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Abstract

This thesis investigates the applications and properties of trimmed sample means in the context
of robust estimation under heavy-tailed and contaminated data. We study four problems: uni-
form mean estimation, regression with quadratic risk, Gaussian and bootstrap approximations
and vector mean estimation under arbitrary norms.

In the problem of uniform mean estimation we manage to obtain the best known bounds for
this problem, with minimax-optimal dependence on moment parameters and contamination
level.

Regarding the problem of regression with quadratic risk we also obtain the best known bounds
and the best dependence on moment parameters and contamination level. Moreover, we also
provide heuristics for robust linear regression and experimental results showing that our method
outperforms similar methods available in the literature.

We also obtain Gaussian and bootstrap approximation bounds in a high-dimensional setting
under weak assumptions, showing that not only the trimmed mean satisfy high-dimensional
Gaussian and bootstrap approximations, but when compared with the sample mean, such
approximations hold for a wider class of distributions.

To finish, we apply our results on uniform mean estimation and Gaussian approximation to
study the problem of vector mean estimation under arbitrary norms, again improving all known
bounds for this problem.

Keywords: sub-Gaussian estimators, trimmed mean, robustness, regression, bootstrap.
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Resumo

Esta tese investiga as aplicações e propriedades das médias podadas (trimmed sample means)
no contexto de estimação robusta com dados provenientes de distribuição de cauda pesada ou
mesmo contaminados. Estudamos quatro problemas: estimação uniforme da média, regressão
com risco quadrático, aproximações gaussiana e bootstrap, e estimação da média vetorial sob
normas arbitrárias.

No problema de estimação uniforme da média, conseguimos obter as melhores cotas conhecidas
para este problema, com dependência ótima nos parâmetros de momento e nível de contami-
nação.

Em relação ao problema de regressão com risco quadrático, também obtemos as melhores cotas
e a melhor dependência nos parâmetros de momento e nível de contaminação. Além disso,
fornecemos heurísticas para regressão linear robusta e resultados experimentais que mostram
que nosso método supera métodos semelhantes disponíveis na literatura.

Obtemos também cotas de aproximação gaussiana e bootstrap em alta dimensão e sob hipóteses
fracas, mostrando que não apenas a média podada realiza aproximações gaussiana e bootstrap
em alta dimensão, mas, quando comparadas com a média amostral, tais aproximações valem
para uma classe mais ampla de distribuições.

Para concluir, aplicamos nossos resultados de estimação uniforme da média e de aproximação
gaussiana para estudar o problema de estimação da média de vetores sob normas arbitrárias,
novamente melhorando as cotas conhecidas para este problema.

Palavras-chave: estimadores sub-gaussianos, média podada, robustez, regressão, bootstrap.
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Chapter 1

Introduction

The sample mean is probably the most fundamental way of aggregating information in Statistics
[Stigler, 2016]. Mathematically, it can be understood as a way to approximate an expected
value from a random sample. Aspects of this approximation, including its convergence for
large sample sizes, are described by the Law of Large Numbers, the Central Limit Theorem
and other Limit Theorems.

In practice, sample means are used in several settings. One is as a way to directly estimate pop-
ulation parameters that correspond to expectations: means, (co)variances and other moments
are natural examples.

A second way is in M -estimation. If a population parameter can be expressed as a minimizer
of

LP (θ) := EX∼P ℓ(X, θ) (θ ∈ Θ) (1.1)

for some suitable function ℓ, it is natural to estimate this parameter by minimizing

L̂n(θ) :=
1

n

n∑

i=1

ℓ(Xi, θ) (θ ∈ Θ) (1.2)

instead, where (X1, . . . , Xn) is a random sample from P . Much of classical Asymptotic Statistics
[van der Vaart et al., 1996] deals with aspects of this approximation.

A somewhat related setting is “statistical learning.” Here the goal is to use the random sample
to find a good near-minimizer for the function of (1.1). That is, one wants to choose a data-
dependent θ̂n that makes the loss LP small (this corresponds to performance over test data).
Minimizing the sample loss (1.2) is the well-known procedure of empirical risk minimization.
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Besides its use in mean estimation, M -estimation and “statistical learning,” sample means
also have well known Gaussian and bootstrap approximations, those are useful in hypothe-
sis testing, designing confidence intervals, selecting penalty parameters, and other problems
[Chernozhukov et al., 2023a].

In all of the above settings, the sample mean is used because it is a convenient estima-
tor for the corresponding expectations. However, it is often not the best possible esti-
mator for this purpose. This is clearly the case when there is data contamination and
a single outlier can change the value of the sample mean completely. Robust Statistics
[Huber, 1965, Huber and Ronchetti, 1981] takes this issue as its starting point.

More subtly, the sample mean is also not optimal in terms of a phenomenon not captured
by classical (asymptotic) Robust Statistics: its fluctuations over finite samples. Consider, for
instance, the basic problem of estimating the expectation of a one-dimensional random variable
with variance σ2 > 0. Asymptotically, the sample mean is Gaussian, but Catoni’s seminal work
[Catoni, 2012] showed its non-asymptotic bounds are much worse. Indeed, Catoni showed that
Chebyshev’s bound is optimal in the following sense: given a mean µ and a variance σ2, there
is a distribution P with mean µ and variance σ2 from which an i.i.d. sample X1, . . . , Xn from
P will satisfy, for some absolute constant c > 0,

P

[∣∣∣∣∣
1

n

n∑

i=1

Xi − µ

∣∣∣∣∣ ≥ c

√
σ2

nα

]
≥ α, ∀α ∈ (0, 1).

For comparison, when P is sub-Gaussian,

P

[∣∣∣∣∣
1

n

n∑

i=1

Xi − µ

∣∣∣∣∣ ≥
√

2σ2

n
ln

2

α

]
≤ α, ∀α ∈ (0, 1),

which is much better for small α.

What is really striking, however, is that there are less obvious alternatives for the sample mean
with so-called “sub-Gaussian” finite-sample error bounds [Catoni, 2012, Devroye et al., 2016,
Lee and Valiant, 2022]. Such alternatives attain, for a wide range of distributions P , nearly
the same fluctuations the sample mean attains for sub-Gaussian distributions. Some of these
estimators can also be made robust to contamination [Diakonikolas et al., 2019a].

Catoni’s discovery led to a surge of interest in finite-sample mean estima-
tion for vectors [Lugosi and Mendelson, 2019b, Lugosi and Mendelson, 2019c,
Lugosi and Mendelson, 2021, Hopkins, 2020, Depersin and Lecué, 2022, Minsker, 2015], matri-
ces [Minsker, 2018a, Mendelson and Zhivotovskiy, 2020, Abdalla and Zhivotovskiy, 2022] and
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other objects under (relatively) heavy tails and contamination [Lugosi and Mendelson, 2019a].
The basic thrust behind this work is to use improvements over the sample mean to devise
improved statistical methods more generally.

Starting with a breakthrough by Diakonikolas et al. [Diakonikolas et al., 2019a], a parallel
line of research in Computer Science has studied computationally efficient robust estimation in
high dimensions [Dong et al., 2019, Diakonikolas et al., 2022].There has also been related work
for regression and other statistical tasks [Audibert and Catoni, 2011, Brownlees et al., 2015,
Mourtada et al., 2021, Lecué and Lerasle, 2020, Diakonikolas et al., 2019b]. In most recent
work, contamination means adversarial contamination, which we discuss and contrast with
Huber’s contamination model [Huber, 1965, Huber and Ronchetti, 1981] in §2.1.3.

1.1 The trimmed mean

A natural way to avoid the limitations of the sample mean is to use trimmed means. Suppose
one is given x1:n = (x1, . . . , xn) ∈ Xn and a function f : X ! R. If the xi are distributed
according to a probability distribution P over X, the sample mean corresponds to the following
approximation:

Pf = EX∼Pf(X) ≈ 1

n

n∑

i=1

f(xi),

which has the aforementioned problems. By contrast, for an integer 1 ≤ k < n
2
, the k-trimmed

mean over x1:n is:

T̂n,k(f, x1:n) :=
1

n− 2k

n−k∑

i=k+1

f(x(i)), (1.3)

where (·) is a permutation of [n] such that

f(x(1)) ≤ · · · ≤ f(x(n)).

That is, the trimmed mean is the arithmetic mean of the terms that remain once the k largest
and k smallest values of f(xi) have been removed. A large k makes this estimator more robust
to outliers, but also introduces some bias.

The trimmed mean is a classical estimator in Robust Statistics in the sense of Hu-
ber [Huber and Ronchetti, 1981, Stigler, 2010, Huber, 1972, Stigler, 1973, Jaeckel, 1971,
Jana Jurecková, 1994, Hall, 1981]. More recently, variants of the trimmed mean have been
used to estimate high dimensional means [Lugosi and Mendelson, 2021] and covariances
[Oliveira and Rico, 2022] with non-asymptotic guarantees. The PhD thesis [Rico, 2022] also
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proves optimality properties of the trimmed mean for estimating the mean of a single function
f [Rico, 2022, Chapter 2].

1.2 Our contribution in this thesis

The main contribution of this thesis is to show that trimmed means improve the state of the
art in finite-sample performance in statistical problems. The first of these problems is what we
call uniform mean estimation: it is somehow “generic,” in that solving it well can help improve
the methods for many other problems.

1.2.1 Uniform mean estimation. To motivate this problem, consider the classical
problem of bounding the supremum of an empirical process indexed by a family of functions
F :

sup
f∈F

∣∣∣∣∣
1

n

n∑

i=1

f(Xi)− Pf

∣∣∣∣∣ .

This is a subproblem of many other problems in Statistics. To see one example, let us back to
the discussion on statistical learning following (1.1) and (1.2). If θ̂n denote the empirical risk
minimizer, it is a classical fact that:

LP (θ̂n)− inf
θ∈Θ

LP (θ) ≤ 2 sup
f∈F

∣∣∣∣∣
1

n

n∑

i=1

f(Xi)− Pf

∣∣∣∣∣ (1.4)

where F := {ℓ(θ, ·) : θ ∈ Θ}.

To continue with this example, for each θ ∈ Θ, we replace L̂n(θ) in equation (1.2) by another
estimator of LP (θ) that we hope is “better.” The analogue of (1.4) holds with a change in the
right hand side:

sup
f∈F

∣∣∣Êf (X1, . . . , Xn)− Pf
∣∣∣ ,

and it is clear that each Êf should be designed so as to minimize the above supremum. In other
words: given a family of functions F , we want to estimate the expectations Pf of each f ∈ F
by Êf (X1, . . . , Xn) while minimizing the worst-case error.

Minsker [Minsker, 2018b] seems to have been the first author to explicitly consider this problem.
However, it naturally comes up in many settings beyond that of statistical learning. One of
these – the case of high dimensional vector mean estimation – will be discussed separately. For
now, we mention in passing another example.
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Example (Integral probability metrics). Let F be an arbitrary family of measurable functions
from X to R, and let ∆F denote the set of all probability distributions over X that integrate
all f ∈ F . F defines an integral probability (semi)metric over ∆F via the recipe:

DF(P,Q) := sup
f∈F

|(Q− P )f | (P,Q ∈ ∆F).

Popular examples of such metrics include the L1 Wassertein metric and kernel-based metrics
discussed in [Sriperumbudur et al., 2012, Sriperumbudur, 2016]. Uniform estimates for Qf and
Pf naturally lead to estimates on DF(P,Q).

Our main result on uniform mean estimation – Theorem 3.1 in Chapter 3 – shows that trimmed
means give the best known bounds for this problem in the adversarial contamination setting.
In particular, we improve the main result of [Minsker, 2018b] and obtain minimax-optimal
dependence on moment parameters and the contamination level.

1.2.2 Regression with quadratic risk: theory and heuristics. Our meth-
ods for uniform mean estimation also lead to new results on regression with quadratic risk. In
this problem, the goal is to find a function f ∈ F making E(X,Y )∼P (Y − f(X))2 as small as
possible.

Under suitable technical conditions, we show that a trimmed-mean-based regression method
achieves optimal dependence on the contamination level and on moment parameters. This
method improves on previous work by Lugosi and Mendelson [Lugosi and Mendelson, 2019c]
and Lecué and Lerasle [Lecué and Lerasle, 2020]. One of our findings is that “localization” ar-
guments from previous work extend to trimmed means.

Unfortunately, our statistical method is not computationally efficient. However, it is relatively
straightforward to design trimmed-mean-based heuristics for robust linear regression. Experi-
ments in the main text and the appendix show that our algorithm outperforms a similar method
based on the median-of-means principle put forward by [Lecué and Lerasle, 2020]. These ex-
periments also give insights on how to optimize the performance of these heuristics.

1.2.3 Gaussian and bootstrap approximations. Classical non-asymptotic ver-
sions of the multidimensional central limit theorem, such as Berry-Essen, allow for a polynomial
dependence between the dimension d and the sample size n. Even so, high-dimensional sit-
uations where d grows exponentially in n have become common in many practical domains
(e.g. Genomics). Since the seminal work of [Chernozhukov et al., 2013], this problem has been
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studied and continuously improving results have appeared in the literature providing Gaussian
and bootstrap approximation bounds for the sample mean on this high-dimensional setup.

In Chapter 5 we investigate the Gaussian and bootstrap approximation properties of the
trimmed mean in this high-dimensional setup, showing that it requires less restrictive assump-
tions to hold and thus is possible in a wider class of distributions, even allowing for adversarial
contamination. We also extend our results to the infinite-dimensional case under mild assump-
tions on the VC dimension of the class of functions.

Besides extending the usage of trimmed means to obtain robust versions of hypothesis testing,
confidence intervals and other classical applications of Gaussian and bootstrap approximations,
our results also apply to the problem of vector mean estimation under general norms, as dis-
cussed in Chapter 6.

1.2.4 Vector mean estimation under arbitrary norms. In this problem, we
assume that we have a (potentially corrupted) i.i.d sample X1, . . . , Xn from a high-dimensional
distribution P over Rd, whose mean µP we want to estimate. The error in our estimate will be
measured by an arbitrary norm ∥ · ∥.

It turns out that this problem is closely connected to uniform mean estimation, as already noted
by Minsker [Minsker, 2018b]. Using this connection, we present in Chapter 6 some results on
this problem. More precise, the estimator we present there improves all known bounds for mean
estimation under general norms [Depersin and Lecué, 2022, Lugosi and Mendelson, 2019b]. In
the special setting of Euclidean norm with finite second moments, our result matches the
optimal bound of Lugosi and Mendelson [Lugosi and Mendelson, 2021]. Unfortunately, the
estimator we devise is not computationally efficient.

6



Chapter 2

Definitions and preliminary lemmata

2.1 Main definitions

2.1.1 Basics. N = {1, 2, 3, . . . } is the set of positive integers. For n ∈ N, define [n] :=

{1, 2, . . . , n}. The cardinality of a finite set S is denoted by |S|.

2.1.2 Probabilities, moments and samples. Given a probability space
(Z,Z, P ), we write Z ∼ P to denote that Z is a random element of (Z,Z) with distribu-
tion P . For p ≥ 1, we write Lp(P ) = Lp(Z,Z, P ) for the corresponding Lp space. If f : Z! R
is measurable, we use Pf , Pf(Z) or EZ∼Pf(Z) to denote the expectation (integral) of f ac-
cording to P . Moreover, we let P̂n denote the empirical measure, meaning:

P̂n f =
1

n

n∑

i=1

f(Xi) for f ∈ F .

Given n ∈ N, the elements of Zn are denoted by z1:n = (z1, z2, . . . , zn). We write

Z1:n = (Z1, . . . , Zn)
i.i.d.∼ P

if the Zi are independent and identically distributed (i.i.d.) random elements of (Z,Z) with
common law P .

2.1.3 Adversarial contamination. Given n ∈ N and (Z,Z, P ) as above, and also
a parameter ε ∈ [0, 1), a random element Zε

1:n of Zn is an ε-contaminated i.i.d. sample from P

7



if the following condition holds:

there exist Z1:n
i.i.d∼ P such that |{i ∈ [n] : Zε

i ̸= Zi}| ≤ ε n.

