note that if j1 ̸= j2, then ⟨Vh+j1|Vh+j2⟩ = 0. This

is because if u ∈ Vh+j1 and w ∈ Vh+j2 , then

(h+ j1)⟨u|w⟩ = ⟨L0u|w⟩ = ⟨u|L0w⟩ = (h+ j2)⟨u|w⟩
which implies (h − h + j2 − j1)⟨u|w⟩ = 0 and ⟨u|w⟩ = 0. We know ⟨U |U⊥⟩ = 0 and LjU ⊆ U
for j ∈ Z. Then 0 = ⟨LjU |U⊥⟩ = ⟨U |L−jU

⊥⟩ which implies LjU
⊥ ⊆ U⊥ for j ∈ Z, so U⊥ is a

subrepresentation of V . By Lemma 2.2.1(i),

U⊥ =
⊕
j∈N

U⊥ ∩ Vh+j =
⊕
j∈N

(U ∩ Vh+j)
⊥|Vh+j ,

where (U ∩ Vh+j)
⊥|Vh+j denotes the orthogonal subspace of U ∩ Vh+j in Vh+j. If ⟨•|•⟩ is unitary,

then by Lemma 2.1.1, U ∩Vh+j⊕ (U ∩Vh+j)
⊥|Vh+j = Vh+j for j ∈ N because all the vector spaces

Vh+j are finite dimensional. It is now clear that U ⊕ U⊥ = V . □

Corollary 2.2.5. A highest weight representation V with a unitary form is irreducible.

Proof. Let U be a subrepresentation of V . By Theorem 2.2.4, U⊥ is a subrepresentation of
V and U ⊕ U⊥ = V . By Lemma 2.2.1(ii), either U = V or U = 0. We conclude that V is
irreducible. □

2.3. Kac determinant formula and singular vectors. Let V be a highest weight represen-
tation with highest weight (c, h), and we pick a highest weight vector v. We wish to define a
contravariant form ⟨•|•⟩ on V such that ⟨v|v⟩ = 1. We now show we do not have much choice.
Since Vh = Cv, it makes sense to define the expectation value of u ∈ V , denoted by ⟨u⟩, as the
coefficient of u with respect to the direct sum V =

⊕
j∈N Vh+j, i.e., as the unique t ∈ C such that

u− tv ∈
⊕

j∈Z+
Vh+j. We consider Lλ ∈ U(Vir) for a partition λ and u ∈ V . By contravariance,

we must have ⟨Lλv|u⟩ = ⟨v|ω(Lλ)u⟩. But ⟨v|ω(Lλ)u⟩ = ⟨ω(Lλ)u⟩ because all eigenspaces of
L0 are pairwise orthogonal by Theorem 2.2.4. Therefore, if ⟨•|•⟩ is a contravariant Hermitian
nonzero form on V such that ⟨v|v⟩ = 1, we are forced to have

⟨Lλv|u⟩ = ⟨ω(Lλ)u⟩ for a partition λ and u ∈ V . (2.3.1)

Contravariance of ⟨•|•⟩ and (2.3.1) impose conditions on the highest weight (c, h). Let a ∈
U(Vir). Then

⟨av⟩ = ⟨ω(ω(a))v⟩ = ⟨ω(a)v|v⟩ = ⟨v|ω(a)v⟩ = ⟨av|v⟩ = ⟨ω(a)v⟩.
Taking a = C and a = L0, we obtain c, h ∈ R.

We note, however, that initially we cannot define the form using (2.3.1) for a general highest
weight representation because there may be linear dependences between terms of the form Lλv
for partitions λ, so we may ask if it is well-defined in the first place. That is only possible for
M(c, h), and later we will see that it is also possible for any highest weight representation.

Theorem 2.3.1 ([KRR13, Proposition 3.4]). Let M(c, h) be the Verma representation of Vir
with highest weight (c, h), where c, h ∈ R. We pick a highest weight vector v, and we define the
form ⟨•|•⟩ on M(c, h) using equation (2.3.1). Then:

(i) ⟨•|•⟩ is a contravariant Hermitian form on M(c, h) such that ⟨v|v⟩ = 1.
(ii) The eigenspaces of L0 are pairwise orthogonal.
(iii) M(c, h)⊥ = J(c, h).
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(iv) Let V be a highest weight representation with highest weight vector v′. There is a unique
contravariant form ⟨•|•⟩ on V such that ⟨v′|v′⟩ = 1 and is defined by equation (2.3.1)
with v′ in place of v. This form satisfies properties (i)–(iii) of this Theorem. If we pick
other highest weight vector, the resulting contravariant form is the previously defined form
times a nonzero constant. In particular, for L(c, h), this form is nondegenerate.

Let V be a highest weight representation with highest weight (c, h), where c, h ∈ R, and we
pick a highest weight vector v. Let ⟨•|•⟩ be the contravariant form on V defined by (2.3.1). We
say V is unitary if this form is unitary. By Theorem 2.3.1, this is independent of the choice
of the highest weight vector v, and there is essentially one form. By Corollary 2.2.5, a unitary
highest weight representation is necessarily irreducible, and it is of the form L(c, h) for some
real numbers c, h ∈ R. We wish to study when is L(c, h) unitary. A simple necessary condition
is given by the next theorem.

Theorem 2.3.2. If L(c, h) is unitary then c ≥ 0 and h ≥ 0.

Proof. We pick a highest weight vector v and assume ⟨v|v⟩ = 1. A necessary condition for
unitarity is that

cn = ⟨L−nv|L−nv⟩ > 0 for n ∈ N.
But contravariance and the commutation rules of Virasoro show that

cn = 2nh+ c(n3 − n)/12. (2.3.2)

Putting n = 1, we get c1 = 2h so that we must have h ≥ 0. Moreover, (2.3.2) shows that cn is
dominated by cn3 for large n, so that c ≥ 0 is also necessary. □

Let M(c, h) be the Verma representation with highest weight (c, h). For n ∈ N, the subspace
M(c, h)h+n is finite dimensional. Therefore, we can consider the determinant detn(c, h) of the
contravariant Hermitian form ⟨•|•⟩ restricted toM(c, h)h+n. This is well-defined up to a nonzero
constant.

Theorem 2.3.3. The Verma representation M(c, h) is irreducible if and only if for n ∈ Z+,
detn(c, h) ̸= 0.

Proof. By Theorem 2.3.1, M(c, h) is irreducible if and only if M(c, h)⊥ = 0. By Theorem 2.2.4,
M(c, h)⊥ =

⊕
j∈NM(c, h)⊥ ∩M(c, h)h+j =

⊕
j∈NM(c, h)⊥h+j. Therefore, M(c, h) is irreducible

if and only if for j ∈ N, M(c, h)⊥h+j = 0, which is equivalent to for n ∈ Z+, detn(c, h) ̸= 0. □

Thus, to determine whenM(c, h) is irreducible, it is worthwhile to study the number detn(c, h)
for n ∈ N. Fortunately, there is a formula for this.

Theorem 2.3.4 (Kac determinant formula [IK11, Theorem 4.2]). For n ∈ N,

detn(c, h) = constant ·
∏

k,l∈Z+
k≥l

1≤kl≤n

ϕk,l(c, h)
p(n−kl),

where

ϕk,l(c, h) =

{
(h+ (k2−1)(c−13)

24
+ kl−1

2
)(h+ (l2−1)(c−13)

24
+ kl−1

2
) + (k2−l2)2

16
if k ̸= l;

h+ (k2−1)(c−13)
24

+ k2−1
2

if k = l.

Remark 2.3.5. Using Kac determinant formula, it is possible to prove that L(1/2, h) unitary
implies h = 0, 1/2 or 1/16 (see [KRR13, §3]). This is one of the reasons we study L(1/2, 1/2)
and L(1/2, 1/16) in this thesis.

We will need to find the maximal proper submodules ofM(1/2, 1/2) andM(1/2, 1/16) explic-
itly. Kac determinant formula also helps with this, allowing us to compute J(c, h) for rational
numbers c and h.
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It turns out that J(c, h) is generated by at most two singular vectors, which can be computed
explicitly for isolated cases. It is always possible to write (nonuniquely)

c =
(3r + 2s)(3s+ 2r)

rs
, h =

(r + s)2 − t2

4rs

for some r, s ∈ C \ {0} and t ∈ C. Then

ϕk,l(c, h) =

{
(rk+sl+t)(sk+rl+t)(rk+sl−t)(sk+rl−t)

rs
if k ̸= l;

(rk+sk+t)(rk+sk−t)
4rs

if k = l.

Therefore, to find singular vectors inM(c, h), we have to study integral solutions to the linear
equation rk + sl + t = 0. This line is real if and only if c ≤ 1 or c ≥ 25. Let lc,h denote the
solutions to this linear equation.

Theorem 2.3.6 ([Ast97]). Let c and h be real numbers such that c ≤ 1 or c ≥ 25. The integral
points (the points in Z2) of lc,h determine the maximal proper subrepresentation of M(c, h)
completely according to the following three cases:

Case I: The line lc,h contains no integral points. In this case, J(c, h) = 0.
Case II: The line lc,h contains exactly one integral point (k, l). We have three subcases:
Subcase II+: The product kl > 0. Let u be a singular vector in M(c, h+ kl). Then J(c, h) =
U(Vir){u}.
Subcase II0: The product kl = 0. In this subcase, J(c, h) = 0.
Subcase II−: The product kl < 0. In this subcase, J(c, h) = 0.
Case III: The line lc,h contains infinitely many integral points. Let (k1, l1), (k2, l2), . . . be all
integral points on the line lc,h up to equivalence relation (k, l) ∼ (k′, l′) if and only if kl = k′l′

and such that kl > 0. We ordered them in such a way that kili < ki+1li+1 for i ∈ Z+. We have
two subcases:
Subcase c ≤ 1: We have three subsubcases:
Subsubcase III00− : Line lc,h intersects both axes at integral points. Let u be a singular vector
in M(c, h+ k1l1). Then J(c, h) = U(Vir){u}.
Subsubcase III0−: Line lc,h intersects only one axis at an integral point. Let u be a singular
vector in M(c, h+ k1l1). Then J(c, h) = U(Vir){u}.
Subsubcase III−: Line lc,h intersects both axes at nonintegral points. Let u and w be singular
vectors in M(c, h+ k1l1) and M(c, h+ k2l2), respectively. Then J(c, h) = U(Vir){u,w}.

Subcase c ≥ 25: We have three subsubcases:
Subsubcase III00+ : Line lc,h intersects both axes at integral points. Let u be a singular vector
in M(c, h+ k1l1). Then J(c, h) = U(Vir){u}.
Subsubcase III0+: Line lc,h intersects only one axis at an integral point. Let u be a singular
vector in M(c, h+ k1l1). Then J(c, h) = U(Vir){u}.
Subsubcase III+: Line lc,h intersects both axes at nonintegral points. Let u and w be singular
vectors in M(c, h+ k1l1) and M(c, h+ k2l2), respectively. Then J(c, h) = U(Vir){u,w}.

Remark 2.3.7. Theorem 2.3.4 gives us an algorithm to find J(c, h) for a given highest weight
(c, h), with c, h rational numbers. We merely need to find the levels at which the singular
vectors that generate J(c, h) lie, and then by Lemma 2.2.2, we have to solve the linear equations
L1u = L2u = 0 assuming u lies in the right level to obtain our desired singular vector.

Remark 2.3.8. For c ∈ C, Virc = M(c, 0)/U(Vir){L−1 |0⟩} and Virc = L(c, 0) because by Re-
mark 1.6.6, the ideals of Virc are in bijection with the submodules of M(c, 0)/U(Vir){L−1 |0⟩}.
If c = cp,q for some p, q ≥ 2 relatively prime integers, then the singular vector of Virc can be com-
puted by solving the linear equation L1u = L2u = 0 for u ∈ Virc(p−1)(q−1) (see Theorem 1.5.16,
Lemma 2.2.2 and Theorem 3.3.6 ahead).

One of the objectives of this thesis is to find a PBW basis of L(1/2, 1/2) and L(1/2, 1/16)
similar to what was done for the Ising model Vir3,4 = L(1/2, 0) in [AVEH22]. The Vir-modules
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L(1/2, 1/2) and L(1/2, 1/16) are not vertex algebras, but they are modules (vertex algebra

modules) over both Vir1/2 and Vir3,4, as we will see later.

Remark 2.3.9. The irreducible highest weight representations L(1/2, 1/2) and L(1/2, 1/16) can
be constructed explicitly as the even or odd part of some induced representations, without using
Verma representations and passing to the quotient as was done here (cf. [KRR13, §3]). Moreover,
L(1/2, 1/2) is isomorphic to F1, where F = F (Ca) is the fermionic vertex superalgebra associated
to a purely odd one dimensional superspace Ca with an antisupersymmetric form defined by
⟨a|a⟩ = 1 (see Example 1.5.8).

3. Modules over the simple Virasoro vertex algebras

In this section, the objective is to describe the irreducible admissible modules over Virc and
Virc. To do that, we first study the Zhu algebra Zhu(V ) of a Z-graded vertex algebra V in-
troduced in [Zhu96]. This naturally leads to a functor Ω : V -Mod → Zhu(V )-Mod. Next, we
construct an inverse L : Zhu(V )-Mod → {admissible V -modules} of the functor Ω using the
associated Lie algebras of a vertex algebra constructed in §1.7. We end this section by describ-
ing the irreducible admissible modules over Virc and Virc explicitly in terms of the irreducible
highest weight representations L(c, h) for certain values of h.

3.1. The Zhu algebra. Let V be a Z-graded vertex algebra with Hamiltonian H. First, we
define two operations on V . For a, b ∈ V with a homogeneous, we set:

a ◦ b = resz

(
(1 + z)∆a

z2
Y (a, z)b

)
∈ V,

a ∗ b = resz

(
(1 + z)∆a

z
Y (a, z)b

)
∈ V.

We extend these operations linearly to obtain bilinear products on V , and we define

O(V ) = span{a ◦ b | a, b ∈ V }.
Lemma 3.1.1. For a, b ∈ V :

(i) a ◦ |0⟩ = (T +H)a;
(ii) a ∗ |0⟩ = a;
(iii) (T +H)V ⊆ O(V ).

Proof.

(i) We just expand the definition of a◦ |0⟩ recalling that Ta = a(−2) |0⟩ and Ha = ∆aa when
a is homogeneous.

(ii) Again, we just expand the definition recalling that a = a(−1) |0⟩.
(iii) This follows from (i). □

Lemma 3.1.2 ([DLM98, Lemma 2.2]).

(i) We assume a ∈ V is homogeneous, b ∈ V and m ≥ n ≥ 0. Then

resz

(
(1 + z)∆a+n

zm+2
Y (a, z)b

)
∈ O(V ).

(ii) We assume a, b ∈ V are homogeneous. Then

a ∗ b− resz

(
(1 + z)∆b−1

z
Y (b, z)a

)
∈ O(V ).

(iii) We assume a ∈ V is homogeneous. Then

a ∗ b− b ∗ a− resz((1 + z)∆a−1Y (a, z)b) ∈ O(V ).

Theorem 3.1.3 ([DLM98, Proposition 2.3 and Theorem 2.4]). Let V be a Z-graded vertex
algebra. Then O(V ) is a two-sided ideal of V under the operation ∗, and V/O(V ) becomes an
associative algebra with unit |0⟩+O(V ).
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The quotient

Zhu(V ) = V/O(V )

is called the Zhu algebra of V . The Zhu algebra is closely related to the Borcherds Lie algebra,
as the following theorem shows.

Theorem 3.1.4. Let V be a Z-graded vertex algebra. The following map

[V ]0 → [Zhu(V )],

a(∆a − 1) 7→ a+O(V ) for a ∈ V homogeneous

defines an epimorphism of Lie algebras.

Proof. We know Lie0(V ) is isomorphic to [V ]0 (see §1.7) and by Lemma 3.1.1(iii), there is a
natural linear epimorphism

Lie0(V ) ↠ [Zhu(V )],

a+ (T +H)V 7→ a+O(V ).

It remains to show this is a Lie algebra homomorphism. Let a, b ∈ V with a homogeneous. By
Lemma 3.1.2(iii) and the definition of the bracket of Lie0(V ), we have

[a+ (T +H)V, b+ (T +H)V ] =
∑
j∈N

(
∆a − 1

j

)
a(j)b+ (T +H)V

7→
∑
j∈N

(
∆a − 1

j

)
a(j)b+O(V )

= resz((1 + z)∆a−1Y (a, z)b) +O(V )

= a ∗ b− b ∗ a+O(V )

= [a+O(V ), b+O(V )]. □

We still assume V is a Z-graded vertex algebra. We recall from §1.7 that [V ] is a Z-graded
Lie algebra with a triangular decomposition [V ] = [V ]+ ⊕ [V ]0 ⊕ [V ]−. Let W be a [V ]-module.
We denote by Ω(W ) the subspace of lowest weight vectors of W with respect to the triangular
decomposition of [V ], that is,

Ω(W ) = {u ∈ W | [V ]−u = 0}.

If M is a V -module, then by Lemma 1.7.3, [M ] is a [V ]-module, and we define the subspace of
lowest weight vectors of M as

Ω(M) = Ω([M ]).

By (1.5.4), we have

Ω(M) = {u ∈M | for a ∈ V homogeneous and n ∈ Z+, anu = 0}.

One of the most important properties of the Zhu algebra is that it simplifies the theory of
representations of vertex algebras, as the following theorem shows.

Theorem 3.1.5 ([DLM98, Theorem 5.3]). Let V be a Z-graded vertex algebra, and let M be a
V -module. Then the following map

Zhu(V )→ End(Ω(M)),

a+O(V ) 7→ aM0 = aM(∆a−1) for a ∈ V homogeneous

defines a Zhu(V )-module structure on Ω(M).

Because our constructions are natural, it is evident that we have constructed a functor

Ω : V -Mod→ Zhu(V )-Mod.
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To be more precise, if f :M1 →M2 is a homomorphism of V -modules, then [f ] : [M1]→ [M2] is
a homomorphism of [V ]-modules. This implies that Ω(M1) ⊆ Ω(M2). Therefore, we can define
Ω(f) = f |Ω(M1) : Ω(M1)→ Ω(M2), which is evidently a Zhu(V )-module homomorphism.

Example 3.1.6. If V = Virc, and M is a Virc-module, then

Ω(M) = {u ∈M | for n ∈ Z+, Lnu = 0}
is the subspace of singular vectors of M .

Theorem 3.1.7 ([DLM98, Proposition 5.4]). Let V be a Z-graded vertex algebra, and let M be
an irreducible admissible V -module. Then:

(i) Ω(M) =M(0);
(ii) Ω(M) is an irreducible Zhu(V )-module.

3.2. The inverse of the lowest weight subspace functor. Our objective is to construct an
inverse of some sort of the functor Ω. However, it turns out that this is not possible, and we
have to restrict Ω to the full subcategory of completely reducible objects.

Given the Zhu(V )-module U , it is a fortiori a module over the Lie algebra [Zhu(V )]. Thanks
to Theorem 3.1.4, we can consider U as a module over the Lie algebra [V ]0, and then U is a
module over the Lie algebra [V ]− ⊕ [V ]0 by letting [V ]− act trivially. Thus, we define

M(U) = Ind
[V ]
[V ]−⊕[V ]0

(U) = U([V ])⊗U([V ]−⊕[V ]0) U.

We recall from §1.7 that H is a derivation of [V ]. The operator DU(H) ∈ End(U([V ])) is
diagonalizable and makes U([V ]) into a Z-graded associative algebra. This means

U([V ])mU([V ])n ⊆ U([V ])m+n for m,n ∈ Z,
where the subindex denotes the respective eigenspace, as usual. We consider the operator

HM(U) = DU(H)⊗ IdU ∈ End(M(U)).

We can verify that HM(U) is diagonalizable and makes M(U) into a Z-graded [V ]-module with
grading

M(U) =
⊕
n∈Z

M(U)n

such that M(U)n = 0 if n < 0. This means that

[V ]mM(U)n ⊆M(U)m+n for m,n ∈ Z.
The PBW theorem implies that

M(U)n = U([V ])nU

and, in particular,
M(U)0 = U.

