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Pura e Aplicada - IMPA, as a partial

requirement for obtaining the title of Doctor

in Mathematics.

Advisor: Prof. Augusto Quadros Teix-

eira

Rio de Janeiro

April 17, 2024



ALBERTO MIZRAHY CAMPOS

Covering Processes

PhD thesis presented to the Graduate Program of

Instituto Nacional de Matemática Pura e Aplicada -
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Abstract

This thesis introduces and studies a model that reveals some properties and behaviors

of random covering. More specifically, fix n > 0 and consider a discrete one-dimensional

torus Z/nZ of size n, let (Uk)k be a sequence of independent uniformly distributed

elements of the torus, and let (Rk)k be a set of independent integer valued lengths

with some common distribution R. Define the set of random arcs (Ok)k where Ok =

{Uk, Uk+1, · · · , Uk+Rk−1} and define the covering time τn = inf{k :
⋃k

i=1Ok = Z/nZ}.
The first result consists of calculating the impact of the object’s size O in the covering

time τn. More precisely, by changing the distribution of the random variable R, we are

able to find at least four distinct behaviors of the covering time τn; they are the Gumbel

regime, the compact support regime, the pre-exponential regime, and the exponential

regime. In the second part of the text, we show that a model introduced by Mandelbrot

and Shepp in 1972 works as a limit distribution for the discrete covering in the compact

support regime. Finally, in the third part of this work, we will talk about the covering in

spaces with dimension greater than one, quantifying the size of the vacant region within

the subcritical and supercritical phase of the process.

Key-words: Covering Processes, Coupon Collector, Covering Time.



Resumo

Esta tese introduz e estuda um modelo simples que revela algumas propriedades e com-

portamentos de coberturas aleatórias. Especificamente, fixe n > 0 e considere um toro

unidimensional discreto Z/nZ de tamanho n, seja (Uk)k um conjunto independente de

variáveis aleatória distribúıdas uniformemente no toro, e seja (Rk)k um conjunto de

comprimentos independentes com alguma distribuição comum R. Defina o conjunto de

arcos aleatórios (Ok)k onde Ok = {Uk, Uk + 1, · · · , Uk + Rk − 1} e defina o tempo de

cobertura τn = inf{k :
⋃k

i=1Ok = Z/nZ}. O primeiro resultado consiste em calcular

o impacto do tamanho do objeto O no tempo de cobertura τn. Mais precisamente, al-

terando a distribuição da variável aleatória R, conseguimos encontrar pelo menos quatro

comportamentos distintos do tempo de cobertura τn; eles são o regime Gumbel, o regime

de suporte compacto, o regime pré-exponencial e o regime exponencial. No regime com-

pacto, expomos um modelo introduzido por Mandelbrot e Shepp em 1972 que funciona

como um limite de distribuição para a cobertura discreta. Por fim, na terceira parte do

trabalho, discutiremos o tempo de cobertura para o modelo em dimensões diferentes de

um, quantificando o tamanho do conjunto vacante nos regimes subcŕıtico e supercŕıtico

do processo.

Palavras chave: Processos de Cobertura, Coletor de Cupons, Tempo de Cobertura.
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1
Introduction and motivation

Consider a scenario in which objects of random size fall randomly into some space.

Over time, as more objects enter the picture, the space will be eventually covered. This

general description shares similarities with several other problems in the literature, being

a generalization of the coupon collector problem [13, 2, 10, 25] or the set-covering prob-

lems [26, 1]. In terms of applications, this problem appears in a diverse set of questions,

such as when one tries to complete a stamp collection [11] or when analyzing the number

of genetic genes present in a cell [30].

Problems related to coverings are an old topic in the literature, but they are generally

presented as a deterministic question. The first problem on random coverage appears

in 1956, by Dvoretzky in [12], where the author asks about necessary and sufficient

conditions to cover a circle with probability one using a sequence of arcs with fixed

lengths (ℓn)n placed uniformly at random. Since then, many other papers appears, ed.

see for example the coupon collector [13] from P. Erdős and A. Rényi in 1961, the

committee problem [24] in 1968, the solution of Dvoretzky’s problem by L.A. Shepp [28]

in 1972, and in the same year a continuous model of covering was introduced by B.B.

Mandelbrot [22].

To explain how these works influence ours, we need to properly define the covering

process. Therefore, we postpone the historical context until the end of this chapter,

where the problem and the process are well defined.

The main focus of this thesis is to understand some of the fundamental properties
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Chapter 1. Introduction and motivation

of random coverings. To this end, the text is divided into three chapters that present

a partial description of the many different possible behaviors of the process. The first

part will consider the main model, that exemplifies how the covering process can change

depending on the distribution of the size of the objects. The second part is dedicated

to exploring a continuous model that works in some sense as a limiting distribution for

the main model introduced here. In the final part, the continuous model is generalized

to spaces with arbitrary-dimension, and sharp transitions of the probability to cover the

space are analyzed.

The main model- Fix a discrete one-dimensional torus Z/nZ of size n represented by

the points {0, ..., n− 1}, and consider the set of connected arcs in the torus. Informally

speaking, the process can be described as a random stack of arcs, where arcs are chosen

to start at random points U and have random lengths R.

To describe this process rigorously, pick two sequences of i.i.d. random variables. The

first sequence is going to represent the radii (Rk)k, where

P (R1 ≥ 1) = 1 and P (R1 ≥ r) = f(r), for r ≥ 1. (1.1)

The second sequence of random variables will be the positions (Uk)k, where Uk are

independent and distributed as uniform random variables in the discrete torus, i.e.

Ui ∼ Unif(Z/nZ). With these two sequences, denote the k − th object as Ok = {Uk

mod (n), Uk + 1 mod (n), ..., Uk +Rk − 1 mod (n)} ⊂ Z/nZ, an interval that starts in

Uk and has total length Rk. Finally, define the discrete covering process as the sequence

of random sets (Ck)k, where C0 = ∅ and inductively Ck = Ck−1 ∪ Ok, as each time one

new objects is revealed covering some part of the space.

With the covering process (Ck)k defined, the cover time of the space Z/nZ is defined

as

τn = min{k : Ck = Z/nZ}.

The first result of this thesis investigates how the distribution of the radius R can

influence the scaling and the limit distribution of τn.

The process translates easily to continuous time, resulting in simpler proofs and

calculations. To define it, let {N(t) : t ≥ 0} be a Poisson process with rate 1 on the real

line and fix a discrete covering process (Ck)k with radius distribution f(r) = P (R ≥ r).

Then, define the continuous time covering process (Xt)t>0 as

Xt = CN(t). (1.2)

13



Chapter 1. Introduction and motivation

With this process, define the continuous cover time as

Tn = inf{t : Xt = Z/nZ}.

Theorems A, B, C, and D, stated below, expose and describe different phases of the

covering process. To illustrate these ideas, see Figure 1.1:

Gumbel

Phase
)

e−cr

r−(1+ε)

)

)
E (R) < ∞ E (R) = ∞

ln−(1+ε) r
r

1
r ln r

Compact Support

Phase
( )

1
r
√
ln r

1
r

Pre-Exponential

Phase
( )

r−ε

Exponential

Phase
(

1
ln r

Figure 1.1: A representation of Theorems A to D in a line, with the radius distributions
f(r) = P (R ≥ r) disposed in a monotone way. Here, ε > 0 is a positive small number,
and c > 0 is any constant.

The covering process described above is a flexible model, where similar results using

different notation appear scattered in the literature. As far as we can tell, the theorems

presented here are new.

Each theorem stated bellow presents a novelty in relation to the existing literature.

To contextualize, organize, and structure the statements, a set of references is presented

between each of them.

Theorem A (Gumbel Phase). Assume that E (R1+ε) < ∞ for some ε > 0, and set

µ = E (R). Then, as n grows,

µ

n
Tn − lnn

D
=⇒ Gumbel(0, 1), (1.3)

where P (Gumbel(0, 1) < t) = exp{− exp{−t}} is the Gumbel distribution with parame-

ters 0 and 1.

Theorem A deals with the covering problem where the radius R has light tails. Due

to the number of available techniques, it is not surprising that this type of covering is

the most explored in the literature. For example, [14] establishes the first-order behavior

of the cover time, while [14, 4, 32] show convergence in distribution when R is constant.

Remark 1. The article that most resembles the results with Theorem A is [18], where the

author considers τ̂n, the number of objects needed to cover a continuous circumference

14



Chapter 1. Introduction and motivation

S1 = R/Z using random arcs that start at uniform points and have lengths R/n, where

E (R1+ε) < ∞ for some ε > 0. This covering problem has the following scaling behavior

µ

n
τ̂n − ln

(
n

µ

)
− ln

(
ln

(
n

µ

))
D
=⇒ Gumbel(0, 1).

The above result has a different normalization scale then that of Theorem A. Intuitively

speaking, the cover time in the continuum is larger because covering the discrete points

of the form
{

i
n
: i ∈ {0, 1, · · · , n− 1}

}
does not imply that points in between are covered

too. Also, it is worth mentioning that the techniques employed in [18] are different from

those discussed in here.

A new phenomenon emerges when the radius stops having a first moment; not only

does the cover time grow on a different scale, but its limiting distribution presents a

compact support.

Theorem B (Compact Support Phase). Let b > −1, and assume that f(r) = min{ lnb(r)
r

, 1}.
Then, (f(n)Tn)n is tight. Moreover, for every subsequence (nk)k such that

f(nk)Tnk

D
=⇒ Y, (1.4)

we have that Y = Y (f, (nk)k) is a non-degenerate distribution with compact support.

We can generalize the result of Theorem B for other choices of functions f(r). But due

to some technicalities, the general statement for the compact support phase is postponed

to Section 2.2.

To state the next result, following the notation in [27], we say that a measurable

function f : R+ → R+ is regularly varying at infinity with index p ∈ R if, for all t > 0:

lim
x→∞

f(xt)

f(x)
= tp. (1.5)

Let RVp be the space of all regularly varying functions at infinity with index p, and

when (1.5) holds, denote f ∈ RVp. In particular, when p = 0, denote RV0 as the space

of slowly varying functions.

When exploring heavier tails for R, limiting distributions with unbounded support

are found once again.

15



Chapter 1. Introduction and motivation

Theorem C (Pre-Exponential Phase). Take p ∈ (−1, 0), and set f ∈ RVp. Then,

(f(n)Tn)n is tight. Moreover, for every subsequence (nk)k such that

f(nk)Tnk

D
=⇒ Z, (1.6)

we can conclude that Z = Z(f, (nk)k) is a distribution that satisfies

1− e−z < P(Z ≥ z) < 1, for every z ≥ 0. (1.7)

In particular, it is not compactly supported.

Remark 2. With p ∈ (−1, 0), as a standard example of a function in RVp, one may

consider f(r) = rp.

Note that equation (1.7) rules out the possibility that Z is an exponential random

variable. This observation highlights the contrast with the next theorem, which focuses

on the heaviest tail considered in this thesis and exhibits an exponential distribution as

its limit. In this case, the system waits for the arrival of a single interval that covers the

entire torus.

Theorem D (Exponential Phase). Let f be a slowly varying function, then

f(n)Tn
D
=⇒ Exp{1}, (1.8)

where P (Exp{1} < t) = 1− e−t is the exponential distribution with parameter 1.

Remark 3. As examples of functions in RV0, consider for instance
1

logn
or 1

logb n
for some

b > 0.

Remark 4. The results appearing in Theorems A, B, C, and D, are also valid in the

discrete covering process changing only the random variable Tn to τn, see Appendix

Subsection 5.2.2.

The continuous space model- With Theorems A, B, C and D, a clear picture of the

distributions of the covering process begins to appear. However, within the compact

support phase of Theorem B, we are able to find a continuous model that works as a

limiting distribution.

The particular case (b = 0) in Theorem B, when f(r) = 1/r, features some self-

similarity that reassembles a previously studied covering process. Introduced by B.B.

Mandelbrot in [22], and updated in the same year by L.A. Shepp in [28], we define the

16



Chapter 1. Introduction and motivation

Mandelbrot-Shepp model at time α ≥ 0 as a Poisson point process in the cylinder

S = S1 × (0,∞) with rate:

dΛα = α

(
dx⊗ dr

r2

)
,

where dx, dr are respectively Lebesgue measured in the circle S1 = R/Z and in (0,∞).

More specifically, the probability space (Ω,F ,Pα). Where Ω = {ω =
∑

i∈I δ(xi,ri) :

(xi, ri) ∈ S for all i ∈ I, and ω(K) < ∞ for all K ⊂ S compact}, F is the smallest

σ−algebra that makes the evaluation maps {ω(K) : K compact in S} measurable and

Pα measures ω(·) as a Poisson random variable with intensity Λα(·), and it value is

independent in disjoint sets.

Associated to this point process, the Mandelbrot-Shepp model introduces a covering

of the circle S1 = R/Z. This coverage will use the points in the Poisson process to

define objects. This means that the coverage will have different properties than the

discrete coverages treated so far, for example, for each α > 0 the Poisson process has

infinitely many points with probability one, so our coverage has infinitely many objects.

To formally define it, let ξ = (x, r) ∈ S and consider the projection function of ξ as

Π(ξ) =





[0, 1), if r > 1.

(x, x+ r), if r ≤ 1 and x+ r ≤ 1.

(x, 1) ∪ [0, x+ r − 1), if r ≤ 1 and x+ r > 1.

(1.9)

Given any configuration ω =
∑

i∈I δ(xi,ri), define now the random sets:

C(ω) =
⋃

i∈I

Π((xi, ri)), and V(ω) = S1 \ C(ω),

respectively as the covered set and the vacant set of the Mandelbrot-Shepp model.

For more details on the model, see a complete description of it in Section 3.1. Origi-

nally the model was defined by Mandelbrot and Shepp in [22, 28], and have other modern

approaches such the works of [19, 3]. The dynamic of the process is informally described

analogous to a covering, where by increasing the rate α the cover will receive more ob-

jects. To be more precise, for every α > 0 denote by Cα the covering where the Poisson

have rate Λα, then set (Cα)α a process where the Poisson process is coupled in α, thus

increasing the rate α, will increase the number of points and also objects. The novelty of

Theorem B*, bellow, consists in proving that the discrete process converges (in a specific

sense, that will be made precisely latter) to its continuous counterpart (Cα)α>0.
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Chapter 1. Introduction and motivation

Theorem B*. Consider the discrete covering Xαn = CN(αn) of Z/nZ that uses the random

radius distribution f(r) = 1
r
, then:

Tn

n

D
=⇒ Y, (1.10)

where Y is a non trivial distribution with supp{Y } = [0, 1], that satisfies for α ∈ (0, 1):

P
(
Cα = S1

)
= P (Y ≤ α) , and

log |Tn \Xαn|
log n

1{Xαn ̸= Tn} D
=⇒ (1− α)1{Cα ̸= S1}.

Remark 5. Given any finite collection of points in S1, the probability of covering these

points in the discrete case converges to one. However, the cover time is not a random

variable that depends only on a finite set of points, so there is a tightness issue that is

central to Theorem B*. Showing that the discrete cover time converges to its continu-

ous analogue is not trivial, as we need to control the random variables beyond just a

local perspective. Remark 1 serves as a cautionary tale that the discrete and continuous

processes may feature different behaviors.

Covering in arbitrary dimensions- Inspired by the symmetries of the Mandelbrot-

Shepp model, we were tempted to study an analogous process in high-dimensional spaces.

For an integer d ≥ 1, define the d−dimensional torus as the quotient Td = Rd/Zd. In

Td, let ∥.∥ be the Euclidean distance of the space, and define the open ball with center

x and radius r > 0 as B(x, r) = {y ∈ Td : ∥x − y∥ < r}. Consider the d−dimensional

cylinder Sd = Td × (0,∞), and, for each point ξ ∈ Sd, write ξ = (x, r), where x denotes

a point in the torus Td, and r > 0 corresponds to a radius. Informally speaking, the

cover process will associate each point (x, r) ∈ Sd to the ball B(x, r) in the covering.

Define the Mandelbrot-Shepp model in the d-dimensional torus Td at time α ≥ 0

as a Poisson point process in the product space Sd = Td × (0,∞) with rate:

dΛd
α = α

(
dx⊗ dr

rd+1

)
,

where dx is the Lebesgue measure of the d-dimensional torus and dr is the Lebesgue

measure in (0,∞).

Moreover, for every point ξ = (x, r) ∈ Sd, we define the d-dimensional projection of

the point ξ as:

Πd(ξ) = B(x, r) ⊂ Td. (1.11)

18



Chapter 1. Introduction and motivation

In particular, given any configuration ω =
∑

i∈I δ(xi,ri), construct the random sets:

Cd(ω) =
⋃

i∈I

Πd((xi, ri)), and Vd(ω) = Td \ Cd(ω).

Respectively the covered set and the vacant set of the Mandelbrot-Shepp model in the

d-dimensional torus.

Remark 6. For d = 1, the projection Π1 in equation (1.11) does not agree with the

definition of projection Π in equation (1.9). Despite having this difference, both models

can be related, by changing the parameter α to 2α, see in Subsection 4.2.1 for a proof

of this relation.

Given a configuration ω =
∑

i∈I δ(xi,ri) and a real number z > 0, define the truncated

configuration

ω[z] =
∑

i∈I

δ(xi,ri)1{ri > z}

as the set of points whose radii are larger than z. By using the truncated configurations,

we can define the covering function and the truncated covering function, respectively

as:

πd(α) = Pα

(
Cd(ω) = Td

)
= Pα

(
Vd(ω) = ∅

)
,

πd
z(α) = Pα

(
Cd(ω[z]) = Td

)
= Pα

(
Vd(ω[z]) = ∅

)
.

In this text, we give properties of the covering probabilities πd(α) and πd
z(α). The

results will characterize a critical threshold below which the process may be vacant with

positive probability (subcritical), while above it the process is fully covered with probabil-

ity one (supercritical). Moreover, we are also interested in describing these probabilities

on truncated levels.

More precisely, define the critical threshold

αc = inf
{
α > 0 : lim

z→0
πd
z(α) = 1

}
, (1.12)

that detects when the space is covered almost surely. The existence of this point is

not trivial, however one might expect that arbitrary dimensions follows an analogous

property described by Theorem B and B*. This definition divides the set of parameters

α ≥ 0 in two sets: The supercritical set {α < αc}, and the subcritical {α > αc} one.
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Chapter 1. Introduction and motivation

We now introduce an alternative definition that gives a quantitative information

about the critical point. Let λ the Lebesgue measure on Td, where for every Borelian

A ⊂ Td. Then, define the mean threshold:

αM = inf
{
α > 0 : lim

z→0
z−dEα

(
λ(Vd (ω[z])

)
= 0
}
, (1.13)

detecting whether the truncated space has a significant vacant volume.

In the subcritical regime, α > αc, the space is fully covered with probability one. How-

ever, at each truncated level, the probability Pα (V (ω[z]) ̸= ∅) is positive. This probabil-
ity goes to zero, and we can ask about the rate at which it occurs. Define the subcritical

rate threshold:

α+ = inf
{
α > 0 : ∃ζ+ = ζ+(α) > 0 such that Pα

(
Vd (ω[z]) ̸= ∅

)
< zζ+ , ∀z > 0

}
,

(1.14)

that measures identifies the region where the probability of having vacant sets in the

truncated levels decays polynomially to zero. By definition, we have that α+ ≥ αc.

Remark 7. The probability of not covering a fixed point in space can be computed

explicitly; see Lemma 15. Moreover, in Vd (ω[z]), this probability decays polynomially

to zero in z. Since the probability of not covering the space is bounded by below by the

probability of not covering a point, one cannot expect to observe a decay faster than

polynomial.

Define the constant Cd = πd/2Γ−1
(
d
2
+ 1
)
where Γ(x) =

∫∞
0

tx−1e−tdt is the gamma

function; observe that the volume of the ball B(x, r) in Rd is given by λ(B(x, r)) = Cdr
d.

The main result in the supercritical regime is:

Theorem 1. For every d ≥ 1, we have d
Cd

= αM = αc = α+.

The proof of Theorem 1 is based on a set of propositions, some of which are direct

and others are not. The explicit value of αM is found by direct computation. However,

the relationship of the mean threshold αM with the critical phenomena is not immediate.

To relate both thresholds, we define a shrunk configuration that increases the vacant set

but does not change the overall intensity of the objects. Using this shrunk configuration,

one can overcome the non-enumerable quantity of vacant sets, and use union bound on

the possible regions where the vacant belongs, this together with a sharp computation in

the shrunk configuration shows that αc ≤ α+ ≤ αM . To finish and show that αc = αM ,

we use Billard’s Theorem, which gives conditions to have a positive probability of Td

not being completely covered.
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Chapter 1. Introduction and motivation

Now, for the supercritical regime, where the process may not be covered with positive

probability, define the notion of a well-behaved point. For any point α ∈ [0, αc), we say

that it is well-behaved if:

There exists γ1 = γ1(α), γ2 = γ2(α), γ1 > γ2 > 0 such that

lim
z→0

Pα (z
γ1 < λ(V (ω[z])) < zγ2 |V(ω) ̸= ∅) = 1.

(1.15)

The definition of well-behaved only requires the volume of the vacant set in the truncated

levels to behave as a polynomial with probability one in the limit as z → 0, ignoring

how fast this probability converges to one.

The main difficulty of the supercritical regime lies in the continuity of the covering

function π(α). Since at points where the function is not continuous, the vacant set might

present a strange property: changing the parameter a little can instantaneously cover

the space. Such moments, if exists, will interfere with a homogeneous description of the

supercritical phase.

About the supercritical regime, we have the following result.

Theorem 2. For any d ≥ 1, and for every α ∈ [0, αc) a continuity point of the covering

function π, we have that α is well-behaved.

The proof of Theorem 2 involves forcing a large number of completely empty small

regions to be present in the truncated levels. In a way that with high probability, one of

the latter survives as a branching process, leading the order of the vacant regions in the

limit.

Remark 8. The covering function π(α) is clearly monotone, therefore, almost every point

α ∈ [0, αc) is well-behaved.

In the specific case d = 1, we have that:

Theorem 3. For d = 1, π(α) is continuous in R \ {αc}, and thus any α ∈ [0, αc) is well

behaved.

Remark 9. To simplify the statements and discussions, we fixed the objects to be balls

(B(·, r) : r > 0). However, the same results can be generalized using other shapes such

as simplex or boxes. We only require that the shape has positive volume, be connected

and have a well behaved boundary (differentiable or polygonal). The critical point in

each case might have a different value, but the equality αc = αM = α+ will continue to

hold.
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Chapter 1. Introduction and motivation

Previous works- With the model well defined and the theorems stated, let us state the

connections they have with the existing literature. First, the choice of the name of the

process (Mandelbrot-Shepp) is due to the works [22] and [28] that were published in the

same year, 1972. Both processes were defined in the one-dimensional real line and try to

describe the behavior of the vacant set. Furthermore, after 1972, many other approaches

and different results were presented.

For example, the Mandelbrot-Shepp process was extensively studied for dimension

d = 1, not only in the circle but also in the real line; see [19, 3]. Regarding the works

in high-dimensional spaces, we can divide the literature into two distinct branches of

articles: Those that resolve the issues proposed by Shepp and those that solve the ques-

tions proposed by Mandelbrot. In the branch that discusses the questions proposed by

Shepp, inspired by Dvoretzky’s covering problem, see [12], the focus lies in finding con-

ditions under which a set of objects with fixed volumes (vn)n covers the space or not;

see [19, 20, 16]. On the other hand, in the Mandelbrot branch, inspired by the book [23],

works related to the so-called Mandelbrot percolation appear; see [8, 5].