This is what is called adversarial contamination in the CS literature [Diakonikolas et al., 2019a].
Intuitively, it corresponds to a setting where an adversary inspects the i.i.d. sample Z1:n and
then decides how to replace a fraction ε of sample points so as to make things more difficult
for the statistician. This is less favorable than Huber’s more classical model [Huber, 1965,
Huber and Ronchetti, 1981] where P is assumed known, but a fraction of sample points may
come from a different, unknown distribution. For more work on adversarial contamination,
see e.g. [Depersin and Lecué, 2021, Lecué and Lerasle, 2020, Lugosi and Mendelson, 2021,
Diakonikolas et al., 2019b, Diakonikolas et al., 2022, Diakonikolas et al., 2019a].

2.1.4 Compatible measures and empirical processes. We need a technical
condition to ensure the various suprema we consider are well defined. Given p ≥ 1, we say that
a probability measure P over (Z,Z) and a family F of Z-measurable functions from Z to R
are p-compatible if F ⊂ Lp(P ) and there exists a countable subset D ⊂ F such that any f ∈ F
is the limit of a sequence in D that converges pointwise and in Lp(P ) norm.

For 1-compatible F and P as above, and exponents p ≥ 1, we define the following (potentially
infinite) moment quantities:

νp(F , P ) := sup
f∈F

(P |f − Pf |p) 1
p = sup

f∈F
∥f − Pf∥Lp(P ). (2.1)

We also define the expectation of the empirical process indexed by F ,

Empn(F , P ) := E
Z1:n

i.i.d.∼ P

[
sup
f∈F

∣∣∣∣∣
1

n

n∑

i=1

f(Zi)− Pf

∣∣∣∣∣

]
(2.2)

and the Rademacher complexity,

Radn(F , P ) := E
ϵ1:n

i.i.d.∼ U({−1,1})
Z1:n

i.i.d.∼ P

[
sup
f∈F

∣∣∣∣∣
1

n

n∑

i=1

ϵif(Zi)

∣∣∣∣∣

]
, (2.3)

where it is implicit in the expectation that the Z1:n and ϵ1:n are independent. Definitions (2.2)
and (2.3) are related by the first part of the following classical results:

Theorem 2.1. Assume that a measure P over (X,X ) is 1-compatible with a family of mea-
surable functions G from X to R.
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1. (Symmetrization and Desymmetrization; [Boucheron et al., 2013, Lemma 11.4])
Empn(G) ≤ 2Radn(G). Moreover, if Pg = 0 for all g ∈ G, then Radn(G) ≤ 2Empn(G).

2. (Ledoux-Talagrand contraction; [Boucheron et al., 2013, Theorem 11.6]) If τ : R! R is
L-Lipschitz and satisfies τ(0) = 0, and we set τ ◦G := {τ ◦g : g ∈ G}, then Radn(τ ◦G) ≤
LRadn(G).

2.2 Trimming and truncation

In this section, P is a fixed probability measure over a measurable space (X,X ), and Xε
1:n is

an ε-contaminated sample from P . For a given M > 0 define the truncation function

τM(x) :=





M , if x > M

x, if −M ≤ x ≤M

−M , if x < −M

. (2.4)

The core observation behind all problems studied in this thesis is that with high probability
under a suitable choice of the trimming level k the trimmed mean of the contaminated sample
is uniformly close (for all g ∈ G) to the empirical mean on the clean sample of a truncated
version of G. In other words, for a certain choice of k and M ,

sup
g∈G

∣∣∣T̂ ε
n,k(g)− P̂n(τM ◦ g)

∣∣∣ is small. (2.5)

This observation is a consequence of the two lemmata that we state next. Let G be a family of
functions and M > 0, define

VM(G) := sup
g∈G

n∑

i=1

1{|g(Xi)| > M}, (2.6)

in words, VM(G) counts the number of large values of g for the worst-case function g ∈ G.

The following “Counting lemma” – an abstract version of [Lugosi and Mendelson, 2021, Lemma
1] – gives a way to bound the probability that the counting function VM(G) exceeds a certain
value t.

Lemma 2.2 (Counting lemma). Let G be a countable family of functions, t ∈ N and n > 1.
Assume M > 0 is such that:

sup
g∈G

P

{
|g(X)| > M

2

}
+

8Radn(τM ◦ G, P )
M

≤ t

8n
. (2.7)

9



Then VM(G) ≤ t with probability at least 1− e−t.

The next lemma says that if VM(G) is small, then (2.5) can be justified.

Lemma 2.3 (Bounding lemma). Let G be a family of functions from X to R. Also let t ∈ N
and M ≥ 0 be such that VM(G) ≤ t. If ϕ satisfies

⌊εn⌋+ t

n
≤ ϕ <

1

2
,

then
sup
g∈G

∣∣∣T̂ ε
n,ϕn (g)− P̂n (τM ◦ g)

∣∣∣ ≤ 6ϕM.

In most of our proofs we will apply variations of the counting and bounding lemmata above.
This procedure is useful in two ways:

• it instantaneously deals with the contamination by approximating the trimmed mean on
the contaminated sample by an empirical average on the original clean sample;

• by approximating the trimmed mean by an empirical average of truncated terms it al-
lows us to use all the existing machinery on concentration and approximation inequalities
available for empirical means of bounded empirical processes. For instance, our concen-
tration results for the empirical mean (Theorems 3.1 and 3.3) rely strongly on Bousquet’s
version of Talagrand’s concentration inequality for bounded empirical processes.

Theorem 2.4 (Bousquet’s version of Talagrand’s concentration inequality, [Bousquet, 2002]).
Assume that a measure P over (X,X ) is 1-compatible with a family of functions G and |g −
Pg| ≤ C ∀g ∈ G for some constant C > 0. Define:

W := sup
g∈G

∣∣∣∣∣
1

n

n∑

i=1

(g(Xi)− Pg)

∣∣∣∣∣ where X1:n
i.i.d.∼ P

Also set σ2(G) := supg∈G P (g − Pg)2 and v := 2C Empn(G, P ) + σ2(G). Then

∀x > 0 : P

[
W ≥ Empn(G, P ) +

√
2xv

n
+
Cx

3n

]
≤ e−x.

After evoking the counting and the bounding lemmata it remains to properly choose the trim-
ming level k (and M satisfying (2.7)) in order to optimize the bounds. In this process the
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trimming level controls a bias-variance trade-off: smaller values of k induce less bias, but might
not be enough to avoid outliers from heavy-tailed distributions or contaminated sample points,
thus incurring in a higher variance; higher values of k discard most of the sample points inducing
more bias, but can better handle outliers by reducing the variance.

2.3 Proof of the lemmata

Proof [Proof of Lemma 2.2] As in [Lugosi and Mendelson, 2021, Lemma 1], we replace VM(G)
by a smoother empirical process upper bound to which we will be able to apply Ledoux-
Talagrand contraction and Bousquet’s version of Talagrand’s concentration inequality. Specif-
ically, we define

ηM(r) :=

(
2

M

(
r − M

2

)

+

)
∧ 1 (r ∈ R),

which is 2/M -Lipschitz and satisfies

∀r ≥ 0 : 1{r > M} ≤ ηM(r) ≤ 1{r > M/2}.

Notice that ηM = ηM ◦ τM , a fact that will be useful later.

To continue, we note that

∀g ∈ G : P (ηM ◦ |g|)2 ≤ P (ηM ◦ |g|) ≤ P

{
|g(X)| > M

2

}
. (2.8)

One consequence of this is that

VM(G) = sup
g∈G

n∑

i=1

1{|g(Xi)| > M} ≤ sup
g∈G

n∑

i=1

ηM ◦ |g(Xi)| ≤ n sup
g∈G

P

{
|g(X)| > M

2

}
+ nW

where W is the empirical process

W := sup
g∈G

∣∣∣∣∣
1

n

n∑

i=1

(ηM ◦ |g(Xi)| − P (ηM ◦ |g|))
∣∣∣∣∣ .

Therefore,

P [VM(G) > t] ≤ P
[
W >

t

n
− sup

g∈G
P

{
|g(X)| > M

2

}]
,

and the present lemma will follow once we bound the RHS above by e−t. To do so, we apply
Bousquet’s version of Talagrand’s concentration inequality (Theorem 2.4) to the class ηM ◦|G| =
{ηM(|g|) : g ∈ G} with C = 1 (as 0 ≤ ηM ≤ 1). Letting v = nσ2(ηM ◦ |G|)+ 2Empn(ηM ◦ |G|, P )
be as in Theorem 2.4, we deduce

P

[
W > Empn(ηM ◦ |G|, P ) +

√
2vt

n
+

t

3n

]
≤ e−t.
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Therefore, we will be done once we show that

t ≥ n sup
g∈G

P

{
|g(X)| > M

2

}
+ nEmpn(ηM ◦ |G|, P ) +

√
2vtn+

t

3
.

To prove this last inequality, we bound the empirical process via symmetrization, contraction
(ηM is 2/M -Lipschitz), the fact that ηM ◦ | · | = ηM ◦ |τM |, and our assumption (2.7) relating t,
M and n:

Emp(ηM ◦ |G|, P ) ≤ 2Radn(ηM ◦ |G|, P )
(ηM ◦ | · | = ηM ◦ |τM |) = 2Radn(ηM ◦ |τM ◦ G|, P )

(contraction + ηM ◦ | · | is 2/M -Lip.) ≤ 4

M
Radn(τM ◦ G, P )

To bound σ2(ηM ◦ |G|), we use (2.8):

σ2(ηM ◦ |G|) = sup
g∈G

P (ηM(|g|)− PηM(|g|))2 ≤ sup
g∈G

P

{
|g(X)| > M

2

}
.

As a consequence, the variance parameter v in Bousquet’s version of Talagrand’s concentration
inequality can be bounded using (2.7):

nv ≤ n sup
g∈G

P

{
|g(X)| > M

2

}
+

8nRadn(τM ◦ G, P )
M

≤ t

8
.

Combining the above bounds, we arrive at

t

3
+
√
2vtn+ nEmpn(ηM ◦ |G|, P ) + n sup

g∈G
P

{
|g(X)| > M

2

}
≤ t

3
+
t

2
+
t

8

which is enough to conclude the proof.

As for Lemma 2.3, we give the proof of a more general version of it, which will be useful in the
next chapters. The version stated in 2.3 follows directly from the one stated below:

Lemma 2.5 (Bounding lemma). Let m ∈ N and G1, . . . ,Gm be families of functions from X

to R. Also let t1, t2, . . . , tm ∈ N and M1,M2, . . . ,Mm ≥ 0 be such that VMj
(Gj) ≤ tj for each

j ∈ [m]. If ϕ satisfies
⌊εn⌋+∑m

j=1 tj

n
≤ ϕ <

1

2
,
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then for any linear combination

g :=
m∑

j=1

ajgj with aj ∈ R and gj ∈ Gj for each j ∈ [m],

we have ∣∣∣∣∣T̂
ε
n,ϕn (g)−

m∑

j=1

ajP̂n

(
τMj

◦ gj
)
∣∣∣∣∣ ≤ 6ϕ

m∑

j=1

|aj|Mj. (2.9)

Proof [Proof of Lemma 2.5] Define g̃j := ajgj and M̃j := |aj|Mj for each j ∈ [m], so that
g =

∑m
j=1 g̃j. We also have

∀j ∈ [m] : τM̃j
◦ g̃j = aj τMj

◦ gj. (2.10)

Our assumption on VMj
(Gj) implies that for each j ∈ [m] there are at most tj indices such that

|g̃j(Xi)| > M̃j. Therefore, the set

Bε := {i ∈ [n] : Xi ̸= Xε
i or |g̃j(Xi)| > M̃j for some j ∈ [m]}

has cardinality bounded by:

|Bε| ≤ ⌊εn⌋+
m∑

j=1

tj ≤ ϕn <
n

2
. (2.11)

Now define M :=
∑m

j=1 M̃j. Since g =
∑m

j=1 g̃j, we conclude from (2.11) that there are at most
ϕn indices i ∈ [n] with |g(Xε

i )| > M . Since the ϕn largest and smallest values of g(Xε
i ) are

excluded from the trimmed mean, we obtain:

T̂ ε
n,ϕn(g) = T̂ ε

n,ϕn(τM ◦ g). (2.12)

In what follows, we use this identity to compare the trimmed mean of a sum to a sum of
truncated empirical means. More specifically, we let P̂ ε

n denote the empirical measure of the
contaminated sample, and use (2.10) and (2.12) to bound:

∣∣∣∣∣T̂
ε
n,ϕn (g)−

m∑

j=1

ajP̂n

(
τMj

◦ gj
)
∣∣∣∣∣ ≤

∣∣∣T̂ ε
n,ϕn (τM ◦ g)− P̂ ε

n (τM ◦ g)
∣∣∣ (2.13)

+

∣∣∣∣∣P̂
ε
n (τM ◦ g)−

m∑

j=1

P̂n

(
τM̃j

◦ g̃j
)∣∣∣∣∣ .

To bound the first term in the RHS, notice that the empirical mean of τM(g(Xε
i )) is an average

over all sample points in the contaminated sample, whereas T̂ ε
n,ϕn (τM ◦ g) is an average over a
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subset of these points of size (1− 2ϕ)n. Since all terms in both averages are bounded by M in
absolute value, we conclude:

P̂ ε
n (τM ◦ g) = (1− 2ϕ) T̂ ε

n,ϕn(τM ◦ g) + 2ϕη

for some |η| ≤M , from which it follows that:
∣∣∣P̂ ε

n (τM ◦ g)− T̂ ε
n,ϕn(τM ◦ g)

∣∣∣ ≤ 2ϕ (|η|+ |T̂ ε
n,ϕn(τM ◦ g)|) ≤ 4ϕM. (2.14)

We now consider the difference

P̂ ε
n (τM ◦ g)−

m∑

j=1

P̂n(τM̃j
◦ g̃j) =

1

n

n∑

i=1

[
τM ◦ g(Xε

i )−
m∑

j=1

τM̃j
◦ g̃j(Xi)

]
(2.15)

The n terms inside the square brackets in the RHS are bounded in absolute value by M +
∑m

j=1 M̃j = 2M . Recalling (2.11), we claim that if i ∈ [n]\Bε, the corresponding term in the
RHS of (2.15) is zero. To see this, fix some i and note that:

• on the one hand, for each j ∈ [m], |g̃j(Xi)| ≤ M̃j and so τM̃j
◦ g̃j(Xi) = g̃j(Xi);

• on the other hand, since Xi = Xε
i , and using the above bounds, we have |g(Xε

i )| =

|g(Xi)| ≤M and

τM ◦ g(Xε
i ) = g(Xi) =

m∑

j=1

g̃j(Xi).

It follows from the claim that:

∀i ∈ [n] :

∣∣∣∣∣τM ◦ g(Xε
j )−

n∑

j=1

τM̃j
◦ g̃j(Xi)

∣∣∣∣∣ ≤ 2M1{i ∈ Bε},

and combining this with (2.11) and (2.15) gives:
∣∣∣∣∣P̂

ε
n (τM ◦ g)−

m∑

j=1

P̂n(τM̃j
◦ g̃j)

∣∣∣∣∣ ≤
2M

n
|Bε| ≤ 2Mϕ

The lemma follows from plugging the preceding display together with inequality (2.14) into
the RHS of (2.13).
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Chapter 3

Uniform mean estimation

3.1 Introduction

This section discusses a problem first posed in this form in [Minsker, 2018b].

Problem 3.1 (Uniform mean estimation). One is given a measurable space (X,X ); and family
F of measurable functions from X to R; and a family P of probability distributions over (X,X )

such that F and P are 1-compatible for all P ∈ P. For a sample size n ∈ N; a contamination
parameter ε ∈ [0, 1/2); and a confidence level 1 − α ∈ (0, 1); the goal is to find a family of
measurable functions (estimators)

{Ef : Xn ! R : f ∈ F}

with the following property: for any P ∈ P, if Xε
1:n is a ε-contaminated sample from P (cf.

§2.1.3), then:

P
[
sup
f∈F

|Ef (X
ε
1:n)− Pf | ≤ ΦP

]
≥ 1− α; (3.1)

with ΦP = ΦP (F , α, n, ε) as small as possible.