Taking a hint from Lemma 1.7.3, we define

Y M(U)(a, z) =
∑
n∈Z

a(n)z−1−n ∈ F(M(U)) for a ∈ V ,

where a(n) ∈ [V ] acts on M(U) by left multiplication. We want M(U) becoming an admissible
V -module by setting

M(U)(n) =M(U)n for n ∈ Z.
However, we are not done yet because all the conditions in Proposition 1.6.4 are met except
(1.6.3). Therefore, we need to divide by the respective relations.

In the following, we let U∗ = HomC(U,C) and extend U∗ to M(U) by letting U∗ annihilate⊕
n∈Z+

M(U)(n). We now define:

J = {u ∈M(U) | for u′ ∈ U∗ and x ∈ U([V ]), ⟨u′, xu⟩ = 0},
L(U) =M(U)/J,

and let the grading of L(U) and Y L(U) be inherited from M(U) in the obvious way.
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Theorem 3.2.1 ([DLM98, Theorem 6.3]). With notation as above, L(U) is an admissible V -
module, and we have defined a functor

L : Zhu(V )-Mod→ {admissible V -modules}
such that Ω ◦ L is naturally equivalent to the identity.

Remark 3.2.2. Since U([V ])U =M(U), we see that U([V ])U = L(U). This implies that L(U) is
strongly generated by U as a vertex algebra.

At this point, we have a pair of functors Ω, L defined on appropriate module categories

Zhu(V )-Mod {admissible V -modules}
L

Ω

Although Ω◦L is equivalent to the identity, one cannot expect that L◦Ω is also equivalent to the
identity in general. This is essentially because there are examples of Z-graded vertex algebras
V for which the category of admissible V -modules contains objects which are not completely
reducible.

Lemma 3.2.3 ([DLM98, Lemma 7.1]). Suppose that U is an irreducible Zhu(V )-module. Then
L(U) is an irreducible admissible V -module.

Theorem 3.2.4 ([DLM98, Theorem 7.2]). L and Ω are equivalences when restricted to the full
subcategories of completely reducible Zhu(V )-modules and completely reducible admissible V -
modules respectively. In particular, L and Ω induces mutually inverse bijections on the isomor-
phism classes of irreducible objects in the category of Zhu(V )-modules and admissible V -modules
respectively.

Remark 3.2.5. The functor L plays well with vertex algebra homomorphism. To elaborate a bit
more, let f : V1 → V2 be a homomorphism of Z-graded vertex algebras. We naturally define
the functors ◦f : V2-Mod → V1-Mod and ◦Zhu(f) : Zhu(V2)-Mod → Zhu(V1)-Mod. Then the
following diagram of functors commutes

Zhu(V2)-Mod {completely reducible admissible V2-modules}

Zhu(V1)-Mod {completely reducible admissible V1-modules}

LV2

◦Zhu(f) ◦f
LV1

By commuting, we mean that the functors ◦f ◦ LV2 and LV1 ◦ (◦Zhu(f)) are isomorphic.

Remark 3.2.6. In some articles such as [DSK06, §2], the functor Ω is defined as Ω(M) =M(0),
where M is an admissible V -module. There are some difficulties with this approach:

(i) This is not even a functor. For example, if V = Vir1/2, N = U(Vir){a3,4} and inc : N ↪→
V is the inclusion, there is no sensible way of defining Ω(inc) if Ω(M) = M(0). On the
other hand, if we use the definition of Ω given in [DLM98], the problem disappears (see
Example 3.1.6).

(ii) It is slightly less general because [DLM98] defines Ω(M) whenM is any V -module (called
weak V -module there).

Remark 3.2.7. It is not necessary to consider conformal vertex algebras to do the theory of the
Zhu algebra, Z-graded vertex algebras are enough.

3.3. Modules over the Virasoro vertex algebras. We wish to determine all irreducible
admissible modules over both Virc and Virc. This is why we studied the Zhu algebra. We start
with Virc, which is easier.

Theorem 3.3.1 ([Wan93]). For c ∈ C, we have the following isomorphism of algebras

Zhu(Virc)
∼−→ C[x],

L−2 |0⟩+O(Virc) 7→ x.
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Theorem 3.3.2. For c ∈ C, the irreducible admissible modules over Virc are L(c, h) for h ∈ C.
Proof. The irreducible modules over C[x] are Ch = C for h ∈ C, where x acts by multiplication
by h. By Theorem 3.2.4 and Theorem 3.3.1, the irreducible admissible modules over Virc are
L(Ch) for h ∈ C. By Theorem 1.6.8, for h ∈ C, L(Ch) is a smooth Vir-module of central charge

c. Also, L0 = (L−2 |0⟩)L(Ch)
(1) acts by multiplication by h on Ch and by Remark 3.2.2, L(Ch) is

strongly generated by Ch as a vertex algebra. Therefore, L(Ch) is an irreducible highest weight
representation of Vir, i.e., L(Ch) = L(c, h). □

We now move on to Virc. If c is not of the form cp,q for some p, q ≥ 2 relatively prime integers,
then Virc = Virc by Theorem 1.5.16, and we have already solved the problem.

Theorem 3.3.3 ([Wan93]). We set c = cp,q for some p, q ≥ 2 relatively prime integers. We
have the following isomorphism of algebras

Zhu(Virc)
∼−→ C[x]/(Gp,q(x)),

L−2 |0⟩+O(Virc) 7→ x+ (Gp,q(x)),

where Gp,q(x)
2 =

∏p−1
m=1

∏q−1
n=1(x− hm,n), and hm,n ∈ Q is defined by

hm,n =
(np−mq)2 − (p− q)2

4pq
. (3.3.1)

Theorem 3.3.4. We set c = cp,q for some p, q ≥ 2 relatively prime integers. Then the irreducible
admissible modules over Virc are L(c, hm,n) for integers m,n such that 0 < m < p and 0 < n < q.

Let Y
L(c,hm,n)
Virc : Virc → F(L(c, hm,n)) be the state-field correspondence of L(c, hm,n) as a module

over Virc, and let Y
L(c,hm,n)
Virc

: Virc → F(L(c, hm,n)) be the state-field correspondence of L(c, hm,n)

as a module over Virc. Then Y
L(c,hm,n)
Virc factors through Y

L(c,hm,n)
Virc

, i.e., the following diagram
commutes

Virc Virc

F(L(c, hm,n))
Y

L(c,hm,n)

Virc

Y
L(c,hm,n)

Virc

where the horizontal arrow is the quotient map.

Proof. The irreducible modules over C[x]/(Gp,q(x)) are Chm,n = C for integers m,n such that
0 < m < p and 0 < n < q, where x+(Gp,q(x)) acts by multiplication by hm,n. We conclude from
Theorem 3.3.2 that the Virc-module corresponding to Chm,n is L(c, hm,n), and the commutativity
of the diagram follows from Remark 3.2.5. □

We are also interested in the refined character of these irreducible modules, as defined in §4
ahead. The ordinary character is fortunately already known.

Theorem 3.3.5 ([FF84]). Let p, q ≥ 2 be relatively prime integers, and let m,n be integers such
that 0 < m < p and 0 < n < q. Then

chL(cp,q ,hm,n)(q) =
1

(q)∞

∑
k∈Z

q
(2kpq+mq−np)2−(p−q)2

4pq − q
(2kpq+mq+np)2−(p−q)2

4pq

=
qhm,n

(q)∞

∑
k∈Z

qk
2pq+k(mq−np) − qk2pq+k(mq+np)+mn.

It follows from Theorem 3.3.4 that the irreducible admissible modules over the Ising model
Vir3,4 are Vir3,4 = L(1/2, 0), L(1/2, 1/2) and L(1/2, 1/16).

Theorem 3.3.6. We set c = cp,q for some p, q ≥ 2 relatively prime integers, and we consider
the rational number hm,n for integers m,n such that 0 < m < p and 0 < n < q as defined in
(3.3.1). Then the maximal proper subrepresentation J(c, hm,n) of M(c, hm,n) is generated by two
singular vectors u and w in M(c, hm,n)hm,n+mn and M(c, hm,n)hm,n+(p−m)(q−n), respectively.
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Proof. Solving the equations

c =
(3r + 2s)(3s+ 2r)

rs
, h =

(r + s)2 − t2

4rs

for r, s ∈ C \ {0} and t ∈ C, we obtain

r = p, s = −q, t = np−mq.
The solutions (k, l) ∈ Z2 of the linear equation pk − ql + np−mq = 0 are

{(n+ qj,m+ pj) | j ∈ Z}. (3.3.2)

We are in Subsubcase III− of Theorem 2.3.6, and we see that the first two elements of the
solutions in (3.3.2) are (n,m) and (n− q,m− p) (not necessarily in that order). □

We pick a highest weight (c, h). For τ ∈ H, we set q = e2πiτ and define the normalized
character of L(c, h) by

χL(c,h)(τ) = q−c/24 chL(c,h)(q) ∈ C.
We express χL(c,h)(τ) by using the Dedekind η-function η(τ) defined by

η(τ) = q1/24
∏
n∈Z+

(1− qn),

and the classical theta function Θn,m(τ) for m ∈ Z+ and n ∈ Z/2mZ defined by

Θn,m(τ) =
∑
k∈Z

qm(k+ n
2m

)2 .

Theorem 3.3.7 ([IK11, Corollary 6.1]). Let p, q ≥ 2 be relatively prime integers, and let m,n
be integers such that 0 < m < p and 0 < n < q. Then

χm,n(τ) = χL(cp,q ,hm,n)(τ) = (Θmq−np,pq(τ)−Θmq+np,pq(τ))η(τ)
−1.

The modular group SL2(Z) acts on the upper half-plane H by(
a b
c d

)
· τ =

aτ + b

cτ + d
.

Theorem 3.3.8 ([IK11, Proposition 6.3] and [Zhu96]). Let us take integers p, q,m, n as in
Theorem 3.3.7. Then:

χm,n(τ + 1) = e{
(mq−np)2

2pq
− 1

12
}πiχm,n(τ),

χm,n

(
−1

τ

)
=

∑
(m′,n′)∈Kp,q

S(m,n),(m′,n′)χm′,n′(τ),

where:

S(m,n),(m′,n′) =

√
8

pq
(−1)(m+n)(m′+n′) sin

(
πmm′

p
(p− q)

)
sin

(
πnn′

q
(p− q)

)
,

Kp,q = {(m,n) ∈ Z2 | 0 < m < p, 0 < n < q,mq + np ≤ pq}.

4. Vertex Poisson algebras and filtrations of vertex algebras

In this section, we review the theory of filtrations for vertex algebras. We can consider either
the Li filtration (FpV )p∈Z or the standard filtration (GpV )p∈Z. Both of these filtrations lead to
a vertex Poisson algebra, namely grF (V ) and grG(V ), as was shown by Haisheng Li in [Li05]
and [Li04]. In [Ara12], it was shown by Arakawa that the resulting vertex Poisson algebra is
the same. Then, we introduce the Li filtration (FpM)p∈Z and the standard filtration (GpM)p∈Z
for modules. This leads to modules grF (M) and grG(M) that are again isomorphic. Finally, we
introduce the Zhu C2-algebra and derive consequences of the C2-cofiniteness condition.
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4.1. Vertex Lie superalgebras and their modules. Let V be a vector space. Given a formal
distribution f(x1, . . . , xn) ∈ V [[x±1

1 , . . . , x±1
n ]], we can write it as

f(x1, . . . , xn) =
∑

m1,...,mn∈Z

f(m1,...,mn)x
−m1−1
1 . . . x−mn−1

n .

We set

sing(f(x1, . . . , xn)) =
∑

m1,...,mn∈N

f(m1,...,mn)x
−m1−1
1 . . . x−mn−1

n .

A vertex Lie superalgebra is the data (V, T, Y−), where V is a vector superspace, Y− : V →
F(V ) is a linear and parity preserving map such that Y−(a, z) = sing(Y−(a, z)) (i.e., Y− : V →
Hom(V, z−1V [z−1])) for a ∈ V and T ∈ End(V ). The data must satisfy the following axioms for
a, b ∈ V :

(i) Y−(Ta, z) = ∂zY−(a, z);
(ii) Y−(a, z)b = sing(p(a, b)eTzY−(b,−z)a);
(iii) [Y−(a, z), Y−(b, w)] = sing(

∑
j∈N

∂j
wδ(z,w)

j!
Y−(a(j)b, w)), where Y−(a, z) =

∑
n∈N a(n)z

−n−1,

a(n) ∈ End(V ).

Remark 4.1.1. Axiom (i) of vertex Lie superalgebras implies that T ∈ End(V )0.

Concepts like homomorphisms, vertex Lie subalgebras and ideals are defined in the usual way.
We obtain the category of vertex Lie superalgebras.

Let V be vertex Lie superalgebra. We can make V into a C[∂]-module by declaring ∂ = T .
Then axioms (i) and (ii) are the respective axioms of Lie conformal superalgebras given in §1.2.
We take a, b ∈ V . Since

∑
j∈N

∂jwδ(z, w)

j!
Y−(a(j)b, w) =

∑
m,n∈Z

 ∑
j,k∈N

j+k=m+n

(
m

j

)
(a(j)b)(k)

 z−m−1w−n−1,

we have

sing

(∑
j∈N

∂jwδ(z, w)

j!
Y−(a(j)b, w)

)
=
∑

m,n∈N

m∑
j=0

(
m

j

)
(a(j)b)(m+n−j)z

−m−1w−n−1.

On the other hand,

[Y−(a, z), Y−(b, w)] =
∑

m,n∈N

[a(m), b(n)]z
−m−1w−n−1.

Therefore, axiom (iii) of vertex Lie superalgebras is equivalent to

[a(m), b(n)] =
m∑
j=0

(
m

j

)
(a(j)b)(m+n−j) for a, b ∈ V and m,n ∈ N.

This is just axiom (iii) of Lie conformal superalgebras. Thus, the category of vertex Lie superal-
gebras and the category of Lie conformal superalgebras are isomorphic. Consequently, we have
three equivalent concepts: vertex Lie superalgebras, Lie conformal superalgebras and regular
formal distribution Lie superalgebras.

Theorem 4.1.2. Let V be a vertex Lie superalgebra. For a, b ∈ V and m, j ∈ N:
(i) [T, Y−(a, z)] = Y−(Ta, z) = ∂zY−(a, z);

(ii) (a(j)b)(m) =
∑j

k=0

(
j
k

)
(−1)k[a(j−k), b(m+k)].

Proof.

(i) This is Proposition 1.2.8.
(ii) This is Theorem 1.2.13. □
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Let V be a vertex Lie superalgebra. A Hamiltonian operator of V is a diagonalizable operator
H ∈ End(V ) such that:

(i) [H,T ] = T ;
(ii) [H,Y−(a, z)] = z∂zY−(a, z) + Y−(Ha, z) for a ∈ V .

A vertex Lie superalgebra with a Hamiltonian is called graded. The grading of V is the eigenspace
decomposition of H

V =
⊕
∆∈C

V∆.

A module over V is a vector superspace M together with a linear and parity preserving map
Y M
− : V → Hom(M, z−1M [z−1]), written as Y M

− (a, z) =
∑

n∈N a
M
(n)z

−n−1, aM(n) ∈ End(M), such
that for a, b ∈ V and m,n ∈ N:

(i) (Ta)M(n) = −naM(n−1);

(ii) [aM(m), b
M
(n)] =

∑m
j=0

(
m
j

)
(a(j)b)

M
(m+n−j).

Concepts like homomorphisms and vertex Lie submodules are defined in the usual way. Given
a vertex Lie superalgebra V , we obtain the abelian category V -Mod of modules over V .
Let M be a module over a graded vertex Lie superalgebra V with Hamiltonian H. A Hamil-

tonian operator of M is a diagonalizable operator HM ∈ End(M) such that

[HM , Y M
− (a, z)] = z∂zY

M
− (a, z) + Y M

− (Ha, z) for a ∈ V .
A V -module together with a Hamiltonian is called graded. The grading of M is the eigenspace
decomposition of HM

M =
⊕
∆∈C

M∆.

Let V be a vertex Lie superalgebra, and let M be a V -module. We say TM ∈ End(M) is a
differential of M if

[TM , Y M
− (a, z)] = Y M

− (Ta, z) for a ∈ V .
A differential V -module is a module equipped with a differential.

4.2. Vertex Poisson algebras and their modules. A vertex Poisson algebra is the data
consisting of three elements (V, T, Y−) such that:

(i) (V, T ) is a differential commutative associative algebra with unit 1;
(ii) (V, T, Y−) is a vertex Lie algebra;
(iii) The left Leibniz rule holds

Y−(a, z)(bc) = (Y−(a, z)b)c+ b(Y−(a, z)c) for a, b, c ∈ V .
The left Leibniz rule is equivalent to

a(n)(bc) = (a(n)b)c+ b(a(n)c) for a, b, c ∈ V and n ∈ N.
The left Leibniz rule implies that a(n) ∈ Der(A) for a ∈ A and n ∈ N. Therefore, we have

Y−(a, z) ∈ z−1Der(A)[[z−1]] for a ∈ A.
In particular, a(n)1 = 0 for a ∈ A and n ∈ N. Therefore,

Y−(a, z)1 = 0 for a ∈ A.
By skewsymmetry,

Y−(1, z) = 0.

Theorem 4.2.1 (Right Leibniz rule). Let V be a vertex Poisson algebra. For a, b, c ∈ V and
n ∈ N,

(ab)(n)c =
∑
j∈N

(
T ja

j!
b(n+j)c+

T jb

j!
a(n+j)c

)
.

Proof. This follows from skewsymmetry and the left Leibniz rule. □
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Let V1 and V2 be vertex Poisson algebras. A vertex Poisson algebra homomorphism f : V1 → V2
is simultaneously a differential algebra and a vertex Lie algebra homomorphism. We obtain the
category of vertex Poisson algebras.

Let V be a vertex Poisson algebra. A module over V is a module (M,Y M
− ) over V as a vertex

Lie algebra and a module over V as a commutative associative algebra such that for a, b ∈ V ,
u ∈M and n ∈ N:

(i) (Left Leibniz rule) aM(n)(bu) = (a(n)b)u+ b(aM(n)u);

(ii) (Right Leibniz rule) (ab)M(n)u =
∑

j∈N

(
T ja
j!
bM(n+j)u+

T jb
j!
aM(n+j)u

)
.

Concepts like homomorphisms and vertex Poisson submodules are defined in the usual way.
Given a vertex Poisson algebra V , we obtain the abelian category V -Mod of modules over V .

Remark 4.2.2. We probably cannot deduce the right Leibniz rule from the left Leibniz rule (c.f.
Remark B.3)

Proposition 4.2.3 ([Ara12, Proposition 2.3.1] and Appendix C). Let R be a (graded) Poisson
algebra. Then there is a unique (graded) vertex Poisson algebra structure on JR such that

a(n)b = δn,0{a, b} for a, b ∈ R and n ∈ N.

The (graded) vertex Poisson algebra structure on JR given in Proposition 4.2.3 for a (graded)
Poisson algebra R will be called the level 0 vertex Poisson algebra structure of JR.

If R is a (graded) Poisson algebra, and M is a (graded) R-module, then we can verify that
JR⊗R M is a (graded) JR-module by defining the Poisson structure as

a(n)(b⊗ u) = (a(n)b)⊗ u+ δn,0b⊗ {a, u} for a ∈ R, b ∈ JR, u ∈M and n ∈ N
and HJR⊗RM as in Appendix C.

We have a natural (graded) inclusion inc : M ↪→ JR ⊗R M , which is a (graded) R-module
homomorphism. The (graded) JR-module M together with the (graded) R-module inclusion
inc : M ↪→ JR ⊗R M satisfy a universal property similar to that of inc : R ↪→ JR (see
Appendix C), as we now show.

Let N be a (graded) module over the (graded) vertex Poisson algebra JR, and let f :M → N
be a (graded) homomorphism of modules over the (graded) Poisson algebra R. Thus, N is a
module over the (graded) algebra JR and in particular, a module over the (graded) algebra
R because we have an inclusion inc : R ↪→ JR. Also, f can be considered as a (graded)
homomorphism of (graded) modules over the (graded) algebra R. Therefore, there is a unique
(graded) homomorphism f : JR⊗R M → N of (graded) modules over the (graded) algebra JR
such that the following diagram commutes

M JR⊗R M

N

inc

f
f

Proposition 4.2.4. The homomorphism f as defined above is a (graded) JR-module homomor-
phism.