Parallel to each branch of references, there were many attempts to calculate the

Hausdorff and packing dimensions related to the Mandelbrot-Shepp model and other

related processes; see [33] for the carpet model and [15] for the set of points covered

infinitely many times.

It is also worth noting that the covering model presents similarities with a continuum

percolation model. To be precise, for every set C ⊆ Td = [0, 1)d and positive real number

ζ > 0 define the multiplication ζC as the subset
{
p ∈ Rd : p

ζ
∈ C ⊂ [0, 1)d

}
. Both models

can be related as follows: Consider the cover set at the truncated level 1/n, that is,

C
(
ω[ 1

n
]
)
⊂ Td, then scale it by n to become a random set nC

(
ω[ 1

n
]
)
⊆ nTd = [0, n)d. For

every value of n ≥ 1 and α > 0 fixed, the configuration nC
(
ω[ 1

n
]
)
⊆ nTd has the same

distribution as a continuum percolation model using balls with random radii R, where

P (R > r) = r−d, and with intensity α > 0 (the intensity and the radius distribution are

fixed for every choice of n). See the continuum percolation model defined in [9]. Note

also that the mean volume of the objects in continuum percolation diverges, thus the

space is fully covered almost surely, see [31] on the hole space Rd.

Using the relation with continuum percolation, we can make the definition of the

mean threshold αM clearer, see equation (1.13). Note that, for any α > 0, in the

Mandelbrot-Shepp model, the volume of the vacant set always converges to zero in

mean. Definition (1.13) asks when the volume of the process converges to zero faster

than the function zd. This choice of function is not arbitrary, and to see that, we can
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Chapter 1. Introduction and motivation

use the connection with the continuum percolation. In the boxes nTd of the continuum

percolation, since we already multiply the space by n, a more natural definition of αM

emerges. In this case, αM will correspond to the mean volume of the vacant set in the

box of size n (not any more n−d times the expected volume).

The results of Mandelbrot percolation or the carpet model characterize the probabil-

ity that there exists a positive measure path in the vacant set. Here, our aim is to provide

a similar characterization, but now for coverage phenomena. In essence, this consists of

exposing how the coverage process behaves as we vary α and also giving bounds on how

well the model can be approximated by the truncated version.

The thesis is divided as follows. The proofs of Theorems A, B, C, and D, are pre-

sented in Chapter 2, respectively, in Sections 2.1, 2.2, 2.3, and 2.4. Chapter 3 is dedicated

to proving Theorem B* and constructing the continuous model that serves as a limit

distribution. In Chapter 4, we study processes in spaces with arbitrary dimension. More

precisely, in Section 4.1, we work with the subcritical phase, where the process is covered

with probability one, and the proof Theorem 1 that describes this phase. Next, in Sec-

tion 4.2, we work in the supercritical regime, where the process may not be covered with

some positive probability. In Subsection 4.2.1, we proof Theorem 2 which controls the

number of vacant points in the limit.In Subsection 4.2.2, we talk about the continuity

of the function π(α) for d = 1. In Chapter 5, Section 5.1 is dedicated to open problems

that remain unsolved, and finally, Appendix 5.2 is divided into two subsections; Sub-

section 5.2.1 presents some lemmas and useful tools used in the proof of theorems, and

Subsection 5.2.2 consider the discrete-time case.

Notations- During the thesis, the real numbers are denoted by R, the integers corre-

spond to Z = {· · · ,−1, 0, 1, · · · }, the set I is used as an arbitrary index set. Concerning

measures, we denote by δ the Dirac measure and by λ(.) the Lebesgue measure. We also

use the same notation for the Lebesgue measure in the Torus and in the space Rd, but

we clarify which spaces are considered in each case.
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2
The different phases of the covering process

This chapter contains the proofs of Theorems A, B, C, and D. Each proof is self-contained

and can be read independently.

2.1 Gumbel Phase

This Section is devoted to the proof of Theorem A and is organized as follows: First,

some auxiliary lemmas about the behavior of the light tail radius are proved. Then, three

propositions are stated and used to prove Theorem A. Finally, we present the proof of

these propositions.

Lemma 1. Let R be a discrete random variable with P(R ≥ r) = f(r). The following

statements are equivalent:

1. E
(
Rp+1

)
< ∞ for some p > 1.

2. There exists λ > 0 such that lim
k→∞

f(k)k1+λ = 0. (2.1)

3. There exists λ′ > 0 such that lim
k→∞

f(k)k1+λ′
ln k = 0. (2.2)

Lemma 1 plays a role in simplifying several proofs in this Section. Its proof is ele-

mentary and can be found in Appendix Subsection 5.2.1. Continuing with the lemmas,
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Chapter 2. The different phases of the covering process 2.1. Gumbel Phase

let µ = E (R) and define the auxiliary variable:

gk =

∑k
i=1 f(i)

µ
. (2.3)

About this auxiliary sequence, g1 = µ−1 due to (1.1) and gk is a non-decreasing sequence

that converges to one. Another important observation is given below.

Lemma 2. If f satisfies condition (2.1), i.e. exists λ > 0 such that limk→∞ f(k)k1+λ = 0.

Then

lim
n→∞

(1− gn) lnn = 0. (2.4)

Proof of Lemma 2. Using condition (2.1), for some λ > 0, exists a n0(λ) and a constant

C = C(λ) such that for every n > n0:

(1− gn) lnn =
lnn

µ

∞∑

i=n+1

f(i) ≤ C lnn

nλµ
.

The proof follows by taking the limit.

Now, fix an arbitrary α ∈ (0, 1) and define the α− vacant set

Vα = (Z/nZ) \Xαn lnn
µ

,

this is the set of points in Z/nZ that have not yet been covered at time αn lnn
µ

.

The first step of the proof of Theorem A consists in showing that Vα is a set of sparse

points that has a polynomial size; see Propositions 1 and 2. The second step relates the

cover time of the sparse set Vα with an time scale of a classical coupon collector. In this

relation, we prove that the cover happens one point at a time; see Proposition 3. With

this in hand, Theorem A follows by simple observations made in Subsection 2.1.1.

For any α, β ∈ (0, 1), define the event

Aα(β) =
{
There exists x, y ∈ Vα : |x− y| < nβ

}
.

Proposition 1 (Sparse). Choose R satisfying E (R) = µ < ∞. Then, for every choice of

β ∈ (0, 1) there exists α = α(β, µ) < 1 such that

lim
n→∞

P (Aα(β)) = 0. (2.5)

The proof of this proposition is postponed to Subsection 2.1.2.1 and is based on a

union bound argument on the set Aα(β).
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Chapter 2. The different phases of the covering process 2.1. Gumbel Phase

Proposition 2 (Concentration). Let R be any distribution satisfying condition (2.4). For

all α < 1, and for any given δ > 0

lim
n→∞

P
(∣∣|Vα| − n1−gnα

∣∣ ≥ δn1−gnα
)
= 0. (2.6)

The proof of this proposition is exposed in Subsection 2.1.2.2. It relies on a second

moment estimate of the random variable |Vα|.
By Lemma 2 all distributions R with more than one moment satisfies Propositions

1 and 2. However, this condition is stronger than the necessary condition for those two

propositions, and there exists random variables without moments bigger than one that

satisfies both of them. We choose to use the moment condition, since it simplified some

statements, and is needed for the next argument.

To state Proposition 3, let β ∈ (0, 1) and define the family of sets

Kn
β = {K ⊂ Z/nZ : ∀x, y ∈ K, |x− y| > nβ}.

Also, for any set K ∈ Kβ define the time to cover K as TK = inf{t : K ⊂ Xt}.

Proposition 3 (Covering a sparse set). Take R satisfying the condition (2.2), i.e., there

exists λ > 0 such that limk→∞ f(k)k1+λ ln k = 0. There exists β0 = β0(λ) < 1, such that,

for every β ∈ (β0, 1) and any sequence of sets {K(n)}n that satisfies limn |K(n)| = ∞
and K(n) ∈ Kn

β for every n > 0, we uniformly get that:

µ

n
TK(n) − ln |K(n)| D

=⇒ Gumbel(0, 1). (2.7)

The proof of Proposition 3, presented in Subsection 2.1.2.3, obtains (2.7) by creating

a coupling between the covering time of the set K(n) and a time change of the classical

Coupon collector problem. We will in fact prove that, with high probability, the covering

of K(n) happens one point at a time.

2.1.1 Proof of Theorem A

With no further delay, assuming all the tree propositions above, Theorem A will be

proven in this Subsection. The subsequent Subsection 2.1.2 contains the proofs of the

propositions.

Proof of Theorem A. The idea of the proof consists in using the hypotheses and

Propositions 1 and 2 to find a sparse and large set of vacant points. Next, using Propo-

sition 3 when covering this sparse and large set, the Gumbel distribution will appear.
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Chapter 2. The different phases of the covering process 2.1. Gumbel Phase

Taking R such that E (Rp) < ∞ for some p > 1, and E (R) = µ, by Lemma 1 one can

find λ > 0 such that f(k)k1+λ ln k goes to zero, when k goes to infinity. For this fixed

λ > 0, find β0(λ) using Proposition 3, and fix any β ∈ (β0, 1) to control how sparse the

set needs to be. Now, with β fixed, use Proposition 1 to fix some α ∈ (α(β, µ), 1).

With the parameters fixed, start using Proposition 1 and 2 to show that the set

Ωn =
{
ω : |Vα(ω)| > lnn,Vα(ω) ∈ Kn

β

}

has probability converging to one. To exactly compute how big in size the vacant set is,

use the full strength of Propositions 2 to get

ln

(
n1−gnα

|Vα|

)
P−→ 0, (2.8)

where the right arrow P indicates convergence in probability.

On the event Ωn, define Tα = inf{t > 0 : Vα ⊂ Xt+αn lnn
µ

} the cover time of the

vacant set Vα. In particular, one can observe that

1ΩnTα = 1Ωn

(
Tn − α

n lnn

µ

)
, (2.9)

where Tn = inf{t : Z/nZ ⊂ Xt}. Since it is also the case that |Vα| diverges on the event

Ωn, apply Proposition 3 to obtain

1Ωn

(µ
n
Tα − ln |Vα|

)
D
=⇒ Gumbel(0, 1), (2.10)

when n → ∞; Therefore, using equations (2.10) and (2.8):

1Ωn

(µ
n
Tα − (1− αgn) lnn

)
D
=⇒ Gumbel(0, 1).

Now, by definition (2.9), we get that:

1Ωn

(
µ

n

(
Tn − α

n lnn

µ

)
− (1− αgn) lnn

)

= 1Ωn

(µ
n
Tn − (1 + α(1− gn)) lnn

)
D
=⇒ Gumbel(0, 1).

Given any sequence of random variables (Yn)n, and events Ωn that satisfies: Yn1Ωn

d
=⇒

Y and P (Ωn) → 1 when n → ∞. Then Yn
d

=⇒ Y . In our case, using condition (2.4)

and the fact that P (Ωn) → 1 when n → ∞, the equation lead to:

µ

n
Tn − lnn

D
=⇒ Gumbel(0, 1),

proving the Theorem A.
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2.1.2 Proofs of Propositions 1, 2 and 3

This Subsection aims to prove all three propositions. Before doing this, let us start by

investigating the probability that a single site remains vacant.

Lemma 3. On the continuous cover process at time αn lnn
µ

P (0 ∈ Vα) = n−αgn , and (2.11)

P (0, k ∈ Vα) = n−α(gk+gn−k) (2.12)

for any k ∈ {1, ..., n− 1}.

Proof. Observe that the number of objects covering 0 corresponds to a Poisson random

variable. The computation of its rate involves determining the probability that a single

object covers the origin. To proceed, we have:

P (0 ∈ O1) =
n∑

i=1

P (U1 = i− 1, R ≥ i) =
n∑

i=1

f(i)

n
.

In particular, the rate of the Poisson is given by the product

α
n ln(n)

µ

n∑

i=1

f(i)

n
= αgn ln(n).

Therefore:

P (0 ∈ Vα) = exp{−αgn lnn},

proving (2.11).

The proof of the statement of equation (2.12) relies on counting the number of objects

that at time αn lnn
µ

hits 0 or k for some k ∈ {1, ..., n− 1}. For this, observe that: When

the uniform U is between 1 and k, the object need just to hit k; When it is between

k + 1 and n, the object need to hit the origin. So:

P ({0 ∈ O1} ∪ {k ∈ O1}) =
∑k

i=1 f(i)

n
+

∑n−k
i=1 f(i)

n
.

Therefore, following the same steps used to deduce (2.11), we get:

P (0, k ∈ Vα) = exp{−α(gk + gn−k) lnn},

proving (2.12).
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2.1.2.1 Proof of Proposition 1

Proof of Proposition 1. Let µ = E (R), then for any choice of β ∈ (0, 1), take α = α(µ, β)

satisfying:

1 > α > max

{
1

1 + µ−1
,
1 + β

2

}
.

With α fixed, choose ε = ε(µ, α, β) such that:

0 < ε < min

{
2− (1 + β)

α
,
2(α(1 + µ−1)− 1)

α

}
. (2.13)

Using a union bound on Aα(β), and relation (2.12), the computation leads to:

P (Aα(β)) = P


 ⋃

x,y∈Tn: |x−y|<nβ

{x, y ∈ Vα}




≤ n

⌊nβ⌋∑

k=1

P (0, k ∈ Vα) =

⌊nβ⌋∑

k=1

n1−α(gk+gn−k).

With fixed β, and with α and ε chosen accordingly. Since g1 = µ−1, and (gn)n

converges monotonously to one, find k0 = k0(ε) such that for every k > k0 we have

gk > 1− ε/2. Then, for n > 2k0:

P (Aα(β)) ≤
k0∑

k=1

n1−α(gk+gn−k) +

⌊nβ⌋∑

k=k0+1

n1−α(gk+gn−k)

≤
k0∑

k=1

n1−α(gk+1−ε/2) +

⌊nβ⌋∑

k=1

n1−α(2−ε)

≤ k0n
1−α(1+µ−1−ε/2) + n1+β−α(2−ε)

By the choice of ε and α, it follows that P (Aα(β)) decays polynomialy to zero.

2.1.2.2 Proof of Proposition 2

Proof of Proposition 2. The proof follows by Chebyshev’s inequality. Start by using

Lemma 3 to get:

E (|Vα|) = n1−αgn , and

E
(
|Vα|2

)
=

∑

x∈Z/nZ

P (x ∈ Vα) +
∑

x,y∈Z/nZ
x ̸=y

P (x, y ∈ Vα)

= n1−αgn + 2n

n/2∑

k=1

n−α(gk+gn−k).
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Now, applying the Chebyshev’s inequality it follows that for any δ > 0:

P
(
||Vα| − E (|Vα|)| > δn1−αgn

)
≤ E (|Vα|2)− E (|Vα|)2

n2(1−αgn)δ2

=
n1−αgn − n2(1−αgn) + 2n

∑n/2
k=1 n

−α(gk+gn−k)

n2(1−αgn)δ2

=
1

δ2n1−αgn
+

1

δ2
f(α, n), (2.14)

where:

f(α, n) =
2

n

n/2∑

k=1

(−1 + nα(2gn−gk−gn−k)).

Since α < 1, and the distribution f satisfies condition (2.4) the proofs follows directly

of the following Lemma.

Lemma 4. If condition (2.4) is satisfied, that is limn(1 − gn) lnn = 0, and α < 1, then

limn→∞ f(α, n) = 0.

Proof. Fix α < 1, µ > 1 and take γ ∈
(
0, 1

2

)
, such that γ < 2(1−α(1−µ−1)). Since (gn)n

converges monotonously to one, there exists k0 = k0(α, γ) such that 1 − gk ≤ γ(2α)−1

for all k > k0, also assume that n > k0. Now divide the function f(α, n) into three parts,

so that f(α, n) = I1 + I2 + I3, where

I1 =
2

n

k0∑

k=1

(
−1 + nα(2gn−gk−gn−k)

)
,

I2 =
2

n

⌊nγ⌋∑

k=k0

(
−1 + nα(2gn−gk−gn−k)

)
,

I3 =
2

n

n/2∑

k=⌈nγ⌉

(
−1 + nα(2gn−gk−gn−k)

)
.

It remains to show that for every ε > 0, there exists a number n0 such that for every

n > n0, then Ii < ε for every i ∈ {1, 2, 3}.
Concerning the term I1, since k0 is fixed, it follows that I1 is a sum of k0 + 1

elements. We have k0 polynomials in n in the form nλk for some λk, and one element of

the form k0n
−1. Then, taking n > 2k0, observe that:

max
k≤k0

{λk} = max
k≤k0

{α(2gn − gk − gn−k)− 1}

≤ α(1− µ−1 + 1− gn−k0)− 1

≤ α(1− µ−1) +
γ

2
− 1 < 0.
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Since γ < 2(1−α(1−µ−1)), then maxk≤k0{λk} is negative. In particular, each term goes

to zero in the term I1, and it is possible to take n1 = n1(ε, γ, α, k0) such that I1 < ε for

every n > n1.

For the term I2, find n′
2 = n′

2(γ, α) such that for every n > n′
2 it is true that

gn − gn−k = (1− gn−k)− (1− gn) < γ(2α)−1 for every k ∈ [k0, n
γ]. In that way:

2

n

⌊nγ⌋∑

k=k0

(
−1 + nα(2gn−gk−gn−k)

)
≤ 2

n

⌊nγ⌋∑

k=k0

exp
{
ln(n)

(
α(gn − gk) +

γ

2

)}

≤ 2 exp
{
ln(n)

(
γ +

γ

2
+ α(gn − gk0)− 1

)}

≤ 2 exp

{
ln(n)

(
3γ

2
+ α(1− gk0)− 1

)}

≤ 2 exp {ln(n) (2γ − 1)} .

Then, by the choice of γ < 1/2 and k0, find n2 = n2(ε, k0, γ) > n′
2 such that for every

n > n2 the value of I2 satisfies I2 < ε.

To compute I3, first use that (gn)n is a monotone sequence converging to 1, then for

k ∈ [nγ, n], and n is large enough:

4α(gn − gk) ln (n) <
4α

γ
(1− gnγ ) ln (nγ). (2.15)

Using that (1 + x) ≥ ex/2 when x < 1, we can conclude that

(1 + 4α(gn − gk) ln (n))
1/2α(gn−gk) ≥ eln(n) = n,

when 4α(gn − gk) ln (n) < 1. Therefore, for big values of n, it is true that:

(−1 + n2α(gn−gk)) ≤ 4α(gn − gk) ln (n). (2.16)

In particular, by equation (2.16), and since gk < gn−k for every k ∈ (nγ, n/2), we get:

I3 =
2

n

n/2∑

k=⌈nγ⌉

(
−1 + nα(2gn−gk−gn−k)

)

≤ 2

n

n/2∑

k=⌈nγ⌉

(
−1 + n2α(gn−gk)

)

≤ 8α

n

n/2∑

k=⌈nγ⌉

(gn − gk) lnn.
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Using Lemma 2 on (2.15), for every fixed γ, take n3 = n3(ε, k0, γ) such that 16α2

γ
(1 −

gnγ ) ln (nγ) < ε; more than this, for every n ≥ n3:

I3 ≤
8α

n

n

2

4α

γ
(1− gnγ ) ln (nγ) < ε.

To finish the proof of the lemma take n0 = max{n1, n2, n3}.

2.1.2.3 Proof of Proposition 3

So far, we did not use the full strength of hypotheses that E (R1+p) < ∞, for some p > 0.

But here, in Lemma 5, the necessity of this condition will become evident.

Remark 10. Note that the random variable R with distribution f(r) = 1
n ln3(n)

satisfies

equation (2.4) from Lemma 2, but does not have any greater moment. In particular,

for every λ > 0, limk→∞ f(k)k1+λ ln k = ∞, and R does not satisfy the Lemma 5.

Consequentially Proposition 3 is not true for this distribution. Moreover, the covering

of the remaining points, using our technique will not have a direct connection to the

coupon collector problem.

Lemma 5. Take R which satisfies the hypothesis in equation (2.2), this is, exists λ > 0

such that limk→∞ f(k)k1+λ ln k = 0. Then there exists a β0 = β0(λ), where for every

β > β0, C > 0, and for every sequence of sets (Kn)n, with Kn ∈ Kn
β for every n ∈ N, we

have:

lim
n→∞

P




N(Cn lnn)⋃

k=1

{|Ok ∩Kn| ≥ 2}


 = 0,

where N(t) is the Poisson process in the line with rate 1, used in the definition of the

continuous time covering process.

Proof of Lemma 5. The probability that an object intercepts the set Kn in two points

or more is bounded by f(nβ) = P
(
R > nβ

)
. Therefore:

P




N(Cn lnn)⋃

k=1

{|Ok ∩Kn| ≥ 2}


 ≤ 1− e−Cf(nβ)n lnn.

Now, λ satisfying the condition (2.2), and m = n(1+λ)−1
, it is true that:

lim
n→∞

f(n(1+λ)−1

)n lnn = lim
m→∞

(1 + λ)f(m)m1+λ lnm = 0,

In this way, take β > (1 + λ)−1 to conclude the proof.
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To finish the proof, we need to understand a simple connection with the Coupon

collector. To state it, start by fixing a parameter p ∈ (0, 1), and a set {1, ...., K}. Define
a coupon collector of {1, ...., K} with a time change p, in the following way: Consider a

Poisson process with rate 1, and for each point in the Poisson process, sample an inde-

pendent Bernoulli with parameter p. When the Bernoulli is equal to one, with probability

p, take one of the possible K points in the space uniformly. When the Bernoulli is equal

to zero, with probability (1−p), do nothing. By the thinning argument of Poisson Point

process, we can define (ξk)
K
k=1 as a set of independent exponential random variables with

rate p
K
, and, the time need to complete the space as:

T ℓ
K = max

k=1,...,K
{ξk}.

About this process, one may get that:

Lemma 6. Let (Yk)k be a coupon collector of the set {1, ..., K} with time change p ∈ (0, 1],

that may depend on K. Then, set T ℓ
K the time needed to take all the coupons, so

p

K
T ℓ
K − lnK

D
=⇒ Gumbel(0, 1)

uniformly when |K| goes to infinity.

The proof of the Lemma 6 is located in Subsection 5.2.1 in the Appendix. With this

result we can conclude Proposition 3.

Proof of Proposition 3. For each object used in the covering O = {U,U+1, · · · , U+R−
1}, define the truncated object at height nβ as O = {U,U +1, · · · , U +min{R, nβ}−1}.
With the truncated objects, consider the truncated covering as X t =

⋃N(t)
k=1 Ok.

Fix any sequence (K(n))n, where K(n) ∈ Kn
β for every n > 0. The set K(n) is

composed of disjoint and sparse points of distance at least nβ, therefore, by construction

X t behaves like a coupon collector with time change. To compute the time change

parameter, notice that the process is defined using a Poisson process and the region that

covers each point of K(n) is disjoint and have the same rate (this property is uniform

over all sets in Kn
β). In particular, the probability that a fixed point 0 is covered in the

truncated covering is:

P
(
0 ∈ O

)
=

1

n

nβ∑

k=1

P (R > k) =
µgnβ

n
.
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Now, since each point in K(n) have the same probability to be covered in the truncated

space, the time change is going to be
|K(n)|µg

nβ

n
. So, define:

T ℓ
K(n) = inf

{
t : K(n) ⊂ X t

}
.