Importantly, the estimators Ef are not allowed to depend on the specific measure P ∈ P , but
may depend on F , α, n and ε. We assume implicitly that the supremum in the above event is
a random variable (i.e. it is a measurable function). Many results exists for the case where Ef

is the sample mean and ε = 0, including Gaussian approximations [van der Vaart et al., 1996,
Chernozhukov et al., 2014b] and concentration inequalities [Talagrand, 1996, Bousquet, 2002].
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However, the whole point of this thesis is that we do not expect sample means to be optimal
estimators, even when there is no contamination.

3.1.1 Relevant parameters. We consider bounds on ΦP (F , α, n, ε) in terms of mo-
ment conditions and measures of “complexity” of the class F . For 1-compatible F and P as
above, and exponents p ≥ 1, we use νp(F , P ) (2.1) as a measure of moment conditions. As
for our complexity measure of F under P , we take the expectation of the supremum of the
empirical process over an uncontaminated sample (2.2). The question we address is: how small
can we expect ΦP (F , α, n, ε) to be in terms of the above parameters?

3.1.2 Examples and their history. Problem 3.1 is related to several results in the
literature.

Single functions. Consider first the case where F = {f} consists of a single function. In this
case we omit F from our notation. The optimal value of ΦP (n, α, ε) is (up to constant factors)
a sum of two terms: a random fluctuations term and a contamination term:

inf
1≤q≤2

νp(P )

(
1

n
ln

1

α

)1− 1
q

and inf
p≥1

νq(P ) ε
1− 1

p , respectively. (3.2)

The necessity of these two terms follows from [Devroye et al., 2016, Theorem 3.1] and
[Minsker, 2018b, Lemma 5.4]1. The upper bound is achieved by the trimmed mean [Rico, 2022,
Chapter 2].

The median of means (MoM) construction [Alon and Spencer, 2016, Devroye et al., 2016] is
often used to obtain robust mean estimators. It consists of splitting the sample into K parts,
taking the sample mean of each part, and then taking the median of the K means. For
K ≈ εn+ ln(1/α), this estimator achieves:

ΦP (n, α, ε) = C inf
1≤p≤2

νp(P )

(
1

n
ln

1

α
+ ε

)1− 1
p

,

with C > 0 universal; this follows e.g. [Bubeck et al., 2013, Lemma 2] (for ε = 0) combined
with the fact that taking K ≫ εn naturally makes the estimator robust (as observed in e.g.
[Lecué and Lerasle, 2020]). In general, this bound is strictly worse than the optimal (3.2).

1The lower bound in [Minsker, 2018b, Lemma 5.4] is given for p ∈ [2, 3], but the same proof works for all
p > 1.
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Vector mean estimation under general norms. Consider the problem of estimating the
mean µP of a distribution P over Rd, with the error given by an arbitrary norm ∥ · ∥. This
problem consists of finding a measurable function µ̂ : (Rd)n ! Rd such that, if Xε

1:n is a
ε-contaminated sample from some P as above,

P [∥µ̂(Xε
1:n)− µP∥ ≤ ΦP (n, α, ε)] ≥ 1− α,

with ΦP (n, α, ε) as small as possible.

This problem is quite close to Problem 3.1. To see this notice that the mean µP satisfy
⟨v, µP ⟩ = P ⟨v, ·⟩ for all v ∈ S, where S is the dual unit ball. Thus taking F := {⟨v, ·⟩ : v ∈ S}
and given a solution {Ef}f∈F to Problem 3.1, one can define

µ̂(x1:n) ∈ arg min
µ∈Rd

(
sup
f∈F

|Ef (x1:n)− f(µP )|
)

(x1:n ∈ (Rd)n)

and one can show that it yields ΦP (n, α, ε) ≤ 2ΦP (F , α, n, ε). Conversely, any µ̂ : (Rd)n ! Rd

can be related to a mean estimator by

Ef := f ◦ µ̂ (f ∈ F),

yielding ΦP (F , α, n, ε) = ΦP (n, α, ε). We dive deeper in this problem in Chapter 6, in special
we show that our solution for Problem 3.1 improves upon the best known solutions available
in the literature.

Other examples. Minsker [Minsker, 2018a] motivates Problem 3.1 via maximum likelihood
estimation. That paper presents an estimator based on a combination of influence functions
and median of means. His estimator is optimally robust (i.e. has an optimal contamination
term) under p-th moment conditions in the range p ∈ [2, 3].

Another related problem is that of estimating probability distributions according to integral
probability metrics, as we discussed in Example 1.2.1.

3.2 Main result

The next theorem is our main contribution in the setting of Problem 3.1.

Theorem 3.1 (Proof in §3.3.2). In the setting of Problem 3.1, let P denote the family
of all probability distributions P over (X,X ) that are 1-compatible with F and such that
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Empn(F , P ) < +∞. If

ϕ :=
1

n

(
⌊εn⌋+

⌈
ln

2

α

⌉
∨
⌈(

1
2
− ε
)
∧ ε

2
n

⌉)
<

1

2
,

then the family of estimators

Ef (x1:n) := T̂n,ϕn(f ;x1:n) (x1:n ∈ Xn, f ∈ F),

satisfies the following property: if Xε
1:n is an ε-contaminated sample from some P ∈ P, then

P
[
sup
f∈F

∣∣∣T̂n,ϕn(f,Xε
1:n)− Pf

∣∣∣ ≤ ΦP

]
≥ 1− α,

where ΦP = ΦP (F , α, n, ε) is defined as follows:

ΦP = Cε

(
8Empn(F , P ) + inf

q∈[1,2]
νq(F , P )

(
ln 3

α

n

)1− 1
q

+ inf
p≥1

νp(F , P )ε1−
1
p

)
,

with Cε := 384

(
1 + ε

ε∧( 1
2
−ε)

)
.

Let us comment on this result. The last two terms in the definition of ΦP (F , α, n, ε) correspond
to the difficulty of estimating Pf with the “worst case” choice of f ∈ F . By §3.1.2, neither
term can be improved by more than a constant factor.

As we discuss in Chapter 6, Theorem 3.1 leads to improvements in the problem of vector
mean estimation. It also improves on Minsker’s result [Minsker, 2018b]. That paper obtains
“sub-Gaussian” bounds under complicated assumptions that go beyond second moments. Addi-
tionally, [Minsker, 2018b] requires approximate knowledge of the largest variance in F to obtain
optimal results; and only controls the contamination term under p-th moment assumptions for
p ∈ [2, 3].

Remark 3.2 (Is the complexity term optimal?). The complexity term Empn(F , P ) appears
in all theorems cited above. The only case this parameter is known to be necessary is that
of mean estimation for Gaussian vectors [Depersin and Lecué, 2021]. On the other hand, our
Theorem follows from a more general result that does not even require Empn(F , P ) < +∞ or
νp(F , P ) < +∞ for any p > 1; see Theorem 3.3 for details.
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3.3 Proofs

3.3.1 Trimming and truncation: a master theorem. The main results in
this thesis follow from the “master theorem” presented in this section. It may be viewed as an
abstract and extended version of the arguments in [Lugosi and Mendelson, 2021], which were
specific for mean estimation in Hilbert spaces.

In this subsection, P is a fixed probability measure over a measurable space (X,X ), and Xε
1:n

is an ε-contaminated sample from P . For a given M > 0, recall the definition of the truncation
function from (2.4). If G is a family of functions, we let

Go := {g − Pg : g ∈ G} , Go
M := {τM ◦ (g − Pg) : g ∈ G}

and also remM(G, P ) := supg∈G |PτM ◦ g|.

Theorem 3.3 (Master theorem for trimmed mean). Let m ∈ N and F1,F2, · · · ,Fm be families
of functions that are 1-compatible with P . Also let Xε

1:n be an ε-contaminated i.i.d. sample from
P . Assume that for every j ∈ [m] there exist Mj > 0, bj ∈ {0, 1} and tj ∈ N ∪ {0} satisfying
one of the following conditions:

• either bj = 0, tj = 0 and Fo
j is a.s. uniformly bounded by Mj, i.e. |fj−Pfj| ≤Mj almost

surely for all fj ∈ Fj;

• or bj = 1 and we have the bound

sup
fj∈Fj

P

{
|fj(X)− Pfj| >

Mj

2

}
+

8Radn(τMj
◦ Fo

j , P )

Mj

≤ tj
8n
. (3.3)

Also let ϕ be such that
⌊εn⌋+∑m

j=1 tj

n
≤ ϕ <

1

2
.

Let xj ≥ 0 for each j ∈ [m]. Then, with probability at least 1−∑m
j=1 (bj e

−tj + e−xj), for every
linear combination f =

∑m
j=1 ajfj, fj ∈ Fj,

∣∣∣T̂n,ϕn(f ;Xε
1:n)− Pf

∣∣∣ ≤
n∑

j=1

|aj|
{
2Empn

(
τMj

◦ Fo
j , P

)
+ ηj

}
,

where

ηj =

(
6ϕ+

3xj
n

)
Mj + remMj

(
Fo

j , P
)
+ ν2

(
τMj

◦ Fo
j , P

)√2xj
n
.
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Proof We start with some notation and conventions. For brevity, we will occasionally omit
P from our notation; for instance, we write Empn(F) instead of Empn(F , P ). We also let
X1:n

i.i.d.∼ P be a sample from P with

|{i ∈ [n] : Xi ̸= Xε
i }| ≤ ⌊εn⌋.

P̂n denotes the empirical measure of the clean sample, meaning:

P̂n g =
1

n

n∑

i=1

g(Xi) for g : X! R,

and we use T̂ ε
n,ϕn(g) := T̂n,ϕn(g;X

ε
1:n) to denote the trimmed mean computed over the contam-

inated sample.

The core observation of our proof is that if k ∈ N is properly defined and the Mj are big enough,
the “trimmed empirical process” of linear combinations on a contaminated sample is close to
the linear combination of truncated empirical processes on the clean sample, i.e.

f =
m∑

j=1

ajfj 7! T̂ ε
n,k(f)− Pf ≈

m∑

j=1

ajP̂n τMj
(fj(Xi)− Pfj), (3.4)

which is well understood and satisfies Bernstein-type concentration bounds. This will require
two lemmata that we discuss next. Let G be a family of functions and M > 0, recall the
definition of VM(G) from (2.6).

The “Counting Lemma” (Lemma 2.2) gives a way to bound the probability that the counting
function VMj

(Fo
j ) exceeds a certain value tj. This will be useful whenever Fo

j is not uniformly
bounded. On the other hand, the “Bounding Lemma” (Lemma 2.5) says that if the counting
functions {VMj

(Fo
j )}j∈[m] are all small, then (3.4) can be justified.

We come back to the proof of Theorem 3.3. Since the families Fj are 1-compatible with P ,
we may assume they are countable. Our hypotheses ensure that Lemma 2.2 can be applied to
each VMj

(Fo
j ) (with the corresponding tj) whenever bj = 1. On the other hand, when bj = 0,

the class Fo
j is bounded and VMj

(Fo
j ) = 0 ≤ tj is automatic. Combining this with Lemma 2.5

(taking Gj = Fo
j for every j ∈ [m]) we have, with probability at least 1 −∑m

j=1 bj e
−tj , for all

f =
∑m

j=1 ajfj,

∣∣∣T̂ ε
n,ϕn(f)− Pf

∣∣∣ ≤
∣∣∣∣∣

m∑

j=1

ajP̂nτMj
(fj − Pfj)

∣∣∣∣∣+ 6ϕ
m∑

j=1

|aj|Mj.
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We can bound
∣∣∣∣∣

m∑

j=1

ajP̂nτMj
(fj − Pfj)

∣∣∣∣∣ ≤
m∑

j=1

|aj|
{

sup
fj∈Fj

∣∣∣(P̂n − P )τMj
(fj − Pfj)

∣∣∣+ remMj
(Fo

j , P )

}

We bound the suprema on the RHS using Bousquet’s version of Talagrand’s concentration
inequality for each class Fo

j (Theorem 2.4) and observing that

∣∣τMj
(fj − Pfj)− PτMj

(fj − Pfj)
∣∣ ≤ 2Mj.

We finish using
√
a+ b ≤ √

a+
√
b and

√
ab ≤ a+ b

4
to bound:

√
8xjMj

n
Empn

(
τMj

◦ Fo
j , P

)
≤ 2xj

n
Mj + Empn

(
τMj

◦ Fo
j , P

)
.

3.3.2 Bounds for uniform mean estimation. We now prove our main result
on uniform mean estimation, Theorem 3.1. This will require converting the error bounds in
Theorem 3.3 into moment-based quantities. The next lemma does this; it is somewhat stronger
than what we need.

Lemma 3.4. Let Fj, tj, bj, xj and Mj satisfy the hypothesis of Theorem 3.3, define

ε̄ :=

(
1
2
− ε
)
∧ ε

1 +
∑m

j=1 bj
, tj = bj (⌈xj⌉ ∨ ⌈ε̄n⌉) and ϕ :=

⌊εn⌋+∑m
j=1 tj

n
.

Also assume ϕ < 1
2
, xj ≥ 1

3
for all j with bj = 1 and let

Cε
j := 192

(
1 +

∑m
l=1 tl
tj

+
ε

ε̄

)
.

Then, for every j with bj = 1, it is possible to choose Mj satisfying (3.3) such that

2Empn
(
τMj

◦ Fo
j , P

)
+ ηj ≤ Cε

j

{
8Empn(Fj, P ) + inf

q∈[1,2]
νq(Fj, P )

(xj
n

)1− 1
q (3.5)

+ inf
p≥1

νp(Fj, P )

(
2ε

1 +
∑m

l=1 bl

)1− 1
p

}
.
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Proof [Proof of Theorem 3.1] Apply Theorem 3.3 using m = 1, b1 = 1, x1 := ln 3
α

with t1 and
M1 as chosen in the Lemma 3.4. Inspection reveals that this leads to the bound claimed in
Theorem 3.1.

Proof [Proof of Lemma 3.4] Our goal is to find, for the values j with bj = 1, Mj such that
(3.3) holds and the bound (3.5) is valid. To start, define

b =
m∑

j=1

bj and t =
m∑

j=1

tj.

First step: choose Mj as a function of tj and Fj.

Notice that contraction and symmetrization gives

Mj ≥
256n

tj
Empn(Fj) ⇒

8Radn(τMj
◦ Fo

j )

Mj

≤ 16Empn(Fj)

Mj

≤ tj
16n

.

So, (3.3) follows if we can define

Mj = mj(tj) ∨
(
256n

tj
Empn(Fj)

)
,

with mj(tj) such that

∀f ∈ Fj : P

{
|f(X)− Pf | > mj(tj)

2

}
≤ tj

16n
.

We can explicitly find a choice of mj(t). Markov’s inequality gives, for every p ≥ 1,

sup
f∈Fj

P
(
|f(X)− Pf | > mj(tj)

2

)
≤ 2p

νpp(Fj)

mj(tj)p

and so we can take mj(tj) = 2νp(Fj)
(

16n
tj

) 1
p . Thus, we define

Mj =Mj(t) :=

(
2νp(Fj)

(
16n

tj

) 1
p

)
∨
(
256n

tj
Empn(Fj)

)

≤ 32νp(Fj)

(
tj
n

)− 1
p

+
256n

tj
Empn(Fj). (3.6)

Second step: bound 2Empn
(
τMj

◦ Fo
j , P

)
+ ηj.
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Given our choice of Mj we bound the terms of ηj. We can easily bound

remMj
(Fo

j ) = sup
f∈Fj

P (f − Pf)1|f−Pf |>Mj
≤ νpp(Fj)

Mp−1
j

≤ νpp(Fj)

mj(tj)p−1
≤ νp(Fj)

(
tj
n

)1− 1
p

and, using contraction and symmetrization,

Empn
(
τMj

◦ Fo
j

)
≤ 2Radn

(
τMj

◦ Fo
j

)
≤ 2Radn

(
Fo

j

)
≤ 4Empn(Fj).