Proof. We just expand the definitions and verify the axioms of (graded) modules over (graded)
vertex Poisson algebras. □

We have constructed a functor

JR⊗R • : {(graded) R-modules} → {(graded) JR-modules},
which is left adjoint to the forgetful functor {(graded) JR-modules} → {(graded) R-modules},
i.e., for M ∈ {(graded) R-modules} and N ∈ {(graded) JR-modules}, we have a natural iso-
morphism

Hom{(graded) JR-modules}(JR⊗R M,N) ∼= Hom{(graded) R-modules}(M,N).
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4.3. Filtrations of vertex algebras. Let V be a vertex algebra, and let (ai)i∈I be a family of
strong generators of V . For p ∈ Z, we set

FpV = span{ai1(−n1−1) . . . a
is
(−ns−1) |0⟩ | s, n1, . . . , ns ∈ N, i1, . . . , is ∈ I, n1 + · · ·+ ns ≥ p}.

Proposition 4.3.1 ([Li05]). The filtration (FpV )p∈Z satisfies:

(i) FpV = V for p ≤ 0;
(ii) |0⟩ ∈ F0V ⊇ F1V ⊇ . . . ;
(iii) T (FpV ) ⊆ Fp+1V for p ∈ Z;
(iv) a(n)FqV ⊆ Fp+q−n−1V for p, q ∈ Z, a ∈ FpV and n ∈ Z;
(v) a(n)FqV ⊆ Fp+q−nV for p, q ∈ Z, a ∈ FpV and n ∈ N.

Let

grF (V ) =
⊕
p∈N

FpV/Fp+1V

be the associated graded vector space. By [Li05], the vector space grF (V ) is a vertex Poisson
algebra with operations given as follows. For p, q ∈ N, a ∈ FpV and b ∈ FqV , we set:

σp(a)σq(b) = σp+q(a(−1)b),

T (σp(a)) = σp+1(Ta),

Y−(σp(a), z)σq(b) =
∑
n∈N

σp+q−n(a(n)b)z
−n−1,

where σp : FpV → grF (V ) is the principal symbol map, which is the composition of the natural
maps FpV ↠ FpV/Fp+1V and FpV/Fp+1V ↪→ grF (V ). The unit is σ0(|0⟩). The filtration
(FpV )p∈Z is called the Li filtration of V .

Lemma 4.3.2 ([Li05, Lemma 2.9]). Let V be a vertex algebra. Then

FpV = span{a(−i−1)b | a ∈ V, i ∈ Z+, b ∈ Fp−iV } for p ∈ Z+.

By Lemma 4.3.2, the Li filtration depends only on V and not on the choice of the strong
generators. If V is graded with Hamiltonian H, then H(FpV ) ⊆ FpV because in that case, for
p ∈ Z,

FpV = span{a1(−n1−1) . . . a
s
(−ns−1) |0⟩ | s, n1, . . . , ns ∈ N, a1, . . . , as ∈ V homogeneous,

n1 + · · ·+ ns ≥ p}.

Therefore, we can define an operator H ∈ End(grF (V )) as H(σp(a)) = σp(Ha) for p ∈ N and
a ∈ FpV . For p ∈ Z and ∆ ∈ C, we define FpV∆ = FpV ∩ V∆. Since H(FpV ) ⊆ FpV for p ∈ Z,
Lemma 1.5.12 implies that

FpV =
⊕
∆∈C

FpV∆ for p ∈ Z.

For ∆ ∈ C, we define grF (V )∆ =
⊕

p∈N σp(FpV∆). Then Ha = ∆a for a ∈ grF (V )∆. The

family of subspaces (grF (V )∆)∆∈C satisfies grF (V ) =
⊕

∆∈C grF (V )∆. Therefore, the operator
H ∈ End(grF (V )) is diagonalizable with grF (V )∆ = ker(H −∆IdgrF (V )). In fact, more is true.

Theorem 4.3.3. This diagonalizable operator H is a Hamiltonian of grF (V ).

Proof. For p, q ∈ N, a ∈ FpV and b ∈ FqV ,

[H,Y−(σp(a), z)]σq(b) =
∑
n∈N

σp+q−n([H, a(n)]b)z
−n−1

=
∑
n∈N

σp+q−n((−(n+ 1)a(n) + (Ha)(n))b)z
−n−1

= (z∂zY−(σp(a), z) + Y−(σp(Ha), z))σq(b),
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H(σp(a)σq(b)) = H(σp+q(a(−1)b))

= σp+q(H(a(−1)b))

= σp+q(a(−1)(Hb) + (Ha)(−1)b)

= σp(a)H(σq(b)) +H(σp(a))σq(b),

[H,T ]σp(a) = H(T (σp(a)))− T (H(σp(a)))

= σp+1(HTa)− σp+1(THa)

= σp+1([H,T ]a)

= σp+1(Ta)

= Tσp(a). □

We have the natural vector space isomorphisms

σp(FpV∆) ∼= FpV∆/Fp+1V∆ for p ∈ Z and ∆ ∈ C

and the refined grading

grF (V ) =
⊕
p∈N
∆∈C

σp(FpV∆). (4.3.1)

By (4.3.1), when dim(V∆) <∞ for ∆ ∈ C, it is natural to define the refined character of V with
respect to the Li filtration as

chgrF (V )(t, q) =
∑
p∈N
∆∈C

dim(σp(FpV∆))t
pq∆.

If f : V1 → V2 is a homomorphism of vertex algebras, then

grF (f) : grF (V1)→ grF (V2),

grF (f)(σ
V1
p (a)) = σV2

p (f(a)) for p ∈ N and a ∈ FpV1

defines a homomorphism of vertex Poisson algebras. If V1 and V2 are graded, then we require
that f respects the gradings of V1 and V2, and this implies that grF (f) also respects the gradings
of grF (V1) and grF (V2). Therefore, we obtain a functor

grF : {(graded) vertex algebras} → {(graded) vertex Poisson algebras}.

We now assume that V is an N-graded vertex algebra with Hamiltonian H. Let (ai)i∈I be a
family of homogeneous strong generators of V . For p ∈ Z, we set

GpV = span{ai1(−n1−1) . . . a
is
(−ns−1) |0⟩ | s, n1, . . . , ns ∈ N, i1, . . . , is ∈ I,∆ai1 + · · ·+∆ais ≤ p}.

Proposition 4.3.4 ([Li04]). The filtration (GpV )p∈Z satisfies:

(i) GpV = 0 for p < 0;
(ii) |0⟩ ∈ G0V ⊆ G1V ⊆ . . . ;
(iii) Vn ⊆ GnV for n ∈ Z;
(iv) V =

⋃
p∈NG

pV ;

(v) a(n)G
qV ⊆ Gp+qV for p, q ∈ Z, a ∈ GpV and n ∈ Z;

(vi) a(n)G
qV ⊆ Gp+q−1V for p, q ∈ Z, a ∈ GpV and n ∈ N;

(vii) H(GpV ) ⊆ GpV and T (GpV ) ⊆ GpV for p ∈ Z.

Let

grG(V ) =
⊕
p∈N

GpV/Gp−1V
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be the associated graded vector space. By [Li04], the vector space grG(V ) is a vertex Poisson
algebra with operations given as follows. For p, q ∈ N, a ∈ GpV and b ∈ GqV , we set:

αp(a)αq(b) = αp+q(a(−1)b),

T (αp(a)) = αp(Ta),

Y−(α
p(a), z)αq(b) =

∑
n∈N

αp+q−1(a(n)b)z
−n−1,

where αp : GpV → grG(V ) is the principal symbol map. The unit is α0(|0⟩). The filtration
(GpV )p∈Z is called the standard filtration of V . By Proposition 4.3.6 ahead, the standard filtra-
tion does not depend on the choice of the strong generators of V .
By Proposition 4.3.4(vii), we can define an operator H ∈ End(grG(V )) as H(αp(a)) = αp(Ha)

for p ∈ Z and a ∈ GpV . For p ∈ Z and n ∈ N, we define GpVn = GpV ∩Vn. SinceH(GpV ) ⊆ GpV
for p ∈ Z, Lemma 1.5.12 implies that

GpV =
⊕
n∈N

GpVn for p ∈ Z.

For n ∈ N, we define grG(V )n =
⊕

p∈N α
p(GpVn). Then Ha = na for a ∈ grG(V )n. The

family of subspaces (grG(V )n)n∈N satisfies grG(V ) =
⊕

n∈N gr
G(V )n. Therefore, the operator

H ∈ End(grG(V )) is diagonalizable with grG(V )n = ker(H − n IdgrG(V )). In fact, more is true.

Theorem 4.3.5. This diagonalizable operator H is a Hamiltonian of grG(V ).

Proof. The proof of Theorem 4.3.3 also works here. □

We have the natural vector space isomorphisms

αp(GpVn) ∼= GpVn/G
p−1Vn for p ∈ Z and n ∈ N

and the refined grading

grG(V ) =
⊕
p,n∈N

αp(GpVn). (4.3.2)

By (4.3.2), when dim(Vn) <∞ for n ∈ N, it is natural to define the refined character of V with
respect to the standard filtration as

chgrG(V )(t, q) =
∑
p,n∈N

dim(αp(GpVn))t
pqn ∈ C[[t, q]].

If f : V1 → V2 is a homomorphism of N-graded vertex algebras, then

grG(f) : grG(V1)→ grG(V2),

grG(f)(αp
V1
(a)) = αp

V2
(f(a)) for p ∈ N and a ∈ GpV1

defines a homomorphism of N-graded vertex Poisson algebras. Therefore, we obtain a functor

grG : {N-graded vertex algebras} → {N-graded vertex Poisson algebras}.

Proposition 4.3.6 ([Ara12, Proposition 2.6.1]). Let V be an N-graded vertex algebra. Then the
Li filtration and standard filtration satisfy

FpVn = Gn−pVn for p, n ∈ N.

An explicit isomorphism grF (V )
∼−→ grG(V ) of vertex Poisson algebras is defined by extending

linearly the isomorphisms of vector spaces given by

σp(FpVn)
∼−→ αn−p(Gn−pVn),

σp(a) 7→ αn−p(a) for p, n ∈ N and a ∈ FpVn.
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Remark 4.3.7. In [Ara12], it is suggested in a footnote that it is possible to consider more
general 1

r0
N-graded vertex algebras instead of N-graded vertex algebras. However, we encounter

difficulties doing this. For example, if V = Vir1/2, which is the case we are interested here,
then V is 1

2
N-graded. According to the definition of grG(V ) given in [Ara12], we should have

grG(V ) =
⊕

p∈ 1
2
NGpV/Gp−1V = G0V/G−1V ⊕ G1/2V/G−1/2V ⊕ · · · = C |0⟩⊕C |0⟩⊕ . . . , which

means “the vacuum is doubled”. That is probably not intended, and also the proof of [Ara12,
Proposition 2.6.1] does not work for 1

r0
N-graded vertex algebras. But the hypothesis V0 = C |0⟩

can be removed, just as Arakawa wrote.

Theorem 4.3.8. Let V be an N-graded vertex algebra with dim(Vn) <∞ for n ∈ N. The refined
characters of V are related as follows:

(i) chV (q) = chgrF (V )(q) = chgrG(V )(q) = chgrF (V )(1, q) = chgrG(V )(1, q);
(ii) chgrG(V )(t

−1, tq) = chgrF (V )(t, q).

Proof. See the proof of Proposition 4.4.9 ahead. □

Example 4.3.9 (grG(Virc)). We pick any c ∈ C and define the subalgebra Vir≤−2 =
⊕

n≤−2CLn

of Vir. By the PBW theorem and Example 1.4.14, for s ∈ N, a basis of U(Vir≤−2)
s (see

Appendix A for the definition of U(Vir≤−2)
s) is given by

{Lλ | t ≤ s and [λ1, . . . , λt] is a partition with λt ≥ 2}.
We recall that ∆L−2 |0⟩ = 2. From the definition of the standard filtration, we see that for s ∈ Z,
G2sVirc = G2s+1 Virc ∼= U(Vir≤−2)

s. This implies that the quotients G2s Virc /G2s+1 Virc are 0
for s ∈ N. Therefore, we have a vector space isomorphism

grG(Virc)
∼−→ gr(U(Vir≤−2)),

α2s(Lλ |0⟩) 7→ γs(Lλ) for s ∈ N and λ = [λ1, . . . , λs] a partition with λs ≥ 2.

We now show this is an algebra homomorphism. We need to show that for s, t ∈ N and partitions
[λ1, . . . , λs], [η1, . . . , ηt] with λs, ηt ≥ 2,

α2s(Lλ |0⟩)α2t(Lη |0⟩) 7→ γs+t(LλLη),

which is equivalent to
α2s+2t((Lλ |0⟩)(−1)(Lη |0⟩)) 7→ γs+t(LλLη).

Therefore, we have to show that

(Lλ |0⟩)(−1)(Lη |0⟩) = (LλLη) |0⟩+a for some a ∈ G2s+2t−1Virc. (4.3.3)

If s = 0 or s = 1, (4.3.3) is clear. We assume s ≥ 2. By Corollary 1.4.9,

(Lλ |0⟩)(−1)(Lη |0⟩) =
(
: ∂λ1−2

z L(z) . . . ∂λs−2
z L(z) :

(λ1 − 2)! . . . (λs − 2)!

)
(−1)

(Lη |0⟩)

=
(: ∂λ1−2

z L(z) . . . ∂λs−2
z L(z) :)(−1)(Lη |0⟩)

(λ1 − 2)! . . . (λs − 2)!
,

where L(z) =
∑

n∈Z Lnz
−n−2 ∈ F(Virc). We now use Lemma 1.3.4 with V = Virc, ak(z) =

∂λk−2L(z) for k = 1, . . . , s and b = Lη |0⟩. First, we note that for k = 1, . . . , s,

ak(z) = ∂λk−2
z L(z)

=
∑
n∈Z

(−n− 2) . . . (−n− 2− (λk − 3))Lnz
−n−2−(λk−2)

=
∑
n∈Z

(−n+ λk − 3) . . . (−n)Ln+1−λk
z−n−1,

which says that

ak(n) = (−n+ λk − 3) . . . (−n)Ln+1−λk
for k = 1, . . . , s and n ∈ Z.
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We note that each expression R−1,k
n1,...,ns−1

Lη |0⟩ in Lemma 1.3.4, where we omitted the fields

ak(z) from the notation, is the sum of elements of the form

scalar · Lκ1 . . . Lκs(Lη |0⟩),
where κk ∈ Z for k = 1, . . . , s. Furthermore, we note that if κk ≥ −1 for some k = 1, . . . , s,
then Lκ1 . . . Lκs(Lη |0⟩) ∈ G2s+2t−1Virc. We now study these expressions R−1,k

n1,...,ns−1
Lη |0⟩ by

considering the elements that appear in the sum defining it. We consider several disjoint cases:

(i) k > 0. If ni1 ≥ λi1 − 2, then ni1 + 1− λi1 ≥ −1, so we get

aj1(−nj1
−1) . . . a

js−1−k

(−njs−1−k
−1)a

s
(l−k−

∑k
r=1 nir+

∑s−1−k
r=1 njr )

aik(nik
) . . . a

i1
(ni1

)Lη |0⟩ ∈ G2s+2t−1Virc .

If ni1 ≤ λi1 − 3, then ai1(z)(ni1
)Lη |0⟩ = 0 because (−ni1 + λk − 3) . . . (−ni1) = 0, so we

get

aj1(−nj1
−1) . . . a

js−1−k

(−njs−1−k
−1)a

s
(l−k−

∑k
r=1 nir+

∑s−1−k
r=1 njr )

aik(nik
) . . . a

i1
(ni1

)Lη |0⟩ = 0.

Therefore, we obtain

R−1,k
n1,...,ns−1

Lη |0⟩ ∈ G2s+2t−1Virc .

(ii) k = 0 and there exists some j = 1, . . . , s− 1 such that nj > 0. In this case, we get

R−1,0
n1,...,ns−1

Lη |0⟩ = a1(−n1−1) . . . a
s−1
(−ns−1−1)a

s
(−1+

∑s−1
r=1 nr)

Lη |0⟩ ∈ G2s+2t−1Virc

because we can repeat the reasoning of (i) with −1 +
∑s−1

r=1 nr instead of ni1 .
(iii) k = 0 and n1 = · · · = ns−1 = 0. In this case, we get

R−1,0
0,...,0 = a1(−1) . . . a

s−1
(−1)a

s
(−1)Lη |0⟩ = (λ1 − 2)! . . . (λs − 2)!LλLη |0⟩ .

From these three cases, we obtain (4.3.3).

We conclude that we have an algebra isomorphism grG(Virc)
∼−→ gr(U(Vir≤−2)). Composing

this with the inverse of the isomorphism S(Vir≤−2)
∼−→ gr(U(Vir≤−2)) in Appendix A and taking

(Ln)n≤−2 as the basis of Vir≤−2, we obtain the following isomorphism of commutative associative
algebras with unit

grG(Virc)
∼−→ C[L−2, L−3, . . . ],

α2s(L−n1−2 . . . L−ns−2 |0⟩) 7→ L−n1−2 . . . L−ns−2 for s, n1, . . . , ns ∈ N.
In particular, the isomorphism does not depend on c.
The derivation T ∈ Der(C[L−2, L−3, . . . ]) is given by T (L−n) = (n− 1)L−n−1 for n ≥ 2, which

is extended to a derivation.
The Poisson structure of grG(Virc) is trivial (i.e., the map Y− is zero) because for s ∈ Z,

G2sVirc = G2s+1Virc.
Since ∆L−2 |0⟩ = 2,

chgrG(Virc)(t, q) =
1∏

k≥2(1− t2qk)
.

Remark 4.3.10. It is worth noting that we do not use the Poisson structure of gr(U(Vir≤−2))
given in Example B.2.

4.4. Filtrations of modules over vertex algebras. Let V be a vertex algebra, let (ai)i∈I be
a family of strong generators of V , and let M be a V -module. For p ∈ Z, we set

FpM = span{ai1M(−n1−1) . . . a
isM
(−ns−1)u | s, n1, . . . , ns ∈ N, i1, . . . , is ∈ I, u ∈M,n1 + · · ·+ ns ≥ p}.

Proposition 4.4.1 ([Li05]). The filtration (FpM)p∈Z satisfies:

(i) M = FpM for p ≤ 0;
(ii) F0M ⊇ F1M ⊇ . . . ;
(iii) a(n)FqM ⊆ Fp+q−n−1M for p, q ∈ Z, a ∈ FpV and n ∈ Z;
(iv) a(n)FqM ⊆ Fp+q−nM for p, q ∈ Z, a ∈ FpV and n ∈ N.
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Let
grF (M) =

⊕
p∈N

FpM/Fp+1M

be the associated graded vector space. By [Li05], the vector space grF (M) is a module over
grF (V ) with operations given as follows. For p, q ∈ N, a ∈ FpV and u ∈ FqM , we set:

σp(a)σ
M
q (u) = σM

p+q(a
M
(−1)u),

Y M
− (σp(a), z)σ

M
q (u) =

∑
n∈N

σM
p+q−n(a

M
(n)u)z

−n−1,

where σM
p : FpM → grF (M) is the principal symbol map. The filtration (FpM)p∈Z is called the

Li filtration of M .
We note that if V were conformal with conformal vector ω, then we do not always have the

property LM
−1(FpM) ⊆ Fp+1M for p ∈ Z, where Y (ω, z) =

∑
n∈Z L

M
n z

−n−2. For example, for

V = Vir1/2, M =M(1/2, 1/2) and |1/2⟩ ∈ F0M , we have L−1 |1/2⟩ /∈ F1M .

Remark 4.4.2. The observation above makes [Ara12, Lemma 3.1.2] incorrect because the expres-
sion σp−1(ω(0)m) that is written there (that should be σp+1(ω(0)m), but it still does not work) is
not well-defined. It is probably not possible to define a differential on grF (M) in a meaningful
way. We will not need that differential in this thesis, though.

Lemma 4.4.3 ([Li05, Lemma 2.9]). Let V be a vertex algebra, and let M be a V -module. Then

FpM = span{aM(−i−1)u | a ∈ V, i ∈ Z+, u ∈ Fp−iM} for p ∈ Z+.