By applying Lemma 6, one gets:

µgnβ

n
T ℓ
K(n) − ln |K(n)| D

=⇒ Gumbel(0, 1). (2.17)

To finish the proof, it remains to replace T ℓ
K(n) with TK(n), and remove the term gnβ in

the equation (2.17).

To prove that T ℓ
K is indeed TK(n) with high probability, use Lemma 5 to show that

no large object will appear in the time scale needed for the covering. More particular,

define the event of having a big object until time t:

Et =

N(t)⋃

k=1

{Ok ̸= Ok}.

Assume t = 2n lnn to be a suitable value of t. By Lemma 5, the events Et have

probability going to zero, this is:

lim
n→∞

P
(
E2n ln(n)

)
= 0.

Rest to show that T ℓ
K(n) is lower than 2n lnn with high probability. For this, consider

the following bounds: |K| < n and gnβ < 1. For big values of n in the limit of equation

(2.17), the following holds.

P
(
T ℓ
K(n) >

2n log(n)

µ

)
< 1− exp

{
− 1

n

}
. (2.18)

Now, lets relate the probability to cover the space with the probability in the truncate

covering using the event Et. Looking to values of t less then 2n log(n), by equation (2.18)

with probability converging to one the truncate space is covered. Now, in this frame of

time, since the objects in both covered are equal in size, both have the same covering

time. Therefore:

lim
n→∞

P
(
T ℓ
K(n) = TK(n)

)
= lim

n→∞
P
(
T ℓ
K(n) = TK(n)|T ℓ

K(n) < 2n lnn
)

≥ lim
n→∞

1− P (E2n lnn) = 1.
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Finally, to remove the term gnβ from equation (2.17) using the bound in equation

(2.18), we get that TK(n) is of order n log(n) and therefore by the condition (2.4):

µ

n
TK(n) (1− gnβ)

P→ 0,

concluding that:

µ

n
TK(n) − ln |K(n)| D

=⇒ Gumbel(0, 1).

As desired.

2.2 Compact Support Phase

Unlike Section 2.1, the theorem proved here is a more general version of the the-

orem stated in the Introduction. The additional conditions make the theorem more

general, but less straightforward to understand. Therefore, we have intentionally post-

poned these conditions until now. Recall that f(x) ∈ RV−1, if for every t > 0 we have

that limx→∞
f(xt)
f(x)

= t−1, or analogous if f(x) = L(x)
x

for some slowly varying function

L(x).

Theorem 1 (Compact Support Phase). Let f ∈ RV−1 that satisfies for all β ∈ (0, 1)

that:

lim sup
n→∞

sup
nβ≤x≤n

xf(x)

nf(n)
= b(β) < ∞, and (2.19)

lim sup
n→∞

∑nβ

i=1 f(i)

f(n)n lnn
= d(β) < ∞. (2.20)

Then, (f(n)Tn)n is tight. Moreover, for every subsequence (nk)k such that

f(nk)Tnk

D
=⇒ Y. (2.21)

The distribution Y = Y (f, (nk)k) is a non-degenerate distribution with compact support.

Remark 11. Hypotheses (2.19) and (2.20) look strange at first glance. To make it tangible

to the reader fix β ∈ (0, 1), and consider the following examples:

• Take f(x) = 1/x. Therefore, the value appearing in condition (2.19) is trivially

equal to one. Using the harmonic series, we can calculate the value appearing in

condition (2.20) which is equal to β.
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• Let b ∈ R and take f(x) = lnb x
x

. About condition (2.19), we have that:

sup
nβ≤x≤n

{
xf(x)

nf(n)

}
= sup

γ∈(β,1)

{
nγf(nγ)

nf(n)

}
= sup

γ∈(β,1)

{
γb
}
.

For condition (2.20), let C be some constant, then we get that:

nβ∑

i=2

f(i) <

∫ nβ+1

2

f(x)dx

=





lnb+1 (nβ)
b+1

+ C, if b ̸= −1.

ln ln (nβ) + C, if b = −1.

In particular, for all b > −1 the value in condition (2.20) if finite, and for all b ≤ −1

the condition (2.20) is not satisfied.

• To see a case where condition (2.19) is not satisfied, let γ ∈ (0, 1) and take f(x) =
exp{− logγ(x)}

x
. We have f ∈ RV−1, and:

sup
nβ≤x≤n

xf(x)

nf(n)
>

exp{logγ(n)}
exp{logγ(nβ)} = exp{(1− βγ) logγ(n)},

that diverges when n grows, for all β ∈ (0, 1) fixed.

In order to prove Theorem B, we divided the proof into two subsections. Then,

the conclusion follows immediately by applying Prokhorov’s Theorem to the sequence

(f(n)Tn)n. More precisely, the proof follows the following steps:

1. Subsection 2.2.1 proves that (f(n)Tn)n is tight, and that any limit in distribution

belongs to some compact [0, a∗] with a∗ > 0.

2. Subsection 2.2.2 will prove that the limit distribution is not degenerate, that is,

a probability distribution with support only at a single point. For this, looking

to the covering when we place a small number of objects, and controlling the the

large and small objects, we can find vacant places with high probability.

To simplify the proof, let us give another description for the continuous covering

process that will come in handy. Consider S = (Z/nZ) × Z+, then define a Poisson

Point Process (Ω,F ,P) on S with rate Λα = α (Unif(Z/nZ)⊗ dR), where dR is the

discrete measure associated with the random variable R, and the parameter α will be

related with the number of objects placed. Set Ω = {w : w =
∑

i∈I δ(ui,ri), s.t. (ui, ri) ∈
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S for all i ∈ I, I < ∞} is the state space, and F is the smallest σ−algebra that makes

the evaluation measures {w(A) : A ⊂ S} measurable.

This Poisson process is not artificial; indeed if we place a point (Uk, Rk) ∈ S for every

objectOk = {Uk+ΓRk
}, then the points placed till time α > 0 have the same distribution

as a Poisson process with rate Λα. To see whether the points imply a covering, define

the projection function as

Π : S →P(Z/nZ)

(u, r) 7→{u, u+ 1, ..., u+ r} ∈ Z/nZ.

With the projection Π defined, given any configuration w =
∑

i∈I δ(ui,ri), one can recover

the covering process Xα at time α using the configuration w as:

Xα = Xα(w) =
⋃

i∈I

Π((ui, ri)).

2.2.1 Compact support

In the Gumbel phase, the typical objects exhibit small sizes in comparison to the torus.

Here, however, the presence of objects that are comparable in size to the space itself

becomes significant. To control their number and what these big objects cover, we use a

Branching Process argument that can be found in the following proposition:

Proposition 4. Let f ∈ RV−1 . Then there exists a∗ > 0 such that

lim
n→∞

P (f(n)Tn ≤ a∗) = 1.

Proof of Proposition 4. The proof of this proposition is based on a comparison between

the presence of large objects in the cover with a Branching Process. To properly define

the comparison, we first need to define a set of regions in S = (Z/nZ)×Z+, and a set of

intervals on the torus. Then, through the vacant set, a relationship can be constructed

between these objects. The essence of the proof lies on the following observation: If there

is a vacant interval, and the region of object in S capable of covering it entirely is empty,

then we can divide the vacant interval into smaller sets, each set as child of the branching

process will have a new independent chance to be covered or not by objects of another

non explored region.

Let T4 = (V4,E4) be a rooted tree in which every vertex has four children. Precisely,

the set of vertex and edges are respectively:

V4 =
{
v(i, h)

∣∣h ≥ 0, i ∈ {0, 1, 2, 3}h
}
, and

E4 = {(v(i, h), v(i× j, h+ 1))|v(i, h) ∈ V4, j ∈ {0, 1, 2, 3}} .
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For any vertex v(i, h) ∈ V4 where i = (i1, ..., ih), define its order as |i| =∑h
j=1 ij4

j, and

set the following regions in [0, n)× (0, 2n):

R(i, h) =

[
n|i|
4h

,
n(|i|+ 1)

4h

)
×
[
2n

4h
,
2n

4h−1

)
,

For the vertex v(0, 0), define the region R(0, 0) = [0, n) × [2n,∞). Associated with

each region R(i, h), define the interval I(i, h) =
[
n|i|
4h

, n(|i|+1)
4h

)
∩ Z. See Figure 2.1 for a

representation of the tree T4 side by side with the regions.

I(1, 1)

2n

2n
4

2n
16

R(0, 0)

R(0, 1) R(1, 1) R(2, 1) R(3, 1)

v0,0

v0,1 v1,1 v2,1 v3,1

Figure 2.1: A representation side by side of the tree T4 and the set of intervals R(i, k),
on the rectangle [0, 1)× (0,∞). In the Figure, there exists an object that appears in the
region R(0, 1), and covers the interval I(1, 1) bellor the region R(1, 1).

Now, fix a covering process Xα at time α = αf−1(n), and along with a realization of a

Poisson point process w with intensity Λα. Then, we are going to define a heterogeneous

branching process (Zh)h in T4 using the regions R(i, h), where Z0 = 1, and associated

with it, we have the vertex v(0, 0). For other values of h, define inductively

Zh+1 =

Zh∑

i=1

4 · 1{w(R({|v(i)| − 1} mod 4h, h) > 0},

where {v(1), ..., v(Zh)} are the vertex associated to the h−th generation of the branching

process. Moreover, define the vertex associated for the next generation as the union of

the four children of v ∈ {v(i)}Zh
i=1 such that {w(R({|v| − 1} mod 4h, h) > 0} happens.

The branching process (Zh)h, despite having a complex definition, was created to

preserve one property: If it dies, it covers the space. In essence, notice two things: The
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intervals I(i, h) fit inside I(j, k) if and only if v(i, h) is an ancestor of of v(j, k) (this

is, v(j, k) belongs to the unique path that connects v(i, h) to the root of the tree);

and, if {w(R(i − 1 mod 4h, h)) > 0} then I(i, h) is completely covered by an object.

In particular, if {Zh = 0}, each vertex in the tree v(i, h) has a dead parent v(j, k),

or analogously, each interval I(i, h) fits within some larger interval I(j, k) such that

{w(R(j − 1 mod 4h, k)) > 0}. Therefore, I(i, h) is covered for every i, and the space is

fully covered by objects with a radius greater than 2n/4h.

Since the process is heterogeneous in probability, we need caution when using classical

branching arguments. To understand how the probability changes in each generation,

fix a value of n > 0. Start by noticing that there is no object O of size smaller than one

in the covering, then the regions R(i, h) with h >
⌊
ln 2n
ln 4

⌋
are always empty. About the

dependence of the heterogeneous process, notice that by the Poisson construction, since

the regions are disjoint, the survival probabilities despite being different are independent.

Now, when h ≤
⌊
ln 2n
ln 4

⌋
, for every fixed region R(i, h) by routine calculation:

P (w(R(0, 0)) > 0) = 1− exp

{
−α

f(2n)

f(n)

}

P (w(R(i, h)) > 0) = 1− exp

{
− α

f(n)4h

(
f

(⌈
2n

4h−1

⌉)
− f

(⌊
2n

4h

⌋))}
.

To understand such values, since f ∈ RV−1, by the Karamata’s representation Theorem,

see Proposition 16 item 2, it is true that

f(r) = r−1L(r),

where L(r) is a slowly varying function. Then, for every fixed h ≥ 0, by definition (1.5),

using the Proposition 16 item 1, we get that:

lim
n→∞

f(2n)

f(n)
=

1

2
, and (2.22)

lim
n→∞

1

4kf(n)

(
f

(
2n

4k

)
− f

(
2n

4k−1

))
=

3

8
, and

lim
n→∞

1

f(n)4h

(
f

(⌈
2n

4h−1

⌉)
− f

(⌊
2n

4h

⌋))
=

3

8
(2.23)

Therefore, the heterogeneous probabilities have a limit for each h fixed using the equa-

tions (2.22) and (2.23) that relays just on the fact that f ∈ RV−1. In particular, taking

n to infinity, we get:

lim
n→∞

P (w(R(0, 0)) > 0) = 1− e−
α
2 , and

lim
n→∞

P (w(R(i, h)) > 0) = 1− e−3α/8. (2.24)
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Throughout the rest of the proof, define Ẑt a new homogeneous branching process

that lives in the tree T4, and has all four children in one generation with probability

equal to e−
2α
8 , that is, greater than the probability of both limits in the equation (2.24).

About Ẑt, fix α∗(Ẑt) = 4 ln 2, and notice that for every α > α∗ the branching process

Ẑt in T4 dies almost surely.

Now, fix α > α∗ and take any ε > 0, set h0 = h0(ε, α) such that

Pα

(
Ẑh = 0, for some h < h0

)
> 1− ε.

Finally, using this fixed value of h = h(ε, α) and the limits in equation (2.24),

find n0 = n0(h) such that for every n > n0, the process Ẑh dominates the events

1{w(R(i, h)) > 0} with h < h0. In particular, remember that by construction, if the

branching Zh dies, then the space is covered, therefore:

P (f(n)Tn ≤ α) ≥ P
(
Ẑj(α) = 0 for some j ≤ h0

)
≥ 1− ε.

Taking the limit when ε goes to zero, one can conclude the theorem, for each α > α∗ =

4 ln 2.

2.2.2 Non degenerate distribution

This section is devoted to the proof that (f(n)Tn)n has a nondegenerate limit. To prove

this, it is sufficient to show that for small values of α, we have:

0 < lim inf
n→∞

P (f(n)Tn > α) ≤ lim sup
n→∞

P (f(n)Tn > α) < 1. (2.25)

Different from Subsection 2.2.1, where a branching process technique shows that the

space is covered by objects with size comparable with the space; here, we need a more

delicate approach that controls the full range of object sizes at the same time to say that

the space is not covered.

Before going into more detail, let us prove the lower bound of equation (2.25). Looking

just at the objects greater than the space itself, at time α/f(n), we have that:

lim inf
n→∞

P (f(n)Tn > α) > lim
n→∞

P (w({r > n}) = 0) = e−α.

In particular, the limit above is non zero.

The proof of the upper bound of equation (2.25) is divided in Propositions 5 and 6.

We start using a branching argument very similiar from the proof of Proposition 4, now

for small values of α. To define it, we will need a new tree and a new set of regions.
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Let T̂ = (V̂, Ê) ⊂ T4 be a sub-graph where

V̂ =
{
v(i, h)

∣∣h ≥ 0, i ∈ {1, 3}h
}
, and

Ê = {(v(i, h), v(i× j, h+ 1))|v(i, h) ∈ V, j ∈ {1, 3}} .

Observe the sub-graph T̂ of T4 in the Figure 2.2. This restriction guarantees that any two

siblings corresponds to separated intervals, and that distance will help with decoupling

them.

Figure 2.2: The black graph is a representative drawn of the subgraph T̂ inside the graph
T4 drawn as gray.

Using the graph T̂ , for every vertex v̂(i, h) ∈ V̂ with h > 0, define the region:

R̂(i, h) =

[
n|i|
4h

,
n((|i|+ 2)

4h

)
×
[ n

4h+1
,
n

4h

)
.

For the vertex v(0, 0), define R̂(0, 0) = [0, n) ×
[
n
4
,∞
)
. And, together with it, we set

the intervals Î(i, h) =
[
n(|i|+1)

4h
, n(|i|+2)

4h

)
⊂ Z/nZ. Observe such regions and intervals in

Figure 2.3.

n
4

n
16

R̂(0, 0)

R̂(1, 1) R̂(3, 1)

Î(1, 1) Î(3, 1)

Figure 2.3: A representation of the regions R̂(i, h) and intervals Î(i, h).

Now fixed any α > 0, take the covering process Xα/f(n), and the associated configu-

ration w with rate Λα/f(n). Define a heterogeneous branching process (Zh)h in T̂4 using
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the regions R̂(i, h), where Z0 = 1, and associated with it, we have the vertex v(0, 0). For

other values of h, define inductively

Zh+1 =

Zh∑

i=1

2 · 1{w(R(|v(i)|, h) = 0},

where {v(1), ..., v(Zh)} are the vertices associated to the h− th generation of the branch-

ing process. Moreover, define the vertex associated with the next generation as the union

of the two children in T̂4 of each v ∈ {v(i)}Zh
i=1 such that {w(R(|v|, h) = 0}.

To continue, let us explore a relation between surviving in the branching process

(Zh)h and the covering process. Observe that I(i, h) fits inside I(j, k), if and only if

v(i, h) is an ancestor of v(j, k). Also, notice that if {w(R̂(i, h)) = 0} then I(i, h) does

not intersect any object with radius between n/4h+1 and n/4h. Therefore, assuming that

{Zh > 0}, each surviving vertex v(i, h) has a family of survival ancestors (all vertices

that belong to the path connecting v(i, h) to the root of the tree). In other words, each

interval I(i, h) is not intersected by any object of size greater than n/4h.

Unfortunately, the probability that the process survives in generation h does not

behave well. The fact that the tail f belongs to RV−1, controls only objects of size

comparable to n, such as n/4h with h fixed. In particular, to show that we do not cover

the space, we need bounds to control objects of arbitrary size, as for example nβ with

β ∈ (0, 1). It is important to note that for some tails distributions, the rate of the regions

R̂(i, h) can explode as h approaches
⌊
lnn
ln 4

⌋
.

To solve the heterogeneity problem, we divide the proof of the upper bound into two

steps. First, we will explore the covering of objects with size greater than nβ. Second,

we will work with the remaining objects, with sizes smaller than nβ. This division will

be informally described by the terms big and small world.

More precisely, for any fix β > 0, α > 0, let w =
∑

i∈I δ(ui,ri) be any configuration

of a Poisson Point Process in S with rate Λα/f(n). Define the small and big world to be

respectively the processes:

Xα/f(n)[1, n
β) = Xα/f(n)[1, n

β)(w) =
⋃

i∈I

Π((ui, ri))1{ri ∈ [1, nβ)}

Xα/f(n)[n
β,∞) = Xα/f(n)[n

β,∞)(w) =
⋃

i∈I

Π((ui, ri))1{ri ∈ [nβ,∞)}

Note that the covering process Xα/f(n) can be written as Xα/f(n)[1, n
β)∪Xα/f(n)[n

β,∞).

And, by the thinning Poisson Theorem, we can work with these two processes indepen-

dently.
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The proof of the upper bound in relation (2.25) is divided in two steps. Independently,

fix α > 0 small. The first step reveals the object in the big world, using Proposition 5, it

is possible to show that with α small we can find many empty connect regions of size nβ.

Then, the next step reveals the objects in the small world, and by Proposition 6, we can

show by concentration inequality that one of theses vacant regions reveled in the first

step have with high probability a empty point. In this way, the probability of covering

the space does not approach one, when α is small.

Proposition 5. Let f be a distribution that satisfies condition (2.19) for some β ∈ (0, 1).

Now, for all ε > 0, and η ∈ (0, 1), we can find α0 = α0(ε, β, η) such that for all α < α0,

with probability greater than 1− ε there exist at least n
η
2
(1−β) intervals of size ⌊nβ⌋ with

mutual distance at least ⌊nβ⌋ which are not intersected by the process Xα/f(n)[n
β,∞).

Proof of Proposition 5. To prove this proposition, we will use condition (2.19) to create

a bound on the branching process Ẑh, for h < ⌈lnn1−β/ ln 4⌉. Next, we will use the same

branching method applied in the proof of Proposition 4, but we will end the calculations

using a more specific branching theorem, witch regulates the number of children of the

process.

To define the branching technique, take a vertex v̂(i, h) ∈ V̂ and observe that:

P
(
w(R̂(0, 0)) = 0

)
= exp

{
−α

f(n/4)

f(n)

}

P
(
w(R̂(i, h)) = 0

)
= exp

{
− 2α

f(n)4h

(
f
(⌈ n

4h+1

⌉)
− f

(⌊ n
4h

⌋))}
.

In particular, using condition (2.19), we get that:

exp

{
− 2α

f(n)4h

(
f
(⌈ n

4h+1

⌉)
− f

(⌊ n
4h

⌋))}
> exp

{
−2αf

(⌈
n

4h+1

⌉)

f(n)4h

}

= exp

{
−8α

⌈
n

4h+1

⌉
f
(⌈

n
4h+1

⌉)

nf(n)

}

> exp {−8αb(β)}

Then define Ẑh to be a homogeneous Branching process in T̂ that have two children

with probability e−8αb. Observe that Ẑh dominates the branching process Zh for every

h ∈
[
0, ⌈lnn1−β/ ln 4⌉

)
, so one can couple both process in a way that if Ẑh survives, then

Zh also survives.
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For every ε > 0 and η ∈ (0, 1), there exists α0 = α0(ε, η, β) such that for all α < α0

we have:



e−8αb > 2−1+

√
η

P
(
Ẑj = 0, for some j > 0

)
≥ 1− ε/2.

In particular, with probability close to one the process using just objects with size greater

than ⌊nβ⌋ does not cover some intervals of size ⌊nβ⌋. Finally, to count the number of

such intervals we can use the concentration of the Branching process in [21], stated for

our case as the following Theorem.

Theorem 2. Let Xn,m be independent and equally distributed positive integer random

variables with n > m > 0. Define the branching process as Zn =
∑Zn−1

m=1 Xn,m. If

E (X1,1) = µ > 1, Var (X1,1) = σ2 < ∞ and Z0 = 1, then there exists a distribution W

such that:

1. Zn

µn → W , almost sure.

2. lim
n→∞

E
((

Zn

µn −W
)2)

= 0.

3. E (W ) = 1, and Var (W ) = σ2

µ2−µ
.

4. P (W = 0) = q = P (Zn = 0 for some n).

Observe that the mean number of decedents in generation h = ⌈lnn1−β/ ln 4⌉ is

equal to (2e−8αb)h > n
η
2
(1−β). By Theorem 2, since we are asking for the presence of

significantly fewer decedents than the mean, for every ε > 0, there exists n0 such that

for n > n0:

P
(
Ẑh > n

η
2
(1−β)

)
≥ 1− ε.

That implies that, the process Ẑh, that bounds from below the number of intervals of

size ⌊nβ⌋ at height h = ⌈lnn1−β/ ln 4⌉ on the covering Xt[n
β,∞), has more than n

η
2
(1−β)

children with high probability. Since they have a distance between each other greater

than ⌊nβ⌋, the proof is finished using the coupling.

To conclude the proof of the upper bound, let us use McDiarmid’s concentration

inequality, [17], to give bounds over the small world when α is small.
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Proposition 6. Let f be a distribution that satisfies conditions (2.20) and (2.19) for

some β0 ∈ (0, 1). Let η ∈ (0, 1/2), β < η, ε > 0 and fix any set I formed by nη disjoint

intervals of size nβ that are spaced away from each other by at least nβ. Then there exists

α′ = α′(η, β, ε) such that for all α < α′ with probability greater than 1 − ε the covering

process Xα/f(n)[1, n
β) does not cover I.

Proof of Proposition 6. Start by fixing η ∈ (0, 1/2) and β < η. Fix I = I(η, β) to be

an arbitrary set of nη intervals of size nβ, which are separated by a distance of at least

nβ. Let α > 0, and consider {O1,O2, ...,ON} all objects placed in the covering process

Xα/f(n)[1, n
β) that intercept any point in I.