We now bound the largest variance in τMj
◦ Fo

j in terms of the moment parameters of Fj. For
f ∈ Fj,

V
(
τMj

◦ (f − Pf)
)
≤ P

(
τMj

◦ (f − Pf)
)2 ≤ P (Mj ∧ |f − Pf |)2 ,

where the first inequality follows from bounding the variance by the second moment, and the
second is a consequence of |τMj

◦ (f − Pf)| =Mj ∧ |f − Pf |. Now, for any 1 ≤ q ≤ 2,

(Mj ∧ |f − Pf |)2 ≤M2−q
j |f − Pf |q,

so that
V
(
τMj

◦ (f − Pf)
)
≤M2−q

j ∥f − Pf∥qLq(P ) ≤M2−q
j νqq (Fj).

It gives

ν2
(
τMj

◦ Fo
j

)√2xj
n

≤
√
2

(
Mjxj
n

)1− q
2
(
νq(Fj)

(xj
n

)1− 1
q

) q
2

and we can bound, using Young’s inequality and
√
2 < 2,

ν2
(
τMj

◦ Fo
j

)√2xj
n

≤
√
2
(
1− q

2

)Mjxj
n

+
√
2
q

2
νq(Fj)

(xj
n

)1− 1
q

≤ 2

(
Mjxj
2n

+ νq(Fj)
(xj
n

)1− 1
q

)
.

Notice that
6ϕ+

4xj
n

=

(
6t

tj
+

6⌊εn⌋
tj

+
4xj
tj

)
tj
n

≤
(
4 + 6

t

tj
+ 6

ε

ε̄

)
tj
n
,

taking C ′
j = 32

(
4 + 6 t

tj
+ 6 ε

ε̄

)
and using (3.6), we have

Mj

(
6ϕ+

4xj
n

)
≤ C ′

j

(
νp(Fj)

(
tj
n

)1− 1
p

+ 8Empn(Fj)

)
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Combining the bounds gives

2Empn
(
τMj

◦ Fo
j , P

)
+ ηj ≤ 8Empn(Fj) + 2νq(Fj)

(xj
n

)1− 1
q

+Mj

(
6ϕ+

4xj
n

)
+ νp(Fj)

(
tj
n

)1− 1
p

≤ 8(1 + C ′
j)Empn(Fj) + 2νq(Fj)

(xj
n

)1− 1
q

+ (1 + C ′
j)νp(Fj)

(
tj
n

)1− 1
p

Final step: finish proof by case analysis on tj.

Recall
Cε

j := 192

(
1 +

t

tj
+
ε

ε̄

)
.

Since xj ≥ 1
3

and q ∈ [1, 2] we have

⌈xj⌉1−
1
q ≤ (xj + 1)1−

1
q ≤ 2x

1− 1
q

j ,

and we bound (⌈xj⌉
n

)1− 1
q

≤ 2
(xj
n

)1− 1
q
.

We also have ⌈a⌉ ≤ 2a when a ≥ 1. Thus, if εn ≥ 1 (i.e., when there is a contaminated sample
point) we have

⌈ε̄n⌉
n

≤ 1

n

⌈
εn

1 + b

⌉
≤ 2ε

1 + b
.

The case ε n < 1 means that there is no contamination and we might replace ε with 0, obtaining
the same bound.

We now take the infimum over q ∈ [1, 2] and p ≥ 1. If tj = ⌈xj⌉,

2Empn
(
τMj

◦ Fo
j , P

)
+ ηj ≤ 8Cε

jEmpn(Fj) + Cε
j inf
q∈[1,2]

νq(Fj)
(xj
n

)1− 1
q
.

The case tj = ⌈ε̄n⌉ gives

2Empn
(
τMj

◦ Fo
j , P

)
+ η ≤ 8Cε

jEmpn(Fj)

+ 4 inf
q∈[1,2]

νq(Fj)
(xj
n

)1− 1
q
+ Cε

j inf
p≥1

νp(Fj)

(
2ε

1 + b

)1− 1
p

.

The final bound follows from considering the two possible values of tj and performing some
overestimates.
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Chapter 4

Regression with quadratic risk: theory

and heuristics

4.1 Introduction

This chapter discusses the problem of regression with quadratic loss as studied by Lugosi and
Mendelson [Lugosi and Mendelson, 2019c] and Lecué and Lerasle [Lecué and Lerasle, 2020]. In
this setting, we consider probability measures P over product spaces X × R; and we use PX

and PR to denote the respective marginals.

Problem 4.1 (Regression with quadratic loss). One is given a measurable space (X,X ); a
convex family F of measurable functions from X to R; and a family of probability measures P
over (X × R,X × B) with the following property: for all P ∈ P, F and PX are 2-compatible;
F is closed in L2(PX); and PR has a finite second moment.

In this setup, define (for each P ∈ P):

f ⋆
P := argmin

f∈F
E(X,Y )∼P (f(X)− Y )2 . (4.1)

For a sample size n ∈ N, a contamination parameter ε ∈ [0, 1/2); and a confidence level
1− α ∈ (0, 1); find a mapping

Fn : (X× R)n ! F

with the following property: for any P ∈ P, if Zε
1:n := {(Xε

i , Y
ε
i )}i∈[n] is an ε-contaminated
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sample from P (cf. §2.1.3), then the function f̂ ε
n := Fn(Z

ε
1:n) achieves

P
[∥∥∥f̂ ε

n − f ⋆
P

∥∥∥
L2(PX)

≤ ΦP

]
≥ 1− α, (4.2)

with ΦP := ΦP (F , α, n, ε) as small as possible.

Let us make some technical comments about this problem. Firstly, to avoid delicate measura-
bility issues regarding Fn, the probability in (4.2) should be interpreted as a inner probability
P∗. Secondly, it follows from the fact that F is convex and closed in L2(PX) that f ⋆

P is uniquely
defined up to a PX-null set. With these observations, it is clear that Problem 4.1 is well-posed.
Our third comment is that we will also consider a variant of Problem 4.1 where the goal is to
minimize excess risk. Letting:

RP (f) := P (f(X)− Y )2 (f ∈ F),

one can check that
∀f ∈ F : ∥f − f ⋆

P∥2L2(PX) ≤ RP (f)−RP (f
⋆
P ).

Therefore, results on the excess risk of f = f̂ ε
n also bound the distance between f̂ ε

n and f ∗
P .

Our main result on the regression problem, Theorem 4.4 below, will give both types of bounds.
In what follows we present the definitions and conditions we need to present our solution to
Problem 4.1. The following concrete example will serve to illustrate our discussion.

Example (Linear regression with independent errors). Let X = Rd with the Borel σ-field X .
We consider the family of linear functions

F := {fβ(·) = ⟨·, β⟩ : β ∈ Rd}.

P consists of the family of distributions P such that E(X,Y )∼P [∥X∥22 + Y 2] < +∞ and, given
(X, Y ) ∼ P , there exists β⋆

P ∈ Θ with:

Y = ⟨β⋆
P , X⟩+ ξP , where ξP is mean zero and independent from X.

In this case, f ⋆
P (·) = ⟨·, β⋆

P ⟩ and the excess risk is:

RP (fβ)−RP (f
⋆
P ) = ∥⟨·, β − β⋆

P ⟩∥2L2(PX) = ⟨β − β⋆
P ,ΣP (β − β⋆

P )⟩,

where ΣP = E(X,Y )∼PXX
T is the population design matrix. We set σ2

P = E ξ2P .
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4.1.1 Relevant parameters. As with uniform mean estimation, the analysis of Prob-
lem 4.1 will depend on moment bounds and complexity parameters of the function class F . As in
previous work, the right parameters to consider are localized [Massart, 2000, Mendelson, 2015,
Lugosi and Mendelson, 2019b, Lecué and Lerasle, 2020].

Some notation. For f ∈ F , let

ℓf (x, y) := (f(x)− y)2((x, y) ∈ X× R). (4.3)

The excess risk of f is
RP (f)−RP (f

⋆
P ) = P (ℓf − ℓf⋆

P
).

Now let ξP (x, y) := y− f ⋆
P (x) denote the “regression residual” at the optimal f ⋆

P (this coincides
with the ξP in Example 4.1), and set:

mf (x, y) = mf,P (x, y) := ξP (x, y) (f(x)− f ⋆
P (x)) (f ∈ F , (x, y) ∈ X× R). (4.4)

Then the difference

ℓf (x, y)− ℓf⋆
P
(x, y) = (f(x)− f ⋆

P (x))
2 − 2mf,P (x, y)

consists of a “quadratic term” and a “multiplicative term.” As in [Lecué and Mendelson, 2013],
we note that analyzing the standard empirical risk minimizer – or other risk minimization
procedures – requires lower bounds on the quadratic part and upper bounds on the multiplier
part.

Localization, complexities and critical radii. Since Massart [Massart, 2000] it has been
known that local analyses of regression problems lead to the best results. Following Mendel-
son [Mendelson, 2015], we consider the local parameters that are relevant to the analysis of
quadratic and multiplier parts of our process. What makes these parameters “local” is that
they are parameterized by the distance to f ⋆

P . Specifically, define, for r > 0:

Fq(r, P ) :=
{
f − f ⋆

P : f ∈ F , ∥f − f ⋆
P∥L2(PX) = r

}
,

Fm(r, P ) :=
{
mf,P − Pmf,P : f ∈ F , ∥f − f ⋆

P∥L2(PX) ≤ r
}
.

As in [Lecué and Lerasle, 2020], we use Rademacher complexities (2.3) to measure the size of
these function families. Given constants δq, δm > 0, we define the critical radii

rq(δq,F , P ) := inf{r > 0 : Fq(r, P ) ̸= ∅ and Radn(Fq(r, P ), P ) ≤ δq r},
rm(δm,F , P ) := inf{r > 0 : Radn(Fm(r, P ), P ) ≤ δm r

2},
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where (by convention) the infimum of an empty set is +∞. Typically, we will take δq, δm < 1.
In this case, the intuition is that rq is the smallest radius r at which the quadratic process is
significantly larger than r2. The other critical radius rm is the smallest radius r at which the
multiplier empirical processes becomes small when compared to r2.

Remark 4.1 (Critical radii in linear regression with independent errors). In Example 4.1, one
can check that:

Radn(Fq(r, P ), P ) ≤ r

√
tr(ΣP )

n
and Radn(Fm(r, P ), P ) ≤ r σP

√
tr(ΣP )

n
.

Therefore, rq(δq,F , P ) = 0 when n ≥ tr(ΣP )/δ
2
q. Moreover,

rm(δm,F , P ) ≤
σP
δm

√
tr(ΣP )

n
.

If there is no condition on n, it is possible that rq(δq,F , P ) = +∞; for instance, this will be
the case if PX is Gaussian and n ≤ c tr(ΣP )/δ

2
q.

Moment parameters. Our results also require the introduction of two moment-related quan-
tities. The first of these is:

θ0(F , P ) := sup

{
∥f − f ⋆

P∥L2(PX)

∥f − f ⋆
P∥L1(PX)

: f ∈ F , ∥f − f ⋆
P∥L1(PX) > 0

}
(4.5)

As shown in Proposition 2 of [Lecué and Lerasle, 2019], a bound on θ0(F , P ) < +∞ is essen-
tially equivalent to a “small ball condition” on the functions f − f ⋆

P :

PX∼PX
{|f(X)− f ⋆

P (X)| ≥ c0∥f − f ⋆
P∥L2(PX)} ≥ α0 (4.6)

for c0, α0 > 0. This will give a convenient way to control the quadratic part of the excess risk.

The second moment parameter applies to the multiplier part. Given p ≥ 1, let

κp(F , P ) := sup

{
∥mf,P − P mf,P∥Lp(P )

∥f − f ⋆
P∥L2(PX)

: f ∈ F , ∥f − f ⋆
P∥L2(PX) > 0

}
.

Remark 4.2 (Moment conditions and linear regression). In the setting of Example 4.1,

θ0(F , P )−1 = inf
β∈Rd : ⟨β,ΣP β⟩=1

∥⟨·, β⟩∥L1(PX) and

κp(F , P ) =

(∥ξP∥Lp(P )

σP

)
sup

β∈Rd : ⟨β,ΣP β⟩=1

∥⟨·, β⟩∥Lp(PX).

In particular, for p > 2 the parameter κp(F , P ) depends on hypercontractivity properties of
the random variable ξP and of the one-dimensional marginals of X ∼ PX.
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4.1.2 Examples and history. The study of regression with quadratic loss is of course
quite classical. In the linear- and ridge- regression setting, a seminal contribution by Audibert
and Catoni [Audibert and Catoni, 2011] gives an estimator with strong finite-sample perfor-
mance under weak moment assumptions. However, [Audibert and Catoni, 2011] does not con-
sider contamination, requires restricting their regression method to a bounded set, and achieves
dimension-dependent bounds.

Lugosi and Mendelson [Lugosi and Mendelson, 2019b] gives regressors with “sub-Gaussian guar-
antees” in Problem 4.1 under weak moment assumptions, and for more general classes of func-
tions than [Audibert and Catoni, 2011]. In particular, the function class may be unbounded
and infinite-dimensional. Following up on [Lugosi and Mendelson, 2019b], Lecué and Lerasle
[Lecué and Lerasle, 2020] obtained the best known results on this problem. In our notation,
their bound for ΦP (F , α, n, ε) in Problem 4.1 takes the following form (up to constant factors):

θ0(F , P )2
(
rq(δq,F , P ) ∨ rm(δm,F , P ) + κ2(F , P )

√
ε+

1

n
ln

(
1

α

))
, (4.7)

with δm = 1
6144θ0(F ,P )2

and δq = 1
384θ0(F ,P )

. They also (implicitly) require a condition on the
contamination level of the form ε ≤ 1

768θ0(F ,P )2
. Both papers [Lugosi and Mendelson, 2019b,

Lecué and Lerasle, 2020] rely on median of means type constructions. Specifically,
[Lugosi and Mendelson, 2019b] requires knowledge of ΦP and [Lecué and Lerasle, 2020, The-
orem 7] requires a number of blocks bounded below by a quantity depending on the critical
radii.

Remark 4.3. Lecué and Lerasle [Lecué and Lerasle, 2020] also consider regularized versions
of Problem 4.1, and allow for non-identically distributed data, albeit in a way that requires
equalities between some expectations relating different data points (Xi, Yi). We do not consider
either generalization in this thesis.

4.2 Main result

We present a trimmed-mean-based estimator for Problem 4.1 that satisfies improved bounds.
Like [Lecué and Lerasle, 2020], we use the observation that

f ⋆
P = argmin

f∈F
P ℓf = argmin

f∈F

(
sup
g∈F

P (ℓf − ℓg)

)
,
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and define Fn via

∀z1:n ∈ (X× R)n : Fn(z1:n) ∈ argmin
f∈F

(
sup
g∈F

T̂n,ϕn (ℓf − ℓg, z1:n)

)
(4.8)

with the convention f̂ ε
n := Fn (Z

ε
1:n).

Theorem 4.4 (Proof in §4.5.1). In the setting of Problem 4.1, let P denote the family of all
probability distributions P over (X,X ) that are 2-compatible with F . Given α ∈ (0, 1) and
ε > 0 define

ϕ :=
⌊εn⌋+

⌈
ln 3

α

⌉
∨ ⌈ εn

2
⌉

n
and assume ϕ+

1

2n
ln

3

α
≤ 1

96θ20
. (4.9)

Then, there is an event E with probability at least 1− α where
∥∥∥f̂ ε

n − f ⋆
P

∥∥∥
L2(PX)

≤ ΦP (4.10)

with ΦP = ΦP (F , α, n, ε) given by

ΦP := 49152

[
rq

(
1

32θ0(F , P )
,F , P

)
∨ 16rm

(
1

448θ20(F , P )
,F , P

)]
(4.11)

+ 49152 θ0(F , P )2
[

inf
1≤q≤2

κq(F , P )
(
ln 3

α

n

)1− 1
q

+ inf
p≥1

κp(F , P ) ε1−
1
p

]
.