By Lemma 4.4.3, the Li filtration depends only on M and not on the choice of the strong
generators of V . If V is graded with Hamiltonian H, and M is graded with Hamiltonian HM ,
then HM(FpM) ⊆ FpM because in that case, for p ∈ Z,

FpM = span{a1M(−n1−1) . . . a
sM
(−ns−1)u | s, n1, . . . , ns ∈ N, a1, . . . , as ∈ V homogeneous,

u ∈M homogeneous, n1 + · · ·+ ns ≥ p}.
Therefore, we can define an operator HM ∈ End(grF (M)) as HM(σM

p (u)) = σM
p (HMu) for

p ∈ N and u ∈ FpM . For p ∈ Z and ∆ ∈ C, we define FpM∆ = FpM ∩M∆. Since H
M(FpM) ⊆

FpM for p ∈ Z, Lemma 1.5.12 implies that

FpM =
⊕
∆∈C

FpM∆ for p ∈ Z.

For ∆ ∈ C, we define grF (M)∆ =
⊕

p∈N σ
M
p (FpM∆). Then HMu = ∆u for u ∈ grF (M)∆. The

family of subspaces (grF (M)∆)∆∈C satisfies grF (M) =
⊕

∆∈C grF (M)∆. Therefore, the operator
HM ∈ End(grF (M)) is diagonalizable with grF (M)∆ = ker(HM −∆IdgrF (M)). In fact, more is
true.

Theorem 4.4.4. This diagonalizable operator HM is a Hamiltonian of grF (M).

Proof. The proof of Theorem 4.3.3 also works here. □

We have the natural vector space isomorphisms

σM
p (FpM∆) ∼= FpM∆/Fp+1M∆ for p ∈ Z and ∆ ∈ C

and the refined grading

grF (M) =
⊕
p∈N
∆∈C

σp(FpM∆). (4.4.1)

By (4.4.1), when dim(M)∆ < ∞ for ∆ ∈ C, it is natural to define the refined character of M
with respect to the Li filtration as

chgrF (M)(t, q) =
∑
p∈N
∆∈C

dim(σp(FpM∆))t
pq∆.
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If f :M1 →M2 is a homomorphism of V -modules, then

grF (f) : grF (M1)→ grF (M2),

grF (f)(σ
M1
p (u)) = σM2

p (f(u)) for p ∈ N and u ∈ FpM1

defines a homomorphism of grF (V )-modules. If M1 and M2 are graded, then we require that f
respects the gradings of M1 and M2, and this implies that grF (f) also respects the gradings of
grF (M1) and grF (M2). Therefore, we obtain a functor

grF : {(graded) V -modules} → {(graded) grF (V )-modules}.
We now introduce a definition not given by Li in [Li04]. Let V be an N-graded conformal

vertex algebra with conformal vector ω, let (ai)i∈I be a family of homogeneous strong generators
of V , and let M be an h + N-graded (V, ω)-module. This means M is a V -module with LM

0

diagonalizable whose eigenvalues are in the set h+ N for some h ∈ C. We set M∆ = ker(LM
0 −

∆IdM) for ∆ ∈ C, so we have M =
⊕

n∈NMh+n. For p ∈ Z, we set

GpM = span{ai1M(−n1−1) . . . a
isM
(−ns−1)u | s, n1, . . . , ns ∈ N, i1, . . . , is ∈ I, u ∈M homogeneous,

∆ai1 + · · ·+∆ais +∆u − h ≤ p}.

Proposition 4.4.5. The filtration (GpM)p∈Z satisfies:

(i) GpM = 0 for p < 0;
(ii) G0M ⊆ G1M ⊆ . . . ;
(iii) Mh+n ⊆ GnM for n ∈ Z;
(iv) M =

⋃
p∈NG

pM ;

(v) aM(n)G
qM ⊆ Gp+qM for p, q ∈ Z, a ∈ GpV and n ∈ Z;

(vi) aM(n)G
qM ⊆ Gp+q−1M for p, q ∈ Z, a ∈ GpV and n ∈ N;

(vii) LM
0 (GpM) ⊆ GpM and LM

−1(G
pM) ⊆ Gp+1M for p ∈ Z.

Proof. The proofs in [Li04] also work here. □

Remark 4.4.6. We do not have the property LM
−1(G

pM) ⊆ GpM as in the case of vertex algebras.

Let

grG(M) =
⊕
p∈N

GpM/Gp−1M

be the associated graded vector space. The vector space grG(M) is a module over grG(V ) with
operations given as follows. For p, q ∈ N, a ∈ GpV and u ∈ GqM , we set:

αp(a)αq
M(u) = αp+q

M (aM(−1)u),

Y M
− (αp(a), z)αq

M(u) =
∑
n∈N

αp+q−1
M (aM(n)u)z

−n−1,

where αp
M : GpM → grG(M) is the principal symbol map. The filtration (GpM)p∈Z is called the

standard filtration of M . By Proposition 4.4.8 ahead, the standard filtration does not depend
on the choice of the strong generators of V .
By Proposition 4.3.4(vii), we can define an operator HM ∈ End(grG(M)) as HM(αp

M(u)) =
αp
M(LM

0 u) for p ∈ Z and u ∈ GpM . For p ∈ Z and n ∈ N, we define GpMh+n = GpM ∩Mh+n.
Since LM

0 (GpM) ⊆ GpM for p ∈ Z, Lemma 1.5.12 implies that

GpM =
⊕
n∈N

GpMh+n for p ∈ Z.

For n ∈ N, we define grG(M)h+n =
⊕

p∈N α
p
M(GpMh+n). Then HMu = (h + n)u for u ∈

grG(M)h+n. The family of subspaces (grG(M)h+n)n∈N satisfies grG(M) =
⊕

n∈N gr
G(M)h+n.

Therefore, the operator HM ∈ End(grG(M)) is diagonalizable with grG(M)h+n = ker(H − (h+
n) IdgrG(M)). In fact, more is true.
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Theorem 4.4.7. This diagonalizable operator HM is a Hamiltonian of grG(M).

Proof. The proof of Theorem 4.3.3 also works here. □

We have the natural vector space isomorphisms

αp
M(GpMh+n) ∼= GpMh+n/G

p−1Mh+n for p ∈ Z and n ∈ N
and the refined grading

grG(M) =
⊕
p,n∈N

αp
M(GpMh+n). (4.4.2)

By (4.4.2), when M is ordinary, which means dim(Mh+n) <∞ for n ∈ N, it is natural to define
the refined character of M with respect to the standard filtration as

chgrG(M)(t, q) =
∑
p,n∈N

dim(αp
M(GpMh+n))t

pqh+n ∈ qhC[[t, q]].

If f :M1 →M2 is a homomorphism of h+ N-graded (V, ω)-modules, then

grG(f) : grG(M1)→ grG(M2),

grG(f)(αp
M1

(u)) = αp
M2

(f(u)) for p ∈ N and u ∈ GpM1

defines a homomorphism of h+ N-graded grG(V )-modules. Therefore, we obtain a functor

grG : {h+ N-graded (V, ω)-modules} → {h+ N-graded grG(V )-modules}.

Proposition 4.4.8. Let (V, ω) be an N-graded conformal vertex algebra, and let M be an h+N-
graded (V, ω)-module. Then the Li filtration and the standard filtration satisfy

FpMh+n = Gn−pMh+n for p, n ∈ N.

An explicit isomorphism grF (M)
∼−→ grG(M) of modules is defined by extending linearly the

isomorphisms of vector spaces given by

σM
p (FpMh+n)

∼−→ αn−p
M (Gn−pMh+n),

σM
p (u) 7→ αn−p

M (u) for p, n ∈ N and u ∈ FpMh+n.

Proof. We recall three facts:

(a) Mh+n ⊆ GnM for n ∈ Z;
(b) ∆aM

(n)
u = ∆a +∆u − n− 1 for homogeneous a ∈ V , u ∈M and n ∈ Z;

(c) For p ∈ Z+ and n ∈ N,

FpMh+n = span{ai1M(−n1−1)u | i1 ∈ I, n1 ∈ Z+ and u ∈ Fp−n1M∆u

satisfy ∆ai1 +∆u + n1 = h+ n}.

First, we prove the inclusion FpMh+n ⊆ Gn−pMh+n for p, n ∈ N. We do this by induction
on p ∈ N. The base case p = 0 is true by property (a) above. We now assume p ≥ 1 and
FqMh+n ⊆ Gn−qMh+n for q < p and n ∈ N. We pick an element ai1M(−n1−1)u from the spanning set

of FpMh+n in property (c) above, with i1 ∈ I, n1 ∈ Z+ and u ∈ Fp−n1M∆u . By the induction
hypothesis, we know that u ∈ G∆u−h−p+n1M∆u , and also a ∈ V∆

ai1
⊆ G∆

ai1V . Therefore, by

Proposition 4.4.5(v), ai1M(−n1−1)u ∈ G
∆

ai1
+∆u−h−p+n1M = Gn−pM .

We now prove the inclusion Gn−pMh+n ⊆ FpMh+n. We pick an element ai1M(−n1−1) . . . a
isM
(−ns−1)u

from the spanning set of Gn−pMh+n, where u ∈M∆u , s, n1, . . . , ns ∈ N, i1, . . . , is ∈ I and ∆ai1 +
· · ·+∆ais +∆u−h ≤ n− p. By property (b) above, we must have ∆ai1 + · · ·+∆ais +∆u+n1+
· · · + ns = h + n. Therefore, p ≤ n1 + · · · + ns, so we get ai1M(−n1−1) . . . a

isM
(−ns−1)u ∈ FpM straight

from the definition of FpM .

We verify that we obtain an isomorphism grF (M)
∼−→ grG(M) directly from the definitions (cf.

Proposition 4.3.6). □
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Proposition 4.4.8 translates into an identity of the refined characters of M , as the following
proposition shows. This is also valid for vertex algebras because all the definitions are compatible.

Proposition 4.4.9. Let (V, ω) be an N-graded conformal vertex algebra, and let M be an h+N-
graded (V, ω)-module. Then:

(i) chM(q) = chgrF (M)(q) = chgrG(M)(q) = chgrF (M)(1, q) = chgrG(M)(1, q);

(ii) chgrG(M)(t
−1, tq) = th chgrF (M)(t, q).

Proof.

(i) This is clear from the properties and definitions of the filtrations.
(ii) This follows from Proposition 4.4.8 and by replacing p by n− p in the following compu-

tation

chgrG(M)(t
−1, tq) =

∑
p,n∈N

dim(αp
M(GpMh+n))t

−p(tq)h+n

=
∑
p,n∈N

dim(αp
M(GpMh+n))t

h+n−pqh+n

=
∑
p,n∈N

dim(αn−p
M (Gn−pMh+n))t

h+pqh+n

= th chgrF (M)(t, q). □

Example 4.4.10 (grG(M(c, h))). We pick a highest weight (c, h). By Theorem 1.6.5, the Verma
module M(c, h) is a module over Virc. From Example 4.3.9, grG(Virc) ∼= C[L−2, L−3, . . . ].
Similarly, we can prove that grG(M(c, h)) is a free grG(Virc)-module

grG(M(c, h)) ∼=
⊕
k∈N

grG(Virc)Lk
−1.

More precisely, the isomorphism is given by

grG(M(c, h))
∼−→
⊕
k∈N

C[L−2, L−3, . . . ]L
k
−1,

α2s+k
M(c,h)(L

M(c,h)
−n1−2 . . . L

M(c,h)
−ns−2(L

M(c,h)
−1 )k|c, h⟩) 7→ L−n1−2 . . . L−ns−2L

k
−1 for s, k, n1, . . . , ns ∈ N.

Since ∆L−2 |0⟩ = 2 and ∆
(L

M(c,h)
−1 )k|c,h⟩ = k + h for k ∈ N,

chgrG(M(c,h))(t, q) =
qh

(1− tq)
∏

k≥2(1− t2qk)
.

Remark 4.4.11. That +k in the isomorphism above is what makes this filtration different from
the PBW filtration (see Appendix A), where all Ln for n ≤ −1 have the same length. On the
other hand, with the standard filtration, L−1 has length equal to 1, while L−2, L−3, . . . have
length equal to 2.

Remark 4.4.12. The definition of the standard filtration (GpM)p∈Z apparently depends on h,

so we should write it as (Gp
hM)p∈Z. However, since Gp

h−1M = Gp−1
h M for p ∈ Z, grGh (M) and

grGh−1(M) are isomorphic and chgrGh−1(M)(t, q) = t chgrGh (M)(t, q). If we further require thatMh ̸= 0

when M ̸= 0, then grG(M) and chgrG(M)(t, q) are well-defined.

Remark 4.4.13. We could have done the theory of standard filtrations of modules for admissible
modules over N-graded vertex algebras (or maybe even over lower truncated Z-graded vertex
algebras, as it is done in [Li04]).



PBW BASES OF IRREDUCIBLE ISING MODULES 65

4.5. The Zhu C2-algebra and the C2-cofiniteness condition. Let V be a vertex algebra.
By Lemma 4.3.2, we have

C2V = span{a(−2)b | a, b ∈ V } = F1V.

We define the Zhu C2-algebra of V by

RV = V/C2V = F0V/F1V ⊆ grF (V ).

In Zhu’s original article [Zhu96] and other works, RV is denoted by A(V ).
The fact that grF (V ) is a vertex Poisson algebra implies that RV is a Poisson algebra with

operations given as follows. For a, b ∈ V , we set:

σ0(a)σ0(b) = σ0(a(−1)b),

{σ0(a), σ0(b)} = σ0(a(0)b).

If V is graded, then, as we explained in §4.3, grF (V ) is graded. Thus, RV is also graded.
We have constructed a functor

R : {(graded) vertex algebras} → {(graded) Poisson algebras}.

Oftentimes, some condition on RV implies or is equivalent to some condition on V , as we shall
see in this subsection. The vertex algebra V is called C2-cofinite if RV is finite dimensional.

Example 4.5.1 (RVirc and RVirc). We pick c ∈ C. We consider C[L−2] as the polynomial algebra
in one variable L−2, and we equip it with the trivial Poisson bracket. By Example 4.3.9 and
Proposition 4.3.6, we have the following isomorphism of Poisson algebras

RVirc
∼−→ C[L−2],

σ0(L−2 |0⟩) 7→ L−2.

We now move onto Virc. If c is not of the form cp,q for some p, q ≥ 2 relatively prime integers,
then Virc = Virc by Theorem 1.5.16, and we have already solved the problem. Therefore, we
assume c is of this form.

We have a natural quotient map

πc
0 : Vir

c ↠ Virc,

πc
0(a) = a+ U(Vir){ap,q}.

Applying the functor R, we obtain an epimorphism

Rπc
0
: RVirc ↠ RVirc .

From the equation ker(Rπc
0
) = σ0(U(Vir){ap,q}) and Theorem 1.5.16, we obtain

ker(Rπc
0
) = (σ0(L

(p−1)(q−1)/2
−2 |0⟩)).

In summary,

RVirp,q
∼= C[L−2]/(L

(p−1)(q−1)/2
−2 ).

Thus, Virc is never C2-cofinite, while Virc is C2-cofinite only when c is of the form cp,q for some
p, q ≥ 2 relatively prime integers.

Let V be a vertex algebra (no condition on V ). The associated variety of V , denoted by XV ,
and the singular support of V , denoted by SS(V ), are defined by:

XV = Spec(RV ),

SS(V ) = Spec(grF (V )).

Lemma 4.5.2 ([Li05, Corollary 4.3]). Let V be a vertex algebra. As a differential algebra,
grF (V ) is generated by RV , i.e.,

grF (V ) = (RV )T .
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Let V be a (graded) vertex algebra. We have a natural (graded) algebra inclusion inc :
RV ↪→ grF (V ). By the universal property of inc : R ↪→ JRV (see Appendix C), there is
a (graded) differential algebra homomorphism ϕV : JRV → grF (V ) such that the following
diagram commutes

RV JRV

grF (V )

inc

inc

ϕV

Because RV is a (graded) Poisson algebra, we can equip JRV with the level 0 vertex Poisson
algebra structure. From now on, JRV will be considered as a (graded) vertex Poisson algebra.

Lemma 4.5.3. Let V be a (graded) vertex algebra. The (graded) differential algebra homomor-
phism ϕV : JRV → grF (V ) defined above is surjective and is actually a (graded) vertex Poisson
algebra homomorphism. Thus, SS(V ) is isomorphic to a closed subscheme of JXV .

Proof. The homomorphism ϕV is surjective by Lemma 4.5.2. The fact that ϕV is a (graded)
vertex Poisson algebra homomorphism is explained in [Ara12, Proposition 2.5.1]. □

When ϕV is an isomorphism, we say V is classically free.

Example 4.5.4 (JRVirc and JRVirc). Let c ∈ C. Then Virc is classically free because

grF (Vir
c) ∼= C[L−2, L−3, . . . ]

by Example 4.3.9 and Proposition 4.3.6 and

JRVirc
∼= J(C[L−2]) = C[L−2, L−3, . . . ]

by Example 4.5.1 and Appendix C.
We now move onto Virc. If c is not of the form cp,q for some p, q ≥ 2 relatively prime integers,

then Virc = Virc by Theorem 1.5.16, and we have already solved the problem. Therefore, we
assume c is of this form. Then

JRVirp,q
∼= J(C[L−2]/(L

(p−1)(q−1)/2
−2 )) = C[L−2, L−3, . . . ]/(L

(p−1)(q−1)/2
−2 )∂

by Example 4.5.1 and Appendix C.

Example 4.5.5. If p > q ≥ 2 are relatively prime integers, then Virp,q is classically free if and
only if q = 2 by [VEH21].

Example 4.5.6. It was proven in [AVEH22] that the Ising model Vir3,4 is not classically free. In
fact, by [AVEH22, Theorem 2],

ker(ϕVir3,4) = (b)∂,

where

b = L−4L−3L−2 +
1
6
L−5L

2
−2,

and (b)∂ is the differential ideal generated by b, cf. Appendix C and Example 4.3.9 where ∂ is
denoted by T .

In algebra, commutative algebras are often required to be finitely generated. In the theory of
N-graded vertex algebras, the equivalent of this is assuming that V is finitely strongly generated.
Fortunately, these two concepts are related, as the following theorem shows.

Theorem 4.5.7. Let S ⊆ V be a subset of homogeneous elements of an N-graded vertex algebra
V . The following are equivalent:

(i) S strongly generates V ;
(ii) σ0(S) generates RV as an algebra without the Poisson structure.

In particular, V is finitely strongly generated if and only if RV is finitely generated.
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Proof. We assume that S strongly generates V . Let σ0(a) ∈ RV with a ∈ V arbitrary. We
know that a is a linear combination of elements of the form a1(−n1−1) . . . a

s
(−ns−1) |0⟩, where

s, n1, . . . , ns ∈ N and a1, . . . , as ∈ S. However, σ0(a
1
(−n1−1) . . . a

s
(−ns−1) |0⟩) = 0 if any ni > 0,

and if n1 = · · · = ns = 0, we have σ0(a
1
(−n1−1) . . . a

s
(−ns−1) |0⟩) = σ0(a

1
(−1) . . . a

s
(−1) |0⟩) =

σ0(a
1) . . . σ0(a

s) ∈ C[σ0(S)]. Therefore, σ0(a) ∈ C[σ0(S)] and RV = C[σ0(S)].
We now assume that RV = C[σ0(S)]. We define the subspace W strongly generated by S by

setting
W = span{a1(−n1−1) . . . a

s
(−ns−1) |0⟩ | s, n1, . . . , ns ∈ N, a1, . . . , as ∈ S}.

As the elements of S are homogeneous, the subspace W is H-invariant. By Lemma 1.5.12,

W =
∑
n∈N

W ∩ Vn. (4.5.1)

Our objective is to show that V = W . By Theorem 1.4.5(i)–(ii) and Corollary 1.4.9, form,n ∈ N
and a, b ∈ V , we have

σn(T
n(a))σm(T

m(b)) = σn(n!a(−n−1) |0⟩)σm(m!b(−m−1) |0⟩)
= σn+m((n!a(−n−1) |0⟩)(−1)(m!b(−m−1) |0⟩))
= n!m!σn+m(a(−n−1)b(−m−1) |0⟩).