Define a function F (O1,O2, ...,ON) that corresponds to the total number of non

covered point in the set I by the objects {O1,O2, ...,ON}. Since the objects have size

less than nβ we have that for every i < N , it is true that ∆iF ≤ nβ, where:

∆iF = sup
o1,...,oi,o′i,oi+1,...,oN

|F (o1, ..., oi, oi+1, ..., oN)− F (o1, ..., o
′
i, oi+1, ..., oN)|.

Where oi are possible connected objects of size bounded by nβ.

Notice that the mean of the function F is the average number of missing point at

time αf−1(n), so:

E (F (O1, ...,ON)) = µF = nη+βP
(
0 /∈ Xt[1, n

β)
)

= nη+β exp



− α

nf(n)


−nβf(nβ) +

nβ∑

i=1

f(i)







= nη+β exp

{
αnβf(nβ)

nf(n)
− α ln(n)

∑nβ

i=1 f(i)

nf(n) lnn

}
. (2.26)

Observe that the total number of objects N that intercepts the set I is a Poisson

random variable with mean equal to λ. Using the fact that the intervals in the set I are

disjoint by a distance of at least nβ, we have that.

λ = nη α

f(n)




nβ∑

i=1

f(i)− f(nβ)

n
+

nβ∑

i=1

(1− f(nβ))

n




=
αnη+β

nf(n)

(
(1− 2f(nβ)) +

∑nβ

i=1 f(i)

nβ

)
(2.27)

To continue the proof, let d = d(β) ∈ R from the hypotheses (2.20), δ small, and

take constants C1, C2 > 0 such that λ ≤ C1n
η+β and µF ≥ C2n

η+β−α(d+δ). Then, that
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Chapter 2. The different phases of the covering process 2.2. Compact Support Phase

for every c > 0, we have:

P (|F − µF | > 2cµF ) ≤P
(
|F − µF | > 2cµF , N < λ(1 + λ−1/3)

)

+ P
(
|N − λ| ≥ λ2/3

)
.

Since, N Poisson distributed with rate λ, and λ diverges as n grows, by the Chebyshev’s

inequality we have that P
(
|N − λ| ≥ λ2/3

)
converges to zero. To deal with the other

term, notice that since N < λ(1 + λ−1/3) < 2C1n
η+β for big values of n, we get using

McDiarmid’s inequality that:

P
(
|F − µF | > 2cµF , N < λ(1 + λ−1/3)

)
≤ 2 exp{−2c2µF

2/λ(1 + λ−1/3)n2β}

≤ 2 exp

{
−c2C2

2

2C2
1

nη−β−2α(d+δ)

}
.

In particular, choosing δ small enough, for any choice of η and β, for every ε > 0, one

can find α′ = α′(η, β, δ, ε) such that the probability stays below ε for every α < α′, and

therefore:

P
(
{Xt[1, n

β)]}c ∩ I ≠ ∅
)
> 1− ε,

for every choice of set I(β, η).
To finish the proof, we just need to show that indeed exists constants C1, C2 > 0

such that λ ≤ C1n
η+β, and µF ≥ C2n

η+β−α(d+δ).

To show that there exists C1 > 0 such that λ ≤ C1n
η+β, notice that by the hypotheses

(2.20), we get for every n > n0:

∑nβ

i=1 f(i)

nβnf(n)
<

(d+ δ) lnn

nβ
.

In particular, we get in equation (2.27) that λ ≤ C1n
η+β.

To find the constant C2 and finish the proof in the equation (2.26) we need do two

considerations. First find n0(δ) such that for every n > n0, by hypotheses (2.20), we get

that:
∣∣∣∣∣d−

∑nβ

i=1 f(i)

nf(n) lnn

∣∣∣∣∣ < δ.

Then, the we can use condition (2.19) to get that nβf(nβ)
nf(n)

is bounded in the limit.

To prove the upper bound on the equation (2.25), we need to combine the Proposition

5 with the Proposition 6. Take any η ∈ (0, 1), then find β small such that η
2
(1− β) > β,
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and that satisfies conditions (2.19) and (2.20). Using Proposition 5, find α0(ε, β, η), such

that the probability of surviving n
η
2
(1−β) disjoint intervals of size nβ is at least 1− ε/2.

Next, since η
2
(1−β) > β, using Proposition 6, one can find a new α1(ε, β,

η
2
(1−β)), such

that with probability greater than 1−ε/2 in the set of surviving intervals of Proposition

5, there exists an empty point. Therefore, the probability of not covering the space when

α < min{α1, α0} is greater than 1− ε, and that concludes the upper bound.

Also, the same proof allow us to inform that the limit distribution Y has no atom in

zero, that is:

Corollary 1. For every f ∈ RV−1, which satisfies conditions (2.20) and (2.19). We have:

lim
α→0

lim sup
n→∞

P (f(n)Tn < α) = 0.

2.3 Pre-exponential Phase

Although it is possible to apply the same technique used in Section 2.2 to prove Theorem

C, we have decided to present an argument that introduces ideas for the next section.

The ideas and techniques become more analytical and will need results about slowly

varying functions presented in the appendix.

Given any p ∈ (−1, 0) and f ∈ RVp, since p different than −1, then by Karamata’s

theorem 4 presented in the Appendix, one has that

lim
n→∞

∑n
i=1 f(i)

nf(n)
= Cf > 0. (2.28)

The rest of the proof will show that for every α > 0, we have that:

lim sup
n→∞

P (f(n)Tn ≤ α) ≤ 1− e−αCf , and (2.29)

lim inf
n→∞

P (f(n)Tn ≤ α) ≥ 1− e−α + e−α
(
1− exp

{
− α

21+p

})2
. (2.30)

The proof of Theorem C follow by just applying Prokhorov’s theorem, using the limits

(2.29) and (2.30).

The proof of (2.29) starts by observing that if Xα/f(n) does not cover the point 0 at

time α/f(n), then the space is not covered completely. So:

P (f(n)Tn > α) ≥ P
(
0 /∈ Xα/f(n)

)

= exp

{
−α

∑n
t=1 f(t)

nf(n)

}
.
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By the hypotheses (2.28), we have that

lim inf
n→∞

P (f(n)Tn > α) ≥ exp {−αCf} .

And, that is the upper bound in implication (2.29).

Now for the lower bound, define the following three disjoint regions in Z/nZ×Z+.

Similar to the branching process created in Section 2.2, those three regions correspond

to the first children of the argument.

R0 = {(U,R) : R ≥ n} ,
R1 =

{
(U,R) : U ∈

[
0,

n

2

)
, R ∈

[n
2
, n
)}

,

R2 =
{
(U,R) : U ∈

[n
2
, n
)
, R ∈

[n
2
, n
)}

.

Notice that, we can cover the space if we hit an object in R0, but also if R1 and R2 are

occupied at the same time. Therefore:

P (f(n)Tn ≤ α) ≥ P (w(R0) > 0) + P (w(R0) = 0,w(R1) > 0,w(R2) > 0) ,

Now, using that f ∈ RVp, for p ∈ (0, 1), we can take the limit of this probabilities, as

done in Proposition 4. To get that:

lim inf
n→∞

P (f(n)Tn ≤ α) ≥ 1− e−α + e−α(1− e−α/21+p

)2.

That finishing the proof of (2.30).

2.4 Exponential Phase

The proof of D is direct. We will show that with high probability the covering will

occurs exactly when a big object appears. To show this, let f ∈ RV0, then apply Kara-

mata’s theorem 4 from the appendix to get that

lim
r→∞

∑n
i=1 f(i)

nf(n)
= 1. (2.31)

Define the region R0 = {(U,R) : R ≥ n}, and observe that in time α/f(n), the

number of objects in R0, N(R0), is a Poisson random variable with rate α. In this way,

if we do not cover until time α/f(n) then {N(R0) = 0} satisfies:

P
(
Tn >

α

f(n)

)
≤ P (N(R0) = 0) = e−α.
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Now, if the point 0 is not covered, naturally, we do not cover the entire space, so:

P (f(n)Tn > α) ≥ P
(
0 /∈ Xα/f(n)

)

= exp

{
−α

∑n
t=1 f(t)

nf(n)

}
,

that by hypotheses (2.31), we have that:

lim inf
n→∞

P (f(n)Tn > α) ≥ exp {−α} .

And, that concludes the convergence in distribution to the exponential random variable.
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3
The continuous model

This chapter is dedicated to the proof Theorem B*. To remember the reader, the defi-

nitions of the continuous model are repeated above, but now with an extra explanation

of the model.

3.1 Proof of Theorem B*

In Section 2.2, a representation of the covering process in a cylinder Z/nZ×Z appears

in Propositions 4 and 5, such representation makes evident several techniques used to

understand the behavior of random coverage. After normalizing by 1/n, the process in

Z/nZ × Z converges into a Poisson process across the continuous cylinder S1 × [0,∞)

with a specific rate Λα; however, it is important to note that the bare existence of such

a limit is not sufficient to guarantee the convergence of the covering phenomena; indeed,

the limit may deform or hide small objects essential to the covering in the discrete case,

as discussed in Remark 1 for the Gumbel’s phase.

This Section introduces and reviews some properties of a continuous covering model.

The term continuous is used because we transition from working with a covering of the

discrete torus Z/nZ to performing a covering of the continuous circle S1. It is important

to clarify that the model and some of the results are not new in the literature; indeed,

in 1972 a version of it was introduced by B.B.Mandelbrot in the seminal article [22],

and in the same year the model was updated by L.A.Shepp in [29]. Due to these two
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Chapter 3. The continuous model 3.1. Proof of Theorem B*

contributions, we will refer to it as the Mandelbrot-Shepp model.

Both articles introduce the model on the real line, where the process has a regener-

ative property. In this paper, we focus on the circle; therefore, we need to adapt some

of its proofs and definitions. For this reason, this section is divided into two parts. Sub-

section 3.1.1 aims to describe, define, and give some intuition behind the model on the

circle. Subsection 3.1.2 is dedicated to solve the tightness issue of the limit, thus prov-

ing Theorem B*, which represents the novel contribution of this work showing that the

discrete covering process converges in some sense to the Mandelbrot-Shepp model.

3.1.1 The Mandelbrot-Shepp model

This Subsection defines the Mandelbrot-Shepp model and reviews some standard

results about it. Although simple, such properties will be used directly or indirectly to

prove Theorem B* in Subsection 3.1.2.

The Mandelbrot-Shepp model is defined as a covering process of the circle S1 = R/Z,
represented here by the segment [0, 1). To define it, consider the cylinder S = S1×(0,∞),

fix α ≥ 0, and construct a Poisson point process in S with rate Λα = αdx⊗ dr
r2
. Rigorously,

consider the probability space (Ω,F ,Pα), where Ω = {ω =
∑

i∈I δ(xi,yi) : (xi, yi) ∈ S ∀i ∈
I, and ω(K) < ∞∀K ⊂ S compact}, and F is the smallest sigma algebra that makes

the evaluation maps {ω(K) : K is compact in S} measurable.

During the course of this article, configurations with different values of the parameter

α will be compared. To simplify, define ωα as a configuration sampled with the measure

Λα, in particular, the parameter α is specified in the configuration notation.

To understand how different parameters interact, we should focus our attention on

Lemma 7. The proof of the lemma is simple and was omitted from the paper.

Lemma 7. Fixed α, β > 0, and consider two independent configurations, that is, ωα =∑
i∈I δ(xi,yi) and ωβ =

∑
j∈J δ(xj ,yj) with intensities Λα and Λβ respectively. Define:

ωα ∪ ωβ :=
∑

k∈I∪J

δ(xk,yk).

Then ωα ∪ ωβ has the same distribution as ωα+β with intensity Λα+β.

The Lemma 7 allows us to think of the parameter α of the model as a time, and, as

time passes, we place more and more objects on the cylinder S. Whenever we work with

this type of construction between times α and β, we define the measure P = Pα ⊗ Pβ,

where each configuration is independent of each other.
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With the configurations defined, it is now possible to introduce the covering perspec-

tive of the process. Given a point ξ = (x, y) ∈ S, define the Projection function of ξ

as

Π(ξ) =





[0, 1), if y > 1.

(x, x+ y), if y ≤ 1 and x+ y ≤ 1.

(x, 1) ∪ [0, x+ y − 1), if y ≤ 1 and x+ y > 1.

Given any configuration ω =
∑

i∈I δ(xi,yi) define:

C(ω) =
⋃

i∈I

Π((xi, yi))

V(ω) = [0, 1) \ C(ω),

to be respectively the covered set and the vacant set of the Mandelbrot-Shepp model.

Whenever the configuration ω is fixed, or when no confusion arises, we denote by V and

C those random sets.

Lemma 8. Given any parameter α > 0, and any point z ∈ [0, 1). Then, Pα (z ∈ C) = 1.

Proof of Lemma 8. Let z ∈ [0, 1) and define the region Rz = {x ∈ S : z ∈ Π(x)}.
Computing the intensity of the Poisson process in Rz, we have:

Λα(Rz) =

∫

Rz

α

y2
dydx ≥

∫ z

0

∫ ∞

z−x

α

y2
dydx =

∫ z

0

α

z − x
dx = ∞.

Therefore, for every α > 0 the event {ωα(Rz) > 1} happens almost surely. In particular,

z is covered almost surely, concluding the proof.

Corollary 2. Given any parameter α > 0, and Q any enumerable set of points in [0, 1),

we have Pα (Q ⊂ C) = 1.

As observed by Corollary 2, any enumerable set is almost surely covered by C(ω). This
observation might lead us to believe that the model is always fully covered. However, we

need to be cautious in drawing such conclusions, since the circle S1 is not countable.

To show that the Mandelbrot-Shepp model presents a non-trivial covering, an argu-

ment similar to Proposition 5 can be used, see the following Lemma:

Lemma 9. Given α < ln(2)
6

, then Pα (V ̸= ∅) > 0.
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The proof that the model is indeed a non-trivial covering is not new, and can be seen

in [22, 29]. In order to make the argument complete, one can find in Appendix 5.2.1 the

proof of the Lemma 9 based on the branching process technique used in Proposition 5.

Moreover, in Proposition 7 a better bound on the covering probability will be proved

based on the Shepp seminal paper [28].

The Mandelbrot-Shepp model is a non-trivial continuous covering process that uses

infinitely many objects, whereas the discrete covering process uses only a finite number.

The link between these models will be established through a finite truncated version of

the Mandelbrot-Shepp model. Consequently, to prove Theorem B*, we must establish two

crucial connections: first, the relationship between the Mandelbrot-Shepp model and its

truncated version, and second, the connection between the latter and the discrete model.

Given a configuration ω =
∑

i∈I δ(xi,yi) and any real number z > 0, define the trun-

cated configuration at height z as

ω[z] =
∑

i∈I

δ(xi,yi)1{yi > z}. (3.1)

In essence, the configuration ω[z] is given by the points with height greater than z. The

next lemma connects such configurations to the un-truncated model.

Lemma 10. For any parameter α > 0, we have

Pα (V ≠ ∅) = Pα

(
∞⋂

n=1

{
V
(
ω

[
1

n

])
̸= ∅
})

.

Proof of Lemma 10. Fixed any n > 0, note that:

{V ≠ ∅} ⊆
{
V
(
ω

[
1

n

])
̸= ∅
}
.

Therefore:

Pα (V ≠ ∅) ≤ Pα

(
∞⋂

n=1

{
V
(
ω

[
1

n

])
̸= ∅
})

. (3.2)

To prove the opposite inequality, we use a topological argument. Observe that the set

of points in ωα

[
1
n

]
is almost surely finite. Moreover, since the projection function of any

point is an open set, we have that Vα

(
ω
[
1
n

])
is the complementary of a finite union of

open set, thus it is almost surely closed in S1, i.e. compact. Finally, consider m > n,

and notice that V
(
ω
[
1
m

])
⊂ V

(
ω
[
1
n

])
, in particular,

⋂
n V
(
ω
[
1
n

])
is the intersection of

nested, compact sets of S1. Therefore, if all are non empty, there must be a point in the

limit, and the space will not be covered at time α. Proving then the equality in (3.2).
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Since the Mandelbrot-Shepp model has a non-trivial covering phenomenon, it is in-

teresting to define the Cover function of the the space as

π(α) = Pα (C = [0, 1)) .

Also, set the Cover function at height z as

πz(α) = Pα (C (ω[z]) = [0, 1)) .

As a consequence of the Lemma 10, the link between the truncated version and the

Mandelbrot-Shepp model can be created. Note the following.

Lemma 11. For every z > 0, πz(α) is a continuous function in α and lim
n→∞

π 1
n
(α) = π(α).

Proof of Lemma 11. To prove that πz(α) is a continuous function for every fixed z > 0,

define the region Rz = [0, 1)× [z,∞). Then:

Λα(Rz) = α

∫ 1

0

∫ ∞

z

dydx

y2
=

α

z
.

In particular, for every ε > 0, by Lemma 7, one gets:

|πz(α + ε)− πz(α)| = P (V (ωα[z]) ̸= ∅, C (ωα+ε[z]) = [0, 1))

≤ Pε (ω(Rm) > 0) = 1− e−ε/m.

Implying that for every fixed z > 0 the function πz(α) is a right continuous function in

α. The proof of left continuity is analogous.

To prove that limn→∞ π 1
n
(α) = π(α), it is sufficient to show that for any α > 0:

lim
n→∞

π(α)− π 1
n
(α) = 0,

which is equivalent to

lim
n→∞

Pα

(
C(ω) = [0, 1),V

(
ω

[
1

n

])
̸= ∅
)

= 0.

To finish the proof, note that by inclusion of the events, the limit is the intersection

of them. In particular, it was already shown by Lemma 10, that the limit has zero

probability, as we desired.

Thus, the Mandelbrot-Shepp process has a non-trivial covering function π that can

be studied by the approximation through the truncated versions πz. Furthermore, by

approximation, the vacant set V is also a limit of the vacant sets in ω[z]. Then, to finish

the proof, one will need to construct a link between the truncated spaces and the discrete

model.
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3.1.2 Proof of Theorem B*

The goal of this subsection is to prove Theorem B*. For this, we need to prove

two points: The support of the distribution of covering in the Mandelbrot-Shepp model

is [0, 1], and the limit of the covering probability in the discrete model converges to

the function π. Since the proof of these points presents different arguments, we divide

this subsection into two. In the first part, Subsection 3.1.2.1, the goal is to show that

the function π is not trivial in [0, 1], and equal to one above one. In the second part,

Subsection 3.1.2.2, the goal will be to find the limit of the vacant sets and the discrete

covering probabilities. As a direct consequence of all the propositions presented here,

Theorem B* will be derived.

3.1.2.1 Support of the function π

In 1956, Dvoretzky in [12] proposed another problem in the context of covering,

which we now introduce. First, fix the space as S1, the circle with unit length, and fix a

decreasing sequence (ℓn)n. At each time k, one samples a uniform point in the circle and

places an arc starting at this point with length ℓk. It was shown that if
∑

n ℓn = ∞ each

point in S1 is covered with probability one, but not necessarily P (S1 is fully covered) = 1.

Later, Shepp showed the necessary and sufficient condition in 1972, in [28], described

by:

Theorem 3 (Shepp). Let 0 < ℓn+1 ≤ ℓn ≤ ... ≤ ℓ2 ≤ ℓ1 < 1, n = 1, 2, ..., be arcs that are

placed independently and uniformly on a circumference S1 of unit length. The union of

these arcs covers S1 with probability one if and only if

∞∑

n=1

n−2 exp{ℓ1 + ...+ ℓn} = ∞.

The articles [22, 29] exposed that {α = 1} is a threshold for the Mandelbrot-Shepp

model in the real line, where conditioning on the origin not being covered, a non-trivial

set of vacant objects appears with positive probability. Here in the circle, this value holds

the same significance, which makes the result of Proposition 7 not surprising. There are

many ways to proceed with the proof of Proposition 7, we choose to use a concentration

bound on the Poisson random variables and Theorem 3. This approach establishes an

explicit connection between the Dvoretzky problem and our model.

Proposition 7. For the Mandelbrot-Shepp model π(α) = 1 for all α > 1 and π(α) < 1

for all α < 1.
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Proof of Proposition 7. Theorem 3 does not allow (ℓn)n to assume random values, but

this problem can be resolved by conditioning. To start, let ω =
∑

i∈I δ(xi,yi) be a config-

uration, and define the random sequence (ℓn)n, where:

ℓn = sup{r > 0 : ω{y ≥ r} = n}.

That is, the size of the n− th biggest object.

Together with the sequence (ℓn)n, define the regions where objects are expected to

belong:

Rδ
n = [0, 1)×

[
δ

n
,∞
)
.

With ε > 0 small and δ = 1− ε2, notice that ω1+ε(R
1
n) is a Poisson random variable

with rate (1 + ε)n, and ω1−ε(R
δ
n) is a Poisson random variable with rate n/(1 + ε). As

a application of the Chernoff bound for the Poisson random variable, it is possible to

prove the following Lemma; the proof of which is postponed to the Appendix 5.2.1.

Lemma 12. For any ε > 0, letting δ = 1− ε2, we have that

∞∑

n=1

P1+ε

(
ω(R1

n) < n
)
< ∞, and (3.3)

∞∑

n=1

P1−ε

(
ω(Rδ

n) > n
)
< ∞. (3.4)

Recall that we need to show two things: First, when α > 1 we have π(α) = 1. Second,

when α < 1 then π(α) < 1.

Start by fixing α > 1, and observe that:

{ω(R1
n) < n} =

{
ℓn <

1

n

}
.

Using equation (3.3), together with Borel Cantelli we conclude that:

P
(
∃n0, s.t. ℓn >

1

n
∀n > n0

)
= 1. (3.5)

Fixed the sequence (rn)n where rn = 1/n when n > n0 and zero otherwise. There

exists a constant C = C(n0) such that:

∞∑

n=1

n−2er1+...+rn =
∞∑

n=1

n−2er1+...+rn0 exp

{
n∑

k=n0

rk

}
≥

∞∑

n=1

n−2 exp

{
n∑

k=n0

1

k

}
≥

∞∑

n=1

C

n
= ∞.
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In other words, by Theorem 3, for all n0 > 0, the sequence (rn)n with n > n0 covers the

circle with probability one. So if α > 1, by equation (3.5), one gets the following.

π(α) =
∞∑

k=1

P
(
C(ω) = [0, 1),

{
ℓn >

1

n
∀n > k

})
.

And, if instead of placing objects with size ℓn we place an smaller object with fixed size

rn = 1/n, by Theorem 3 the space is going to be fully covered. So, by coupling one

object into another π(α) = 1 for every α > 1 as desired.

Analogously, for any ε > 0 small, and α = 1− ε < 1 take δ = 1− ε2, and notice that:

{ω(Rδ
n) > n} =

{
ℓn >

δ

n

}
.

Using the equation (3.4) together with Borel Cantelli we conclude that there exists just

a finite number of regions Rδ
n with more than n objects, thus:

P
(
∃n0, s.t. ℓn <

δ

n
∀n > n0

)
= 1.

Fixed a sequence (rn)n where rn < δ
n
for every n > n0, then there exists a constant

c = c(n0) such that:

∑

n

n−2er1+...+rn ≤ en0 +
∑

n>n0

n−2 exp

{
δ

n∑

k=n0

1

k

}
< en0 +

∑

n

cn−1−ε2 < ∞.