Moreover, in the same event E the following inequality holds:

RP

(
f̂ ε
n

)
−RP (f ⋆

P ) ≤
(
1 +

1

16θ0(F , P )2
)
Φ2

P . (4.12)

When compared to the bound on ΦP (F , α, n, ε) from (4.7), we see that our result matches the
dependence on the critical radii from [Lecué and Lerasle, 2020]. In fact, Theorem 4.4 obtains
improved values of δm and δq. The dependence on the contamination ε and on the moment
parameters κp(F , P ) is improved in our result and is optimal. The optimal dependence follows
from the optimality of 3.1, since, when second moments exists, mean estimation can be viewed
as a regression with quadratic loss over the class of constant functions.

Remark 4.5. As in [Lecué and Lerasle, 2020], Theorem 4.4 requires a restriction that ε ≤
c θ0(F , P )−2 for some positive c > 0. In §4.5.2 we explain why some such restriction is necessary
for any method, and show this relates to §4.4.2.
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4.3 Algorithms for robust linear regression

We now present some heuristics for linear regression that are related to the theoretical results
in Theorem 4.4. Our main finding, presented in §4.4, is that trimmed-mean-based methods
tend to outperform ordinary least squares and robust alternatives based on median-of-means.

Before describing our heuristics, we note that Theorem 4.4 does not translate directly into
a practical method. First of all, the definition of f̂ ε

n requires a choice of confidence level
1 − α, which is (theoretically) unavoidable for any estimator [Devroye et al., 2016, Theorem
3.2]. Theorem 4.4 also requires some knowledge of the contamination level ε, which is also
unavoidable for trimmed-mean-based methods. Finally, the min-max problem (4.8) defining
f̂ ε
n poses computational challenges. Recall that the estimator f̂ ε

n = Fn(Z
ε
1:n) is defined by the

min-max problem

Fn(z1:n) ∈ argmin
f∈F

(
max
g∈F

T̂n,k (ℓf − ℓg, z1:n)

)
. (4.13)

The difference ℓf−ℓg is convex in f and concave in g, which suggests that the min-max problem
above can be efficiently solved. Unfortunately, the trimmed mean operation T̂n,k introduces
complications; e.g. it is not obvious how to compute sub- and super-gradients. Besides that,
the TM estimator requires knowledge of the (usually unknown) contamination level ε to choose
the trimming parameter k = ϕn.

Nevertheless, we will argue that there are practical ways to choose the trimming parameter
k and to compute regressors that seem to circumvent these challenges. This requires several
algorithmic choices that we describe below. We also discuss an adaptation of the median-
of-means regression procedure of [Lecué and Lerasle, 2020] that will be compared to our own
method in the next section.

4.3.1 Preliminaries. We work in the setting of linear regression, corresponding to Ex-
ample 4.1 above. For β ∈ Rd, we write ℓβ(x, y) := (⟨β, x⟩−y)2 to denote the loss associated with
the linear regression function ⟨β, ·⟩ on a point (x, y) ∈ Rd × R. Given a trimming parameter
k ∈ [n]; points zi = (xi, yi) ∈ Rd × R, i ∈ [n]; and vectors βm, βM ∈ Rd, we may write:

T̂n,k
(
ℓβm − ℓβM ; z1:n

)
=

1

n− 2k

∑

i∈Ik(βm,βM ,z1:n)

(
(⟨xi, βm⟩ − yi)

2 − (⟨xi, βM⟩ − yi)
2
)
,

where Ik(βm, βM , z1:n) – called the active set for (βm, βM , z1:n) – is the set of indices i ∈ [n] that
appear in the trimmed mean, i.e., the set obtained once the k largest and k smallest values of
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(⟨xi, βm⟩ − yi)
2 − (⟨xi, βM⟩ − yi)

2 are removed (with ties broken arbitrarily). Our heuristic will
be described in two steps. First, we describe how to optimize the choice of βm and βM for a
specific k. Second, we present a cross-validation procedure to choose the trimming parameter.

4.3.2 Optimization for a fixed trimming level. Assume that the trimming
parameter is fixed at some value k. We consider two algorithms to evaluate (4.13): the Plug-in
method (Algorithm 1) and the Alternating Direction Method of Multipliers (ADMM, Algorithm
2), which is an adaptation of the best performing method in [Lecué and Lerasle, 2020].

input : (x1, y1), · · · , (xn, yn) ∈ Rd × R: the data
βm
0 , β

M
0 ∈ Rd: initial guesses

ϕ: trimming level
Tmax: number of iterations

output : β⋆
ϕ: an approximate solution for the min-max problem

t 0

k  ⌊ϕn⌋
while t < Tmax do

Imt  Ik
(
βm
t , β

M
t , z1:n

)
(get active indices)

βm
t+1  Fit

(
{(xi, yi)}i∈Imt

)

IMt  Ik
(
βm
t+1, β

M
t , z1:n

)
(update active indices)

βM
t+1  Fit

(
{(xi, yi)}i∈IMt

)

t t+ 1

end

β⋆
ϕ  argmin

{
T̂n,k(ℓβ, z1:n) : β ∈ ⋃Tmax

t=1 {βm
t , β

M
t }
}
.

Algorithm 1: Plug-in algorithm.

The Plug-in method relies on the existence of a black-box function Fit that on input ((xi, yi))i∈I
(with I ⊂ [n] nonempty) will return a vector

β((xi, yi)i∈I) ∈ argmin
β∈Rd

1

|I|
∑

i∈I

(⟨β, xi⟩ − yi)
2 .

The idea is that the set I will correspond to the set of active indices, of size (1−2ϕ)n = n−2k.
Te algorithm alternates between optimizing βm and βM for a fixed set I, and updating I to be
the current active set. The output of the algorithm is vector produced in the iterations that
minimizes the trimmed mean estimate of the loss.
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input : (x1, y1), · · · , (xn, yn) ∈ Rd × R: the data
βm
0 , β

M
0 ∈ Rd: a initial guess

ϕ: trimming level
Tmax: number of iterations
ρ: multiplier parameter

output : β⋆
ϕ: an approximate solution for the min-max problem

t 0

k  ⌊ϕn⌋
while t ≤ Tmax do

Imt  Ik
(
βm
t , β

M
t , z1:n

)
(get active indices)

βm
t+1  

(
xTImt xI

m
t
+ ρId

)−1 (
xTImt yI

m
t
+ ρβm

t

)

IMt  Ik
(
βm
t+1, β

M
t , z1:n

)
(get updated active indices)

βM
t+1  

(
xT
IMt
xIMt + ρId

)−1 (
xT
IMt
yIMt + ρβM

t

)

t t+ 1

end

β⋆
ϕ  argmin

{
T̂n,k(ℓβ, z1:n) : β ∈ ⋃Tmax

t=1 {βm
t , β

M
t }
}
.

Algorithm 2: Alternating Direction Method of Multipliers.

Algorithm 2 differs from its analogue in [Lecué and Lerasle, 2020] in three ways. First, their
estimator is based on the MoM principle. Second, that paper considers a sparse regression
setting with an ℓ1 penalty. Third, the final output β⋆

ϕ in [Lecué and Lerasle, 2020] is simply
the final iterate βm

Tmax
. Preliminary experiments show that choosing β⋆

ϕ as a minimizer of the
trimmed empirical risk improves the performance of both algorithms more than 90% of the
time in all settings considered in what follows.

For the Plug-in method, we set Tmax = 20 in all experiments, as solutions do not improve beyond
this number iterations. For the same reasons, we set Tmax = 50 for ADMM. The parameter ρ
in Algorithm 2 is set to 5 as in [Lecué and Lerasle, 2020]. The initial choices for βm

0 , β
M
0 are

random perturbations of OLS solutions on the full data.

4.3.3 Cross-validation. We now consider the problem of choosing the trimming level
ϕ for best-possible performance. Following [Lecué and Lerasle, 2020] we choose k via a cross-
validation procedure.

Let (zi)ni=1 = (xi, yi)
n
i=1 be the data points. Assume that ϕ1 ≤ ϕ2 ≤ · · · ≤ ϕm is an ordered grid
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of possible choices for ϕ. Let v ≤ n be the number of folds: that is, [n] is partitioned into sets
{Bl}vl=1 with respective sizes nl := |Bl| ∈ {⌊n/v⌋, ⌊n/v⌋+ 1}. The procedure works as follows.

1. For each choice of (j, l) ∈ [m] × [v], let β⋆
ϕj
([n] − Bl) be the output of Algorithm 1 (or

Algorithm 2) on the n− nl data points (xi, yi)i ̸∈Bl
.

2. For each choice of (j, l) ∈ [m]× [v], estimate the loss of β⋆
ϕj
([n]−Bl) via a trimmed mean

with level ϕj on the fold Bl:

L(j, l) := T̂nl,ϕjnl

(
ℓfj,l , (zi)i∈Bl

)
.

3. For each j ∈ [m], associate a loss with trimming level ϕj via

L(j) := median(L(j, l) : l ∈ [v]).

4. Choose ϕ⋆ = ϕj⋆ where j⋆ = argmaxj=2,...,m
L(j−1)
L(j)

.

5. Compute the final estimator β⋆
ϕ⋆ by running Algorithm 1 (or Algorithm 2) with trimming

level ϕ⋆ on the full dataset (zi)i∈[n].

Intuitively, the choice of trimming level ϕ⋆ = ϕj⋆ corresponds to the point at which in-
creasing j induces the largest drop in the loss. This is inspired by the Slope Heuristic
[Birgé and Massart, 2001]. We here call the choice of ϕ⋆ made using step (4) above as choice
by slope maximization (abbr. max slope). We also test a variant of step (4), that is used in
[Lecué and Lerasle, 2020]:

4′. Choose ϕ⋆ = ϕj⋆ where j⋆ = argminj=1,...,m L(j).

We call this last variant choice by loss minimization (abbr. min loss). Both approaches will
be compared in the next section. We note in passing that we have fixed v = 5 folds in all our
experiments.

4.3.4 Median of Means (MoM). We compare the performance of the
trimmed mean estimator against a variant of the Median of Means procedure from
[Lecué and Lerasle, 2020]. MoM requires splitting the n data points into K buckets of approx-
imately equal size. These splits are performed randomly at each iteration, as recommended
in [Lecué and Lerasle, 2020]. The parameter K is a close analogue of the trimming parameter
k in our procedure. This allows us to adapt the optimization and cross validation procedures
described above. In brief:
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• To adapt Algorithm 1, we use a different concept of active set. Consider the blocks
A1, . . . , AK ⊂ [n] used by the median-of-means construction. Then the active set
Ik(β

m, βM) is the block of indices Ar for which

1

#Ar

∑

i∈Ar

(ℓβm(xi, yi)− ℓβM (xi, yi))

= median

{
1

#As

∑

i∈As

(ℓβm(xi, yi)− ℓβM (xi, yi)) : s ∈ [K]

}
,

with ties between blocks broken arbitrarily.

• When performing the optimization iterations, the blocks of median-of-means are resam-
pled uniformly at random at each step.

• The cross validation procedure is now over choices of Kj. However, the loss estimate
L(j, l) are performed via a MoM estimator using the data in fold Bl with Kj/v blocks.

One important difference should be noted. The original algorithm in [Lecué and Lerasle, 2020]
was designed for sparse linear regression in a d ≫ n setting. By contrast, our own anal-
ysis is restricted to d ≪ n and our algorithmic choices for MoM were optimized for this
case. This explains why our version of the MoM method is somewhat different from that in
[Lecué and Lerasle, 2020].

4.4 Experiments with linear regression

We perform experiments in two different data generation setups. Setup A (§4.4.1) favors robust
methods and is analogous to [Lecué and Lerasle, 2020]. Setup B (§4.4.2) is closely related to
Remark 4.5 and favors the OLS. In our experiments the cross-validation procedure (§4.3.3) uses
v = 5 folds and selects the TM parameter ϕ among the values in

Λ :=

{
ε′ +

1

30
: ε′ ∈

{
0,

2

100
,

4

100
,

6

100
,

8

100
,
10

100
,
15

100
,
20

100
,
30

100
,
40

100

}}
,

and the number of buckets for the MoM from the values in {2ϕn+ 1 : ϕ ∈ Λ}. Each parameter
combination underwent 96 runs of the experiment. A GitHub repository with code to reproduce
all figures and experiments here can be found at

github.com/lucasresenderc/trimmedmean.
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4.4.1 Setup A. We consider a linear model. Let d ≥ 1 be an integer and X1, X2, · · · , Xn

be i.i.d. standard Gaussian’s. For i ∈ [n], define

Yi = ⟨Xi, β
⋆⟩+ ξi where β⋆ =

1√
d
[1, 1, · · · , 1] ∈ Rd

and the ξi are errors. To obtain the error random variables, we first sample

η1:n
i.i.d.∼ Normal(0, 1) (light tails) or η1:n

i.i.d.∼ Student(ν) with ν ∈ {1, 2, 4} (heavy tails)

independently from X1:n. We then define ξ1:n in one of four ways.

1. Homoscedastic/non-skewed: simply set ξi = ηi for each i ∈ [n].

2. Homoscedastic/skewed: set ξi = T (ηi) for each i ∈ [n], where

T (x) = log(x)1x>1 + (x− 1)1x≤1(x ∈ R).

3. Heteroscedastic/non-skewed: in this case we take ξi = exp(∥Xi∥2)/2) ηi for each i ∈ [n].

4. Heteroscedastic/skewed: set ξi = exp(∥Xi∥2)/2)T (ηi) for each i ∈ [n], with T as above.

In total, the four different choices for the law of the η1:n and the four items above correspond
to 16 cases. As is implicit above, the different choices for η1:n lead to different tail behaviors:
Student with ν = 1 is symmetric but does not have first moment; ν = 2 gives a finite mean but
not a finite variance; ν = 4 induces finite mean, variance and third moment; and the normal
law has finite moments of all orders.

The contamination model for Setup A is defined as follows: a set of indices O ⊂ [n] of size ⌊εn⌋
is chosen uniformly at random, and then one sets

(Xε
i , Y

ε
i ) = (Xi, Yi) ∀i ̸∈ O and (Xε

i , Y
ε
i ) = (β⋆, 10000) ∀i ∈ O.

Remark 4.6. Before proceeding, notice that our setup is such that the L2 error ∥⟨β, ·⟩ −
⟨β⋆, ⟩∥L2(PX) equals the Euclidean distance between β and β⋆.

Figure 4.1 presents two extreme cases of Setup A, both using d = 20 and n = 300 and on the
homoscedastic/non-skewed configuration. As expected, the OLS performs poorly when ε > 0

and also when the error is heavy tailed. The TM performs well even when the contamination
is high, with a slight increase in error compared to the no-contamination case. The MoM
regression error is larger in all cases, with the exception of ε ≥ 0.2 under heavy-tailed noise.
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(a) Normal error (ξ ∼ Normal(0, 1)).
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(b) Heavy-tailed error (ξ ∼ Student(ν = 1)).

Figure 4.1: L2 error behavior varying the contamination proportion under Setup A, on the
homoscedastic/non-skewed configuration.
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(b) Parameter choices for 4.1b.

Figure 4.2: Trimming/bucket parameters selected by cross-validation varying ε under Setup A.

Figure 4.2 offers insights on how the two methods select their parameters (the trimming level
for TM and the number of buckets for MoM). Intuitively, in order to mitigate the effect of
contamination, one expects cross-validation to choose k = εn for the TM and (by the pigeonhole
principle) K = 2εn + 1 buckets for the MoM. This is observed in Figure 4.2 for ε > 0.02,
coinciding with the cases where the OLS performs poorly in Figure 4.1. For smaller ε, both
TM and MoM make conservative parameter choices.

4.4.2 Setup B. This distribution and contamination model are a caricature of missing
data and favors OLS. Let p ∈ (0, 1]. Take independent

X ′
1:n

i.i.d.∼ Normal(0d, Id×d), ξ1:n
i.i.d.∼ Normal(0, 1) and B′

1:n
i.i.d.∼ Ber(p).
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Figure 4.3: Experiments varying the contamination proportion using Setup B.

The uncontaminated data is given by

Xi := Bi
X ′

i√
p

and Yi = ⟨Xi, β
⋆⟩+ ξi ∀i ∈ [n],

where β⋆ = 1
d
[1, 1, . . . , 1] as in the previous case. The contamination model is defined as follows.