By Lemma 4.5.2,

grF (V ) = C

[⋃
n∈N

T n(RV )

]
= C

[⋃
n∈N

T n(C[σ0(S)])

]
= C

[⋃
n∈N

T n(σ0(S))

]
.

It is enough to show that for n ∈ N, Vn ⊆ W . Thus, we fix n0 ∈ N. By Proposition 4.3.6, there
exists N ∈ N such that FpVn0 = 0 for p > N . We now pick a ∈ FNVn0 . We know there exist
s, n1, . . . , ns ∈ N, a1, . . . , as ∈ S and p(x1, . . . , xs) =

∑
v∈Ns tvx

v1
1 . . . xvss ∈ C[x1, . . . , xs], where

tv ∈ C for v ∈ Ns, such that

σN(a) = p(T n1(σ0(a
1)), . . . , T ns(σ0(a

s)))

= p(σn1(T
n1(a1)), . . . , σns(T

ns(as)))

=
∑
v∈Ns

tv(n1!)
v1 . . . (ns!)

vsσv1n1+···+vsns((a
1
(−n1−1))

v1 . . . (as(−ns−1))
vs |0⟩).

Therefore,
σN(a) = σN(b),

where
b =

∑
v∈Ns

v1n1+···+vsns=N

tv(n1!)
v1 . . . (ns!)

vs(a1(−n1−1))
v1 . . . (as(−ns−1))

vs |0⟩ ∈ W.

This means a− b ∈ FN+1V . By (4.5.1), we can write b =
∑

n∈N bn, where bn ∈ W ∩Vn for n ∈ N.
Therefore, a− bn0 ∈ FN+1Vn0 = 0, and this implies a ∈ W . We concluded that FNVn0 ⊆ W from
FN+1Vn0 = 0 ⊆ W . In the same way, we can conclude that FN−1Vn0 ⊆ W from FNVn0 ⊆ W ,
and we conclude using induction that F0Vn0 = Vn0 ⊆ W , finishing the proof. □

Remark 4.5.8. For a generalization of Theorem 4.5.7 assuming V is a lower truncated Z-graded
vertex algebra, see [Li05, Theorem 4.8].

Remark 4.5.9. In the proof of [Ara12, Corollary 2.6.2], it is commented that the principal symbol

map gives the isomorphism V
∼−→ grF (V ). However, there are some difficulties with this because

if there were such an isomorphism, it should be natural and valid for every vertex algebra V ,
given that V is defined for every vertex algebra (see §4.3). We now present an example in which
V and grF (V ) satisfy:

(i)
⋂

p∈N FpV = 0;

(ii) The vector spaces V and grF (V ) have different dimensions;
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(iii) RV is finitely generated, but V is not finitely strongly generated.

We consider the commutative vertex algebra V = C[[t]] with derivation T = t2 d
dt
. We have:

F0V = C[[t]],
FpV = t1+pC[[t]] for p ∈ Z+.

From this, we get (i), and we have the following isomorphisms of vector spaces:

grF (V ) =
⊕
p∈N

FpV/Fp+1V

= C[[t]]/t2C[[t]]⊕ t2C[[t]]/t3C[[t]]⊕ t3C[[t]]/t4C[[t]]⊕ . . .
∼= C2 ⊕ C⊕ C⊕ . . . ,

RV = V/F1V

= C[[t]]/t2C[[t]]
∼= C[t]/(t2).

Thus, grF (V ) has countable dimension. However, V has uncountable dimension, and we get (ii).
From the definition of the Zhu C2-algebra, we see that RV is isomorphic to C[t]/(t2) as an

algebra, and the latter is generated by the single element t+(t2). However, V cannot be finitely
strongly generated because it has uncountable dimension, and we get (iii).

From this example, we see that the assumption of V being N-graded cannot be removed in
Theorem 4.5.7, although we can assume that V is lower truncated Z-graded.

Theorem 4.5.10. Let V be a vertex algebra such that RV is finitely generated. Then the
following are equivalent:

(i) V is C2-cofinite;
(ii) dim(XV ) = 0;
(iii) XV is finite and discrete;
(iv) dim(SS(V )) = 0.

If V is conical, then (RV )0 = Cσ0(|0⟩) and (i)–(iv) are also equivalent to

(v) XV = {point}.

Proof.

(i)⇐⇒ (ii): By [AK18, Exercise 19.17], RV is finite dimensional if and only if RV is Artinian,
and by [AK18, Theorem 19.8], RV is Artinian if and only if 0 = dim(RV ) = dim(XV ).
(ii) =⇒ (iii): By [AK18, Theorem 19.8], XV is finite. Since dim(XV ) = 0, every prime ideal is
maximal. Thus, XV is discrete.
(iii) =⇒ (ii): Clear.
(ii) =⇒ (iv): By Theorem C.4, dim(JXV ) = 0. By Lemma 4.5.3, dim(SS(V )) = 0.
(iv) =⇒ (ii): This follows by considering the projection onto the 0-th component grF (V ) ↠ RV

which shows that dim(RV ) ≤ dim(grF (V )).

We now assume that V is conical, i.e., V =
⊕

n∈N Vn and V0 = C |0⟩. Clearly, RV =⊕
n∈N(RV )n and (RV )0 = Cσ0(|0⟩). Since ∆∆0(a)∆0(b) = ∆σ0(a) + ∆σ0(b),

∑
n∈Z+

(RV )n is a
maximal ideal of RV . In fact, it is the unique maximal proper ideal of RV .

(ii) =⇒ (v): By definition, every prime in RV is maximal. Since RV has a unique maximal
proper ideal, XV = {point}.
(v) =⇒ (iii): Clear. □

Thus, C2-cofinite vertex algebras can be regarded as a generalization of finite-dimensional
finitely generated algebras.

Theorem 4.5.11 ([ABD03, Theorem 4.5]). Let V be a conical conformal vertex algebra. Then
V is regular if and only if V is C2-cofinite and rational.
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Example 4.5.12. By Example 1.6.15, Example 4.5.1 and Theorem 4.5.11, Virp,q is regular for
p, q ≥ 2 relatively prime integers.

Let V be a vertex algebra, and let M be a module over V . By Lemma 4.4.3, we have

C2M = span{aM(−2)u | a ∈ V, u ∈M} = F1M.

We define the Zhu C2-module of M by

RM =M/C2M = F0M/F1M ⊆ grF (M).

The fact that grF (M) is a module over grF (V ) implies that RM is a module over RV with
operations given as follows. For a ∈ V and u ∈M , we set:

σ0(a)σ
M
0 (u) = σM

0 (aM(−1)u),

{σ0(a), σM
0 (u)} = σM

0 (aM(0)u).

If V is graded and M is a graded V -module, then, as we explained in §4.3, grF (M) is graded
grF (V )-module. Thus, RM is also a graded RV -module.

We have constructed a functor

R : {(graded) V -modules} → {(graded) RV -modules}.
A V -module M is called C2-cofinite if RM is finite dimensional. The condition of C2-

cofiniteness on modules has several implications, as we will see later.

Example 4.5.13 (RM(c,h) and RL(c,h)). We pick a highest weight (c, h). As in Example 4.5.1, we
consider C[L−2] as the polynomial algebra in one variable L−2, and we equip it with the trivial
Poisson bracket. We consider

⊕
k∈N C[L−2]L

k
−1 as a module over the Poisson algebra C[L−2] with

Poisson bracket given by {L−2, L
k
−1} = Lk+1

−1 for k ∈ N. By Proposition 4.4.8, Example 4.4.10
and Example 4.5.1, we have the following isomorphism of modules over Poisson algebras

RM(c,h)
∼−→
⊕
k∈N

C[L−2]L
k
−1,

σ
M(c,h)
0 (L

M(c,h)
−2 |c, h⟩) 7→ L−2,

σ
M(c,h)
0 (L

M(c,h)
−1 |c, h⟩) 7→ L−1.

We have a natural epimorphism

πc,h :M(c, h) ↠ L(c, h),

πc,h(u) = u+ J(c, h),

and it satisfies ker(πc,h) = J(c, h). Applying the functor R, we obtain an epimorphism

Rπc,h
: RM(c,h) ↠ RL(c,h).

From the equation ker(Rπ(c,h)
) = σ0(J(c, h)), we obtain

RL(c,h)
∼=
⊕

k∈NC[L−2]L
k
−1

σ0(J(c, h))
.

Let V be a vertex algebra such that RV is finitely generated, and let M be a V -module. The
associated variety of M , denoted by XM , and the singular support of M , denoted by SS(M),
are defined by:

XM = SuppRM
(RV ),

SS(M) = SuppgrF (V )(grF (M)).

Theorem 4.5.14 ([Li05, Lemma 4.2]). Let V be a vertex algebra, and let M be a V -module. As
a grF (V )-module without the Poisson structure, grF (M) is generated by RM , i.e.,

grF (M) = grF (V )RM .
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Let V be a (graded) vertex algebra, and let M be a (graded) V -module. We have a natural
(graded) inclusion inc : RM ↪→ grF (M) of (graded) RV -modules. As we explained in §4.2, we
can consider JRV ⊗RV

RM as a (graded) JRV -module. Because we have a (graded) epimorphism
of vertex Poisson algebras ϕV : JRV ↠ grF (V ), we can consider the (graded) grF (V )-module
grF (M) as a (graded) JRV -module. By the universal property of inc : RM ↪→ JRV ⊗RV

RM (see
§4.2), there is a (graded) JRV -module homomorphism ϕM : JRV ⊗RV

RM → grF (M) such that
the following diagram commutes

RM JRV ⊗RV
RM

grF (M)

inc

inc
ϕM

Lemma 4.5.15. The (graded) JRV -module homomorphism ϕM : JRV ⊗RV
RM → grF (M)

defined above is surjective.

Proof. The assertion follows from Lemma 4.5.3 and Theorem 4.5.14. □

When ϕM is an isomorphism, we say the M is classically free.

Example 4.5.16 (JRVirc ⊗RVirc
RM(c,h)). We pick a highest weight (c, h). The Verma module

M(c, h) is always classically free as a Virc-module because by Proposition 4.4.8, Example 4.4.10,
Example 4.5.1 and Example 4.5.13,

JRVirc ⊗RVirc
RM(c,h)

∼= C[L−2, L−3, . . . ]⊗C[L−2]

⊕
k∈N

C[L−2]L
k
−1

∼=
⊕
k∈N

C[L−2, L−3, . . . ]L
k
−1

∼= grF (M(c, h)).

Theorem 4.5.17. Let V be a vertex operator algebra, let M be an admissible V -module, and
let T ⊆M be a subset of homogeneous elements of M . The following are equivalent:

(i) M is strongly generated over V by T ;
(ii) σM

0 (T ) generates RM as a module over RV without the Poisson structure.

In particular, M is finitely strongly generated over V if and only if RM is a finitely generated
RV -module.

Proof. We assume that M is strongly generated over V by T . Let σM
0 (v) ∈ RV with v ∈ M

arbitrary. We know that v is a linear combination of elements of the form a1M(−n1−1) . . . a
sM
(−ns−1)u,

where s, n1, . . . , ns ∈ N and a1, . . . , as ∈ V and u ∈ T . However, σM
0 (a1M(−n1−1) . . . a

sM
(−ns−1)u) = 0 if

any ni > 0, and if n1 = · · · = ns = 0, we have σM
0 (a1M(−n1−1) . . . a

sM
(−ns−1)u) = σM

0 (a1M(−1) . . . a
sM
(−1)u) =

σ0(a
1) . . . σ0(a

s)σM
0 (u) ∈ RV σ

M
0 (T ). Therefore, σM

0 (v) ∈ RV σ
M
0 (T ) and RM = RV σ

M
0 (T ).

We now assume that RM = RV σ
M
0 (T ). We define

M0 = span{aM(−1)u | a ∈ V homogeneous and u ∈ T}.
Because any element of V is a sum of a finite number of homogeneous elements, the equation
RM = RV σ

M
0 (T ) implies that M =M0 + C2M . By [Li05, Proposition 4.12],

M = span{a1M(−n1−1) . . . a
sM
(−ns−1)w | s ∈ Z+, n1 > · · · > ns ≥ 0, a1, . . . , as ∈ V,w ∈M0}.

By the definition of M0, we conclude that M is strongly generated over V by T . □

Theorem 4.5.18. Let V be a vertex algebra such that RV is finitely generated, let M be a
V -module, and we assume that RM is a finitely generated RV -module. Then the following are
equivalent:

(i) M is C2-cofinite;
(ii) dim(XM) = 0;
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(iii) XM is finite and discrete;
(iv) dim(SS(M)) = 0.

If V is conical, then (i)–(iv) are also equivalent to

(v) XM = {point}.

Proof. The proof of Theorem 4.5.10 works with minor modifications. □

Theorem 4.5.19. Let V be a C2-cofinite conical conformal vertex algebra. Then:

(i) Any V -module M satisfies M =MGen and (1.6.8);
(ii) For ◦Gen = IdV -Mod;
(iii) Both For and Gen are equivalences of categories;
(iv) If M is a V -module, then M is irreducible as a V -module if and only if M with grading⊕

n∈ZM
Gen(n) is irreducible as an admissible V -module;

(v) Any irreducible V -module is an irreducible ordinary positive energy representation of V .

Proof.

(i) The equality M = MGen is proved in [ABD03, Proposition 5.7] and (1.6.8) is proved in
[ABD03, Lemma 5.6].

(ii) This is obvious.
(iii) By Proposition 1.6.11(iv), both For and Gen are essentially surjective functors. Both are

fully faithful by definition. Thus, both are equivalences of categories.
(iv) IfM is irreducible as a V -module then it clearly is irreducible as an admissible V -module.

We now assume M is irreducible as an admissible V -module. By (i), we can assume that
M =

⊕
n∈ZM

Gen(n). Let N be a proper submodule of M . Then LM
0 (N) ⊆ N . By

Lemma 1.5.13(iii), N =
∑

∆∈CN ∩MGen
∆ . This implies that N =

∑
n∈ZN ∩MGen(n),

i.e., N is a proper graded submodule of M . Therefore, N = 0. In conclusion, M is
irreducible as a V -module.

(v) This is [ABD03, Corollary 5.8]. □

By Theorem 4.5.19, when V is a C2-cofinite conical conformal vertex algebra, to find all
irreducibles in the category of V -modules, it is enough to find all irreducibles in the category
of admissible V -modules. By Example 4.5.1, the Ising model Vir3,4 = Vir1/2 satisfies these
conditions.

5. PBW basis of L(1/2, 1/2) and its refined character

In this section, our objective is to determine a PBW basis of L(1/2, 1/2) explicitly and a
formula for the refined character of grG(L(1/2, 1/2)) with respect to the standard filtration, as
introduced in §4.4. We present a family of series in two variables fa,b,c,d(t, q), where a, b, c, d ∈ N
are the parameters, which are Nahm sums for the same matrix ( 8 3

3 2 ) (cf. [Nah07]) when we set
t = 1. These series satisfy some recursive relations which will help us to prove series identities.
Then, we find a formula for the refined character of grG(L(1/2, 1/2)) using these series and the
recursive relations they satisfy. The arguments are elementary and combinatorial but lengthy.
We recover the series obtained in [AVEH22, Theorem 4] when we set t = 1, as expected. In
the explicit monomial basis of Theorem 0.4, there are ordinary and exceptional partitions. The
ordinary partitions are handled by the theory of Vir1/2-modules done in §3.3. The exceptional
partitions are handled with computer software. As we can see, the arguments are similar to
those in [AVEH22], but there are some differences such as the use of the Zhu algebra here but
not in [AVEH22], and the fact that we do not have a differential available (see Remark 4.4.2).
Finally, we give formal proofs of Theorem 0.3 and Theorem 0.4.

5.1. Conventions and notation. Throughout this section, V will always denote the vertex
algebra Vir1/2. From now on, some subscripts or superscripts of modules will be omitted, so for
example, αp

M simplifies to αp. We set:

M =M(1/2, 1/2), L = L(1/2, 1/2),W = J(1/2, 1/2).
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Then M and L are V -modules and, by definition, L =M/W . By Theorem 3.3.6,

W = U(Vir){u2, u3}, (5.1.1)

where the generating singular vectors are:

u2 = (L2
−1 − 4

3
L−2) |1/2⟩, u3 = (L3

−1 − 3L−2L−1 +
3
4
L−3) |1/2⟩ . (5.1.2)

We have a natural epimorphism of V -modules

π :M ↠ L,

π(u) = u+W.

Applying the functor grG, we obtain an epimorphism of modules over grG(V )

grG(π) : grG(M) ↠ grG(L),

and this produces a natural isomorphism of modules over grG(V )

grG(M)/K
∼−→ grG(L),

where

K = ker(grG(π)). (5.1.3)

The isomorphism in Example 4.4.10 justifies the following definitions. For a partition λ =
[λ1, . . . , λm, 1, . . . , 1] with exactly n ones, we define uλ ∈

⊕
k∈NC[L−2, L−3, . . . ]L

k
−1 by setting

uλ = L−λ1 . . . L−λmL
n
−1.

We define the length of λ as

len(λ) = 2m+ n

and the weight of λ as

∆(λ) = λ1 + · · ·+ λm + n.

Therefore, for a partition λ, we have

Lλ |1/2⟩ ∈ Glen(λ)M1/2+∆(λ).

For a partition λ = [λ1, . . . , λm] with λm ≥ 2, we define pλ ∈ C[L−2, L−3, . . . ] by setting

pλ = L−λ1 . . . L−λm .

From the epimorphism of V -modules π :M ↠ L, we deduce the following four isomorphisms
which are going to be used frequently implicitly.

Proposition 5.1.1. We have four (conformal) weight-preserving vector space isomorphisms:

M
∼−→ grG(M),

Lλ |1/2⟩ 7→ αlen(λ)(Lλ |1/2⟩),

grG(M)
∼−→
⊕
k∈N

C[L−2, L−3, . . . ]L
k
−1,

αlen(λ)(Lλ |1/2⟩) 7→ uλ,

L
∼−→ grG(L),

Lλ(|1/2⟩+W ) 7→ αlen(λ)(Lλ(|1/2⟩+W )),

grG(L)
∼−→ grG(M)/K,

αlen(λ)(Lλ(|1/2⟩+W )) 7→ αlen(λ)(Lλ |1/2⟩) +K,

where λ is a partition.
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In this thesis, we will deal with polynomial algebras written as C[L−2, L−3, . . . , L−N ] and free
modules of the form

⊕
n≤N C[L−2, L−3, . . . , L−N ]L

n
−1 for some N ∈ N. We will always use the

degree reverse lexicographic order with L−2 > L−3 > · · · > L−N and TOP (term over position)
with L0

−1 < L1
−1 < · · · < LN

−1, see [AL94, §3.5]. Let u ∈
⊕

k∈N C[L−2, L−3, . . . ]L
k
−1. We can

define the leading monomial of u, denoted by lm(u), as follows. We pick N large enough so
that u ∈

⊕
n≤N C[L−2, L−3, . . . , L−N ]L

n
−1. Then, we define lm(u) as the leading monomial in⊕

n≤N C[L−2, L−3, . . . , L−N ]L
n
−1, which is naturally a subset of

⊕
k∈NC[L−2, L−3, . . . ]L

k
−1. This

does not depend on the choice of N .
When working with q-series, the following notation is useful. The q-Pochhammer symbol is

(q)n =
∏n

j=1(1 − qj) ∈ C[q] for n ∈ N. The recursive proof of the series identities in [AVEH22]
suggests the following definition. For a, b, c, d ∈ N, we define

fa,b,c,d(t, q) =
∑

k1,k2∈N

t4k1+2k2+d q
4k21+3k1k2+k22+ak1+bk2+c

(q)k1(q)k2
∈ C[[t, q]].

The following lemma will be used frequently to verify series identities.

Lemma 5.1.2. The series fa,b,c,d(t, q) satisfies:

(i) tmqnfa,b,c,d(t, q) = fa,b,c+n,d+m(t, q) for m,n ∈ N;
(ii) fa,b,c,d(tq

n, q) = fa+4n,b+2n,c+dn,d(t, q) for n ∈ 1
2
N and d ∈ 2N;

(iii) fa,b,c,d(t, q)− fa+n,b,c,d(t, q) =
∑n−1

k=0 fa+8+k,b+3,a+c+4+k,d+4(t, q) for n ∈ Z+;

(iv) fa,b,c,d(t, q)− fa,b+n,c,d(t, q) =
∑n−1

k=0 fa+3,b+2+k,b+c+1+k,d+2(t, q) for n ∈ Z+.