In other words, by Theorem 3 the sequence (rn)n, where rn < δ
n
for every n > n0, does

not cover the space with probability one. In particular, if α < 1, there exists n0 > 0 such

that:

1− π(α) > P
(
V(ω) ̸= ∅,

{
ℓn <

δ

n
,∀n > n0

})
> 0.

Where, if instead of placing an object ℓn, we place an bigger object of size δ/n. Then by

Theorem 3 the space have positive probability to not be covered. So, π(α) < 1 for every

α < 1, as desired.

3.1.2.2 Limits in distribution

In order to prove the limit of the discrete process towards the Mandelbrot-Shepp

model, we will create a coupling between its truncated version and the discrete model.

Our objective with the coupling is to demonstrate that in the limit, whenever the trun-

cated version covers the space, the discrete model also covers it, and vice verse. This
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association between the truncated version and the discrete model, together with the

limit in Lemma 11, will give us the desired distributional limit.

We utilize the graphical construction of the Mandelbrot-Shepp model to simultane-

ously construct the discrete covering process. This construction establishes a monotonic

coupling between both systems, indicating that covering in the Mandelbrot-Shepp model

implies covering in the discrete model. However, it should be noted that in this coupling

the converse is not necessarily true: it is possible that while the Mandelbrot-Shepp model

is not covered, the associated discrete model is. To address this issue, we need a quan-

titative connection between the two models.

Given a configuration ω =
∑

i∈I δ(xi,yi) in the cylinder S, we define the process W n =

W n(ω) in the torus Z/nZ (a covering process with radius distribution P (R > r) = 1/r),

as follows: for every ℓ ∈ {0, ..., n− 1}, and k ∈ N, define the regions in [0, 1)× [1/n,∞):

R̂O(ℓ,k) =

[
ℓ

n
,
ℓ+ 1

n

)
×
[
k

n
,
k + 1

n

)
.

Using such regions, define the process W n = W n(ω) as:

W n = W n(ω) =
n−1⋃

ℓ=0

∞⋃

k=1

O(ℓ, k)1
{
ω
(
R̂O(ℓ,k)

)
> 0
}
,

where O(ℓ, k) = {ℓ, ℓ+ 1, · · · , ℓ+ k − 1} is an arc.

Notice that since

P
(
ω
(
RO(ℓ,k)

)
= 0
)
= exp

{
−α

n

(
1

k
− 1

k + 1

)}
,

the process W n(ω) has the same distribution as the continuous covering process with

radius distribution P (R > r) = 1/r at time αn. So, we couple both process in the natural

way.

Observe the following problem thought. It is possible that the process W n covers

Z/nZ, while in the truncated representation ω[1/n], there exist points in the discrete

set
{

ℓ
n
, ℓ ∈ {0, 1, · · · , n}

}
⊂ [0, 1) not covered. As a result, providing information on the

process W n relying solely on the configuration ω[1/n] is a complex task.

Given this challenge, we introduce another discrete auxiliary covering process, which

will help us to demonstrate that the covering probability converges to π. Moreover, with

this auxiliary covering process, one will be able to relate it back to the process W n

proving then Theorem B*.

Analogously to W n, define the process Xn = Xn(ω) in the torus Z/nZ (a covering

process with radius distribution P (R > r) = log(1 + 1/(r − 1))) as follows: For every
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ℓ ∈ {0, ..., n− 1}, and k ∈ N, define the following regions in [0, 1)× [1/n,∞):

RO(ℓ,k) =

{
x ∈ S :

{
ℓ

n
,
ℓ+ 1

n
, ...,

ℓ+ k − 1

n

}
⊂ Π(x)

}
.

As the name suggests, if {ω(RO(ℓ,k)) > 0} the covering Xn will have an object O(ℓ, k) =

{ℓ, ℓ+ 1, ..., ℓ+ k − 1}. More precisely, define Xn as:

Xn = Xn(ω) =
n−1⋃

ℓ=0

∞⋃

k=1

O(ℓ, k)1
{
ω
(
RO(ℓ,k)

)
> 0
}
. (3.6)

Observe in Figure 3.1, the regions related to both processes W n and Xn.

OW =
{

6
n ,

7
n ,

8
n

}

OW =
{

5
n

}

OX =
{

2
n ,

3
n ,

4
n ,

5
n

}

OX =
{

1
n ,

2
n

}

0
n

1
n

2
n

3
n

4
n

5
n

6
n

7
n

8
n

1
n

Figure 3.1: In the figure the regions corresponding respectively to the objects in the
process W and X are drawn using gray and a pattern of lines respectively. Each square
region for W corresponds to an object, and each rhombus region for X corresponds to
another object. Notice that given a realization of ω[1/n], in the coupling looking to the
set Pn =

{
ℓ
n
: ℓ ∈ {0, 1, · · · , n

}
, every point covered by W n is also covered by Xn.

Concerning Xn, we have that:

P
(
ωα

(
RO(ℓ,k)

)
= 0
)
= exp

{
−α

n

(
log

(
1 +

1

k − 1

)
− log

(
1 +

1

k

))}
.

Thus Xn(ωα) has the same distribution as the continuous covering process with radius

distribution P (R > r) = log(1 + 1/(r− 1)) at time αn. So, one can couple both process

again in the natural way.

The reason why we first work with the process Xn instead of the process W n lies in a

monotonous property presented in the construction. To make it clear, define the set Pn =

{ℓ/n ∈ [0, 1) : ℓ ∈ {0, 1, ..., n− 1}} and associate it with the torus Z/nZ = {0, 1, ..., n−
1} = nPn. Notice that in the process Xn, any element in the region RO(ℓ,k) covers the
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points {ℓ, · · · , ℓ+ k − 1} in Z/nZ, and also covers the points { ℓ
n
, ℓ+1

n
, ..., ℓ+k−1

n
} ∈ Pn in

the Mandelbrot-Shepp model. Therefore, whenever the torus is covered in the process

Xn, the points Pn are also covered, and vice versa. This fact is not true for the process

W n, where it is possible to cover the set Pn in the Mandelbrot-Shepp model, but not

cover the set Z/nZ using the process W n.

In the coupling of Xn, observe that it is possible for the truncated configuration

ω[1/n] to cover the set Pn but not necessarily the whole interval [0, 1). To address this

case, before proving the limit in distribution of the covering, we need to construct a

quantitative argument by computing the number of points in the set Pn that are missing

in the process Xn, under the condition that the Mandelbrot-Shepp model is not covered;

see Proposition 8, where we show that whenever a point is missing in the set ω[1/n],

with high probability there must also be a missing point in the set Pn.

Given any configuration ω =
∑

i∈I δ(ui,ri), define for any M > 0 and z > 0, the

truncated configuration above M and bellow at height z as:

ω[z,M ] =
∑

i∈I

δ(ui,ri)δ{Z>ri>z}.

With this, conditioning that the origin is not covered, we have a small region near the

origin with many missing points.

Lemma 13. Fix ζ ∈ (0, 1), and α ∈ (0, 1). For any integer n > 0, any value of M > 0

such that M + ζ < 1, and an arbitrarily r = r(n) ∈
[
0, 1

n

)
, define:

Y (n, ζ, r,M) =

⌊ζn⌋∑

k=1

1

{
k

n
+ r ∈ V

(
ω

[
1

n
,M

])}
,

the number of vacant points of the form k
n
+ r in the open set (0, ζ), with respect to the

truncated measure ω
[
1
n
,M
]
. Then, for every positive ε > 0, we get that:

lim
n→∞

Pα

(∣∣∣∣
lnY (n, ζ, r,M)

lnn
− (1− α)

∣∣∣∣ > ε

∣∣∣∣ 0 ∈ V (ω)

)
= 0. (3.7)

Proof of Lemma 13. The proof is based on the concentration results of the branching

process; see Theorem 2. Here, the main strategy is to divide the covering into height

scales, and in each scale define two independent processes, a supercritical branching

process and an ignition process. The idea consists of proving that many ignitions will

occur with high probability, and for each such ignition we can obtain an independent

branching processes with positive probability to survive. Whenever the branching process
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survives, we will be able to concentrate the random variable Y (n, ζ, r,M) around n1−α,

the expected number of children of the branching process.

To define the height scales of the problem, with fixed α > 0 take any N = N(α, ζ)

that satisfies N > max{6, 2ζ−1} and 1
2
N1−α exp {−α} > 1. Here, the first condition

guarantees a minimal value to start the branching process described in equation (3.10)

and proceed with it between scales, and the second condition is used to guarantee a

high expected number of children in the construction of the branching processes, see

equation (3.9).

With the value of N fixed, divide the cylinders into height scales H(ℓ) = [0, 1) ×
(N−(ℓ+1), N−ℓ], where ℓ ≥ 1. Also, to simplify the notation, assume that M = ζ and

n = N−ℓf for some integer ℓf ≥ 1. Later in the proof, we can show that this assumption

does not affect the results.

To proof the limit in equation (3.7), we are going to show that for any δ > 0, and

for any ε > 0, there exists a value of n0 = n0(α,M, ε, δ) such that for every n > n0:

Pα

(∣∣∣∣
lnY (n, ζ, r,M)

lnn
− (1− α)

∣∣∣∣ > ε

∣∣∣∣ 0 ∈ V (ω)

)
< δ. (3.8)

For this, we will also divide the proof in two. The first part is to show that Y (N ℓf , ζ, r,M)

is greater than N ℓf (1−α−ε) with high probability. Then using first moment techniques,

the second part consists in showing that Y (N ℓf , ζ, r,M) is smaller than N ℓf (1−α+ε) with

high probability.

In each scale (H(ℓ))ℓ, define the following set of intervals used in the construction of

the branching process:

I(ℓ) =
{[

2k

N ℓ
− r,

2k + 1

N ℓ
− r

)
: 2 ≤ k ≤ (ζ + r)N ℓ − 1

2

}
.

Where I(ℓ) is the set of two by two disjoint intervals that does not exceeds the value

of ζ. Also, it does not contain the first two possible intervals (do not starts at zero).

Furthermore, in the Mandelbrot-Shepp model, notice that each sequence of fitted vacant

intervals {(Iℓ)ℓfℓ=1 : Iℓ ∈ I(ℓ)} contributes to one element in Y (n, ζ, r,M); therefore, we

can bound Y (n, ζ, r,M) bellow by the number of such sequences. See Figure 3.2 for a

representation of the set H(ℓ) and the regions I(ℓ).
To count the number of vacant intervals, fix a point x ∈ [0, ζ) and ℓ ≥ 1, and define

the event:

Bℓ(x) =

{[
x− 1

N ℓ+1
, x

)
∈ V

(
ω
[
N−(ℓ+1), N−ℓ

])}
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I(1)

I(2)
I(3)

H(1)

H(2)

H(3)

Figure 3.2: The space divided into regions H(ℓ), and, in each region H(ℓ), the set I(ℓ)
of disjoint segments is drawn, allowing for the branching process to survive. Notice that
the first rectangle is always deformed by the point r, and the set I does not start in the
beginning.

For any ℓ ≥ 1, fixed any I ∈ I(ℓ), denote by I0 = inf{i : i ∈ I} its first point, and define

the random variable:

ξℓI =

⌊N/2⌋∑

j=1

1

{
Bℓ

(
I0 +

2j

N ℓ+1

)}
.

In essence, the number of two by two disjoint empty regions from I(ℓ+1) that lies in I,

which are not covered using the objects that are in H(ℓ).

As the construction suggests, we call ξℓI as the number of children in the interval I.

Notice that for any distinct I, J ∈ I(ℓ), the random variables ξℓJ and ξℓI are independent,

since the distance between the intervals is greater than the larger object revealed by

each event. Moreover, with ℓ + 1 ≤ ℓf and for every point not near the origin and not

near the end ζ (more precisely, 1
Nℓ ≤ x− 1

Nℓ+1 < x < ζ), we have the following.

Pα

(
Bℓ(x)

∣∣∣∣0 ∈ V
(
ω

[
1

n
,M

]))
= exp





N−ℓ∫

N−(ℓ+1)

α

y
dy



 exp



−

N−ℓ∫

N−(ℓ+1)

1

N ℓ+1

α

y2
dy





= N−α exp

{
−α

(
1− 1

N

)}
.

Witch implies, that the expected number of children is greater than:

Eα

(
ξℓI
)
≥
⌊
N

2
− 1

⌋
N−α exp

{
−α

(
1− 1

N

)}
> N1−α exp {−α}

2
> 1. (3.9)

Finally, given any I ∈ I(ℓ), define the branching process (ZI
i )i as follows: Let Z

I
0 = 1

and Γ0 = I. Then, inductively, in generation (i − 1) − th given any set of intervals
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Γi = {Jk : Jk ∈ I(ℓ+ i− 1)}k, define

ZI
i =

∑

J∈Γi

ξℓ+i
J , and (3.10)

Γi+1 =
{
L ∈ I(ℓ+ i) : L ⊂ J ∈ Γi and L ⊂ V

(
ω
[
N−(ℓ+j), N−(ℓ+j−1)

])}
.

The mean number of children in each generation is greater than one by equation

(3.9). So, we have a supercritical branching that can survive indefinitely with positive

probability. Since we do not exactly know the distribution of the number of children in

each generation, we need to perform an indirect calculation. By Theorem 2, for every

positive ε > 0 and any fixed height ℓ0 > 1, there exists a probability θ = θ(α,N) > 0

to survive at the limit when n goes to infinity. By symmetries of the problem, this

limit probability does not depend on the height of the first interval I ∈ I(ℓ0), since the

distribution of the number of children of the process does not change between heights. In

particular, for any ε > 0, there exists ℓ1 = ℓ1(θ, ε, α,N) such that whenever ℓf > ℓ1+ ℓ0,

we get for every I ∈ I(ℓ0) that:

P

(
ZI

N
ℓf

N (ℓf−ℓ0)(1−α)
≥ N−(ℓf−ℓ0)ε

)
≥ θ

2
. (3.11)

Later in the proof , we will use this equation and the value of ℓ1 to give a positive bound

on the probability to survive in the last scale with many points in Y (n, ζ, r,M) using

independent trials that belongs to different initial heights.

With the branching well defined, it is time to construct the ignition process as a

sequence of events (Eℓ)
ℓ2
ℓ=1 for some ℓ2 ∈ {1, · · · , ℓf}. Such sequence of events is not

independent and will be determined by a set of objects near the origin. The goal of the

process is to guarantee the existence of seeds, where each seed gives birth to many new

independent branching processes capable of surviving.

For each ℓ ≥ 1, define the region R(ℓ) = [0, N−(ℓ−1)]× (N−ℓ,M). Then, set the event

Eℓ as:

Eℓ = {ω(R(ℓ)) = ∅}. (3.12)

Despite being a sequence of dependent events, it satisfies the following property that

guarantees many occurrences when we have a large number of scales to look.

Lemma 14. For every δ > 0, α > 0, M > 0, and N > 0, define the ignition event as

equation (3.12). For every J > 0, there exists a fixed integer ℓ2 = ℓ2(δ, J, α,N,M) < ∞
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such that whenever ℓf > ℓ2, we get that:

Pα

(
ℓ2∑

ℓ=1

1{Eℓ} > J

∣∣∣∣∣0 ∈ V
(
ω

[
1

N ℓf
,M

]))
> 1− δ

2
.

The proof of Lemma 14 is postponed until the end of this proof. Moreover, to give

an idea of the proof, we use the fact that the distribution of the closest object to the

origin in each scale has a similar law and does not have mass at the origin.

Observe that, since N > 6, whenever an ignition event Eℓ occurs, we can say that

the interval
[

4
Nℓ+1 − r, 5

Nℓ+1 − r
)
∈ I(ℓ + 1) is completely empty at height ω[N−(ℓ+1)].

This allows a branching process to start there. Moreover, such an exploration of the

branching process will be independent of the upcoming ignition events because of their

mutual distance.

Therefore, we can guarantee a large vacant set in the limit with high probability. With

fixed ε > 0, the idea consists of fixing some J = J(θ, δ) large such that
(
1− θ

2

)J
< δ

2(1−δ)
,

then using the ignition Lemma 14, we can find a minimal height ℓ2 such that with high

probability there are J ignitions until height ℓ2. In particular, if there are less than J

ignitions, we will assume that the vacant set is small, but if there are more than J , each

of them will give an independent chance to survive with a large set in the branching,

thus using the minimal height ℓ1 from equation (3.11), and taking ℓf > ℓ2 + ℓ1, we get

that:

P
(
lnY (N ℓf , ζ.r,M)

lnN ℓf
≤ 1− α− ε

∣∣∣∣0 ∈ V
(
ω

[
1

N ℓf
,M

]))
≤ δ

2
+

(
1− δ

2

)(
1− θ

2

)J

< δ.

To prove that Y cannot be greater than N1−α+ε, we can use the Markov inequality.

Computing its first moment, there exists a c = c(n, r) such that:

Eα (Y (n, ζ, r,M)) =
n∑

k=1

P
(
k

n
+ r ∈ V

(
ω

[
1

n

]))
≤ cn1−α.

So, for every ε > 0 and δ > 0, there exits ℓ3 = ℓ3(α,N, ε, δ), such that for every ℓf > ℓ3,

we get that:

Pα

(∣∣∣∣
lnY (N ℓf , ζ.r,M)

lnN ℓf
− (1− α)

∣∣∣∣ ≤ ε

∣∣∣∣0 ∈ V
(
ω

[
1

N ℓf
,M

]))
< δ. (3.13)

Now the proof is almost over, but we need to do a few small considerations. The first

one is about the conditional event, and the second one is about the choice of M and n

made early in the proof.
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We can exchange the conditional event in equation (3.13) for the event {0 ∈ V(ω)},
for this, notice that Y (n, ζ, r,M) is a random variable that depends only on the config-

uration ω
[
1
n
,M
]
. In particular, by independence of the Poisson random variable, such

event is independent from objects smaller than 1/n or bigger than M , so for every

y1 ≤ 1/n, and y2 ≥ M , we get that:

P
(∣∣∣∣

lnY (n, ζ.r,M)

lnn
− (1− α)

∣∣∣∣ ≤ ε

∣∣∣∣0 ∈ V
(
ω

[
1

n
,M

]))

= P
(∣∣∣∣

lnY (n, ζ.r,M)

lnn
− (1− α)

∣∣∣∣ ≤ ε

∣∣∣∣0 ∈ V (ω [y1, y2])

)
.

Therefore, taking y1 → 0, and y2 → ∞, we can conclude that both sequence have the

same limit.

The last step to finish the proof is to show that the result can be obtained regardless

of the choice of n = N ℓf and M . To show that the same limit holds for any value

of n, observe that on scales N−ℓ, by construction, we can guarantee completely vacant

regions with probability e−αN , thus for values of n between N ℓ+1 and N ℓ, we have by law

of large numbers that Y (n, ζ, r,M) is greater than e−αN times Y (N−ℓ, ζ, r,M), giving

the desired concentration. For the choice of M , notice that the limit occurs due to the

existence of some ignition events defined by Lemma 14; therefore, for any choice of M ,

we can always look for ignitions smaller than M to guarantee the same survival rate. In

this proof, we just choose M + ζ < 1, to avoid interference with the fact that {0 ∈ V}.
With these considerations, we finish the proof.

For simplicity, the following proof inherits all the previous definitions.

Proof of Lemma 14. The proof of this lemma consists of a dynamical construction that

explores the Mandelbrot-Shepp set from top to bottom trying to find ignition events.

Such construction induces a renewal process in the scales, and since such renewal is

formed by random variables with well-behaved moments, the lemma is a direct conse-

quence of the weak law of large numbers.

We start the construction with fixed values of α > 0, δ > 0, ζ > 0, M > 0 and

N > 0. In the construction, we will define the first region to have all the irregularities of

the problem, so that the next ones are simpler and recursive. Here, we track three main

information in each step: a region, a height, and the closest point to the y−axis within
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this region. Define a scale s0 = inf{ℓ ≥ 1 : N−(ℓ−1) < min{ζ,M}}, and set:

h0 = N−s0 .

A0 = [0, ζ]× [h0,M ].

d0 = sup{d : ω(A0 ∩ [0, d]× (0,∞)) = 0}.

In words, we can describe our procedure as follows: Given a fixed region, look for the

closest point to the y−axis and find its distance d. If d is large, it might be the case that

you found an ignition. However, if d is small, the object can influence the ignition event

on other scales, so we must use d to find the next scale not influenced by the objects

discovered so far. Then, in the next undisturbed region, we repeat this procedure until

we find many ignitions and prove the lemma.

With A0 fixed, the random variable d0 is an exponential random variable with some

fixed positive rate, so it is not zero with probability one. In this proof, we are going

to count the number of ignition events that occur just below N−s0 , and show that by

looking to deeper scales, we can find as many as we want. Since {d0 > 0} with probability

one, we can define the triplet (A1, h1, d1) inductively. To be specific, with a fixed triplet

(Ak−1, hk−1, dk−1) where {dk−1 > 0}, we will define a height sk = inf{ℓ ≥ 1 : N−(ℓ−1) <

dk−1}, then set:

hk = N−sk .

Ak = [0, N−(sk−1)]× [hk, hk−1).

dk = sup{d : ω(Ak ∩ [0, d]× (0,∞)) = 0}.

Moreover, we have that dk is an exponential random variable with rate α
(
h−1
k − h−1

k−1

)
,

so it is positive with probability one.

By the continuity of the exponential random variable, it is clear that the process

constructed above can be repeated infinitely many times. However, this is not sufficient

to prove the lemma. To finish, we need to control the distance between different scales

in the sequence and compute the probability of having an ignition in any fixed step.

Define Zk = sk+1 − sk the distance between the scales and then notice that for every

positive integer x > 0, the event {Zk ≥ x} occurs if and only if {dk < N−(sk+x−1)} also

happens. Thus, we have:

P (Zk ≥ x) = P
(
dk ≤ N−(sk+x−1)

)

= 1− exp{−αN−(sk+x−1)(h−1
k − h−1

k−1)}
≤ 1− exp{−αN−x+1}.
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In particular, the scale distance between different elements in the dynamical construction

is a random variable with a light tail that has all the moments.

As a direct consequence of this, for every δ > 0 and J0 > 0, one can find K0(J0, N, δ)

such that for every n > K0:

P

(
n∑

i=1

Zk > J0

)
> 1− δ

2
.

Now, in each of the J0 steps, there might be an ignition happening. To compute the

probability of an ignition on the scale sk, note that if {N−(sk−1) < dk−1}, then no object

greater than hk−1 can influence the presence of the ignition. Furthermore, in each step,

we only need to check if {dk > Nhk} occurs. In particular, we have that:

P (dk > Nhk) = exp{−αNhk

(
h−1
k − h−1

k−1

)
} ≥ e−αN .

Where, for N > 0 fixed is a constant probability bound.

Therefore, after the scale s0 = s0(N,M, ζ), since J0 can be arbitrarily large, for every

J > 0 we can find a K = K(δ.J, α,N,M, ζ) such that for every ℓ > K, we get:

P

(
K∑

ℓ=1

1{Eℓ} > J

∣∣∣∣∣0 ∈ V
(
ω

[
1

N ℓ
,M

]))
> 1− δ

2
.

Finishing the proof as desired.

The process Xn We are going to adapt the result of the Lemma 13 to the circle. In

particular, exclusively for the process Xn, remember that if the truncated Mandelbrot-

Shepp process covers the space, then Xn also does. Now, we are going to prove that

whenever the Mandelbrot-Shepp model is not covered, we can find many points in the

form
{

k
n
: k ∈ {0, 1, · · · , n− 1}

}
that are missing with high probability, thus forcing the

process Xn to be vacant as well.