Take a subset O ⊂ {i ∈ [n] : Bi = 1} that satisfies |O| ≤ εn and is as large as possible. Set
Bε

i = 0 when Bi = 0 or i ∈ O, and Bε
i = 1 otherwise. The contaminated sample is

Xε
i = Bε

i

X ′
i√
p

and Y ε
i = ⟨Xε

i , β
⋆⟩+ ξi ∀i ∈ [n].

Figure 4.3 displays the performance of OLS, TM and MoM in Setup B with d = 5 and n = 1000.
It contrasts with Figure 4.1 since the OLS is no longer losing to the robust estimators in most
cases. Intuitively, OLS ignores points with Bε

i = 0. The performance of TM is slightly worse
than that of OLS, whereas MoM can often be significantly worse.

4.4.3 A more comprehensive comparison between methods. We design
an experiment to simultaneously compare: the performance of the Plug-in method and the
ADMM; the two cross-validation parameter selection variations (max slope and min loss) both
in terms of its ability to estimate the contamination level and in terms of the error obtained;
the overall performance of the trimmed-mean-based-regression against the median-of-means-
based-regression.

For that experiment we use Setup A (§4.4.1). The different choices for the ξ1:n lead to 16
different possibilities for the uncontaminated data distribution. We vary the contamination
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Thus giving 160 combinations of data distributions and contamination levels. In all cases,
we set d = 20, n = 300, and we evaluate performance by performing 96 independent trials.
Moreover, cross-validation with always be performed with v = 5 folds.

For each trial, and each regression method (TM vs MoM), we evaluated the performance of the
four different combinations of optimization and cross-validation methods: ADMM with max
slope, Plug-in with max slope, ADMM with min loss and Plug-in with min loss. The grid of
values for ϕ used during the cross-validation for the trimmed-mean-based-regression was
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Figure 4.4: Ratio between the L2 error of the median-of-means-based-regression and the error of
the trimmed-mean-based-regression on the four combinations of algorithm and cross-validation
strategy. Blue: TM outperforms MoM; Orange: MoM outperforms TM.

Figure 4.4 compares how median-of-means-based-regression and trimmed-mean-based-
regression perform in each combination of algorithm and cross-validation alternative. The
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Figure 4.5: Cross-validation procedure for trimmed-mean-based-regression: average trimming
level (k = ϕn) selected by cross-validation on the four combinations of algorithm and cross-
validation strategy.
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Figure 4.6: Cross-validation procedure for median-of-means-based-regression: average number
of buckets (K) selected by cross-validation on the four combinations of algorithm and cross-
validation strategy.
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Figure 4.7: First panel: best choice of algorithm and cross-validation strategy to Trimmed
Mean. Second panel: best choice of algorithm and cross-validation strategy to Median of
Means. Last panel: ratio of the errors using the best choices for both Median of Means and
Trimmed Mean.

colors in the plot represent the ratio of the L2 errors of MoM and TM estimators in each setup:
the bluer the color, the bigger the advantage of TM over MoM. When ADMM is used, the
trimmed mean significantly outperforms MoM. By contrast, the difference between the MoM
and the TM with the Plug-in method is less noticeable.

Figures 4.5 and 4.6 shows the trimming level k = ϕn the average number of buckets K and
selected by the cross-validation procedures for the median-of-means-based-regression and the
trimmed-mean-based-regression procedures, respectively. In both cases, the min slope heuristic
helps the method choose a parameter that is more closely related to the contamination level.
This effect is more pronounced for TM, but also visible for MoM. We do note that both cross-
validation methods are conservative for small contamination levels.

The leftmost panels of Figure 4.7 shows the best combination of optimization algorithm and
cross-validation strategy for each choice of distribution and contamination level, both for TM
and MoM. In the rightmost panel, we plot the ratio of the L2 errors of the best combinations
for MoM and TM. We highlight the following conclusions:
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• For the trimmed mean, the combination of Plug-in optimization and max slope cross-
validation is the best-performing method.

• For median-of-means, by contrast, plug-in with min-loss cross-validation is the best per-
forming method.

• The best TM outperforms the best MoM in most cases. Exceptions occur when the error
has a very heavy tail and heteroscedasticity is present, or when the contamination level
is very high (ε ≥ 0.3).

4.5 Proofs

4.5.1 Bounds for regression. We prove Theorem 4.4 below. The notation introduced
in §4.1.1 and in the statement of Theorem 4.4 will be used throughout this subsection. The
probability measure P will often be implicit throughout the section. We will sometimes use
the following property,

∀f ∈ F : P mf = P ξP (X, Y )(f(X)− f ⋆
P (X)) ≤ 0, (4.14)

where mf = mf,P is the “multiplier term” from (4.4). Indeed, (4.14) is the first-order optimality
condition for f ⋆

P = argminf∈F P (Y − f(X))2.

In what follows, Zε
1:n is an ε-contaminated sample from P . Similarly to the proof of Theorem

3.3, we write T̂ ε
n,k(·) := T̂n,k(·, Zε

1:n). The estimator f̂ ε
n ∈ F of f ⋆

P ∈ F is obtained solving the
minimization problem

f̂ ε
n ∈ argmin

f∈F

(
sup
g∈G

T̂ ε
n,ϕn (ℓf − ℓg)

)
.

The next Lemma reduces Theorem 4.4 to proving localized upper and lower bounds on certain
trimmed means. Introduce the notation:

rf := ∥f − f ⋆
P∥L2(PX) .

Lemma 4.7. If r > 0 and γ > 0 are such that

inf
rf=r

T̂ ε
n,ϕn

(
ℓf − ℓf⋆

P

)
≥ γ ≥ 2 sup

rf≤r
T̂ ε
n,ϕn (mf − Pmf ) , (4.15)

then rf̂ε
n
=
∥∥∥f̂ ε

n − f ⋆
P

∥∥∥
L2(PX)

≤ r and R(f̂ ε
n)−R(f ⋆

P ) ≤ r2 + 2γ.
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Proof The proof proceeds in three stages that follow the “localization + fixed point” outline
from previous work [Lecué and Lerasle, 2020, Mendelson, 2015]. In the first stage, we use a
localization argument and show:

∀f ∈ F : T̂ ε
n,ϕn

(
ℓf − ℓf⋆

P

)
{
> γ, rf > r;

≥ −γ, rf ≤ r.
(4.16)

In the second stage, we bound rf̂ε
n

via (4.16) and a “fixed point” argument. In the final stage,
we notice that an excess risk bound is implicit in the first two steps.

Localization: our goal here is to prove (4.16). Since F is convex, we can scale down elements
f ∈ F with rf > r to elements f̄ ∈ F with rf̄ = r and bound the corresponding trimmed mean
via our assumption. Explicitly, assume qf =

rf
r
> 1 and define f̄ = f ⋆

P +
f−f⋆

P

qf
, so that f̄ ∈ F

by convexity and rf̄ = r. We obtain

T̂ ε
n,ϕn

(
ℓf − ℓf⋆

P

)
= T̂ ε

n,ϕn

(
q2f (f̄ − f ⋆

P )
2 − 2mf̄

)

≥ qf T̂
ε
n,ϕn

(
ℓf̄ − ℓf⋆

P

)
> γ using (4.15) and qf > 1.

This proves (4.16) for rf > r. For rf ≤ r, we use (4.14) and (f − f ⋆
P )

2 ≥ 0 to obtain

T̂ ε
n,ϕn

(
ℓf − ℓf⋆

P

)
= T̂ ε

n,ϕn

(
(f − f ⋆

P )
2 − 2mf

)

≥ T̂ ε
n,ϕn

(
(f − f ⋆

P )
2 − 2 (mf − Pmf )

)

≥ −2T̂ ε
n,ϕn (mf − Pmf ) ≥ −γ by (4.15).

Fixed point argument: for any f ∈ F , let

∆(f) = sup
g∈F

T̂ ε
n,ϕn (ℓf − ℓg) ,

so that f̂ ε
n minimizes ∆ over F . Therefore,

T̂ ε
n,ϕn

(
ℓf̂ε

n
− ℓf⋆

P

)
≤ ∆(f̂ ε

n) ≤ ∆(f ⋆
P ) (4.17)

The bounds in (4.16) show that for any g ∈ F :

T̂ ε
n,ϕn(ℓf⋆

P
− ℓg) ≤

{
γ, rg ≤ r;

−γ, rg > r.

Since γ > 0, we obtain ∆(f ⋆
P ) ≤ γ. This implies via (4.17) that T̂ ε

n,ϕn

(
ℓf̂ε

n
− ℓf⋆

P

)
≤ γ. We

deduce that rf̂ε
n
≤ r via assumption (4.15).
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Excess risk: we have:
RP (f̂

ε
n)−RP (f

⋆
P ) = r2

f̂ε
n
− 2P mf̂ε

n
.

The first term in the RHS is ≤ r2 by the above. The second can be bounded by:

−2Pmf̂ε
n
= 2T̂ ε

n,ϕn

(
mf̂ε

n
− Pmf̂ε

n

)
− 2T̂ ε

n,ϕn

(
mf̂ε

n

)

≤ 2T̂ ε
n,ϕn

(
mf̂ε

n
− Pmf̂ε

n

)
+ T̂ ε

n,ϕn

(
ℓf̂ε

n
− ℓf⋆

P

)

≤ γ +∆(f̂ ε
n) ≤ 2γ,

where the last line follows from (4.15) combined with rf̂ε
n
≤ r and the calculations in the

previous step.

We now apply Lemma 4.7 to prove our main result on regression.

Proof [Proof of Theorem 4.4] We continue to use the notational conventions introduced above.
Our goal is to find an event E and a constant γ > 0 such that assumption (4.15) of Lemma 4.7
holds in E, with the value of r := ΦP (F , n, α, ε) defined in (4.11), and a suitable γ > 0. Let
x := ln 3

α
≥ 1

3
. Following (4.11), we set

θ0 := θ0(F , P ), δq :=
1

32θ0
and δm =

1

448θ20
. (4.18)

First step: lower bound quadratic part by Lipschitz term.

Lemma 4.7 requires control from below of ℓf − ℓf⋆
P
, which includes a quadratic term. However,

our assumptions are on the process f−f ⋆
P without the square. Therefore, our first step will be to

find a bounded Lipschitz minorant for the quadratic term, to which we can apply concentration
and contraction. Specifically, consider a, c > 0 with 2c > a (specific values to be chosen later).
Define

ψ(y) = r2
(
2a

( |y|
r

∧ c
)
− a2

)

+

(y ∈ R).

Then:

1. 0 ≤ ψ(y) ≤ y2 for all y ∈ R: this follows from the fact that the graph of y 7! y2 is lower
bounded by the tangent line at y = ar;

2. ψ is 2ar-Lipschitz with ψ(0) = 0; and

3. ψ is bounded above by the constant Mq := r2(2ac− a2).
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Thus, for all f ∈ F with rf = r:

T̂ ε
n,ϕn

(
ℓf − ℓf⋆

P

)
≥ T̂ ε

n,ϕn (ψ(f − f ⋆
P )− 2(mf − Pmf )) , (4.19)

where we also used (4.14).

Second step: define E and lower bound P [(]E) via Theorem 3.3.

Recall that our goal is to prove the existence of an event E with P [(]E) ≥ 1 − α so that,
when E holds, both (4.10) and (4.12) are satisfied. To do this, we recall the definition of
Fq(r) = Fq(r, P ) and Fm(r) = Fm(r, P ) from §4.1.1, and set:

F1 := ψ ◦ Fq(r) =
{
ψ(f − f ⋆

P ) : f ∈ F , ∥f − f ⋆
P∥L2(PX) = r

}
; (4.20)

F2 := Fm(r) =
{
mf − Pmf : f ∈ F , ∥f − f ⋆

P∥L2(PX) ≤ r
}
. (4.21)

Now define

ηq :=

(
6ϕ+

3x

n

)
Mq + ν2 (F1)

√
2x

n
, (4.22)

with Mq as above, and

ηm :=

(
6ϕ+

3x

n

)
Mm + remMm (F2) + ν2 (τMm ◦ F2)

√
2x

n
, (4.23)

with Mm soon to be defined. The event E is defined as follows:

E =





∀aq, am ∈ R, fq ∈ Fq(r), fm ∈ Fm(r)∣∣∣T̂ ε
n,ϕn(aqψ(fq) + amfm)− aqPψ(fq)

∣∣∣ ≤

|aq| {2Empn (Fo
1 ) + ηq}+ |am| {2Empn (τMm ◦ F2) + ηm}





The event E is measurable because F has a countable dense subset. We now argue that E is
precisely the kind of event whose probability is bounded in Theorem 3.3. To see this, we follow
the notation in that theorem, set m := 2, x1 = x2 = x and F1 and F2 as above. We make the
following choices of Mi, bi and ti:

• The functions in F1 = ψ ◦ Fq(r) take values in [0,Mq], so their expectations are also in
this range. It follows that all functions in the centered class Fo

1 are bounded by M1 :=Mq

in absolute value. This means we can take t1 = b1 = 0.

• Now consider F2 = Fm(r). Note that Pfm = 0 for all fm ∈ Fm(r), so F2 = Fo
2 . Since F2

may be unbounded, we will take b2 = 1, and use Lemma 3.4 to obtain Mm := M2 and
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t2 ≥ x2 satisfying the assumptions of Theorem 3.3 and also the bound

2Empn (τMm ◦ F2) + ηm ≤ Cε

{
8Empn(F2) + inf

q∈[1,2]
νq(F2)

(
ln 3

α

n

)1− 1
q

+ inf
p≥1

νp(F2)ε
1− 1

p

}
,

where Cε := 384

(
1 + ε

ε∧( 1
2
−ε)

)
can be bounded by 768 noticing that (4.9) implies ε ≤

1
96θ20

< 1
4
. Using further that νp(F2) = νp(Fm(r)) ≤ r κp(F), we obtain the bound:

2Empn (τMm ◦ F2) + ηm ≤ 768

{
8Empn(F2) + r inf

q∈[1,2]
κq(F)

(
ln 3

α

n

)1− 1
q

(4.24)

+r inf
p≥1

κp(F)ε1−
1
p

}
,

The upshot of this discussion is that Theorem 3.3 can indeed be used to bound the probability
of E, and we obtain:

P [(]E) ≥ 1− 3e−x ≥ 1− α.

From now on, we perform all calculations deterministically while assuming that E holds.

Third step: bounds assuming E holds.

We combine the lower bound from the first step with the one defining the event E. Taking
aq = 0, am = 2 in E gives, for rf ≤ r,

2T̂ ε
n,ϕn (mf − Pmf ) ≤ 2 {2Empn (τMm ◦ F2) + ηm}︸ ︷︷ ︸

(i)

. (4.25)

Similarly, to consider rf = r we take aq = 1, am = −2 in E and obtain

T̂ ε
n,ϕn

(
ℓf − ℓf⋆

P

)
≥ T̂ ε

n,ϕn (ψ(f − f ⋆
P )− 2 (mf − Pmf )) (4.26)

≥ inf
fq∈Fq(r)

Pψ(fq)

︸ ︷︷ ︸
(ii)

−




2Empn (Fo

1 )︸ ︷︷ ︸
(iii)

+ ηq︸︷︷︸
(iv)





− 2 {2Empn (τMm ◦ F2) + ηm}︸ ︷︷ ︸
(i)

,

where the last inequality is where we need E to hold.
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The bounds in (4.26) and (4.25) are still unwieldy. To obtain more useful bounds for (i - iv),
we need a few calculations that are quite messy and not too enlightening.

Bound (i). Note that, since r ≥ rm(δm) one has Fm(r)/r ⊂ Fm(rm(δm))/rm(δm). Combining
this with symmetrization and the definition of rm(δm), we obtain:

Emp(Fm(r)) ≤ 2Rad(Fm(r)) ≤
2r

rm(δm)
Rad(Fm(rm(δm))) ≤ 2δm r rm(δm).

By (4.24), we obtain:

(i) ≤ 1536 r

{
16δmrm(δm) + inf

q∈[1,2]
κq(F)

(x
n

)1− 1
q
+ inf

p≥1
κp(F)ε1−

1
p

}
≤ 14δmr

2, (4.27)

where the upper bound is provided by the choice of r = ΦP (F , α, n, ε) in (4.11) and the choice
of δm in (4.18).