Proof.

(i) Clear.
(ii) Clear.
(iii) The key step is replacing k1 by k1 + 1 in the following computation

fa,b,c,d(t, q)− fa+n,b,c,d(t, q) =
∑

k1,k2∈N

t4k1+2k2+d q
4k21+3k1k2+k22+ak1+bk2+c

(q)k1(q)k2
(1− qnk1)

=
∑

k1,k2∈N

t4k1+2k2+d q
4k21+3k1k2+k22+ak1+bk2+c

(q)k1(q)k2
(1− qk1)

n−1∑
k=0

qkk1

=
n−1∑
k=0

∑
k1,k2∈N

t4k1+2k2+d q
4k21+3k1k2+k22+(a+k)k1+bk2+c

(q)k1(q)k2
(1− qk1)

=
n−1∑
k=0

∑
k1,k2∈N

t4k1+2k2+d+4 q
4k21+3k1k2+k22+(a+8+k)k1+(b+3)k2+a+c+4+k

(q)k1(q)k2

=
n−1∑
k=0

fa+8+k,b+3,a+c+4+k,d+4(t, q).

(iv) Same trick as (iii) but with k2 instead of k1. □

5.2. A combinatorial argument. A partition λ = [λ1, . . . , λm] contains a partition η =
[η1, . . . , ηn], written as η ⊆ λ, if m ≥ n and there is i ∈ Z+ such that 1 ≤ i ≤ m − n + 1
and [λi, λi+1, . . . , λi+n−1] = η.

We define

p(t, q) =
∑
λ∈P

tlen(λ)q∆(λ) ∈ C[[t, q]],

where P is the set of partitions that do not contain any partition in R as defined in §0, i.e.,

P = {λ | for η ∈ R, λ ⊉ η}.
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We call the last eight partitions of R exceptional partitions, and the others involving r are called
ordinary partitions. For m,n ∈ N, we set:

P (n) = {λ ∈ P | ∆(λ) = n},

p(q) =
∑
n∈N

|P (n)|qn ∈ C[[q]],

P (n,m) = {λ ∈ P | len(λ) = m and ∆(λ) = n}.
Therefore, we have:

p(t, q) =
∑

m,n∈N

|P (n,m)|tmqn,

p(1, q) = p(q).

We wish to find an expression for p(t, q) as a sum of series fa,b,c,d(t, q) for some tuples (a, b, c, d).
We now define subsets of P , which will help us in finding an expression for p(t, q), by setting:

P>2 = {[λ1, . . . , λm] ∈ P | λm > 2 or λ = ∅},
P2 = {[λ1, . . . , λm] ∈ P | λm = 2},

and both p>2(t, q) and P>2(n,m) are defined like p(t, q) and P (n,m) were defined. Likewise,
we define P>6,5,3, P6,5,3, p>6,5,3(t, q), p6,5,3(t, q), P>6,5,3(n,m) and P6,5,3(n,m). It turns out that
P decomposes as a disjoint union of these smaller objects, and we can find recurrence relations
between them to find our desired formula for p(t, q).

Lemma 5.2.1. The formal power series p>2(t, q) is given by

p>2(t, q) = f3,2,0,0(t, q).

Proof. We consider the disjoint union

P>2 = P4,3 ∪ P6,5,3 ∪ P>6,5,3 ∪ P>5,3 ∪ P4,4 ∪ P5,4 ∪ P>5,4 ∪ P>4,

from which we get the formula

p>2(t, q) = p4,3(t, q)+p6,5,3(t, q)+p>6,5,3(t, q)+p>5,3(t, q)+p4,4(t, q)+p5,4(t, q)+p>5,4(t, q)+p>4(t, q).

These subseries satisfy the following recurrences with initial conditions:

p>4(t, q) = p4,4(tq
1/2, q) + p5,4(tq

1/2, q) + p>5,4(tq
1/2, q) + p>4(tq

1/2, q), p>4(0, 0) = 1,

p>5,4(t, q) = p6,5,3(tq
1/2, q) + p>6,5,3(tq

1/2, q) + p>5,3(tq
1/2, q), p>5,4(0, 0) = 0,

p5,4(t, q) = p4,3(tq
1/2, q), p5,4(0, 0) = 0,

p4,4(t, q) = t2q3p>6,5,3(tq
2/2, q) + t2q3p>5,3(tq

2/2, q), p4,4(0, 0) = 0,

p>5,3(t, q) = t2q3p>4(tq
1/2, q), p>5,3(0, 0) = 0,

p>6,5,3(t, q) = t2q3p>5,4(tq
1/2, q), p>6,5,3(0, 0) = 0,

p6,5,3(t, q) = t2q3p5,4(tq
1/2, q), p6,5,3(0, 0) = 0,

p4,3(t, q) = t2q3p4,4(tq
1/2, q) + t2q2p>5,4(tq

1/2, q), p4,3(0, 0) = 0.

The solution to these equations is unique if it exists, and we can verify using Lemma 5.1.2 that:

p>4(t, q) = f6,4,0,0(t, q), p>5,4(t, q) = f9,5,4,2(t, q),

p5,4(t, q) = f13,6,9,4(t, q), p4,4(t, q) = f12,6,8,4(t, q),

p>5,3(t, q) = f8,5,3,2(t, q), p>6,5,3(t, q) = f11,6,8,4(t, q),

p6,5,3(t, q) = f15,7,14,6(t, q), p4,3(t, q) = f11,5,7,4(t, q),

is a solution to these equations. We derive the formula p>2(t, q) = f3,2,0,0(t, q) again from
Lemma 5.1.2.
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The recurrences follow from the following eight bijections for m,n ∈ N.

P>4(n, 2m)
∼−→ P4,4(n−m, 2m) ∪ P5,4(n−m, 2m) ∪ P>5,4(n−m, 2m) ∪ P>4(n−m, 2m),

λ 7→


[λ1 − 1, . . . , λm−2 − 1, 4, 4] if [λm−1, λm] = [5, 5];

[λ1 − 1, . . . , λm−2 − 1, 5, 4] if [λm−1, λm] = [6, 5];

[λ1 − 1, . . . , λm−1 − 1, 4] if [λm] = [5] and λm−1 > 6;

[λ1 − 1, . . . , λm − 1] if λm > 5,

which can be verified directly from the definition of P , as we now show. We note that the oper-
ation on λ is always “subtract 1 from each entry of λ”. For example, a partition [λ1, . . . , λm] ∈
P>4(n,m) satisfies exactly one of the following four conditions:

[λm−1, λm] = [5, 5], [λm−1, λm] = [6, 5], [λm] = [5] and λm−1 > 6, or λm > 5.

We assume λ satisfies [λm−1, λm] = [5, 5]. Then [λ1− 1, . . . , λm−2− 1, 4, 4] belongs to P because:
it cannot contain some ordinary partition (otherwise λ would contain some ordinary partition),
and we can verify case by case that it cannot contain some exceptional partition. Actually, we
have [λ1 − 1, . . . , λm−2 − 1, 4, 4] ∈ P4,4(n −m, 2m), as we easily see, so we get the first part of
our bijection. The other parts follow a similar reasoning, and an explicit inverse of this function
can be written if desired. We also note that [5] 7→ [4] and ∅ 7→ ∅ in this bijection. We now
verify that this bijection implies our first recurrence. One key step is replacing n by n −m in
the following computation

p4,4(tq
1/2, q) + p5,4(tq

1/2, q) + p>5,4(tq
1/2, q) + p>4(tq

1/2, q)

=
∑

m,n∈N

(|P4,4(n,m)|+ |P5,4(n,m)|+ |P>5,4(n,m)|+ |P>4(n,m)|)(tq1/2)mqn

=
∑

m,n∈N

(|P4,4(n, 2m)|+ |P5,4(n, 2m)|+ |P>5,4(n, 2m)|+ |P>4(n, 2m)|)(tq1/2)2mqn

=
∑

m,n∈N

(|P4,4(n−m, 2m)|+ |P5,4(n−m, 2m)|+ |P>5,4(n−m, 2m)|+ |P>4(n−m, 2m)|)t2mqn

=
∑

m,n∈N

|P>4(n, 2m)|t2mqn

= p>4(t, q).

In the next bijections, we do something similar. In some cases, the operation on λ is “subtract
2 from each entry of λ”, and sometimes we need to change the tail of the result after doing this
operation to get something in P . The next two lemmas also employ very similar arguments.

P>5,4(n, 2m)
∼−→ P6,5,3(n−m, 2m) ∪ P>6,5,3(n−m, 2m) ∪ P>5,3(n−m, 2m),

λ 7→


[λ1 − 1, . . . , λm−3 − 1, 6, 5, 3] if [λm−2, λm−1, λm] = [7, 6, 4];

[λ1 − 1, . . . , λm−2 − 1, 5, 3] if [λm−1, λm] = [6, 4] and λm−2 > 7;

[λ1 − 1, . . . , λm−1 − 1, 3] if [λm] = [4] and λm−1 > 6,

P5,4(n, 2m)
∼−→ P4,3(n−m, 2m),

λ 7→ [λ1 − 1, . . . , λm−2 − 1, 4, 3],

P4,4(n, 2m)
∼−→ P>6,5,3(n− 2m− 1, 2(m− 1)) ∪ P>5,3(n− 2m− 1, 2(m− 1)),

λ 7→

{
[λ1 − 2, . . . , λm−3 − 2, 5, 3] if [λm−2, λm−1, λm] = [7, 4, 4];

[λ1 − 2, . . . , λm−2 − 2, 3] if [λm−1, λm] = [4, 4] and λm−2 > 7,
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P>5,3(n, 2m)
∼−→ P>4(n−m− 2, 2(m− 1)),

λ 7→ [λ1 − 1, . . . , λm−1 − 1],

P>6,5,3(n, 2m)
∼−→ P>5,4(n−m− 2, 2(m− 1)),

λ 7→ [λ1 − 1, . . . , λm−2 − 1, 4],

P6,5,3(n, 2m)
∼−→ P5,4(n−m− 2, 2(m− 1)),

λ 7→ [λ1 − 1, . . . , λm−3 − 1, 5, 4],

P4,3(n, 2m)
∼−→ P4,4(n−m− 2, 2(m− 1)) ∪ P>5,4(n−m− 1, 2(m− 1)),

λ 7→

{
[λ1 − 1, . . . , λm−3 − 1, 4, 4] if [λm−2, λm−1, λm] = [6, 4, 3];

[λ1 − 1, . . . , λm−2 − 1, 4] if [λm−1, λm] = [4, 3] and λm−2 > 6. □

Lemma 5.2.2. The formal power series p>2,1(t, q) is given by

p>2,1(t, q) = f5,2,1,1(t, q).

Proof. We consider the disjoint union

P>2,1 = P5,3,1 ∪ P>5,3,1 ∪ P5,4,1 ∪ P>5,4,1 ∪ P>4,1.

We have bijections:

P>4,1(n, 2m+ 1)
∼−→ P>4(n− 1, 2m),

λ 7→ [λ1, . . . , λm],

P>5,4,1(n, 2m+ 1)
∼−→ P>5,4(n− 1, 2m),

λ 7→ [λ1, . . . , λm],

P5,4,1(n, 2m+ 1)
∼−→ P5,4(n− 1, 2m),

λ 7→ [λ1, . . . , λm],

P>5,3,1(n, 2m+ 1)
∼−→ P>5,3(n− 1, 2m),

λ 7→ [λ1, . . . , λm],

P5,3,1(n, 2m+ 1)
∼−→ P>6,5,3(n− 1, 2m),

λ 7→ [λ1, . . . , λm],

from which, together with the proof of Lemma 5.2.1, we get:

p>4,1(t, q) = tqp>4(t, q) = f6,4,1,1(t, q),

p>5,4,1(t, q) = tqp>5,4(t, q) = f9,5,5,3(t, q),

p5,4,1(t, q) = tqp5,4(t, q) = f13,6,10,5(t, q),

p>5,3,1(t, q) = tqp>5,3(t, q) = f8,5,4,3(t, q),

p5,3,1(t, q) = tqp>6,5,3(t, q) = f11,6,9,5(t, q).

The formula for p>2,1(t, q) then follows from Lemma 5.1.2. □

Lemma 5.2.3. The formal power series p>2,1,1(t, q) is given by

p>3,1,1(t, q) = f6,3,2,2(t, q).



PBW BASES OF IRREDUCIBLE ISING MODULES 77

Proof. We consider the disjoint union

P>3,1,1 = P4,1,1 ∪ P>4,1,1.

We have bijections:

P>4,1,1(n, 2m+ 2)
∼−→ P>4,1(n− 1, 2m+ 1),

λ 7→ [λ1, . . . , λm, 1],

P4,1,1(n, 2m+ 2)
∼−→ P>5,4,1(n− 1, 2m+ 1),

λ 7→ [λ1, . . . , λm, 1],

from which, together with the proof of Lemma 5.2.2, we get:

p>4,1,1(t, q) = tqp>4,1(t, q) = f6,4,2,2(t, q),

p4,1,1(t, q) = tqp>5,4,1(t, q) = f9,5,6,4(t, q).

The formula for p>3,1,1(t, q) then follows from Lemma 5.1.2. □

Lemma 5.2.4. The formal power series p(t, q) is given by

p(t, q) = f3,2,0,0(t, q) + f5,2,1,1(t, q) + f6,3,2,2(t, q).

Proof. This follows from the disjoint union

P = P>2 ∪ P>2,1 ∪ P>3,1,1

together with Lemma 5.2.1, Lemma 5.2.2 and Lemma 5.2.3. □

Lemma 5.2.5. The formal power series p(q) satisfies

chL(q) = q1/2p(q).

Proof. This follows from Lemma 5.2.4 by setting t = 1 and [AVEH22, Theorem 4] together with
Lemma 5.1.2. □

5.3. Computing leading monomials. We recall that we have defined V = Vir1/2, M =
M(1/2, 1/2) and L = L(1/2, 1/2).

Lemma 5.3.1. Let λ = [λ1, . . . , λm] be a partition with λm ≥ 2 or λ = ∅, and we consider M
as a module over V . Then

(Lλ |0⟩)(−1) |1/2⟩ = Lλ |1/2⟩+u for some u ∈ G2m−1M.

Proof. The isomorphism grG(V )
∼−→ C[L−2, L−3, . . . ] maps Lλ |0⟩ to pλ. The isomorphism

grG(M)
∼−→
⊕

k∈N C[L−2, L−3, . . . ]L
k
−1 maps |1/2⟩ to L0

−1 and Lλ |1/2⟩ to uλ. The equality
pλ ·L0

−1 = uλ in grG(M) translates to the equality (Lλ |0⟩)(−1) |1/2⟩ = Lλ |1/2⟩+u inM for some
u ∈ G2m−1M . □

We know grG(M) is a free module over grG(V )

grG(M) =
⊕
k∈N

grG(V )Lk
−1.

For k ∈ N, we call

ιk : gr
G(V ) ↪→ grG(M)

the insertion of grG(V ) into the k-th component of grG(M).

Lemma 5.3.2. Let a ∈ GpV for some p ∈ N. Then a(−1) |1/2⟩ ∈ GpM and

ι0(α
p(a)) = αp(a(−1) |1/2⟩).

Proof. The result follows immediately from Lemma 5.3.1. □
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We have a natural quotient map

π0 : V ↠ Vir3,4,

π0(a) = a+ U(Vir){a3,4},

where a3,4 is the singular vector of V that generates its maximal proper ideal as in [AVEH22]
and (1.5.6). Applying the functor grG, we obtain an epimorphism of N-graded vertex Poisson
algebras

grG(π0) : gr
G(V ) ↠ grG(Vir3,4).

We set I = ker(grG(π0)), following the notation of [AVEH22], and we recall the definition of K
given in (5.1.3).

Lemma 5.3.3. We have the inclusion

ι0(I) ⊆ K.

Proof. By Theorem 3.3.4, the following diagram commutes

V Vir3,4

F(L)

π0

Y L
V

Y L
Vir3,4

The commutativity of this diagram implies the following statement

for a ∈ U(Vir){a3,4}, u ∈M and n ∈ Z, a(n)u ∈ W,

where W is defined in (5.1.1). We use this statement in the following simplified form

for a ∈ U(Vir){a3,4}, a(−1) |1/2⟩ ∈ W. (5.3.1)

We note that

I =
∑
p∈N

αp(U(Vir){a3,4} ∩GpV ).

Similarly, we have a formula for K

K =
∑
p∈N

αp(W ∩GpM).

Let αp(a) ∈ I with a ∈ U(Vir){a3,4} ∩GpV . By Lemma 5.3.2 and (5.3.1), we have a(−1) |1/2⟩ ∈
W ∩GpM and also ι0(α

p(a)) = αp(a(−1) |1/2⟩) ∈ K, finishing the proof. □

Remark 5.3.4. The proof of Lemma 5.3.3 also works for other values of c = cp,q and h = hm,n as
in Theorem 3.3.4.

We need to compute all leading monomials of elements of K. To do this, we need to order the
PBW basis of U(Vir≤−1) = span{Lλ | λ is a partition} first by length, then by degree reverse
lexicographic order and finally by position. Formally, for any partitions λ and η, we define

Lλ ≤ Lη if and only if

{
len(λ) < len(η) or

len(λ) = len(η) and uλ ≤ uη.

For x ∈ U(Vir≤−1) with x ̸= 0, we may write

x = c1Lλ1 + c2Lλ2 + · · ·+ crLλr ,

where for 1 ≤ i ≤ r, 0 ̸= ci ∈ C and Lλ1 > Lλ2 > · · · > Lλr . We define the leading monomial of
x as lm(x) = Lλ1 . We set lm(0) = 0. Next, we extend the definition of lm from U(Vir≤−1) to

M by considering the isomorphism of vector spaces U(Vir≤−1)
∼−→M,Lλ 7→ Lλ |1/2⟩, where λ is

a partition. For example:
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(i) We have lm(L2
−1 − 3

4
L−2) = L−2 because the power product of L2

−1 is 1, the power
product of L0

−1 is L−2, L−2 > 1 by degree considerations, and we are using TOP with
L0
−1 < L1

−1 < L2
−1. We also have lm((L2

−1− 3
4
L−2) |1/2⟩) = L−2 |1/2⟩ because len(L2

−1) =
len(L−2) = 2.

(ii) We have lm(L3
−1 − 3L−2L−1 +

3
4
L−3) = L−2L−1 because the power product of L3

−1 is
1, the power product of L1

−1 is L−2, the power product of L0
−1 is L−3, L−2 > L−3 > 1

by definition and degree considerations, and we are using TOP with L0
−1 < L1

−1 <
L2
−1 < L3

−1. Again, we have lm((L3
−1 − 3L−2L−1 +

3
4
L−3) |1/2⟩) = L−2L−1 |1/2⟩ because

len(L3
−1) = len(L−2L−1) = 3 and len(L−3) = 2.

(iii) We have lm(L4
−1 − 3L−3L−1 − 6L−4) = L−3L−1 because the power product of L4

−1 is 1,
the power product of L1

−1 is L−3, the power product of L0
−1 is L−4, L−3 > L−4 > 1 by

definition and degree considerations, and we are using TOP with L0
−1 < L1

−1 < L2
−1 <

L3
−1 < L4

−1. However, we now have lm((L4
−1−3L−3L−1−6L−4) |1/2⟩) = L4

−1 |1/2⟩ because
len(L4

−1) = 4, len(L−3L−1) = 3 and len(L−4) = 2. In fact, we have (L4
−1 − 3L−3L−1 −

6L−4) |1/2⟩ ∈ W , as we will see in a moment.

Remark 5.3.5. The definition of the order in the PBW basis of U(Vir≤−1) was made so that for
a partition λ and u ∈M , if lm(u) = Lλ |1/2⟩, then lm(αlen(λ)(u)) = uλ.
This order also helps us in computing the exceptional partitions faster, as we do not have to

compute Gröbner bases explicitly because it is enough to transform matrices into row reduced
echelon form.