Proposition 8. In the Mandelbrot-Shepp model, let n ∈ N, and set:

Zn =
n∑

k=1

1

{
k

n
∈ V

(
ω

[
1

n

])}

the number of missing points of the form
{

k
n
: k ∈ {0, 1, · · · , n− 1}

}
in the circle S1,

when we try to cover using just the truncated objects ω[1/n]. Then, we have that for

α ∈ (0, 1):

logZn

log n
1{V(ω) ̸= ∅} D

=⇒ (1− α)1{V(ω) ̸= ∅}. (3.14)

67



Chapter 3. The continuous model 3.1. Proof of Theorem B*

Proof of Proposition 8. This proof has two steps. The first is to show that Zn cannot

be significantly greater than n1−α. The second step focuses on finding a rectangular

region {L < x < F} × {0 < y < E} with two properties; The first property is that

the region itself has not yet been explored, and the second property is that the point L

is not covered. Therefore, by Lemma 13, we will have about n1−α empty points in this

unexplored region, pushing the number of missing points to n1−α.

Observe that π(α) = 1, then the equation (3.14) is trivially satisfied. Therefore,

without loss of generality, fix α ∈ (0, 1] so that π(α) < 1 for the rest of the proof.

In order to show that Zn cannot have a greater quantity of missing points, using first

moment, we get that:

E (Zn) = nP
(
0 ∈ V

(
ω

[
1

n

]))
= e−αn1−α.

Therefore, by Markov’s inequality, for every ε > 0:

lim
n→∞

P
(
lnZn

lnn
> 1− α + ε,V(ω) ̸= ∅

)
= 0.

Finishing one side of the proof.

For the other side, we are going to show that for fixed δ > 0, and for any ε > 0, we

have that:

lim
n→∞

P
(
lnZn

lnn
< 1− α− ε,V(ω) ̸= ∅

)
≤ δ. (3.15)

In particular, since δ is arbitrary, we get that:

lim
n→∞

P
(∣∣∣∣

lnZn

lnn
− (1− α)

∣∣∣∣ > ε,V(ω) ̸= ∅
)

= 0.

Concluding the proof.

To obtain the bound (3.15), we will approximate the event {V(ω) = ∅}. Start by

defining the first non covered point of the space as:

L = inf {x ∈ [0, 1) : x ∈ V (ω)} .

Also, set L = 1 if the space is completely covered.

The definitions of the next two random variables: E and F are more complex. In

words, E(L) will look at a set of fitted regions in which a large object may appear. The

position of the x axis of this object with respect to the point L is defined as F (L,E(L)).

To illustrate, see in Figure 3.3 a construction of these random variables. Moreover, the
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main importance of the random variable is that, given a triplet {(L,E, F ) = (x, s, t)}, it
will be possible to find a rectangular region that starts in x, ends in t and has height s,

that has not yet been explored, and with two properties: the point x is not covered, and

the objects that appear in this region cover points not yet discovered. More precisely,

define:

E(x) = sup{s ∈ (0, 1− x) : ω ([x, 1− (x+ s))× [s,∞)) = 0},
F (x, s) = sup{t ∈ (x, 1− (x+ s)) : ω ([x, t)× [s,∞)) = 0}.

Also set E(x) = 0 when the regions [x, 1]× (0,∞) is empty.

L

E

F

Figure 3.3: A representation of the random variables L,E and F . Given the point L,
the space can be divided in three regions; one of them is empty, since L is not covered,
the other regions have the possibility of covering the interval [0, L), the third region is
formed by objects not yet explored. The event E looks to a region formed by the fitted
rectangles, until they find a success draw as a point ( In the image the point is given
by (L+ F,E)). The distance of this point to L is given by F . The gray regions are the
parts covered by object revealed in this construction

The main point of introducing the triplet (L,E(L).F (L,E(L)) is:

Pα (V(ω) ̸= ∅) = Pα (L < 1, E(L) > 0, F (L,E(L)) > 0)

= Pα

(
∞⋃

N=1

{
L < 1− 1

N
,E(L) >

1

2N
,F (L,E(L)) >

1

2N

})
. (3.16)

To prove equality (3.16), observe that the event {V(ω) ̸= ∅} is equal to the event

{L < 1, E(L) ≥ 0, F (L,E(L)) ≥ 0}. Since the events {E(L) = 0} and {F (L,E(L)) = 0}
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have zero probability, we conclude the equality (3.16). Here. we just ask for {E(L) >

1/2N,F (L,E(L)) > 1/2N} so when L is close to 1 − 1
N

the set of configurations that

satisfy the event is not empty.

To simplify the notation, define:

G(N) =

{
L < 1− 1

N
,E(L) >

1

2N
,F (L,E(L)) >

1

2N

}
.

Then, for every δ > 0, since we have a set of increasing events, we get that exists a N0(δ)

such that for every N > N0, and for every n ≥ 0, that:

∣∣∣∣P
(
lnZn

lnn
< 1− α− ε,V(ω) ̸= ∅

)
− P

(
lnZn

lnn
< 1− α− ε,G(N)

)∣∣∣∣ ≤
δ

2
.

Now, with a fixed value of N , whenever G(N) occurs, we will be able to give a lower

bound to the quantity of lnZn

lnn
. For this we are going to give a sequence of stochastic

dominated random variables that will start in the random variable Zn given that the

event G(N) happens and ends in the random variable Y from the Lemma 13 given that

the origin is empty.

For this, given ω =
∑

i∈I δ(xi,ri) and t > 0, define the shift:

ϕt(ω) =
∑

i∈I

δ(t+xi,ri),

where the sum is made in the circle. Also, for any L ∈ [0, 1), and n > 0 define the

quantity:

rn(L) = inf{r : n(L− r) ∈ N}.

Now, assume that G(N) occurs in some configuration ω, then we will have a triplet

(L,E(L), F (L,E(L))), and with the triplet we can say that:

1. L ∈ V(ω).

2. ω((L, F )× (E, 1)) = 0.

3. The distribution of the objects in the region
(
L,L+ 1

2N

)
×
(
0, 1

2N

)
is a Poisson

random variable with rate Λα, i.e. does not change.

Here, the facts 1. and 2. are a trivial consequence of the definition of the triplet (L,E, F ),

and the claim 3. is true since the event G(N)(ω) given the random variable L, is com-

pletely determined by objects outside the region
(
L,L+ 1

2N

)
×
(
0, 1

2N

)
.

70



Chapter 3. The continuous model 3.1. Proof of Theorem B*

The first stochastic bound in Zn appears now, condition on the measure G(N), since{
F > 1

2N

}
occurs, by counting just the missing points in a smaller region, we have:

Zn ⪰
n−1∑

k=0

1

{
k

n
∈ V

(
ω

[
1

n

])}
1

{
L ≤ k

n
< L+

1

2N

}
,

in the measure given the event G(N). Here, X ⪰ Y , if X stochastically dominates Y .

Using the shift of the configuration ω to send L to 0, we can get that:

Zn(ω) ⪰
n−1∑

k=0

1

{
k

n
− rn(L) ∈ V

(
ϕ−L

(
ω

[
1

n

]))}
1

{
0 ≤ k

n
− r(L) <

1

2N

}
.

Now, we are close to relating Zn with the Lemma 13. The last thing to overcome is

the restriction in the height E > 0. For this, considering the condition 2., if we allow

new independent objects to appear in
(
L,L+ 1

2N

)
× (E, 1), we can cover more objects

and thus diminish the value of Zn even more. Then, we have:

Zn ⪰ Y

(
n,

1

2N
, rn(L), 1

)
.

where Y count the number of missing points of the form
{

k
n
: k ∈ {0, 1, · · ·n− 1}

}
in

the interval
(
0, 1

2N

)
, and allow objects with length smaller than 1 to appear, objects that

for the random variable Zn(ω) given G(N) is already known to not exists. Moreover, by

Lemma 13, we concludes that exists a n0 > 0 such that for every n > n0 we get:

P
(
lnZn

lnn
< 1− α− ε,G(N)

)
≤ δ

2
.

In particular, for every n > n0:

P
(
lnZn

lnn
< 1− α− ε,V(ω) ̸= ∅

)
< δ.

As desired.

Corollary 3. Let, n ∈ N, and set:

Zn =
n∑

k=1

1

{
k

n
∈ V

(
ω

[
1

n

])}
.

the number of missing points of the form k/n in the cylinder S, when we try to cover

using just the truncated objects ω[1/n]. We have that, for α ∈ (0, 1):

logZn

log n
1{V

(
ω

[
1

n

])
̸= ∅} D

=⇒ (1− α)1{V(ω) ̸= ∅}. (3.17)
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Proof of Corollary 3. Using that the random variable logZn

logn
is bounded, and {V(ω) ̸=

∅} ⊆ {V
(
ω
[
1
n

])
̸= ∅}. Furthermore, by Lemma 10, we have 1{V

(
ω
[
1
n

])
̸= ∅} D

=⇒
1{V(ω) ̸= ∅}. Then, the proof follows directly that equation (3.17) is the same as

equation (3.14), plus some term that goes to zero in probability.

With the Corollary 3, we can proof Theorem B*, for the process Xn with radius

distribution log(1 + 1/(r − 1)) almost directly.

Proposition 9. Consider Xn(ω) defined in equation 3.6, then we have that:

lim
n→∞

Pα (X
n(ω) = Z/nZ) = π(α).

Moreover, we have that:

log |Z/nZ \Xn(ωα)|
log n

1{Xn(ωα) ̸= Z/nZn} D
=⇒ (1− α)1{V ̸= ∅}. (3.18)

Proof of Proposition 9. By the inclusion created by the coupling:

lim inf
n→∞

P (Xn(ω) = Z/nZ) ≥ lim inf
n→∞

π 1
n
(α) = π(α),

Now, with the set Pn =
{

ℓ
n
∈ [0, 1) : p ∈ {0, 1, 2, ..., n− 1

}
, observe that:

Pα (X
n(ω) = Z/nZ) = Pα

(
C
(
ω

[
1

n

])
= [0, 1)

)
+ Pα

(
V
(
ω

[
1

n

])
̸= ∅, Pn ⊂ C

(
ω

[
1

n

]))

= π 1
n
(α) + P

(
Zn = 0,V

(
ω

[
1

n

])
̸= ∅
)
.

In particular, by Lemma 11, we can take the limit, and get that:

lim
n→∞

P (Xn(ω) = Z/nZ) = π(α).

as desired. To finish the proof apply directly the Corollary 3.17, since |Z/nZ \Xn(ωα))|
is equal to the random variable Zn.

The proof of Theorem B* is almost over, to complete the proof we need to connect

the random process Xn with the process W n.

The process W n Unlike Xn, the process W n does not have a direct connection to the

Mandelbrot-Shepp model. By construction, it is entirely plausible that the process W n

is fully covered while the Mandelbrot-Shepp model is not, or, in another direction, it is

possible that the Mandelbrot-Shepp model covers the set Pn while W n is not completely
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covered. Despite the complications, coverage Xn can be related to coverage W n in a

simple way done in Proposition 9, completing the proof of Theorem B* .

Observe that one side of the relation between Xn with W n is trivial. Using Figure

3.1, comparing the radius distribution in the coupling, one can conclude that the objects

in W n have a radius of the same size or just one unit smaller than the radius of the

objects in Xn. In particular, one may get that:

Pα (W
n(ω) = Z/nZ) ≤ Pα (X

n(ω) = Z/nZ) . (3.19)

To finish the proof now, we need to prove that the covering using the law Xn,

or analogously, the covering of the Mandelbrot-Shepp model, has the following high

probability property: If the space is covered, then it is also covered by changing the sizes

of all objects by one unit.

Proposition 10. The sequence of probabilities:

(Pα (W
n(ω) = Z/nZ)− Pα (X

n(ω) = Z/nZ))n

is Cauchy converging to zero. In particular:

lim
n→∞

Pα (W
n(ω) = Z/nZ) = π(α).

Moreover, we have that:

log |Z/nZ \W n(ωα)|
log n

1{W n(ωα) ̸= Z/nZn} D
=⇒ (1− α)1{V ̸= ∅}.

Proof. The crucial part of the proof lies on noticing that: In both constructions, as n

grows, the set of regions R and R̂ for the objects becomes thinner. And, compared to

the process Xn(ω), the objects in W n(ω) are equal in size or have one unit smaller.

Consider an arbitrary configuration ω that covers the space. By Lemma 10, there

exists some value of n for which ω[1/n] also covers the space; this implies that we can

extract a covering with a finite number of objects. Now, considering a larger value of m

(where m > n), we observe that Xm(ω) continues to cover the space. However, this time

it accomplishes this using only the objects present in ω[1/n]. In particular, as we focus

solely on these larger objects, the objects in Wm(ω) progressively approach and align

with the objects in ω[1/n] as m goes to infinity. As a consequence, we can reasonably

expect that Wm(ω) covers the space as well for large values of m.

To get a reasonable limit on how large m should be, we need to understand the

properties of the configurations that cover the space at height n. For each configuration
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ω =
∑

i∈I δ(xi,yi), define the shift operation:

ω ∗ h =
∑

i∈I

δ(xi,hyi).

Define also the random variable G that measures how much one can shift down a con-

figuration while still covering it, this is:

G = sup{η ∈ (0, 1) : C(ω ∗ (1− η)) = [0, 1)}

and set G = 0 if the space is not covered.

Informally, the random variable G is a measure of how stable coverage is in the

Mandelbrot-Shepp model. Notice that for each α > 0, we have that ωα∗(1−η) ∼ ωα(1−η),

thus shrink the space implies changing its space rate. Then, when the space is covered

in some truncated level ω[1/n]. Evaluating C(ω[1/n]), the space is covered almost surely

by a finite union of open intervals, each interval having at least two intersections: one

at the beginning of the interval and the other at the end. Analyzing the configuration

C(ω[1/n] ∗ (1 − η)), each object shrinks and, in particular, the size of the intersections

also diminish. The value of G will correspond to how much we can shrink the objects’

size and still see covering; or analogously, is an evaluation of how much one can change

the rate and still see covering.

Notice that, by Lemma 10, the event {G = 0} happens, if and only if, we do not

cover the space. Thus:

P (G > 0|V = ∅) = 1.

Therefore, since the events are increasing, we get that P (G > η) converges to P (V = ∅)
when η goes to zero. Thus, for fixed value of α > 0, and every ε > 0, exists η = η(α)

such that covering and having a positive value of G is close in probability, this is:

|π(α)− Pα (G > 2η) | < ε/2. (3.20)

In equation (3.20), with Pn = {k/n : k ∈ {0, 1, · · · , n − 1}}, the probability of

covering Pn is P (Xn(ωα = Z/nZ) and this probability converges to π(α) by Proposi-

tion 9. To approach Pα (G > 2η), notice that if for every n, we have that when {Pn ⊂
C
(
ωα ∗ (1− η)

[
1
n

])
} does not happen, then {V (ωα ∗ (1− η)[1/n]) ̸= ∅}, and by Lemma

10, we get {V (ωα ∗ (1− η)) ̸= ∅} happens. Moreover, since {G ≥ 2η} happens if and

only if ωα ∗ (1− η′) is covered for every η′ < η. Then, we get that, asking for a diminish
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of η ( instead of 2η, to avoid a topology problem in the boundary of the objects), we

get:

lim
n→∞

P
(
Pn ⊆ C

(
ωα ∗ (1− η)

[
1

n

])∣∣∣∣G > 2η

)
= 1.

Applying the limits in equation (3.20), we have:

lim sup
n

∣∣∣∣P (Xn(ωα) = Z/nZ)− P
(
Pn ⊆ C

(
ωα ∗ (1− η)

[
1

n

])
, G > 2η

)∣∣∣∣ < ε.

In particular, whenever Xn(ωα) covers the space and n is large, we can diminish the

size of the objects, i.e. Xαn(ω ∗ (1 − η)) = C
(
ωα ∗ (1− η)

[
1
n

])
, and still cover with

high probability. Since this property starts at some value of n, and will be also true for

bigger values. Then, comparing with the covering W n, and using equation (3.19) we get

that, when n is large enough, both models cover the space with high probability. More

precisely, we have that for n sufficient large:

Pα (X
n(ω) = Z/nZ) ≥ Pα (W

n(ω) = Z/nZ) ≥ P (Xn(ωα ∗ (1− η)) = Z/nZ)

≥ P
(
Pn ⊆ C

(
ωα ∗ (1− η)

[
1

n

])
, G > 2η

)
,

In particular, we get for every ε > 0 that:

lim sup
n

|Pα (W
n(ω) = Z/nZ)− Pα (X

n(ω) = Z/nZ)| < ε.

Concluding that the sequence is Cauchy.

To finish the proposition, we need to show the limit of distribution of the number of

missing points in the covering W n, for this just observe that whenever W n does not cover

the torus in the limit when n → ∞, neither does Xn. In particular, by construction,

since the vacant set of W n is bounded by a constant times the size of the vacant set of

Xn ( the object has the same size, or one unit less). We get that both satisfy the same

limit in distribution, since the constant does not change the limit.
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4
Covering in spaces with arbitrary dimensions

This chapter is dedicated to the study of the coverage of the Mandelbrot-Shepp model

when the space has dimension greater than one. The main model can also present inter-

esting results in other dimensions, but we chose to focus the study on the Mandelbrot-

Shepp process, as it proved to be in dimension one a continuous model with a critical

threshold in relation of the covering probability.

To simplify the calculations, fix d ∈ N, and if we do not say otherwise, the dimension

of the problem is fixed as d. Therefore, we can simplify the text by redefining some

random variables presented in Chapter 1. As an abuse of notation, define the vacant set

V = Vd and the cover set C = Cd, also for the covering functions, set π(α) = πd(α) and

πz(α) = πd
z(α).

Whenever α > 0 is fixed and there is no confusion, we denote ωα as an independent

Poisson configuration with rate Λα. In this way, when it is clear, we omit the parameter

α from Pα, placing the parameter α in the event. To simplify even more, define for every

z > 0 the vacant set:

Vα[z] = V(ωα[z]).

Also, when z = 0, set Vα = V(ωα). Let λ(.) be the Lebesgue measure on the torus, thus,

set:

λ(Vα[z]) =

∫

Vα[z]

dx,
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Chapter 4. Covering in spaces with arbitrary dimensions 4.1. The subcritical phase

to be the volume of the vacant set at time α > 0, in the truncated level z > 0.

For this chapter, it is also interesting to remember the definitions:

αc = inf
{
α > 0 : lim

z→0
πz(α) = 1

}
,

αM = inf
{
α > 0 : lim

z→0
z−dE (λ(Vα[z])) = 0

}
,

α+ = inf
{
α > 0 : ∀z > 0,∃ζ+ = ζ+(α) > 0 such that P (Vα[z] ̸= ∅) < zζ+

}
,

α′
− = sup



α > 0 :

∃γ1 = γ1(α), γ2 = γ2(α), γ1 > γ2 > 0 such that

lim
z→0

P (zγ1 < λ(Vα[z]) < zγ2|V(ωα) = ∅) = 1



 .

And remember that for α > αc we are in the subcritical regime, and for α < αc we are

in the supercritical regime.

4.1 The subcritical phase

When the parameter α is subcritical, the Mandelbrot-Shepp process is covered with

probability one. However, in the existing literature, not much is known about the proba-

bility of coverage of the truncated levels. Here, using first and second moments, we prove

that the thresholds αM ,αc and α+ are equal; giving a good description of the subcritical

regime.

In essence, the proof will be divided into two main points. The first step is to show

that for every α > αM , the probability of not covering the space decays polynomially

fast to zero, that is, αc ≤ αM . The next point of the proof consists of showing that for

every α < αM , the probability of not covering the space is positive. In this way, we will

have αc = αM and the probability of not covering the space decays polynomially fast to

zero for every subcritical parameter.

In our proof, we explicitly compute the value of αM . Since this calculation will repeat

later for a different kind of configuration, we are going to simplify the text by introducing

it now and doing the calculation only once.

More precisely, for any d ≥ 1, given a configuration ωα =
∑
i∈I

δ(xi,ri) ⊂ Sd, a height

z > 0, and a value h ∈ [0, 1). Define the truncated configuration at z shrunk by h as:

ω(h)
α [z] =

∑

i∈I

δ(xi,ri−hz)1{ri > z},

where each radius in ω[z] is shrunk by hz. Also define the truncated vacant set at height

z shrunk by h at time α as V(h)
α [z] = V(ω(h)

α [z]). Since the objects presented in the

covering of ω
(h)
α [z] is smaller than those of ωα[z], we have that Vα[z] ⊆ V(h)

α [z].
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Chapter 4. Covering in spaces with arbitrary dimensions 4.1. The subcritical phase

Remark 12. This construction decreases the size of the objects but numerically preserves

the same rate of the covering probabilities. Later, in Section 4.2, another construction is

presented, where the objects are diminished or enhanced and the rate of the probabilities

changes. The advantage of this definition is based on the Lemma 15, where we can bound

its probability preserving the order.

Recall the constant Cd = πd/2Γ−1
(
d
2
+ 1
)
(where in Rd, we have λ(B(x, r)) = Cdr

d).

And, compute directly:

Lemma 15. For any α > 0 and fixed h ∈ [0, 1), exists constants C = C(α, d, h), c =

c(α, d, h) such that:

CzαCd ≥ P
(
0 ∈ V(h)

α [z]
)
≥ P (0 ∈ Vα[z]) ≥ czαCd , for all z <

1

4(1 + h)
.

Proof of Lemma 15. For each event on the form {0 ∈ V(h)
α [z]}, there will be two regions

of relevance, one that is completely empty when {0 ∈ V(h)
α [z]} happens, and another

that, when empty, implies the occurrence of the event {0 ∈ V(h)
α [z]}. The proof consists

of calculating the rate of such regions and showing that this implies the limits of this

Lemma.

Start by fixing h = 0 (no decrease at all). In this case, to find the upper bound,

define the region:

A1 =

{
(x, r) ∈ S : z ≤ r <

1

4
and 0 ∈ B(x, r)

}
.

The rate of A1 is given by:

Λα(A1) = α

1/4∫

z

Cdr
d

rd+1
dz = −αCd ln z − αCd ln 4.

Since {0 ∈ Vα[z]} implies that A1 is empty, then:

P (0 ∈ Vα[z]) ≤ 4αCdzαCd .

For the lower bound with h = 0, define:

A2 = A1 ∪
{
(x, r) ∈ S : r >

1

4

}
.
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Where we are considering that every object with radius bigger than 1/4 hits the origin.

In particular, we get:

Λα(A2) = α

1/4∫

z

Cdr
d

rd+1
dz + α

∞∫

1/4

dr

rd+1

= −αCd ln z − αCd ln 4 + α
4d

d
.

In this way, for every z < 1, we have that:

P (0 ∈ Vα[z]) ≥ 4αCdzαCd exp

{
−α

4d

d

}
. (4.1)

Now, when h ∈ (0, 1) by inclusion arguments, for every z > 0, α > 0 and x ∈ Td, we

have P (x ∈ Vα[z]) ≤ P
(
x ∈ V(h)

α [z]
)
. Then, we can use the equation (4.1) to find the

lower bound for any h > 0, for this take c = 4αCd exp
{
−α 4d

d

}
. For the upper bound

when h ∈ (0, 1), if z < 1
4(1+h)

then z < 1
4
− hz, and we can define the region:

Â1 =

{
(x, r) ∈ S : z ≤ r <

1

4
and 0 ∈ B(x, r − hz)

}
.