Bound (ii). Using y ∧ c ≥ y − y2

c
and the definition of θ0 we can bound, for rf = r,

Pψ(f − f ⋆
P ) ≥ P

{
r2
(
2a

( |f − f ⋆
P |

r
− |f − fq|2

r2c

)
− a2

)}
≥ r2

{
2a

(
1

θ0
− 1

c

)
− a2

}
.

Bound (iii). Using contraction and symmetrization (Theorem 2.1) together with the fact that
r ≥ rq(δq) give:

Empn (Fo
1 ) = Empn (ψ ◦ Fq(r)) ≤ 2Radn (ψ ◦ Fq(r)) ≤ 4arRadn (Fq(r)) ≤ 4aδqr

2.

Bound (iv). Since F1 = ψ ◦ Fq(r), ψ(0) = 0 and ψ is 2ar-Lipschitz,

ν2 (Fo
1 ) ≤ 2ar sup

fq∈Fq(r)

∥fq∥L2(PX) = 2ar2.

Observe that remMq (Fo
1 ) = 0 because Fo

1 is uniformly bounded by Mq, thus

ηq ≤
(
6ϕ+

3x

n

)
Mq + 2ar2

√
2x

n
.

End of third step. From (4.25) and (4.27) we have

2 sup
rf≤r

T̂ ε
n,ϕn (mf − Pmf ) ≤ 14δmr

2. (4.28)

Observe that (4.9) and our choice x = ln 3
α

imply
√

2x

n
≤
√

1

4

(
6ϕ+

3x

n

)
≤ 1

8θ0
,
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so, (4.26) and the bounds on (i-iv) give

T̂ ε
n,ϕn

(
ℓf − ℓf⋆

P

)
≥ r2

{
2a

(
1

θ0
− 1

c

)
− a2

}
− 8aδqr

2 (4.29)

−
(
6ϕ+

3x

n

)
Mq − 2ar2

√
2x

n
− 14δmr

2

((4.9) + Mq ≤ 2acr2) ≥ r2
{
2a

(
1

θ0
− 1

c
− c

16θ20
− 1

8θ0
− 4δq

)
− a2

}
− 14δmr

2.

Final step: apply Lemma 4.7 via choices of constants.

We finish the proof via an application of Lemma 4.7, assuming as before that E holds. Recall
r := ΦP and take γ := (32θ20)

−1r2. We defined δm = (448θ20)
−1 in (4.18); therefore, (4.28) gives

condition (4.15) for rf ≤ r. Now consider the lower bound for T̂ ε
n,ϕn

(
ℓf − ℓf⋆

P

)
when rf = r.

Recall from (4.18) that δq = (32θ0)
−1. Insert this into the RHS of (4.29) and optimize over

2c > a > 0. This leads to the choices c = 4θ0 and a = c−1, giving

r2 sup
a,c>0: 2c>a

2a

(
1

θ0
− 1

c
− c

16θ20
− 1

8θ0
− 4δq

)
− a2 =

r2

16θ20
= 2γ.

Finally, combine (4.29) and (4.25) to obtain:

when rf = r : T̂ ε
n,ϕn

(
ℓf − ℓf⋆

P

)
≥ γ.

This gives the missing half of (4.15). Therefore, Lemma 4.7 may be applied, and this finishes
the proof.

4.5.2 The relation between contamination level and the small-ball
assumption. This section corresponds to Remark 4.5, where we note that a restriction of
the form ε ≤ c θ0(F , P )−2 is necessary in the setting of robust regression with quadratic loss
(as in Theorem 4.1).

To prove this, we use a family of distributions and a contamination model discussed in §4.4.2.
Given a dimension d ∈ N and a parameter p ∈ (0, 1), let X ′ ∼ Normal(0Rd , Id×d), ξ ∼
Normal(0, 1) be independent. Given β ∈ Rd, we let Pβ denote the distribution of the random
pair (X, Y ) given by

X = Bi
X ′
√
p

and Y = ⟨X, β⟩+ ξ.

Because X is isotropic, robust linear regression in this setting consists of estimating β in the

48



Euclidean norm from an ε-contaminated i.i.d. sample from Pβ. Now, clearly,

∀β ∈ Rd : θ0(F , Pβ) =

√
π

2p
.

The next Lemma roughly says that a contaminated sample from Pβ with ε > c θ0(F , P )−2

essentially contains no information about β. More precisely, the Lemma implies via standard
arguments that for any R > 0, one can find at least one β ∈ Rd for which the error of any
estimator for β will be larger than R, with probability ≥ 1− α.

Lemma 4.8. For any β ∈ Rd, and parameters n ∈ N, ε, p, α ∈ (0, 1) satisfying

ε ≥ 2p =
θ0(F , Pβ)

2

π
and n ≥

(
2(1− p) + 2ε

p

)
ln

1

α

one can define ε-contaminated samples Zε,β
1:n from Pβ and an i.i.d. (uncontaminated) sample

Z
0,0Rd
1:n from P0Rd

such that
P
[
Zε,β

1:n = Z
0,0Rd
1:n

]
≥ 1− α.

Proof Let Zβ
1:n

i.i.d.∼ Pβ, with each Zβ
i = (Xi, Yi). We may assume that Xi = BiX

′
i/
√
p and

Yi = ⟨Xi, β⟩+ ξi with (Bi, X
′
i, ξ) ∼ (B,X ′, ξ) as above. As a result, a Ber(p) proportion of Xi

in the sample are non-zero. To define an ε-contaminated sample from Pβ, we choose a subset
O ⊂ {i ∈ [n] : Bi ̸= 0} of size #O ≤ ε n that is as large as possible, and then set:

Zε,β
i :=

{
(Xi, Yi), i ∈ [n]\O
(0Rd , ξi), i ∈ O.

Now, the random sample consisting of the points Z0,0Rd
i := (0Rd , ξi) (i ∈ [n]) is i.i.d. from P0.

Moreover, by our definition of the contamination,

{
Zε,β

1:n = Z
ε,0Rd
1:n

}
⊃ {O = {i ∈ [n] : Bi ̸= 0}} =

{
n∑

i=1

Bi ≤ εn

}
.

The sum
∑n

i=1Bi is a binomial random variable with mean pn. Chernoff bounds give

P

[
n∑

i=1

Bi ≤ εn

]
≥ 1− e−

(ε−p)2n
2 p(1−p)+2ε ≥ 1− α

where the our assumptions on ε and n were used in the last two inequalities.
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Chapter 5

Gaussian and bootstrap approximations

5.1 Introduction

We consider the problems of Gaussian and bootstrap approximations for the trimmed mean
when the sample size n is much smaller than the number of features (or dimension) d, even
considering d = ∞. These problems are fundamental for many statistical tasks (e.g. finding
confidence intervals, hypothesis testing, penalty selection) and data sets where n ≪ d have
become common in many practical domains. Moreover, Gaussian and bootstrap approximations
for the empirical average are very sensitive to contamination and heavy-tailed distributions.

Let X be a set, P be a probability over X and F be a class of square-integrable functions from
X to R satisfying Pf = 0. Also let ΣF ,P be the covariance matrix (or kernel) of F , i.e.,

ΣF ,P (f, g) = P (fg) ∀f, g ∈ F .

Given an i.i.d. sample X1:n from P , Classical weak convergence results, such as the Central
Limit Theorem (for |F| < ∞) or Donsker’s theorem (for |F| = ∞) state that, under certain
assumptions,

Gn(f) :=
√
nP̂n(f) =

1√
n

n∑

i=1

f(Xi), f ∈ F

weakly converges, as n ! ∞, to a centered multivariate Gaussian (resp. Gaussian process)
{GP (f) : f ∈ F} with the same covariance ΣF ,P . Assuming d = |F| < ∞, high-dimensional
quantitative versions of the CLT typically focus on bounding

ϱE := sup
λ∈R

|P [Zn(F) ≤ λ]− P [Z(F) ≤ λ]| ,
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where
Zn(F) = max

f∈F
Gn(f) and Z(F) = max

f∈F
GP (f).

Under strong moment assumptions, the pioneering work of [Chernozhukov et al., 2013] first

bounded ϱE ≤ C
(

ln(nd)
n

) 1
6 . This bound was previously improved by [Koike, 2021] and

[Chernozhuokov et al., 2022] to ϱE ≤ C
(

ln(nd)
n

) 1
5 . Under additional assumptions, such as ΣF ,P

being positive definite, ϱE can be further bounded, as discussed in §5.2.4.

Bounds are also available for infinite function families F , which correspond to d = ∞. Assuming
the existence of an envelope function and some moment conditions, a line of work started
by [Chernozhukov et al., 2014b, Chernozhukov et al., 2016] derived bounds depending on the
metric entropy of the class F and on the weak-variance assumption

σF ,P := inf
f∈F

ΣF ,P (f, f) > 0.

More recently, entropy-free and weak-variance-free bounds were obtained by [Giessing, 2023],
although also requiring an envelope function with finite third moment.

Bootstrap approximation bounds are also presented in all previously discussed works. Two
versions of the bootstrap are typically studied: the empirical and the multiplier versions. Both
versions are defined given random variables X̃1:n and ξ1:n as follows:

• for the empirical bootstrap X̃1:n is an i.i.d. sample from the empirical measure P̂n of the
sample and ξi = 1 for every i ∈ [n];

• for the multiplier bootstrap X̃1:n = Xi and ξ1:n are i.i.d. standard Gaussian’s.

Conditionally on a sample X1:n one can define

G̃n(f) :=
1√
n

n∑

i=1

ξi

(
f(X̃i)− P̂n(f)

)
, f ∈ F .

Bounds similar to the ones discussed for ϱE are also available for

ϱ̃E := sup
λ∈R

∣∣∣P
[
Z̃n(F) ≤ λ

∣∣∣X1:n

]
− P [Z(F) ≤ λ]

∣∣∣ ,

where Z̃n(F) = maxf∈F G̃n(f). In [Chernozhukov et al., 2014a, Koike, 2021,
Chernozhuokov et al., 2022] one can found such bounds for the case d < ∞ and in
[Chernozhukov et al., 2014b, Chernozhukov et al., 2016, Giessing, 2023] for the case d = ∞.
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5.1.1 Contributions. In this chapter we study the Gaussian and bootstrap approxima-
tions of the trimmed mean. For the Gaussian approximation we replace the empirical process
{Gn(f) : f ∈ F} by its trimmed-mean based counterpart

Tε
n,k(f) =

√
n T̂ ε

n,k(f,X
ε
1:n), (f ∈ F)

and for the bootstrap approximation we replace {G̃n(f) : f ∈ F} with

T̃ε
n,k(f) :=

√
n

n− 2k

n−k∑

i=k+1

ξ(i)

(
f(X̃ε

(i))− T̂n,k(f,X
ε
1:n)
)
, (f ∈ F),

where (·) is a permutation satisfying

ξ(1)

(
f(X(1))− T̂n,k(f,X

ε
1:n)
)
≤ · · · ≤ ξ(n)

(
f(X(n))− T̂n,k(f,X

ε
1:n)
)
.

We are interested in bounding quantities such as

ϱ := sup
λ∈R

∣∣P
[
Zε

n,k(F) ≤ λ
]
− P [Z(F) ≤ λ]

∣∣ ,

where Zε
n,k(F) = maxf∈F Tn(f), and its analogous for the bootstrap approximation. Similar

bounds to the ones available in the literature for the empirical mean will be derived in the
following sections for both problems, but under less restrictive moment assumptions and also
considering adversarial contamination. Our main contributions are:

• First, this work is the first to explore both Gaussian and bootstrap approximations for
high-dimensional trimmed means. It is also the first to explore the effects of sample
contamination;

• In the case d < ∞ our results allow for exponential dependence of d on n assuming
only that νp(F) < ∞ for some p > 2. In [Kock and Preinerstorfer, 2023], an example is
constructed satisfying νp(F) <∞ for some p > 2, but for which the empirical mean does
not satisfy Gaussian approximation when d ≫ n

p
2
−1 (see §5.2.2 for a discussion). Thus,

our results show that Gaussian approximations for the trimmed mean are still valid even
when they are not valid for the empirical average.

• In the case d = ∞ our results provide better rates then the ones in
[Chernozhukov et al., 2016]. We also provide results for p > 2 and do not require the
existence of an envelope function F ∈ L4(P ).

We also point out that our proof technique, which relies on relating trimming and truncation
(see §2.2), can be easily coupled with new improved bounds for ϱE and ϱ̃E and might as well
provide better bounds than the ones here obtained.
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5.1.2 Notation. Besides the definitions previously discussed in Chapter 2, in this chapter
we introduce a few new definitions. Let F and P be 2-compatible, define the weak variance as

σ2
F ,P := inf

f∈F
ΣF ,P (f, f). (5.1)

Moreover, if F ′ and P ′ are also 2-compatible and a map π : F ! F ′ is given, let

∆π(ΣF ,P ,ΣF ′,P ′) := sup
f,g∈F

|ΣF ,P (f, g)− ΣF ′,P ′(π(f), π(g))| . (5.2)

Notice that when |F| = |F ′| < ∞ and π is a permutation, then ∆π(ΣF ,P ,ΣF ′,P ′) is simply
the entry-wise ∥ · ∥∞ norm of the difference of the two covariance matrices. To see this, let
F = {f1, f2, . . . , fd}, X ∼ P and X ′ ∼ P ′, then ∆π(ΣF ,P ,ΣF ′,P ′) is the difference between the
covariance matrix of (fj(X))dj=1 and the covariance matrix of (π(fj)(X ′))dj=1. We sometimes
omit the map π when there is a natural map, mainly when we are mapping a class F with a
modification of that class, such as Fo

M = {τM ◦ f −PτM ◦ f : f ∈ F} and so π can be naturally
taken to be the map f 7! τM ◦ f − PτM ◦ f .

For convenience we also define

δn,d,B =

(
B2 ln5(nd)

n

) 1
4

and δn,q,d,B =

√
B2 ln3− 2

p (nd)

n1− 2
p

.

5.2 High-dimensional results

In this section we let F be finite with size d and a 2-compatible distribution P . We also require
F to be centered, i.e., Pf = 0 for every f ∈ F .

5.2.1 Gaussian approximation. Our main result on the finite-dimensional context
is the following Gaussian approximation result:

Theorem 5.1 (High-dimensional Gaussian approximation for trimmed means). Assume n ≥ 3,
d ≥ 2 and that νp := νP (F , P ) <∞ for some p ∈ (2,∞). If

k := ⌊εn⌋+
⌈
3 ln(1 + d) + 7n

p−2
4p−2 ln(nd)

⌉
<
n

2
,

and
ν2p n

− 3p−6
4p−2 (ln(nd))1−

2
p ≤ 3

8
σF ,P . (5.3)
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Then
ϱ := sup

λ∈R

∣∣P
[
Zε

n,k(F) ≤ λ
]
− P [Z(F) ≤ λ]

∣∣

satisfies

ϱ ≤ C
(
νp ∨ ν

1
2
p

)( ln6− 4
p (nd)

n
2p−4
2p−1

) 1
4

+ 15
νp
σF ,P

εn
1
2
+ 3

4p−2 ln
1
2
− 1

p (nd) + 2 exp
{
−n

p−2
4p−2 ln(nd)

}

for a constant C that depends only on ν2(F , P ) and σF ,P .

This result contrasts with the following Gaussian approximation result for the empirical average:

Theorem 5.2 (Adapted from Theorem 2.4 and Lemma 4.3 of [Chernozhuokov et al., 2022]).
Suppose that Pf 4 ≤ B2ν22(F , P ) for every f ∈ F for some B > 0 and that σF ,P > 0. There
exists a constant C depending only on ν2(F , P ) and σF ,P such that

(i) if f(X1) is sub-exponential with Orlicz norm bounded by B for all f ∈ F , then

sup
λ∈R

|P [Zn(F) ≤ λ]− P [Z(F) ≤ λ]| ≤ Cδn,d,B;

(ii) if E [maxf∈F |f(X1)|p] ≤ Bp for some p ∈ (2,∞), then

sup
λ∈R

|P [Zn(F) ≤ λ]− P [Z(F) ≤ λ]| ≤ C (δn,d,B ∨ δn,q,d,B) .