A basis of grG(M)1/2+n is given by {Lλ |1/2⟩ | ∆(λ) = n} and has p(n) elements. For n ∈ N,
we compute the matrix An with p(n− 2) + p(n− 3) rows and p(n) columns, which is given by
stacking the matrix Am3

n below the matrix Am2
n . The matrix Amk

n is given by

Amk
n (i, j) = coefficient of Lλj

|1/2⟩ in Lλi
uk,

for 1 ≤ i ≤ p(n − k), 1 ≤ j ≤ p(n) and k = 2, 3, where λ1, . . . , λp(n) are the partitions
of n ordered in such a way that Lλ1 > Lλ2 > · · · > Lλp(n)

, and u2, u3 are given by (5.1.2).

We now transform An into row reduced echelon form, obtaining a matrix AW
n which has an

unknown number of nonzero rows and p(n) columns. For each pivot λ of AW
n , let uWλ be the

element of grG(M) corresponding to the row which has Lλ |1/2⟩ as pivot. In other words,
uWλ = Lλ |1/2⟩+(lower order terms). We set uKλ = αlen(λ)(uWλ ) for each pivot λ of AW

n .

Remark 5.3.6. By construction and Remark 5.3.5, for each pivot λ of AW
n , we have uWλ ∈ W ,

uKλ ∈ K and lm(uKλ ) = uλ.

For example, when n = 4, the partitions are ordered in the following way

[[2, 2], [2, 1, 1], [1, 1, 1, 1], [3, 1], [4]],

the matrix AW
4 is given by

AW
4 =

1 0 0 − 3
16
−15

8
0 1 0 −1

4
−5

2
0 0 1 −3 −6

 ,

and the pivots are [2, 2], [2, 1, 1] and [1, 1, 1, 1]. Therefore:

uW[2,2] = (L[2,2] − 3
16
L[3,1] − 15

8
L[4]) |1/2⟩, uK[2,2] = L−2L−2,

uW[2,1,1] = (L[2,1,1] − 1
4
L[3,1] − 5

2
L[4]) |1/2⟩, uK[2,1,1] = L−2L

2
−1,

uW[1,1,1,1] = (L[1,1,1,1] − 3L[3,1] − 6L[4]) |1/2⟩, uK[1,1,1,1] = L4
−1.

The partitions [2], [1, 1, 1], [3, 1, 1], [3, 3], [4, 3, 1], [4, 4, 1], [5, 4, 1, 1] and [6, 5, 3, 1] are piv-
ots of the matrices AW

2 , A
W
3 , AW

5 , AW
6 , AW

8 , AW
9 , AW

11 and AW
15 respectively, see [Sal23, ising-

modules.ipynb]. We set

K ′ = (uK[2], u
K
[1,1,1], u

K
[3,1,1], u

K
[3,3], u

K
[4,3,1], u

K
[4,4,1], u

K
[5,4,1,1], u

K
[6,5,3,1], ι0(I))psn,
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where psn denotes the Poisson submodule generated by the given subset. By Lemma 5.3.3,
Remark 5.3.6 and the fact that K is a vertex Poisson submodule (not just a submodule), we
have

K ′ ⊆ K.

Let us consider the Poisson structure of grG(M) as a module over grG(V ). We have

(L−2)(0)(uλ) = α2(ω)(0)α
len(λ)(Lλ |1/2⟩)

= αlen(λ)+1(L−1Lλ |1/2⟩)
= u[λ,1],

where λ is any partition, and [λ, 1] denotes the partition λ with a 1 appended at the end.

Remark 5.3.7. While the Poisson structure of grG(V ) is trivial (i.e., is zero), the Poisson structure
of grG(M) is not. In fact, if u ∈ grG(M), and λ is a partition, then

lm(u) = uλ implies lm((L−2)(0)(u)) = u[λ,1].

It is interesting to note that we use the Poisson structure, unlike most results in §4 and [AVEH22].

Let R be the set of partitions containing some partition of R, i.e.,

R = {λ | there is some partition η ∈ R such that λ ⊇ η}.

Lemma 5.3.8. For λ ∈ R, there exists u ∈ K ′ such that lm(u) = uλ.

Proof. By the definition of K ′ and [AVEH22, Proposition 5.1], we know that for λ ∈ R, there
exists u ∈ K ′ such that lm(u) = uλ. We now assume λ ∈ R, which means there is η ∈ R
such that λ ⊇ η. Therefore, λ is obtained from η by adding some integers greater than or
equal to two and adding k ones. We pick v ∈ K ′ such that lm(v) = uη and some power
product pτ ∈ C[L−2, L−3, . . . ], for some partition τ , such that lm((L−2)

k
(0)(pτv)) = uλ (this

can be done because of Remark 5.3.7 and the fact that lm is multiplicative). Thus, we set
u = (L−2)

k
(0)(pτv) ∈ K ′ to get lm(u) = uλ. For example, if we take λ = [3, 2, 1, 1] ∈ R, then

η = [2] ∈ R. In this case, v = L−2 − 3/4L2
−1 ∈ K ′ is such that lm(v) = u[2], and we take

u = L−3L−2L
2
−1 − 3/4L−3L

4
−1 ∈ K ′. □

Remark 5.3.9. For any partitions λ and η with the same number of ones, if λ ⊇ η, then uη | uλ.
The converse is not true. For example, u[4,2] | u[4,3,2], but [4, 3, 2] ⊉ [4, 2]. However, if η =
[η1, . . . , ηm, 1, . . . , 1] with ηm ≥ 2 and η1 − ηm ≤ 1, then λ ⊇ η if and only if uη | uλ, provided λ
and η have the same number of ones.

The following lemma says our set of partitions R is special. If R were {[4, 2]}, for example,
the following lemma would not be true.

Lemma 5.3.10. There is an alternative description for P , namely

P = {λ | for η ∈ R, uη ∤ uλ}.

Proof. We have to prove the following equality

{λ | for η ∈ R, λ ⊉ η} = {λ | for η ∈ R, uη ∤ uλ}.
First, we prove the inclusion (⊇). We assume λ belongs to the right set, and λ ⊇ η for some

η ∈ R. Then λ has k more ones than η for some k ∈ N. By Remark 5.3.9, u[η,1,...,1] | uλ, where
we added k ones to η, a contradiction. Therefore, λ ⊉ η for η ∈ R, which means λ belongs to
the left set.

We now prove the inclusion (⊆). We assume λ belongs to the left set. Then λ has 0, 1 or 2
ones. We assume λ has 0 ones. It is enough to prove that for η ∈ R with 0 ones, uη ∤ uλ. By
Remark 5.3.9, if η is equal to [2], [3, 3], [r, r, r], [r + 1, r, r] or [r + 1, r + 1, r] for some r ≥ 3,
then uη ∤ uλ. We assume η = [r + 2, r + 1, r] for some r ≥ 3 and uη | uλ. Then λ contains
[r+2, r+1, . . . , r+1, r], where r+1 appears k ≥ 1 times. If k ≥ 2, then λ contains [r+1, r+1, r],
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which is not possible. If k = 1, then λ contains [r+2, r+1, r], which is not possible. Therefore,
we cannot have uη | uλ. Continuing this way, we obtain that uη ∤ uλ for η ∈ R with 0 ones. The
same argument can be applied when λ has 1 or 2 ones. Therefore, λ belongs to the right set. □

5.4. Proofs of the main theorems.

Proof of Theorem 0.4. Since we cannot apply Gröbner basis theory directly on the free mod-
ule

⊕
k∈N C[L−2, L−3, . . . ]L

k
−1, we need to truncate somehow. We have to keep in mind the

isomorphisms given in Proposition 5.1.1. For N ∈ N, we define:

grG(M)≤1/2+N =
∑
n≤N

grG(M)1/2+n,

grG(L)≤1/2+N =
∑
n≤N

grG(L)1/2+n.

We note that grG(M)≤1/2+N is a vector subspace of the free module

FN =
⊕
n≤N

C[L−2, L−3, . . . , L−N ]L
n
−1

with base ring C[L−2, L−3, . . . , L−N ] because a basis of grG(M)≤1/2+N is given by elements of
the form uλ, with all the elements of λ being less than N , and with λ having at most N ones.
We note that K ∩ FN is a submodule of FN for N ∈ N.

For N ∈ N, we have natural vector space isomorphisms

FN

K ∩ FN

⊇
grG(M)≤1/2+N

K ∩ FN

∼−→
grG(M)≤1/2+N

K ∩ grG(M)≤1/2+N

∼−→ grG(L)≤1/2+N . (5.4.1)

Therefore, if we find a basis of each vector space grG(M)≤1/2+N/K ∩ FN ⊆ FN/K ∩ FN such
that each basis is contained in the next one when considering the isomorphism (5.4.1), we get a
basis of grG(L) by taking the union of these bases because

⋃
N∈N gr

G(L)≤1/2+N = grG(L).
Let GN be a Gröbner basis of K ∩ FN . We define

BN = {uλ | ∆(λ) ≤ N and for u ∈ GN , lm(u) ∤ uλ}.
By [AL94, Proposition 3.6.4],

{uλ +K ∩ FN | uλ ∈ BN} (5.4.2)

is a vector space basis of grG(M)≤1/2+N/K ∩ FN . Therefore, by Lemma 5.2.5, isomorphism
(5.4.1) and the isomorphism between grG(L)1/2+n and L1/2+n of Proposition 5.1.1, we have

|BN | =
∑
n≤N

dim(grG(L)1/2+n) =
∑
n≤N

dim(L1/2+n) =
∑
n≤N

|P (n)|.

We define
BN = {uλ | ∆(λ) ≤ N and for η ∈ R, uη ∤ uλ}.

By Lemma 5.3.10, we also have

BN = {uλ | ∆(λ) ≤ N and λ ∈ P}.
From the definition of P (n), we see that

|BN | =
∑
n≤N

|P (n)|.

On the other hand, BN ⊆ BN . This is because if uλ ∈ BN and η ∈ R, then uη ∤ uλ, as we now
show. Suppose, for the sake of contradiction, that uη | uλ. By Lemma 5.3.8, there would exist
u ∈ K ′∩FN ⊆ K∩FN such that lm(u) = uη. However, by the definition of a Gröbner basis, there
would then exist v ∈ GN such that lm(v) | lm(u), implying lm(v) | uλ, a contradiction. As both
BN and BN are finite sets and |BN | = |BN |, we get BN = BN . We see that the family of bases
given by (5.4.2) satisfies the property that each basis is a subset of the next. This observation,



82 DIEGO SALAZAR

together with the isomorphism between L and grG(L) of Proposition 5.1.1, concludes the proof
of Theorem 0.4. □

Proof of Theorem 0.3. We recall that the basis of Theorem 0.4 also gives a basis of grG(L). For
a partition λ, we have

αlen(λ)(Lλ(|1/2⟩+W )) ∈ αlen(λ)(Glen(λ)L1/2+∆(λ)).

Thus, when calculating the refined character of grG(L), ∆(λ) is incremented by 1/2. Therefore,
chgrG(L)(t, q) = q1/2p(t, q) and together with Lemma 5.2.4, we conclude the proof of Theorem 0.3.

□

Corollary 5.4.1. We have the equality

K ′ = K.

Proof. This proof is a copy of the proof of Theorem 0.3. We know that K ′ ⊆ K.
Let N ∈ N, and let G′

N be a Gröbner basis of K ′ ∩FN considered as a submodule of FN . Like
in the proof of Theorem 0.3, we set

B′
N = {uλ | ∆(λ) ≤ N and for u ∈ G′

N , lm(u) ∤ uλ}.
By [AL94, Proposition 3.6.4], we have

|B′
N | = dim

(
grG(M)≤1/2+N

K ′ ∩ FN

)
= dim

(
grG(M)≤1/2+N

K ′ ∩ grG(M)≤1/2+N

)
.

We can apply the same argument as in the proof of Theorem 0.3 and conclude that B′
N ⊆ BN ,

where BN is the defined in the same way. But BN = BN and

|BN | = dim

(
grG(M)≤1/2+N

K ∩ grG(M)≤1/2+N

)
.

Therefore, we have |B′
N | ≤ |BN |, and this implies

dim(K ′ ∩ grG(M)≤1/2+N) ≥ dim(K ∩ grG(M)≤1/2+N) ≥ dim(K ′ ∩ grG(M)≤1/2+N).

Consequently, K ′ ∩ grG(M)≤1/2+N = K ∩ grG(M)≤1/2+N for N ∈ N. Taking the union of these
subspaces, we get K ′ = K. □

Appendix A. Almost commutative algebras

Let A be an associative (not necessarily commutative) algebra with unit 1 and filtration
(Ap)p∈Z such that:

(i) Ap = 0 for p < 0;
(ii) 1 ∈ A0;
(iii) A0 ⊆ A1 ⊆ . . . ;
(iv) ApAq ⊆ Ap+q for p, q ∈ Z.

Let

gr(A) =
⊕
p∈N

Ap/Ap−1

be the associated graded vector space. The vector space gr(A) is an associative algebra with
unit and multiplication given as follows. For p, q ∈ N, a ∈ Ap and b ∈ Aq, we set

γp(a)γq(b) = γp+q(ab),

where γp : Ap → gr(A) is the principal symbol map, which is the composition of the natural
maps Ap ↠ Ap/Ap−1 and Ap/Ap−1 ↪→ gr(A). The unit of gr(A) is γ0(1).

We say A is almost commutative if the filtration (Ap)p∈Z satisfies the following condition: for
p, q ∈ Z, if a ∈ Ap and b ∈ Aq, then ab− ba ∈ Ap+q−1. If A is almost commutative, then gr(A)
is commutative.
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Example A.1 (PBW filtration of U(g)). Let g be a Lie algebra. The tensor algebra of g, given
by T (g) =

⊕
n∈N g

⊗n, is an associative algebra with unit 1. The universal enveloping algebra of
g, given by U(g) = T (g)/(xy − yx − [x, y] | x, y ∈ g), is also an associative algebra with 1, but
we also have an inclusion inc : g ↪→ U(g), which is a Lie algebra homomorphism. The PBW
filtration of U(g) is given by

U(g)p = span{x1x2 . . . xs | s ≤ p, x1, . . . , xs ∈ g} for p ∈ Z.

This filtration clearly satisfies axioms (i)–(iv) above. Furthermore, U(g)1 = g. By [Dix96,
Lemma 2.1.5], U(g) is almost commutative, so gr(U(g)) is commutative. The symmetric algebra
of g, given by S(g) = T (g)/(xy − yx | x, y ∈ g), is a commutative associative algebra with
unit 1, and we have an inclusion inc : g ↪→ S(g) satisfying a universal property. We have two
natural inclusions of g: γ1 : g ↪→ gr(U(g)) and inc : g ↪→ S(g). By the universal property of
inc : g ↪→ S(g), there is a homomorphism of commutative algebras S(g) → gr(U(g)) such that
1 7→ 1, and the following diagram commutes

g S(g)

gr(U(g))

inc

γ1

By [Dix96, Proposition 2.3.6], the homomorphism S(g) → gr(U(g)) is in fact an isomorphism.
If (xi)i∈I is a basis of g, then S(g) is isomorphic to the polynomial algebra C[(xi)i∈I ]. We have
described gr(U(g)) explicitly.

Appendix B. Poisson algebras and their modules

Let A be a commutative associative algebra. A Hamiltonian operator of A is a diagonalizable
operator H ∈ End(A) such that

H(ab) = H(a)b+ aH(b) for a, b ∈ A.

Thus, a Hamiltonian of A is just a derivation of A. An algebra with a Hamiltonian is called
graded.

Let A be a differential commutative associative algebra with derivation ∂. A Hamiltonian
operator of A is a Hamiltonian of A as a commutative associative algebra such that

[H, ∂] = ∂.

It is possible to prove inductively that the last equation implies

H∂n = n∂n + ∂nH for n ∈ N. (B.0.1)

A Poisson algebra is an algebra A together with two operations • · • : A × A → A and
{•, •} : A× A→ A satisfying:

(i) (A, • · •) is a commutative associative algebra;
(ii) (A, {•, •}) is a Lie algebra;
(iii) The operations • · • and {•, •} are related by the left Leibniz rule

{a, b · c} = {a, b} · c+ b · {a, c} for a, b, c ∈ A.

The operation {•, •} is called Poisson bracket.

Lemma B.1. A Poisson algebra A also satisfies the right Leibniz rule

{ab, c} = a{b, c}+ b{a, c} for a, b, c ∈ A.

Proof. The result follows from the left Leibniz rule and the anticommutativity of the Poisson
bracket. □
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Let A be an associative almost commutative algebra with A with unit 1 satisfying (i)–(iv)
of Appendix A. We know that gr(A) is a commutative associative algebra with unit γ0(1). We
now make gr(A) into a Poisson algebra by defining the Poisson bracket as follows. For p, q ∈ N,
a ∈ Ap and b ∈ Aq, we set

{γp(a), γq(b)} = γp+q−1(ab− ba).
We can verify that this is well-defined and makes gr(A) into a Poisson algebra.

Example B.2 (gr(U(g))). Let g be a Lie algebra. We study the case when A = U(g) is given the
PBW filtration. In that case, we see that the Poisson bracket {•, •} : gr(U(g)) × gr(U(g)) →
gr(U(g)) extends the Lie bracket [•, •] : g × g → g. We wish to make this construction more
explicit. By Example A.1, gr(U(g)) is canonically isomorphic to S(g). Let (xi)i∈I be a basis of
g. Then S(g) is isomorphic to the polynomial algebra C[(xi)i∈I ]. We can write

[xi, xj] =
∑
k∈I

cki,jxk for i, j ∈ I

for some scalars cki,j ∈ C. The left and right Leibniz rules imply that the Poisson bracket is given
explicitly by

{f, g} =
∑

i,j,k∈I

cki,j
∂f

∂xi

∂g

∂xj
xk for f, g ∈ C[(xi)i∈I ].

Therefore, this Poisson bracket is the unique Poisson bracket extending the Lie bracket of⊕
i∈I Cxi ∼= g to a Poisson bracket of C[(xi)i∈I ] ∼= gr(U(g)).

Let A be a Poisson algebra. A Hamiltonian operator of A is a Hamiltonian H of A as a
commutative associative algebra such that

H({a, b}) = {a,H(b)}+ {H(a), b} − {a, b} for a, b ∈ A.

Let A be a graded commutative associative algebra with Hamiltonian H, and let M be an
A-module. If A has a unit 1, we further assume that 1u = u for u ∈M . A Hamiltonian operator
of M is a diagonalizable operator HM ∈ End(M) such that

HM(au) = H(a)u+ aHM(u) for a ∈ A and u ∈M.

Let A be a Poisson algebra. A module over A is an A-moduleM in the usual associative sense
equipped with a bilinear map {•, •} : A×M → M , which makes M a Lie algebra module over
A such that for a, b ∈ A and u ∈M :

(i) (Left Leibniz rule) {a, bu} = {a, b}u+ b{a, u};
(ii) (Right Leibniz rule) {ab, u} = a{b, u}+ b{a, u}.

Remark B.3. We probably cannot prove the right Leibniz rule from the Left Leibniz rule for
modules like in Lemma B.1 because we do not have anticommutativity for modules. Some
authors only require the left Leibniz rule for modules, but here we also want the right Leibniz
rule (see [Car03]).

Let A be a graded Poisson algebra with Hamiltonian H, and let M be an A-module. A
Hamiltonian operator of M is a Hamiltonian HM of M as a module over A as a commutative
associative algebra such that

HM({a, u}) = {a,HM(u)}+ {H(a), u} − {a, u} for a ∈ A and u ∈M.

Appendix C. Jet algebras and jet schemes

In this appendix, by an algebra we will mean a commutative associative algebra with unit.
Let R be a finitely generated algebra. We now construct a differential algebra JR called the
jet algebra of R and an algebra inclusion inc : R ↪→ JR universal with this property, i.e., for a
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differential algebra A and an algebra homomorphism ϕ : R → A, there is a unique differential
algebra homomorphism ϕ : JR→ A such that the following diagram commutes

R JR

A

inc

ϕ
ϕ

Assuming R = C[x1, . . . , xr]/(f1, . . . , fs) for some polynomials f1, . . . , fs ∈ C[x1, . . . , xr], the
construction is as follows. We introduce new variables xj(−i) for i = 1, 2, . . . , j = 1, . . . , r and a

derivation ∂ of the polynomial algebra C[xj(−i) | i = 1, 2, . . . , j = 1, . . . , r] by setting

∂xj(−i) = ixj(−i−1) for i = 1, 2, . . . , j = 1, . . . , r.