Notice that whenever {0 ∈ V(h)
α [z]}, we find that Â1 is empty. Computing its rate, by

Bernoulli’s inequality, we get:

Λα(Â1) = α

1
4∫

z

Cd(r − hz)d

rd+1
dr ≥ αCd

1
4∫

z

1

r
− hzd

r2
dr

= αCd (− ln 4− ln z + hd (4z − 1)) .

Then, one can bound the probability for any h ∈ (0, 1) taking C = 4αCd exp{hd}, and
this concludes the proof as desired.

As mentioned above, the moment threshold αM is fundamental for understanding

the subcritical phase. To compute such threshold, using the bounds of Lemma 15, one

can conclude that:

Proposition 11. We have αM = d
Cd

= d
πd/2Γ

(
d
2
+ 1
)
, where Cd = πd/2Γ−1

(
d
2
+ 1
)
.

Proof of Proposition 11. Applying Lemma 15, for h = 0, and z < 1/4, there exists

constants C = C(d, α) > 0 and c = c(d, α) > 0 such that:

cz−d+αCd ≤ z−dE (λ(Vα[z])) ≤ Cz−d+αCd .

Concluding the proof.
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Now, using the shrunk configuration and the bounds provided by Lemma 15, we can

show that the mean threshold αM belongs to the subcritical phase. Informally speaking,

we will define a finite grid in the torus; in such a grid, if a point is missing in the original

process, in the shrunk configuration, one will see a missing square. By this fact, instead

of dealing with a non-enumerable number of points, one can use the finite number of

squares in the grid to perform a finite union bound that will give the polynomial decay

of the covering probability.

Fix any ℓ > 0, then in the 1−dimensional torus T1 define the disjoint intervals:


Qi = [ℓi, ℓ(i+ 1)), for i ∈ N such that ℓ(i+ 1) ≤ 1.

Qi =
[
ℓ
⌊
1
ℓ

⌋
, 1
)

for i ∈ N such that ℓ(i+ 1) ≥ 1.

Using the intervals, one can define the 1−dimensional grid as the set:

Q(ℓ) =

{
Qi : i ∈

{
1, · · · ,

⌊
1

ℓ

⌋}}
. (4.2)

For the torus Td, define a grid inside the torus to be Qd(ℓ) be the collection of elements

in the form
∏d

k=1Qk(ℓ) where (Qk(ℓ))k are copies of Q(ℓ), one for each dimension.

Using the grid, we can give bounds on the decay threshold α+ defined in equation

(1.14). More precisely, we have the following:

Proposition 12. For every d ≥ 1, we have αc ≤ α+ ≤ αM .

Proof. Proof of Proposition 12 The fact that αc ≤ α+ is trivial, since for every α > α+

there exists a ζ+ = ζ+(α) > 0, where:

lim
z→0

P (λ(Vα[z]) > 0) ≤ lim
z→0

zζ+ = 0.

To see that α+ ≤ αM , take any h ∈ (0, 1), and fixed ℓ ≤ h√
d
, where

√
d is the size of

the main diagonal of the d−dimensional cube. By the choice of ℓ, for every Q ∈ Qd(ℓz),

and for any point x ∈ Q:

{x ∈ Vα[z]} ⊂ {x ∈ Q ⊂ V(h)
α [z]}.

This means that missing a point implies missing a square in the shrunk configuration.

In particular, for small values of z using union bound by Lemma 15, there exists a

C = C(α, h, d), such that:

P (Vα[z] ̸= ∅) = P


 ⋃

Q∈Q(ℓz)

{Q ∩ Vα[z] ̸= ∅}


 ≤ P


 ⋃

Q∈Q(ℓz)

{Q ⊂ V(h)
α [z]}




≤ 1

(ℓz)d
P
(
Q ⊂ V(h)

α [z]
)
≤ 1

(ℓz)d
P
(
0 ∈ V(h)

α [z]
)
≤ C

zαCd−d

ℓd
.
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Thus, for every α < αM , we can find a value ζ = αCd − d > 0 such that:

P (Vα[z] ̸= ∅) ≤ C

ℓd
zζ ,

concluding the proof.

A second-moment argument is necessary and sufficient to finish the proof. Interest-

ingly, the random variable that concentrates is not related to the number of missing

squares in the grid; instead, it is related to the measure of λ(Vα[z]). The technique de-

veloped by Billard in [22] is capable of indicating whether the event {V ̸= ∅} has a

positive probability. This strong result fills an important hole in the area, but it is not

sufficient to provide quantitative information on the number of missing points or the

rate at which the probability converges. Therefore, Propositions 12 and 13 are, in fact,

a new contribution to the field. Moreover, it is worth to mention that for d ≥ 2 the

necessarily and sufficient condition to cover the space using fixed-size objects remains

an open question, being described only when the object has the shape of a simplex; see

[19, 16].

Theorem 4 (Billard’s). Consider in Td, a set of balls with volumes 1 > v1 > v2 > · · · >
vn > · · · . If

∑

n

v2n exp{v1 + ...+ vn} < ∞.

Then, when placing these balls uniformly over the torus, there exists a chance to not

cover the space P (V ≠ ∅) > 0.

Billard’s theorem can be found in [19], and is valid for high-dimensional spaces. It

is the simplest result that relates the mean threshold αM to the critical point αc. More

precisely, we will show that αc = αM , and for this we will prove that for α < αM there

exists a positive probability of not covering the space.

Proposition 13. We have αM ≤ αc, and in particular αc = α+ = αM .

Proof. We will use Theorem 4. Fixed any α ∈ (0, αM), let v0 = 1, and define inductively

for every configuration ωα the set of volumes (vn)n :

vn = inf{v < vn−1 : ∃ξ ∈ S s.t. ωα(ξ) = 1 and λ(Π(ξ)) = v}.
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For any η ∈ (0, 1) and α = (1− η) d
Cd
, define the increasing regions:

Bη
n = Td ×

[
d

√
1− η2

Cdn
,∞
)
,

for n ∈ {1, 2, · · · }.
Notice that ω(Bη

n) is a Poisson random variable with rate αCdn
dδ

= n
1+η

, in particular

by Chernoff bounds over the rate of the Poisson random variable, one gets that:

∑

n

P (ω(Bη
n) ≥ n) < ∞. (4.3)

Since, we have that:

{ω(Bη
n) < n} =

{
vn <

1− η2

n

}
.

Using equation (4.3), together with Borel Cantelli we conclude that:

P
(
vn <

1− η2

n
,∀n > 1

)
> 0.

This means that there exists a positive probability that all volumes of objects are

dominated by 1−η2

n
. A series that by Billard’s Proposition 4 does not cover the space. In

particular, for every α < αM = d
Cd
, we get that:

lim
z→0

P (Vα[z] ̸= ∅) > 0.

Then the proof is a direct consequence of the topological Lemma 16:

Lemma 16. In any dimension d ≥ 1, for any parameter α > 0, we have

P (Vα ̸= ∅) = P

(
∞⋂

n=1

{
Vα

[
1

n

]
̸= ∅
})

= lim
z→0

P (Vα[z] ̸= ∅) > 0.

Proof of Lemma 16. Fixed n > 0, and α ≥ 0, note that:

{Vα ̸= ∅} ⊆
{
Vα

[
1

n

]
̸= ∅
}
.

Therefore:

P (Vα ̸= ∅) ≤ P

(
∞⋂

n=1

{
Vα

[
1

n

]
̸= ∅
})

. (4.4)
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To prove the equality, we need a topological argument. Observe that the set of truncated

points ωα

[
1
n

]
is almost surely finite. Moreover, since the projection function of any point

is an open set, we have that Vα

[
1
n

]
is the complementary of a finite union of open set,

thus it is almost surely closed in Td, i.e. compact. Finally, consider m > n, and notice

that Vα

[
1
m

]
⊆ Vα

[
1
n

]
, in particular,

⋂
n Vα

[
1
n

]
is the intersection of nested, compact

sets of Td. Therefore, if all are non empty, there must be a point in the limit, and the

space will not be covered at time α. Proving then the equality in (4.4).

In particular, since Theorem 1 is a direct consequence of Proposition 12 and 13, we

conclude describing the subcritical phase.

4.2 The supercritical phase

This Section focuses on giving information about the process when α < αc. The goal

of this section is to understand the way in which the covering process survives: The

process, when it survives, has a well-behaved structure of empty sets that behave in

some way as a classical branching process.

Before presenting the proof of the main results, we will show that the vacant set can

indeed survive as a Branching Process. For this, consider the definition of the grid from

equation (4.2), and fix Qd(ℓ) =
∏d

k=1 Qk(ℓ) where Qk(ℓ) are orthogonal copies of Q(ℓ).

Moreover, for any open set A ⊂ Td, a height z > 0, a parameter ℓ > 0, and α ≥ 0 define

the random variable

Yα(z, ℓ, A) =
∑

Q∈Qd(ℓz),Q⊂A

1{Q ⊂ Vα[z]}.

Intuitively, Yα counts the number of squares of size ℓz that is completely not cover in

the scale z. Concerning this random variable we have that:

Lemma 17. For any d ≥ 1, α ≥ 0, ℓ > 0, and A ⊂ Td with positive measure. There

exists a constant C = C(d, ℓ, A) > 0 such that:

E (Yα(z, ℓ, A)) ≥ Cz−d+αCd .

As a consequence, for everyM > 1 and α < αc there exists an constant k0 = k0(d, ℓ, A, α,M)

such that for every k > k0 we get E
(
Yα(2

−k, ℓ, A)
)
> M.

Later in the proof, in a set of scale heights (2−kn)n, looking at the grid Qd(2−kn),

with any Q ∈ Qd(2−kn), one can use the random variable Yα(2
−k(n+1), 1, Q) to find
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completely vacant elements of the grid Qd(2−k(n+1)) within Q. By allowing the mean

of Yα(2
−k(n+1), 1, Q) to be greater than M > 1, we will be able to relate this quantity

to the number of children in a branching process. As a brief remark, notice that the

number of children in neighboring regions is not independent; therefore, we take the

mean greater than M = M(d) large enough, so we find many well-separated regions

that are completely independent.

Proof of Lemma 17. Fixed ℓ > 0 and an open set with positive measure A ⊂ Td. There

exists a value of z0 = z0(A, ℓ) and a constant c1 = c1(A) such that for every z < z0, we

obtain a proportional number of squares from Qd(ℓz) within A, this is:
∑

Q∈Qd(ℓz)

1{Q ⊂ A} ≥ c1(ℓz)
−d.

Given Q ∈ Qd(ℓz), consider the region:

RQ = {ξ = (x, r) : r > z, and Π(ξ) ∩Q ̸= ∅}.

Notice that, {Q ⊂ Vα[z]} if an only if RQ is empty. In this way, we are going to finish

the proof by bounding the rate of RQ.

To obtain a bound on the rate of the region RQ, start by bounding the rate from

above by assuming that any object with size greater than 1/4 automatically covers the

squared region. Since such objects have a rate equal to α4d, in general, for d ≥ 2, one

gets that:

Λα(RQ) ≤ α

(
4d +

∫ 1/4

z

(ℓz)d

rd+1
dr + 2d

∫ 1/4

z

(ℓz)d−1r

rd+1
dr +

∫ 1/4

z

Cdr
d

rd+1
dr

)

, ≤ α

(
4d +

ℓd

d
+ 2d

ℓd−1

d− 1
− Cd ln(4)− Cd ln(z)

)
.

Where the first integral concerns objects directly above Q. The second integral is related

to objects whose minimum distance between its center and Q is achieved by a point in

one of the 2d (d− 1)-hypersurfaces of the hypercube. The last integral accounts for the

points for which the minimum distance between its center and Q is achieved in one of the

2d vertices of the hypercube. Moreover, if d = 1, the bound is true without the second

term.

In particular, by evaluating the integral. Following the order of the last term, we find

a constant C = C(ℓ, A, d) > 0 such that for every z, we get that:

E (Yα(z, ℓ, A)) ≥ Cz−d+αCd .

As desired.
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The random variable Yα(z, ℓ, A) can be difficult to work with because it requires

completely vacant cubes of the grid. In essence, the vacant set can survive in each

generation without those simply by using partially uncovered elements of Qd instead.

Our goal in this section is to show how the continuity of the covering function is related

to a branching type of survival, and if the covering function is continuous, the random

variable Yα(z, ℓ, A) can carry a branching in the vacant set.

The main argument of this Section is divided in two points:

1. Using the continuity points of the covering function, we can show that with high

probability the set that survives between scales roughly behave as a branching

process.

2. In the second part, we prove the continuity of the covering probability when d = 1,

outside the critical point.

Together, these subsections will prove Theorem 2 and Theorem 3.

4.2.1 Counting the missing points

The aim of this Subsection is to find a portion of the vacant set that survive as a

branching process. Later, for every continuity point of the covering function, we will use

a sprinkling technique to clear regions that will reveal such branching processes.

Analogously to the random variable Yα(z, ℓ, A), with the grid Qd(ℓ) =
∏d

k=1Qk(ℓ)

fixed, for any z > 0, ℓ > 0, and α ≥ 0 define the random variable

Xα(z, ℓ) =
∑

Q∈Qd(ℓz)

1{Q ∩ Vα[z] ̸= ∅}.

Which corresponds to the number of squares of size ℓz that are not fully covered at

height z in the space Td.

Unlike the random variable Yα, the random variable Xα is always positive if the space

is not covered and we can show that it eventually has a large value.

Lemma 18. For every ℓ > 0, α > 0 and N ∈ N, we have the following.

∞∑

k=0

P
(
Xα(2

−k, ℓ) ∈ {1, ..., N}
)
< ∞. (4.5)

As a consequence, when α < αc, conditioning in not covering, with high probability we

eventually have more than N empty regions, that is lim
k→∞

Pα

(
Xα(2

−k, ℓ) > N
∣∣Vα ̸= ∅

)
= 1.
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Proof of Lemma 18. Notice that {Vα[z] = ∅} happens, if and only if {Xα(z, ℓ) = 0}
occurs for some ℓ > 0. Then, partitioning the event {Vα = ∅} in the first height in which

its is covered, using the Lemma 16, we get for any A ⊂ Td that:

P (V(ωα) = ∅) ≥ P

(
∞⋃

k=1

{Vα[2
−k] = ∅} ∩ {Vα[2

−(k−1)] ̸= ∅}
)

(4.6)

≥
∞∑

k=1

P
(
Xα(2

−k, ℓ) = 0, Xα(2
−(k−1), ℓ) > 0

)

≥
∞∑

k=1

P
(
Xα(2

−k, ℓ) = 0, Xα(2
−(k−1), ℓ) ∈ {1, ..., N}

)
. (4.7)

To avoid auto-intersection of the objects, let k0 be large enough such that for every

k > k0, we get ℓ2−(k−1) < 1/4. Then, for each square Q ∈ Qd(ℓ2−(k−1)), the rate of

the region Q × [2−(k−1), 2−k] is constant equal to αℓd(2d−1)
d

and does not depend on k.

Furthermore, it is always possible to cover an element Q ∈ Qd(ℓ2−(k−1)) using objects

that belong to the set Q× [2−(k−1), 2−k], so there is a positive probability p = p(α, ℓ) to

cover Q using objects that belong only to Q× [2−(k−1), 2−k]. As an illustration, note that

for ℓ = 1, any sufficient centered ball with radius equal to one can cover Q1 ∈ Qd(1).

However, when ℓ = 2, it is possible to cover Q2 ∈ Qd(2) using 2d balls with a radius

equal to one, each centered in an element of Qd(1) ∩ Q2. In any case, the probability

p = p(α, ℓ) is a constant that does not depend on k.

Since p does not depend on k when k > k0, and by the equation (4.7), if the vacant

set is contained in at most N squares of Qd(ℓ2−k), we can cover it with probability

bounded by pN . So:

P (Vα = ∅) ≥
∞∑

k=k0

P
(
Xα(2

−k, ℓ) = 0, X(2−(k−1), ℓ) ∈ {1, ..., N}
)

≥
∞∑

k=k0

pNP
(
Xα(2

−(k−1), ℓ) ∈ {1, ..., N}
)
.

With this bound on the tail sum, by adding the finite probabilities between k ∈ {1, ..., k0},
we conclude the proof of equation (4.5).

To conclude the Lemma, and prove the conditional limit, observe that we can bound:

P
(
Xα(2

−k, ℓ) ∈ {1, · · · , N}|Vα ̸= ∅
)
≤ P

(
Xα(2

−k, ℓ) ∈ {1, · · · , N}
)

P (Vα ̸= ∅) .
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Therefore, by fixing α < αc, since P (Vα ̸= ∅) > 0, we can use the bound on the sum in

equation (4.5), to get:

lim
k→∞

P
(
Xα(2

−k, ℓ) > N |Vα ̸= ∅
)
≥ lim

k→∞
1− P

(
Xα(2

−k, ℓ) ∈ {1, · · · , N}
)

P (Vα ̸= ∅) = 1.

As desired.

Now, building on Lemma 17 that computes the mean of the random variable Yα(z, ℓ, A),

we will define the branching process used in our construction and get a more quantitative

argument.

Lemma 19. Fixed ℓ = 1, there exists a number k0 = k0(α, d), a value γ = γ(α, d) ∈ (0, 1)

and a probability θ = θ(α, d, γ) > 0, such that for every fixed k > k0:

P
(
Y (2−kn, 1,Td) > 2γn

)
> θ, ∀n > 0.

Proof of Lemma 19. The proof consists in relating the number of Yα(z, ℓ, A) to a specific

branching process. Fixed ℓ = 1, for each given k > 1, notice that any element of the

grid Q ∈ Qd(2−kn) is completely contained in one element of the grid Qj ∈ Qd(2−kj),

for every j ∈ {1, · · · , n}. In particular, define the quantity:

Zn(k) =
∑

Q∈Qd(2−kn)

n∏

j=1

1{Qj ⊂ Vα[2
−kj] : Q ⊂ Qj}.

This is the number of completely empty regions that between heights (2−kj)nj=1 are

also empty. In particular, we have Zn(k) < Yα(2
−kn, 1,Td), since the random variable

Yα(2
−kn, 1,Td) counts all empty regions, and Zn(k) counts those that are always empty

between heights.

For each chosen k the process (Zn(k))n behaves similarly to a branching process with

finite dependencies, where the children are elements of the grid Qd(2−kn). By the fixed

choice of ℓ = 1, the range of dependencies of the problem is always equal to one. In

particular, we can take M = M(d) so that if Zn(k) > M , there exist at least two well

separated and thus independent children.

To obtain a lower bound in the distribution of the process Zn(k), we will use the

process Yα. To show that the space maintains the distribution between different heights,

fix k > 2, set Q0 ∈ Qd(2−k(n−1)), and set Q1 ∈ Qd(2−kn). Then, we get for every x ≥ 0

and n ≥ 1 that:

P
(
Yα(2

−kn, 1, Q0) > x
∣∣Q0 ⊂ Vα[2

−k(n−1)]
)
= P

(
Yα(2

−k(n+1), 1, Q1) > x
∣∣Q1 ⊂ Vα[2

−kn]
)
.
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Therefore, conditioning in a vacant region, the random variable Yα for the next generation

preserves the distribution. Consequently, it also preserves its mean.

By Lemma 17, there exists a value k0(α, d,M(d)) such that for every k > k0 we

get E
(
Yα(2

−k, 1,Td)
)
> M, and by conditioning ourselves in the scale 2−kn to not have

objects greater than 2−k(n−1), we get the following.

E
(
Yα(2

−kn, 1, Q)
∣∣Q ⊂ Vα[2

−k(n−1)]
)
> E

(
Yα(2

−k, 1,Td)
)
> M.

Fixing Q ∈ Qd(2−kn), note that when conditioning on the event {Q ∈ Zn(k))}, the
distribution of the number of children ofQ counted by Zn+1(k) is equal to the distribution

of Yα(2
−k(n+1), 1, Q) conditioning on the event {Q ⊂ Vα[2

−kn]}. Furthermore, choosing

M = M(d), if {Yα(2
−k(n+1), 1, Q) > M} occurs, then there exist at least two independent

children within the process Zn(k). Therefore, in relation to independent children, we can

argue that the process Zn(k) is expected to have on average at least 2n completely

disjoint independent regions that have not yet been explored at time 2−kn.

Since the children preserve distributions, by a classical branching process argument,

see [21] Theorem 2, page 9, the process Zn(k) can survive with a large number of indi-

viduals. Therefore, there exist a γ ∈ (0, 1) and a probability θ = θ(α, d, γ) > 0 such that

for every n > 0:

P
(
Yα(2

−kn, 1,Td) > 2γn
)
> P (Zn > 2γn) > θ > 0.

As desired.

To prove Theorem 2 and get information about the vacant set of the process in the

continuity points of the covering function π, we need the following diminishing/enhancing

construction. For every configuration ω =
∑

i∈I δ(xi,ri) in the space S, and for every η > 0,

define

ω ∗ η =
∑

i∈I

δ(xi,ηri).

Notice that the number of objects in any region R after a diminishing/enhancing by η

is described by the number of objects in ω ∗ η(R) = ω({(x, r) : (x, r/η) ∈ R}. Moreover,

if R is a rectangular region, the set {(x, r) : (x, r/η) ∈ R} corresponds to a region of

objects with radius η times larger, thus at time α one gets that ωα ∗ η(R) has the same

distribution as ωαηd(R). Since this is true for every rectangular region, we get that ωα ∗η
have the same distribution as ωαηd . Therefore, the diminishing/enhancing construction
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can induce a coupling between different time configurations by just stretching the objects

radii. If it is the case that η < 1, we are going to say that we are going to diminish the

objects, otherwise if η > 1, we are going to enhance them.

Also note that when we diminish the configurations, vacant points end up becoming

empty regions. More precisely, if ℓ < 1, and if Q ∈ Qd(zℓ) and {Q∩Vα[z] ̸= ∅} happens,

then we get
{
Q ⊂ V

[
ωα ∗

(
1−ℓ√

d

)]}
, for this, observe that the radius of each empty ball

decreases by (1− ℓ)/
√
d.

With this coupling, we get the following.

Proposition 14. For every α < αc a continuity point of the function π, and η > 0, there

exist γ− = γ−(α) > 0, ℓ = ℓ(η), and k0 = k0(η, α) such that for every k > k0, we get:

P
(
Yα(2

−kℓ, 1,Td) > 2kγ−
∣∣Vα ̸= ∅

)
≥ 1− η.

In particular, here exists γa = γa(α) > 0, such that:

lim
z→0

P
(
Yα(z, 1,Td) > z−dγa

∣∣Vα ̸= ∅
)
= 1.

Proof of Proposition 14. This proof will use the continuity of the cover function π in α.

Start by fixing α < αc a continuity point for the function π, take any η > 0, and choose

ε = ε(η, α, αc) > 0 so that two things happen: we have α+ε < αc and π(α+ε)−π(α) <
η(1−π(α))

4
. In particular, we get the following.