We set (identifying xj with xj(−1) when considering fi in the following equation)

JR = C[xj(−i) | i = 1, 2, . . . , j = 1, . . . , r]/(∂jfi | i = 1, . . . , s, j = 0, 1, . . . )

= C[xj(−i) | i = 1, 2, . . . , j = 1, . . . , r]/(f1, . . . , fs)∂,

where the subscript ∂ indicates the differential subalgebra generated by the given subset. By our
definitions, ∂ factors through a derivation of JR, and we have an algebra inclusion inc : R ↪→
JR, inc(xj + (f1, . . . , fs)) = xj(−1) + (f1, . . . , fs)∂ for j = 1, . . . , r. The fact that inc : R ↪→ JR

satisfies our desired universal property is explained in [Ara12, §2.3] and [EM09].

Remark C.1. We see that the classes of the original variables xj generate JR as a differential
algebra, i.e.,

JR = (x1 + (f1, . . . , fs)∂, . . . , x
r + (f1, . . . , fs)∂)∂.

If f : R1 → R2 is a homomorphism of finitely generated algebras, then Jf : JR1 → JR2

is defined by requiring that Jf(∂n1 (inc1(x))) = ∂n2 (inc2(f(x))) for x ∈ R1 and n ∈ N (c.f.
Remark C.1). For a finitely generated algebra R and a differential algebra A, we have a natural
isomorphism

Hom{differential algebras}(JR,A) ∼= Hom{algebras}(R,A).

Remark C.2. It is not true that we have defined a functor J which is left adjoint to the forgetful
functor {differential algebras} → {finitely generated algebras} because a differential algebra is
generally not finitely generated.

But we can easily work in the general case as follows. Let R be an algebra (not necessarily
finitely generated), and we consider the polynomial algebra in R variables C[(xj)j∈R]. We have
a natural epimorphism π : C[(xj)j∈R] ↠ R, π(xj) = j for j ∈ R. We can repeat the construction
of JR with C[(xj)j∈R] in place of C[x1, . . . , xr] and ker(π) in place of (f1, . . . , fs). We have

JR = C[xj(−i) | i = 1, 2, . . . , j ∈ R]/ ker(π)∂, and the inclusion inc : R → JR is given by

inc(j) = xj(−1) + ker(π)∂ for j ∈ R. As in Remark C.1, we have JR = (inc(R))∂.

This way, we construct a functor

J : {algebras} → {differential algebras},

which is left adjoint to the forgetful functor {differential algebras} → {algebras}.

Given an algebra R, it is useful to consider the functor

JR⊗R • : R-Mod→ JR-Mod,

where JR is merely considered an algebra. Again, the JR-module M together with the R-
module inclusion inc : M ↪→ JR ⊗R M, inc(u) = 1 ⊗ u satisfy a universal property similar
to that of inc : R ↪→ JR, and the functor JR ⊗R • is left adjoint to the forgetful functor
JR-Mod→ R-Mod.
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Let R be a graded algebra with Hamiltonian H. We can extend uniquely the Hamiltonian H
to a Hamiltonian HJR ∈ End(JR) because of (B.0.1). Furthermore, if M is a graded R-module
with Hamiltonian HM , we can define a Hamiltonian of JR⊗R M by setting

HJR⊗RM = HJR ⊗ IdM +IdJR⊗HM .

The jet scheme of an affine scheme of finite type X = Spec(R) is defined by

JX = Spec(JR).

Remark C.3. It is possible to define the jet scheme JX of a general scheme X of finite type (see
[EM09]), but the construction is more elaborate, and we will only need the affine case.

Theorem C.4 ([EM09]). Let R be a finitely generated algebra. Then dim(R) = 0 if and only if
dim(JR) = 0.

Appendix D. An explicit description of K

In [Sal23, ising-modules.ipynb], I wrote a SageMath program to compute uWλ for all partitions
λ (if λ is not a pivot, it returns 0). From its output, we obtain:

uK[2] = L−2 − 3
4
L2
−1, uK[1,1,1] = L3

−1,

uK[3,1,1] = L−3L
2
−1, uK[3,3] = L−3L−3 +

1
3
L−4L

2
−1,

uK[4,3,1] = L−4L−3L−1, uK[4,4,1] = L−4L−4L−1 +
9
8
L−5L−3L−1,

uK[5,4,1,1] = L−5L−4L
2
−1, uK[6,5,3,1] = L−6L−5L−3L−1.

However, it turns out that uK[5,4,1,1] and u
K
[6,5,3,1] are redundant, as can be seen in [Sal23, m11-

m15.ipynb]. From [AVEH22, Theorem 2], we obtain the following explicit expression for K

K = (uK[2], u
K
[1,1,1], u

K
[3,1,1], u

K
[3,3], u

K
[4,3,1], u

K
[4,4,1], ι0((a, b)∂))psn,

where

a = L3
−2, b = L−4L−3L−2 +

1
6
L−5L

2
−2.

Appendix E. The case L(1/2, 1/16)

We can do the same analysis we did for L(1/2, 1/2) but with L(1/2, 1/16) instead. The
arguments are the same, but the computations are, of course, different. These computations will
be shown now.

We recall the definitions of P 1/16 and R1/16 given in §0. For the definition of the series
p1/16(t, q), the set P 1/16(n,m) and other related notation, see §5.2. Again, we omit superscripts.

The maximal proper subrepresentation of M(1/2, 1/16) is generated by the singular vectors:

u2 = (L−2 − 4
3
L2
−1) |1/16⟩, u4 = (L−2L−2 − 600

49
L−2L

2
−1 +

144
49
L4
−1 +

264
49
L−3L−1 − 36

49
L−4) |1/16⟩ .

Lemma E.1. The formal power series p>2(t, q) is given by

p>2(t, q) = f2,2,0,0(t, q).

Sketch of proof. We consider the disjoint union

P>2 = P3,3 ∪P6,4,3 ∪P>6,4,3 ∪P6,5,3 ∪P8,7,5,3 ∪P>8,7,5,3 ∪P>7,5,3 ∪P>5,3 ∪P4,4 ∪P5,4 ∪P>5,4 ∪P>4.
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These subseries satisfy the following recurrences with initial conditions:

p>4(t, q) = p4,4(tq
1/2, q) + p5,4(tq

1/2, q) + p>5,4(tq
1/2, q) + p>4(tq

1/2, q), p>4(0, 0) = 1,

p>5,4(t, q) = p6,5,3(tq
1/2, q) + p8,7,5,3(tq

1/2, q) + p>8,7,5,3(tq
1/2, q)

+ p>7,5,3(tq
1/2, q) + p>5,3(tq

1/2, q), p>5,4(0, 0) = 0,

p5,4(t, q) = p6,4,3(tq
1/2, q) + p>6,4,3(tq

1/2, q), p5,4(0, 0) = 0,

p4,4(t, q) = p3,3(tq
1/2, q), p4,4(0, 0) = 0,

p>5,3(t, q) = t2q3p>4(tq
1/2, q), p>5,3(0, 0) = 0,

p>7,5,3(t, q) = t2q3p>5,3(tq
2/2, q), p>7,5,3(0, 0) = 0,

p>8,7,5,3(t, q) = t2q4p>6,4,3(tq
2/2, q), p>8,7,5,3(0, 0) = 0,

p8,7,5,3(t, q) = t2q3p6,5,3(tq
2/2, q), p8,7,5,3(0, 0) = 0,

p6,5,3(t, q) = t2q3p5,4(tq
1/2, q), p6,5,3(0, 0) = 0,

p>6,4,3(t, q) = t2q2p>5,4(tq
1/2, q), p>6,4,3(0, 0) = 0,

p6,4,3(t, q) = t2q3p4,4(tq
1/2, q), p6,4,3(0, 0) = 0,

p3,3(t, q) = t2q3p>6,4,3(tq
1/2, q) + t2q2p>5,3(tq

1/2, q), p3,3(0, 0) = 0.

The solution to these equations is unique if it exists, and we can verify using Lemma 5.1.2 that:

p>4(t, q) = f6,4,0,0(t, q), p>5,4(t, q) = f9,5,4,2(t, q),

p5,4(t, q) = f13,6,9,4(t, q), p4,4(t, q) = f12,6,8,4(t, q),

p>5,3(t, q) = f8,5,3,2(t, q), p>7,5,3(t, q) = f12,7,8,4(t, q),

p>8,7,5,3(t, q) = f15,8,15,6(t, q), p8,7,5,3(t, q) = f19,9,23,8(t, q),

p6,5,3(t, q) = f15,7,14,6(t, q), p>6,4,3(t, q) = f11,6,7,4(t, q),

p6,4,3(t, q) = f14,7,13,6(t, q), p3,3(t, q) = f10,5,6,4(t, q),

is a solution to these equations. We derive the formula p>2(t, q) = f2,2,0,0(t, q) again from
Lemma 5.1.2.

The recurrences follow from the following twelve bijections for m,n ∈ N:

P>4(n, 2m)
∼−→ P4,4(n−m, 2m) ∪ P5,4(n−m, 2m) ∪ P>5,4(n−m, 2m) ∪ P>4(n−m, 2m),

λ 7→


[λ1 − 1, . . . , λm−2 − 1, 4, 4] if [λm−1, λm] = [5, 5];

[λ1 − 1, . . . , λm−2 − 1, 5, 4] if [λm−1, λm] = [6, 5];

[λ1 − 1, . . . , λm−1 − 1, 4] if [λm] = [5] and λm−1 > 6;

[λ1 − 1, . . . , λm − 1] if λm > 5,

P>5,4(n, 2m)
∼−→ P6,5,3(n−m, 2m) ∪ P8,7,5,3(n−m, 2m) ∪ P>8,7,5,3(n−m, 2m)

∪ P>7,5,3(n−m, 2m) ∪ P>5,3(n−m, 2m),

λ 7→



[λ1 − 1, . . . , λm−3 − 1, 6, 5, 3] if [λm−2, λm−1, λm] = [7, 6, 4];

[λ1 − 1, . . . , λm−4 − 1, 8, 7, 5, 3] if [λm−3, λm−2, λm−1, λm] = [9, 8, 6, 4];

[λ1 − 1, . . . , λm−3 − 1, 7, 5, 3] if [λm−2, λm−1, λm] = [8, 6, 4] and λm−3 > 9;

[λ1 − 1, . . . , λm−2 − 1, 5, 3] if [λm−1, λm] = [6, 4] and λm−2 > 8;

[λ1 − 1, . . . , λm−1 − 1, 3] if [λm] = [4] and λm−1 > 6,
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P5,4(n, 2m)
∼−→ P6,4,3(n−m, 2m) ∪ P>6,4,3(n−m, 2m),

λ 7→

{
[λ1 − 1, . . . , λm−3 − 1, 6, 4, 3] if [λm−2, λm−1, λm] = [7, 5, 4];

[λ1 − 1, . . . , λm−2 − 1, 4, 3] if [λm−1, λm] = [5, 4] and λm−2 > 7,

P4,4(n, 2m)
∼−→ P3,3(n−m, 2m),

λ 7→ [λ1 − 1, . . . , λm−2 − 1, 3, 3],

P>5,3(n, 2m)
∼−→ P>4(n−m− 2, 2(m− 1)),

λ 7→ [λ1 − 1, . . . , λm−1 − 1],

P>7,5,3(n, 2m)
∼−→ P>5,3(n− 2m− 1, 2(m− 1)),

λ 7→ [λ1 − 2, . . . , λm−1 − 2, 3],

P>8,7,5,3(n, 2m)
∼−→ P>6,4,3(n− 2m− 2, 2(m− 1)),

λ 7→ [λ1 − 2, . . . , λm−3 − 2, 4, 3],

P8,7,5,3(n, 2m)
∼−→ P6,5,3(n− 2m− 1, 2(m− 1)),

λ 7→ [λ1 − 2, . . . , λm−4 − 2, 6, 5, 3],

P6,5,3(n, 2m)
∼−→ P5,4(n−m− 2, 2(m− 1)),

λ 7→ [λ1 − 1, . . . , λm−3 − 1, 5, 4],

P>6,4,3(n, 2m)
∼−→ P>5,4(n−m− 1, 2(m− 1)),

λ 7→ [λ1 − 1, . . . , λm−2 − 1, 4],

P6,4,3(n, 2m)
∼−→ P4,4(n−m− 2, 2(m− 1)),

λ 7→ [λ1 − 1, . . . , λm−3 − 1, 4, 4],

P3,3(n, 2m)
∼−→ P>6,4,3(n−m− 2, 2(m− 1)) ∪ P>5,3(n−m− 1, 2(m− 1)),

λ 7→

{
[λ1 − 1, . . . , λm−3 − 1, 4, 3] if [λm−2, λm−1, λm] = [6, 3, 3];

[λ1 − 1, . . . , λm−2 − 1, 3] if [λm−1, λm] = [3, 3] and λm−2 > 6. □

Lemma E.2. The formal power series p>2,1(t, q) is given by

p>2,1(t, q) = f4,2,1,1(t, q).

Proof. We consider the disjoint union

P>2,1 = P6,5,3,1 ∪ P8,7,5,3,1 ∪ P>8,7,5,3,1 ∪ P>7,5,3,1 ∪ P>5,3,1 ∪ P4,4,1 ∪ P5,4,1 ∪ P>5,4,1 ∪ P>4,1.

We have bijections:

P>4,1(n, 2m+ 1)
∼−→ P>4(n− 1, 2m),

λ 7→ [λ1, . . . , λm],

P>5,4,1(n, 2m+ 1)
∼−→ P>5,4(n− 1, 2m),

λ 7→ [λ1, . . . , λm],

P5,4,1(n, 2m+ 1)
∼−→ P5,4(n− 1, 2m),

λ 7→ [λ1, . . . , λm],
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P4,4,1(n, 2m+ 1)
∼−→ P4,4(n− 1, 2m),

λ 7→ [λ1, . . . , λm],

P>5,3,1(n, 2m+ 1)
∼−→ P>5,3(n− 1, 2m),

λ 7→ [λ1, . . . , λm],

P>7,5,3,1(n, 2m+ 1)
∼−→ P>7,5,3(n− 1, 2m),

λ 7→ [λ1, . . . , λm],

P>8,7,5,3,1(n, 2m+ 1)
∼−→ P>8,7,5,3(n− 1, 2m),

λ 7→ [λ1, . . . , λm],

P8,7,5,3,1(n, 2m+ 1)
∼−→ P8,7,5,3(n− 1, 2m),

λ 7→ [λ1, . . . , λm],

P6,5,3,1(n, 2m+ 1)
∼−→ P6,5,3(n− 1, 2m),

λ 7→ [λ1, . . . , λm],

from which, together with the proof of Lemma E.1, we get:

p>4,1(t, q) = tqp>4(t, q) = f6,4,1,1(t, q),

p>5,4,1(t, q) = tqp>5,4(t, q) = f9,5,5,3(t, q),

p5,4,1(t, q) = tqp5,4(t, q) = f13,6,10,5(t, q),

p4,4,1(t, q) = tqp4,4(t, q) = f12,6,9,5(t, q),

p>5,3,1(t, q) = tqp>5,3(t, q) = f8,5,4,3(t, q),

p>7,5,3,1(t, q) = tqp>7,5,3(t, q) = f12,7,9,5(t, q),

p>8,7,5,3,1(t, q) = tqp>8,7,5,3(t, q) = f15,8,16,7(t, q),

p8,7,5,3,1(t, q) = tqp8,7,5,3(t, q) = f19,9,24,9(t, q),

p6,5,3,1(t, q) = tqp6,5,3(t, q) = f15,7,15,7(t, q).

The formula for p>2,1(t, q) then follows from Lemma 5.1.2. □

Lemma E.3. The formal power series p>2,1,1(t, q) is given by

p>2,1,1(t, q) = f9,4,5,4(t, q) + f5,3,2,2(t, q).

Proof. We consider the disjoint union

P>2,1,1 = P7,5,3,1,1 ∪ P>7,5,3,1,1 ∪ P>5,3,1,1 ∪ P5,4,1,1 ∪ P>5,4,1,1 ∪ P>4,1,1.

We have bijections:

P>4,1,1(n, 2m+ 2)
∼−→ P>4,1(n− 1, 2m+ 1),

λ 7→ [λ1, . . . , λm, 1],

P>5,4,1,1(n, 2m+ 2)
∼−→ P>5,4,1(n− 1, 2m+ 1),

λ 7→ [λ1, . . . , λm, 1],

P5,4,1,1(n, 2m+ 2)
∼−→ P5,4,1(n− 1, 2m+ 1),

λ 7→ [λ1, . . . , λm, 1],

P>5,3,1,1(n, 2m+ 2)
∼−→ P>5,4,1(n, 2m+ 1),

λ 7→ [λ1, . . . , λm−1, 4, 1],
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P>7,5,3,1,1(n, 2m+ 2)
∼−→ P>7,5,3,1(n− 1, 2m+ 1),

λ 7→ [λ1, . . . , λm, 1],

P7,5,3,1,1(n, 2m+ 2)
∼−→ P>8,7,5,3,1(n− 1, 2m+ 1),

λ 7→ [λ1, . . . , λm, 1],

from which, together with the proof of Lemma E.2, we get:

p>4,1,1(t, q) = tqp>4,1(t, q) = f6,4,2,2(t, q),

p>5,4,1,1(t, q) = tqp>5,4,1(t, q) = f9,5,6,4(t, q),

p5,4,1,1(t, q) = tqp5,4,1(t, q) = f13,6,11,6(t, q),

p>5,3,1,1(t, q) = tp>5,4,1(t, q) = f9,5,5,4(t, q),

p>7,5,3,1,1(t, q) = tqp>7,5,3,1(t, q) = f12,7,10,6(t, q),

p7,5,3,1,1(t, q) = tqp>8,7,5,3,1(t, q) = f15,8,17,8(t, q).

The formula for p>2,1,1(t, q) then follows from Lemma 5.1.2. □

Lemma E.4. The formal power series p>3,1,1,1(t, q) is given by

p>3,1,1,1(t, q) = f7,3,3,3(t, q).

Proof. We consider the disjoint union

P>3,1,1,1 = P4,1,1,1 ∪ P>4,1,1,1.

We have bijections:

P>4,1,1,1(n, 2m+ 3)
∼−→ P>4,3(n, 2m+ 2),

λ 7→ [λ1, . . . , λm, 3],

P4,1,1,1(n, 2m+ 3)
∼−→ P3,3(n− 1, 2m+ 2),

λ 7→ [λ1, . . . , λm−1, 3, 3],

from which, together with the proof of Lemma E.1 and Lemma 5.1.2, we get:

p>4,1,1,1(t, q) = tp>4,3(t, q)

= t(p6,5,3(t, q) + p8,7,5,3(t, q) + p>8,7,5,3(t, q) + p>7,5,3(t, q) + p>5,3(t, q))

= tf7,4,3,2(t, q)

= f7,4,3,3(t, q),

p4,1,1,1(t, q) = tqp3,3(t, q) = f10,5,7,5(t, q).

The formula for p>3,1,1,1(t, q) then follows from Lemma 5.1.2. □

Lemma E.5. The formal power series p(t, q) is given by

p(t, q) = f1,1,0,0(t, q) + f4,2,1,1(t, q) + f7,3,3,3(t, q).

Proof. This follows from the disjoint union

P = P>2 ∪ P>2,1 ∪ P>2,1,1 ∪ P>3,1,1,1

together with Lemma E.1, Lemma E.2, Lemma E.3, Lemma E.4 and Lemma 5.1.2. □

The partitions [2], [1, 1, 1, 1], [3, 1, 1, 1], [3, 3, 1], [4, 3, 1], [4, 4, 1, 1], [5, 4, 1, 1, 1], [5, 5, 1, 1, 1],
[6, 5, 3, 1, 1], [6, 6, 3, 1, 1], [7, 6, 4, 1, 1, 1] and [8, 7, 5, 3, 1, 1] are pivots of the matrices AW

2 , AW
4 ,

AW
6 , AW

7 , AW
8 , AW

10 , A
W
12 , A

W
13 , A

W
16 , A

W
17 , A

W
20 and AW

25 respectively, see [Sal23, ising-modules-1-
16.ipynb].
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