P (Vα+ε ̸= ∅|Vα ̸= ∅) = 1− P (Vα+ε = ∅|Vα ̸= ∅) ≥ 1− η

4
. (4.8)

The idea of the proof consists in looking at the configuration at time α+ ε and guar-

anteeing the existence of many partially vacant regions Xα+ε(z, ℓ). Then, by diminishing

the configuration back to time α, these regions guarantee some empty elements of the

grid in Yα(z, ℓ,Td). Then, since the number of such regions is high, we will eventually

survive as a branching with high probability, finishing the proof.

More specifically, consider the configuration ωα and take ωα+ε = ωα ∗
(
α+ε
α

)1/d
, in

particular, we have ωα = ωα+ε ∗
(
α+ε
α

)−1/d
. Now, fix ℓ = ℓ(α, ε, d) ∈ (0, 1) so that for

each x ∈ Q ∈ Q(ℓz) such that {x ∈ Vα+ε[z]} occurs, we can guarantee that {Q ⊂ Vα[z]}
happens in the diminished configuration ωα.

With ℓ ∈ (0, 1) fixed, consider the probability p = p(ℓ, α, ε) > 0that for any fixed

Q ∈ Q(zℓ), there are no objects with heights between z and ℓz intercepting with Q. This

corresponds to the probability of the region

RQ = {(x, r) ∈ S : Π(x, r) ∩Q ̸= ∅, r ∈ (zℓ, z)}
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being empty. Notice that the rate of RQ does not depend on z. And in particular, with

probability p, one can recover a square Q ∈ Q(ℓz) in the height ℓz, i.e., Yα(zℓ, 1,Td) ≥ 1.

Therefore, for every quantity M > 0 of vacant regions in the height zℓ, one can find

a number N = N(M, p, ℓ, d, η, α), such that:

P
(
Yα(zℓ, 1,Td) ≥ M |Yα(z, ℓ,Td) > N,Vα ̸= ∅

)
> 1− η

2
. (4.9)

Then, if α + ε < αc, using Lemma 18, we can find k0 = k0(η) > 0 such that:

P
(
Xα+ε(2

−k, ℓ) > N |Vα+ε ̸= ∅
)
> 1− η

4
, (4.10)

Thus, using equations (4.8) and (4.10), by total probability, we get that:

P
(
Xα+ε(2

−k, ℓ) > N |Vα ̸= ∅
)
≥ P

(
Xα+ε(2

−k, ℓ) > N,Vα+ε ̸= ∅|Vα ̸= ∅
)

= P
(
Xα+ε(2

−k, ℓ) > N |Vα+ε ̸= ∅
)
P (Vα+ε ̸= ∅|Vα ̸= ∅) > 1− η

2
.

Therefore, using the diminishing, we get that {Xα+ε(2
−k, ℓ) ≤ Yα(2

−k, ℓ,Td)} almost

sure. Thus:

P
(
Yα(2

−k, ℓ,Td) > N |Vα ̸= ∅
)
> 1− η

2
. (4.11)

By the choice of N , we get by equations (4.11) and (4.9), that:

P
(
Yα(2

−kℓ, 1,Td) ≥ M |Vα ̸= ∅
)
≥ P

(
Yα(2

−kℓ, 1,Td) ≥ M,Yα(2
−k, ℓ,Td) > N |Vα ̸= ∅

)

= P
(
Yα(2

−kℓ, 1,Td) ≥ M
∣∣Yα(2

−k, ℓ,Td) > N,Vα ̸= ∅
)
P
(
Yα(2

−k, ℓ,Td) > N |Vα ̸= ∅
)

≥ 1− η.

Fixing k > 2k0, and truncating the space at height 2−k/2, since k/2 > k0, we will

have a high probability of having more than M children. Then, between the scales 2k/2

and 2k, we should try to survive as a branching. Therefore, by Lemma 19, there exists

γ− ∈ (0, 1), and a probability θ = θ(α, d, γ) > 0 such that:

P
(
Yα(2

−kℓ, 1,Td) > 2
k
2
γ−
∣∣∣Vα ̸= ∅

)
< P

(
Yα(2

−k/2ℓ, 1,Td) ≥ M
∣∣Vα ̸= ∅

)
(1− (1− θ)M)

≤ (1− η)(1− (1− θ)M)

Since M is arbitrary, θ depends only on α, d, and γ, and k diverge as η goes to zero, we

get that:

lim
k→∞

P
(
Yα(2

−kℓ, 1,Td) > 2
k
2
γ−
∣∣∣Vα ̸= ∅

)
= 1.
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To finish the proof, again using the probability p′ = p(ℓ, α, ε) > 0, the box Q ∈ Qd(2−kℓ)

can survive between scales. In particular we get for any height z > 0 there exists an

value γa = γa(α) ∈ (0, 1) such that:

lim
z→0

P
(
Yα(z, 1,Td) > z−dγa

∣∣Vα ̸= ∅
)
= 1.

Finishing the proof.

Now, we are able to proof Theorem 2.

Proof of Theorem 2. By Proposition 14, for every continuity point α of the function π,

we can find γa to limit the number of Yα(z, 1,Td) and thus λ(Vα[z]). Now, using the first

moments of Lemma 17, we can find by Markov’s inequality a value of γb > d − αd/Cd,

and concludes:

lim
z→0

P (zγa < λ(Vα[z]) < zγb |V(ωα) = ∅) = 1.

Proving that α is also a well-behaved point, as desired.

4.2.2 Continuity of pi(α) d=1 in the supercritical phase

To prove that the covering function is a continuous function, we will proof that it is

continuous on the left and right. As a direct consequence of Lemma 16, one can prove

the left-continuity of π(α). This proof also works in dimension d ≥ 1.

Lemma 20. π(α) is left-continuous.

Proof of Lemma 20. Notice that Vα is the intersection of fitted compact sets Vα[z], thus

Vα is compact for every α > 0. Then, by taking α < β, by inclusion Vβ ⊆ Vα, we get:

lim
ε→0

π(α)− π(α− ε) = P (Vα−ε ̸= ∅ ∀ε > 0,Vα = ∅) = 0,

since the sets (Vα)α are also fitted non empty compact sets.

The proof of the right-continuity of the covering probability is more complex and

involves a quantitative argument that is only available for dimension d = 1. In the

article [6], more precisely in Lemma 13. and Proposition 8., a quantitative description

of the vacant set for dimension d = 1 is given. By analyzing this description, we can

conclude the right-continuity of the probability of coverage for d = 1 in the supercritical

phase.
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The model treated in [6] uses arcs that start at points U and have length R, in this

text, we use objects that have center x and have radius r. To be precise, in both models,

the Poisson point process in S is the same, and with the same rate, the only difference

is the projection function of the models. In [6], the projection of a point (x, r) is the

interval (x, x+r). Here, the projection is the interval (x−r, x+r). Notice that our model

at rate α corresponds to their model at rate 2α. To prove this, just take the bijection

function that takes (x, r) ∈ S and sends it to (x − r, 2r) ∈ S, which sends a point in

our model that covers some interval (x− r, x+ r) to one point that in the model treated

in [6] that covers the same interval. The application doubles the rate of the space, but

since it preserves the same covering, both models have the same covering distribution.

With the relation between the models stated, as a direct corollary of Lemma 13. and

Proposition 8., we can conclude for our model in dimension d = 1 that:

Proposition 15. For d = 1 and any fixed α < αc = 1/2, we have that:

lim
z→0

P
(
Yα(z, 1,T) > z−

αc−α
2 |Vα ̸= ∅

)
= 1.

As a consequence, we get:

Theorem 5. For d = 1, we find that π(α) is a continuous function.

Proof. Take any ε > 0 and α < αc. Then, by Proposition 15, there exists a z0 such that

for every z < z0 we get P
(
Yα(z, 1,T) < z−

αc−α
2 |Vα[z] ̸= ∅

)
< ε

2
. Now, for any δ0 > 0

such that α + δ0 < αc, we get the following:

π(α + δ0)− π(α) = P (Vα+δ0 = ∅,Vα ̸= ∅)
≤ P

(
Vα+δ = ∅, Yα(z, 1,T) > z−

αc−α
2 |Vα ̸= ∅

)
+

ε

2
.

To conclude that the probability is small we need to control two probabilities: the prob-

ability to cover a region of size z using objects smaller than z, and the probability to

not have any new object of size greater than z between times α and α + δ.

Since α + δ0 < αc, the probability of covering the space is not one. In particular,

assuming without loss of generality that z < 1
2
, there exists a positive probability η =

η(α + δ0) of not fully covering an interval of size z using objects of size smaller than z.

Here, we take z < 1
2
, so that θ is a constant that does not depend on the value of z. Also

note that by taking intervals disjoint by a distance of 2z, the probability of not covering

each interval is independent. In particular:

P
(
Vα+δ0 = ∅, Yα(z, 1,T) > z−

αc−α
2 |Vα ̸= ∅

)
≤ exp

{
ln(1− η)

z−
αc−α

2

4

}
+ (1− e−δ0z−1

).
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Where, e−δz−1
is the probability to have an new object with size greater than z between

times α and α + δ0. In words, to cover the space between times α and α + δ when

{Yα(z, 1,T) > z−
αc−α

2 } happens, either there exists a new object greater than z and we

assume that the space will be covered, or there isn’t, and using just objects with size less

than z, you cover every z−
αc−α

2

4
interval of size z that is separeted by at least a distance

of 2z.

Now, fix z1 = z1(θ) such that for every z < z1, the first term is less than ε
4
. Then,

with z < z1 fixed, one can now find δ1 = δ1(z) < δ0 such that 1 − e−δ1z−1
< ε

4
. Notice

that by monotonicity of the probability we get η(α+ δ1) > η(α+ δ0), and we can choose

a smaller value of δ without changing the bound of the first term. So, we get that:

π(α + δ1)− π(α) ≤ ε.

And since ε > 0 is arbitrary π is right continuous for every α < αc as desired, thus π is

continuous for every α < αc.

In conclusion, we get the proof of Theorem 3, as a direct corollary of Theorem 2.
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5
Post-textual

5.1 Open questions

During this paper, we encountered many questions that were left open. To state

them, consider the cover process Xt, with radius R distributed as f(r), then:

1. Describe the exact number of different phases of the covering process in the one

dimensional case. To be more specific, complete the Gumbel phase, showing that

if R ∈ L1, there exists a constant c such that Tn

n lnn
converges in probability to

c, and find the limits in distribution for all functions of the form f(r) = 1
r lnb(r)

,

with b > 1; Between the Gumbel phase and the compact phase it is expected a

new phase, for this take f(r) = 1
r ln r ln ln r

and find its limit in distribution (notice

that it is not expected to be like Gumbel since it does not have first moment, and

1/f(n) > n lnn, so it is not expected to be on the same scale as the compact phase;

In the compact phase, find the exact conditions or proof that conditions (2.19) and

(2.20) fully describe this phase.

2. Find the explicit function of π and prove that the function is continuous for any

dimension.

3. The main model makes sense in high dimensions, and we expect to see in such

process the same phases.
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4. Define the subcritical rate threshold:

α− = sup

{
α > 0 :

∃γ(α) > 0 where ∀ε > 0, ∃ζ− = ζ−(α, ε) > 0 such that

Pα

(
zγ+ε < λ(Vd (ω[z])) < zγ−ε

∣∣Vd(ω) ̸= ∅
)
≥ 1− zζ−

}
.

We expect αc = α− for every dimension.

5. Find the exact exponents of the thresholds α+ and α−.

5.2 Appendix

5.2.1 Useful propositions

Here, we are going to fill out some details that are left from the proof, or just enunciate

them and indicate where the proof is.

Proof of Lemma 1. To prove that 1 is equivalent to 2, observe that R is discrete. Then,

if R ∈ Lp(R) for some p > 1:

E (Rp) =
∞∑

y=1

ypP (R = y) =

∫ ∞

0

p
ypf(y)

y
dy.

Therefore, if ypf(y) → 0, then for every p′ ∈ [1, p), it is true that E
(
Rp′
)
< ∞. And if,

E (Rp) < ∞ for some p > 1, then by Markov ypf(y) < E (Rp), and for every p′′ ∈ [1, p)

it is true that yp
′′
f(y) → 0.

To prove that 2 equivalent to 1 just check that for every λ > 0, exists a k0 = k0(λ)

such that for every k > k0:

f(k)k1+λ
2 < f(k)k1+λ

2 ln k < f(k)k1+λ < f(k)k1+λ ln k.

Finish the proof of the Lemma.

Proof of Lemma 6. Using straightforward calculations, one may get:

P
(
T ℓ
K < t

)
= P

(
max

k=1,...,K
{ξk} < t

)
=

K∏

k=1

P (ξk < t) = (1− e−
tp
K )K .

Therefore:

P
( p

K
T ℓ
K − lnK < t

)
=

(
1− exp

{−Kp(t+ logK)

Kp

})K

=

(
1− et

K

)K

That equation converges to the Gumbel distribution when K goes to infinity and does

not depend on the parameter p.
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Proof of the Lemma 12. For a Poisson Random variable X with rate λ, using concen-

tration, [7], it is true that for every x > 0:

P (|X − λ| > x) < 2 exp

{
− x2

2(λ+ x)

}
, (5.1)

Now, with α > 0 notice that ω(R1
n) is a Poisson random variable with rate αn, and

ω(Rδ
n) is a Poisson random variable with rate αn/δ. So, we have:

P1+ε

(
|ω(R1

n)− n(1 + ε)| > ε

2
n
)
≤ 2 exp

{
−n

ε2

2(2 + 3ε)

}
, and

P1−ε

(∣∣∣∣ω(Rδ
n)−

n

1 + ε

∣∣∣∣ >
ε

2(1 + ε)
n

)
≤ 2 exp

{
−n

ε2

4(1 + ε)(2(1− ε2) + ε)

}

Therefore

P1+ε

(
ω(R1

n) < n
)
≤ 2 exp

{
−n

ε2

4(2 + 3ε)

}
, and

P1−ε

(
ω(Rδ

n) > n
)
≤ 2 exp

{
−n

ε2

4(1 + ε)(2(1− ε2) + ε)

}
.

Since, both of them are summable, we conclude the Lemma.

Some basic propositions about regular variation functions are exposed here, and the

proof of them can be found in [27].

Proposition 16. Then the following hold:

1. If L ∈ RV0, we have that limx→∞ L(tx)/L(x) = 1 uniformly on each compact t−set

of (0,∞).

2. For every U(x) ∈ RVp, we have that U(x)x−p is slowly varying. Therefore, U(x) =

xpL(x), for some L ∈ RV0.

3. If L ∈ RV0, then for every α > 0, xαL(x) → ∞, and x−αL(x) → 0.

4. If L ∈ RV0, then for every α > 0, (L(x))α and (L(x))−α are slowly varying.

5. Let L,L′ ∈ RV0, then L+ L′ and LL′ are slowly varying.

Also, proof in [27], Karamata’s theorem, and Karamata’s representation Theorem
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Theorem 4 (Karamata’s Theorem). Considering the space of regular varying functions,

we have that:

(a) If p ≥ −1 then U ∈ RVp implies
∫ x

0
U(t)dt ∈ RVp+1 and

lim
x→∞

xU(x)∫ x

0
U(t)dt

= p+ 1. (5.2)

If p < −1 (or if p = −1 and
∫∞
x

U(s)ds < ∞) then U ∈ RVp implies
∫∞
x

U(t)dt is finite,∫∞
x

U(t)dt ∈ RVp+1 and

lim
x→∞

xU(x)∫∞
x

U(t)dt
= −p− 1. (5.3)

(b) If U satisfies

lim
x→∞

xU(x)∫ x

0
U(t)dt

= λ ∈ (0,∞) (5.4)

then U ∈ RVλ−1. If
∫∞
x

U(t)dt < ∞ and

lim
x→∞

xU(x)∫∞
x

U(t)dt
= λ ∈ (0,∞) (5.5)

then U ∈ RV−λ−1.

Proof of Lemma 9. The proof uses the same branching construction presented in Sub-

section 2.2.2. Since the proof is analogous to what was done there, some details will not

be filled in.

Fix the tree T̂ ⊂ T4 defined in Subsection 2.2.2. Now, indexed in the vertices v(i, h) ∈
V̂, define the regions in [0, 1)× (0,∞) and intervals in [0, 1) as:

R̃(i, h) =

[ |i|
4h

,
|i|+ 2

4h

)
×
[

1

4h+1
,
1

4h

)

Ĩ(i, h) =

[ |i|+ 1

4h
,
|i|+ 2

4h

)
.

Also, for v(0, 0), define R̃(0, 0) = [0, 1) × [1/4,∞), and Ĩ(0, 0) = [0, 1). See Figure 2.3,

where a representative of this regions in another scale happens.

To define the Branching process, fix a configuration ωα, and define (Zh)h, where

Z0 = 1, and associated with it, we have the vertex v(0, 0). For other values of h, define

inductively Zh+1 =
∑Zh

i=1 2 ·1{ω(R̃(|v(i)|, h) = 0}, where {v(1), ..., v(Zh)} are the vertex

associated with the h − th generation of the branching process. Moreover, define the
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vertex associated with the next generation as the union of the two children in T̂4 of each

v ∈ {v(i)}Zh
i=1 such that {ω(R̃(|v|, h) = 0} happens.

As before, using the intervals Ĩ it is simple to show that if {Zh > 0} then the

event {V(ω[4−h]) ̸= ∅} happens. About probabilities, notice that the process is more

homogeneous now, then:

Pα

(
ω(R̃(i, h)) = 0

)
= e−6α for h > 0,

Pα

(
ω(R̃(0, 0)) = 0

)
= e−4α.

So despite the origin, by classical branching arguments for α < ln(2)
6

the event {Zh >

0,∀h} has positive probability. So clearly, by Lemma 10:

Pα (V(ω) ̸= ∅) = Pα

(⋂

h

{
V(ω[4−h]) ̸= ∅

}
)

> P (Zh > 0,∀h) > 0.

As desired.

Proof of Billard’s Theorem. Set λ be the Lesbegue measure.Fix the size of the objects

to be 1 > v1 > v2 > ..., and let gn be open sets of Td, such that λ(gn) = vn. Consider χn

the characteristic functions of the set gn defined as:

χn(x) =




1, x ∈ gn

0, x /∈ gn.

Let (ωn)n be a set of i.i.d. uniform points on Td. Now, define:

On = {x ∈ Td : x+ ωn ∈ gn}.

And with that set the vacant set to be

Vn = Td \
n⋃

i=1

On.

The characteristic function of the vacant set is

χ(Vn) =
n∏

i=1

(1− χi(x− ωn))dx,

and the measure of it is

λ(Vn) =

∫ n∏

i=1

(1− χi(x− ωn))dx.
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Notice that, both of these are random functions.

Also we denote:

vi = λ(gi) =

∫
χi(x)dx

ξj(x) = χj ∗ χ̃j(x) =

∫
χj(x+ y)χj(y)dy

τ = λ ∗ λ̃,

that is:
∫

f(x)dτ(x) =

∫ ∫
f(x− y)dxdy.

Using that notation, we have that:

E (λ(Vn)) =

∫ n∏

i=1

E ((1− χi(x− ωi)) dx =
n∏

i=1

(1− vi)

E
(
λ(Vn)

2
)
=

∫ ∫ n∏

i=1

E ((1− χi(x− ωi))(1− χi(y − ωi))) dxdy

=

∫ ∫ n∏

i=1

(1− 2vi + ξi(x− y))dxdy

=

∫ n∏

i=1

(1− 2vi + ξi(x))dτ(x)

Now, observe that vi < v1 < 1, and ξi < vi. So, for any the case, we have that:

1− 2vi + ξi ≤ (1 + ξi)(1 + Civ
2
i )(1− vi)

2,

where Ci = max
{
1, 2

1−vi

}
. Since 1 > v1 > v2 > ... we can take Ci <

2
1−v1

.

Now, supposing that
∑

i v
2
i < ∞, we can find C = C(v1) < ∞ such that:

E
(
λ(Vn)

2
)
≤ C [E (λ(Vn))]

2

∫ n∏

i=1

(1 + ξi(x))dτ(x)

therefore:

P (λ(Vn) > 0) ≥ (E (λ(Vn)))
2

E (λ(Vn)2)

≥ C−1

[∫ ∞∏

i=1

(1 + ξi(x))dτ(x)

]−1
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If for instance:

∫ ∞∏

i=1

(1 + ξi(x))dτ(x) < ∞

Then, we have that limn→∞ P (λ(Vn) = 0) < 1, and we do not cover. To find the Billard’s

condition lets use the following lemma

Lemma 21. For every set of numbers {an}n, and for every K > 0, we have that

K∏

n=1

(1 + an) = aK

K−1∏

n=1

(1 + an) +
K−1∏

n=1

(1 + an)

=
K−1∑

n=1

an

n−1∏

i=1

(1 + ai).

Therefore, we have that

∞∑

n=1

∫
ξn(x)

n−1∏

i=1

(1 + ξi(x))dτ(x) < ∞

Implies:

∫ ∞∏

i=1

(1 + ξi(x))dτ(x) < ∞

Since ξn ≤ vn for every x ∈ supp{ξn}, we have that:

n−1∏

i=1

(1 + ξi) ≤ exp{v1 + ...+ vn−1}
∫

ξn(x)dτ(x) ≤ vnλ(supp{ξn})

= v2n.

Therefore, we have that:

∞∑

n=1

v2n exp{v1 + ...+ vn} < ∞ =⇒ P (V ̸= ∅) > 0.
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5.2.2 Proving theorems in the discrete time case

This subsection shows that theorems A, B, C, and D, are also true for the discrete cover

model. For this, we need to show that the cover time of the problem in the continuous

and in the discrete case have the same limit in distribution.

The equivalence of the statements is due to Proposition 17, taking the pair (an, bn)

as (f−1(n), 0) or (n, lnn).

Proposition 17. Let an, bn > 0, two sequences of numbers, with an → ∞. Then, we have

that:
Tn

an
− bn

D
=⇒ Y, if, and only if,

τn
an

− bn
D
=⇒ Y.

Proof of Proposition 17. The proof follows by using concentration inequalities for the

difference of τn and Tn. To start, by the Poisson construction, set

Tn =
τn∑

i=1

ηi,

where ηi is a sequence of i.i.d. exponential random variables with rate 1. By Chebyshev’s

inequality, we have

P

(
|k −

k∑

i=1

ηi| > k3/4

)
= P

(
|

k∑

i=1

(ηi − 1)| > k3/4

)
≤ k−1/2. (5.6)

Since the cover times τn and Tn are diverging in n, we have that condition on the value

of τn, Tn will not oscillate (τn)
3/4 from this value. More than this, by symmetry we also

have that given Tn, the value of τn will not oscillate more than T
3/4
n of this value.

To control both of this inequalities, we will make standard arguments using any open

set A ⊂ R, define An such that:

An = {x ∈ A : an(x+ bn)
[
1 + a−1/4

n (x+ bn)
−1/4

]
∈ A}.

We have that An ↑ A, and:

P (Tn ∈ an(A+ bn)) ≥ P (Tn ∈ an(A+ bn), τn ∈ an(An + bn)) .

Then:

P (Tn ∈ an(A+ bn)) ≥ P
(
|Tn − τn| < (τn)

3/4, τn ∈ an(An + bn)
)
.

Taking the limit, we can use the independence of the exponential variables, together

with equation (5.6), to show that:

lim inf
n→∞

P (Tn ∈ an(A+ bn)) ≥ P (Y ∈ A) .

The other affirmation, have an analogous proof, just substitute Tn by τn.
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