Remark 5.3 (Dependence on ν2(F , P ) and σF ,P in Theorem 5.2). Although we stated the
theorem saying that the constant C depends on ν2(F , P ) and σF ,P , it was originally stated
saying that C depends on constants a, b > 0 such that ν2(F , P ) ≥ a and σF ,P ≥ b.

Remark 5.4 (Comparison with the empirical average). As expected, if one has an uncontam-
inated sample and a light-tailed envelope, Theorem 5.2 provides a better Gaussian approxima-
tion for the empirical mean than the obtained in 5.1 for the trimmed mean: Theorem 5.2 allows
for d ≪ exp

{
n

1
5

}
and Theorem 5.1 allows for d ≪ exp

{
n

1
6
+O(p−1)

}
. This minor difference is

expected in this scenario as a consequence of the unnecessary discarding of sample points by
the trimmed mean.

Now if one only has νp(F , P ) <∞ for some p ∈ (2,∞) the picture changes. Since

E
[
max
f∈F

|f(X1)|p
]
≤ E

[∑

f∈F

|f(X1)|p
]
≤ νpp(F , P )d
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the value of B in case (ii) of Theorem 5.2 can be of order B = νp(F , P )d
1
p , which allows

only for a polynomial dependence of d ≪ n
p
2
−1. Meanwhile, the Gaussian approximation for

the trimmed mean still allows for d ≪ exp
{
n

1
6
+O(p−1)

}
. Indeed, as discussed in §5.2.2, this

polynomial dependence is not an artifact of Theorem 5.2, but a property of the empirical
average itself.

Remark 5.5 (Choice of trimming level k). We also observe that the choice of k depends only
on the number d of features, the sample size and the contamination level ε. Thus, if an upper
bound for ε is given, the trimming level k can be easily computed.

Remark 5.6 (Dependence of ε on n). Theorem 5.1 suggests a relation between ε and n for
obtaining Gaussian approximation:

νp(F , P )
σF ,P

ε≪ n− 1
2
− 3

4p−2 ln− 1
2
+ 1

p (nd).

It is easy to see that under the adversarial contamination setup if
√
nε≫ 1, then it is impossible

to obtain Gaussian approximation bounds for any given estimator. Let X1:n have an i.i.d.
distribution with Xi ∼ N (0, Id), W ∼ N (0, 1), and let X ′

i = 1dBiW + (1 − Bi)Xi, with Bi a
independent Bernoulli with rate q = n− 1

2 for all i ∈ [n]. The covariance of X1 is the identity
and of X ′

1 is (1 − q)Id + q1d1
t
d, which are the covariance matrices of a standard multivariate

normal Y and of Y ′ =
√
1− q Y +

√
q1dW , respectively. Since the maximum of Y concentrates

around
√

2 ln(2d) and the maximum of
√
1− q Y around

√
2(1− q) ln(2d) we can take λ =√

2 ln(2d)+
√

2(1−q) ln(2d)

2
in order to have, as d!∞,

P
[
max
j∈[d]

Yj ≤ λ

]
! 0 and P

[
max
j∈[d]

Y ′
j ≤ λ

]
! 1.

Now notice that if
∑n

i=1Bi ≤ εn it is possible to contaminate X1:n in order to obtain Xε
1:n =

X ′
1:n. Taking n large enough and εn− 1

2 ≫ 1

P

[
n∑

i=1

Bi ≤ εn

]
≈ P

[
W ≤ √

n
ε− q√
q(1− q)

]
.

Showing that no Gaussian approximation bounds are possible for any given estimator when
εn− 1

2 ≫ 1.

5.2.2 A threshold phenomenon by Kock and Preinerstorfer. As discussed
in Remark 5.4, the polynomial dependence of d on n for the Gaussian approximation of the
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Figure 5.1: P-P plots comparing Zn(F) (red) and Zε
n,k(F) (blue) vs. Z(F) (dashed black) when

ε = 0. Both figures assume n = 100, the left one has d = 1000 and the right one d = 10000.
The trimming level k was k = 15 for d = 1000 and k = 20 for d = 10000. Samples were
drawn assuming i.i.d. marginals with Student’s distribution having 3 degrees of freedom, thus
ensuring only moments p ∈ [1, 3). Curves were obtained empirically from 1000 repetitions of
the experiment.

empirical average is no coincidence. [Kock and Preinerstorfer, 2023] analysed this phenomenon
by constructing an example. Let p ∈ (2,∞) and Ψp be a c.d.f function given by

Ψp(x) =





1
2

1
|x|p(ln |x|∨1)2 , if |x| ≥ 1

1
2
, if |x| < 1

.

As shown by [Kock and Preinerstorfer, 2023], this distribution is centered, has p-th moment
but no higher moments. Moreover, the following holds:

Theorem 5.7 (Threshold phenomenon for the Gaussian approximation for the empirical av-
erage; adapted from Theorems 2.1 and 2.2 of [Kock and Preinerstorfer, 2023]). Let P be a
distribution over Rd, take F to be the family of coordinate projections, and let p ∈ (2,∞).

(i) If P has i.i.d. marginals with distribution Ψp and δ > 0 satisfies lim supn!∞ dn1− p
2
−δ > 0,

then
lim sup
n!∞

sup
λ∈R

|P [Zn(F , P ) ≤ λ]− P [Z(F , P ) ≤ λ]| = 1.

(ii) Moreover, given 0 < c ≤ C
2
p < ∞, let P(c, C, p) be the class of all centered distributions
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P over Rd with σF ,P ≥ c and νpp(F , P ) ≤ C. If δ > 0 satisfies limn!∞ dn1− p
2
+δ = 0, then

lim
n!∞

sup
λ∈R

sup
P∈P(c,C,p)

|P [Zn(F , P ) ≤ λ]− P [Z(F , P ) ≤ λ]| = 0

Thus, the Gaussian approximation for the empirical average has a threshold at d = n
p
2
−1, being

feasible for a large class of distributions when d ≪ n
p
2
−1−δ, but not when d ≫ n

p
2
−1+δ. Figure

5.1 is a P-P plot of Zn(F) and Zε
n,k(F) vs. Z(F). It was constructed taking i.i.d. marginals with

Student’s distribution having 3 degrees of freedom. It illustrates a scenario with weak moment
guarantees were the Gaussian approximation for the empirical average performs poorly when
compared with the trimmed mean. This empirical result adds to the previous discussion on
threshold phenomenon and motivates the usage and study of trimmed means in the context of
Gaussian approximation.

5.2.3 Bootstrap approximations. Our bootstrap approximation bounds are quite
analogous to the Gaussian approximation bounds.

Theorem 5.8 (High-dimensional bootstrap approximations for trimmed means). Assume n ≥
3, d ≥ 2 and that νp := νP (F , P ) < ∞ for some p ∈ (2,∞). Let Z̃ε

n,k(F) be obtained via the
empirical or the multiplier bootstrap. Suppose that

ν2p n
− 3p−6

4p−2 (ln(nd))1−
2
p ≤ 3

8
σF ,P (5.4)

and let
ϱ̃ := sup

λ∈R

∣∣∣P
[
Z̃ε

n,k(F) ≤ λ
∣∣∣Xε

1:n

]
− P [Z(F) ≤ λ]

∣∣∣ .

The following holds:

(i) If Z̃ε
n,k(F) is obtained via the empirical bootstrap, then with probability at least 1 −

Cν
1
2
p n

− p−2
4p−2 ln

5p−2
4p (nd)− exp

{
−n

p−2
4p−2 ln(nd)

}
,

ϱ̃ ≤ C
(
νp ∨ ν

1
2
p

)( ln6− 4
p (nd)

n
2p−4
2p−1

) 1
4

+ 30
νp
σF ,P

εn
1
2
+ 3

4p−2 ln
1
2
− 1

p (nd) + 3 exp
{
−6n

p−2
4p−2 ln(nd)

}

for a constant C that depends only on ν2(F , P ) and σF ,P .

(ii) If Z̃ε
n,k(F) is obtained via the Gaussian multiplier bootstrap, then with probability at least

1− exp
{
−n

p−2
4p−2 ln(nd)

}
,

ϱ̃ ≤ C
(
νp ∨ ν

1
2
p

)( ln8− 4
p (nd)

n
2p−4
2p−1

) 1
4

+ 110
νp
σF ,P

εn
1
2
+ 3

4p−2 ln1− 1
p (nd) +

2

n
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for a constant C that depends only on ν2(F , P ) and σF ,P .

One may compare our bounds with the ones by [Chernozhuokov et al., 2022], which have more
restrictive assumptions:

Theorem 5.9 (Adapted from Lemma 4.5 and Lemma 4.6 of [Chernozhuokov et al., 2022]).
Make the same assumptions as in Theorem 5.2. Let Z̃n be obtained from the Gaussian multiplier
bootstrap or the empirical bootstrap. There exists a constant C depending only on ν2(F) and
σF ,P such that

(i) if f(X1) is sub-exponential with Orlicz norm bounded by B for all f ∈ F , then with
probability at least 1− Cδn,d,B,

sup
λ∈R

∣∣∣P
[
Z̃n(F) ≤ λ

∣∣∣X1:n

]
− P [Z(F) ≤ λ]

∣∣∣ ≤ Cδn,d,B;

(ii) if E [maxf∈F |f(X1)|p] ≤ Bp for some p ∈ (2,∞), then with probability at least 1 −
C (δn,d,B ∨ δn,q,d,B),

sup
λ∈R

∣∣∣P
[
Z̃n(F) ≤ λ

∣∣∣X1:n

]
− P [Z(F) ≤ λ]

∣∣∣ ≤ C (δn,d,B ∨ δn,q,d,B) .

Remark 5.10 (Comparison with the usual empirical and multiplier bootstrap). Assume ε = 0.
In order to obtain convergence to zero as n!∞, Theorem 5.8 allows for d≪ exp

{
n

1
6
+O(p−1)

}

for the empirical bootstrap and d ≪ exp
{
n

1
8
+O(p−1)

}
for the Gaussian multiplier bootstrap.

Meanwhile, Theorem 5.9 allows for d≪ exp
{
n

1
5

}
, but under more restrictive assumptions.

5.2.4 Further background. The only assumption made in Theorem 5.1 (or Theorem
5.2) about ΣF ,P is the positiveness of the weak covariance. In special, we do not require ΣF ,P

to be positive definite. Both [Kuchibhotla and Rinaldo, 2020] and [Chernozhukov et al., 2023b]
have shown that better bounds are possible for the Gaussian approximation of the empirical
average when ΣF ,P is positive definite. In fact, [Chernozhukov et al., 2023b] obtained a bound

of order (lnn)
√

ln3 d
n

assuming that the coordinates of Xi are all bounded. They also proved
that this order is optimal up to the lnn factor. Similar results are also available in the liter-
ature considering symmetric distributions [Chernozhuokov et al., 2022] or even variance decay
[Lopes et al., 2020]. Although this is out of the scope of this thesis, all such results can be
adapted for the trimmed mean using our proof techniques (see §5.4).
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5.3 Gaussian approximation for empirical processes.

Before discussing our results for empirical processes we need a few definitions. Given a measure
Q and a class F of functions 2-compatible with Q we let N (F , dQ, δ) be the δ-covering number
of F with respect to the semi-metric dQ(f, g) = Q(f−g)2. We also say that F is an envelope of
F if |f(x)| < F (x) for all x ∈ X, f ∈ F . In this section we assume the existence of a centered
Gaussian process {GPf : f ∈ F} with covariance ΣF ,P .

Definition 5.11 (VC-subgraph class). We say that a class F of functions f : X! R is a VC
subgraph class with dimension v = vc(F) if v <∞ is the VC dimension of its subgraphs, i.e.,

v := vc ({{(x, t) ∈ X× R : t < f(x)} : f ∈ F}) <∞.

Definition 5.12 (VC-type class). We say that a class F of functions f : X! R is a VC-type
class with envelope F if there are constants A, v > 0 such that

sup
Q

N
(
F , dQ, δ∥F∥L2(Q)

)
≤
(
A

δ

)v

∀δ ∈ (0, 1].

Where the supremum is taken over all probability measures over (X,X ) with finite support.

The following lemma relates both definitions:

Lemma 5.13. Assume F is a VC-subgraph class and let q ≥ 1. Then F q
M = {(τM◦f)q : f ∈ F}

is VC-type with envelope M q and constants (A, v) = (8e, 2vc(F)).

Proof First notice that vc(F q
M) ≤ vc(F). Then use Theorem 5.11 of [Zhang, 2023].

Our result on the Gaussian approximation for empirical processes can now be stated:

Theorem 5.14. Assume F is a VC-subgraph class and let p ∈ (2,∞) be such that νp(F) <∞.
Define

Kn := Kn(F) = 2vc(F) (lnn ∨ ln 8e) and Ξ(δ) = E


 sup

f,g∈F
dP (f,g)<δ

GP (f − g)


 .

Suppose that
16Kn ≤ n

p−2
4p−2 (5.5)
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and
ν2p(F)n− 3p−6

4p−2K
1− 2

p
n ≤ 3

8
σF ,P . (5.6)

Then, there is an absolute constant C such that taking

k := ⌊εn⌋+
⌈
Cn

p−2
4p−2Kn

⌉
<
n

2
,

implies that
ϱ := sup

λ∈R

∣∣P
[
Zε

n,k(F) ≤ λ
]
− P [Z(F) ≤ λ]

∣∣

satisfies

ϱ ≤ C ′
(
νp ∨ ν

1
2
p

)

K

6− 4
p

n

n
2p−4
2p−1




1
4

+ 18
νp
σF ,P

εn
1
2
+ 3

4p−2K
1
2
− 1

p
n +

3
√
Kn

σF ,P

Ξ

(
5νpK

1
2
− 1

p
n n

9
16p−8

− 3
8

)

for a constant C ′ depending only on ν2(F) and on σF ,P .

Remark 5.15. The quantity Ξ(δ) is typically of second order in this bound. First notice
that if GP has uniformly dP -continuous sample paths then Ξ(δ) ! 0 as δ ! 0. Moreover,
non-asymptotic bounds can be derived using entropy integral bounds. For instance, if F is a
VC-type class (as in Definition 5.12) one can easily see that

Ξ(δ) ≤ C

∫ δ

0

√
v ln

A∥F∥L2(P )

s
ds

for some absolute constant C > 0, thus Ξ(δ) is linear on δ.

Theorem 5.14 can be compared with the following one by [Chernozhukov et al., 2016]:

Theorem 5.16 (Theorem 2.1 of [Chernozhukov et al., 2016]). Suppose that F satisfies

• F and P are 2-compatible;

• F is VC-type with envelope F and constants A ≥ 2, v ≥ 1;

• There exist constants b ≥ σ > 0 and p ∈ [4,∞) such that νkk ≤ σ2bk−2 for k = 2, 3, 4 and
∥F∥Lp(P ) ≤ b.

and let
K ′

n = v

(
lnn ∨ ln

Ab

σ

)
be such that K ′

n ≤ n
1
3 .
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Then, for every γ ∈ (0, 1),

ϱ ≤ Ψ

(
C1

{
bK ′

n

γ
1
pn

1
2
− 1

p

+
(bσ2(K ′

n)
2)

1
3

γ
1
3n

1
6

})
+ C2

(
γ +

1

n

)

where C1, C2 are positive constants that depend only on p and

Ψ(η) = inf
δ,r>0

{
2

σF ,P

(η + Ξ(δ) + rδ)

(√
2v ln

Ab

δ
+ 2

)
+ e−

r2

2

}
.

Remark 5.17. Theorem 5.16 is originally stated in terms of a Gaussian coupling, but the au-
thors also provide an anti-concentration lemma to obtain a representation in Kolmogorov dis-
tance. Thus, to obtain Theorem 5.16 we combined its original form with the anti-concentration
lemma the authors provided (Lemma 2.2 of [Chernozhukov et al., 2016]).

Remark 5.18 (Comparison between Theorem 5.14 and Theorem 5.16). We now compare The-
orem 5.14 and Theorem 5.16. Taking δ = σ

bnα for some α > 0 yields a bound (in Theorem 5.16)
of order at least

b(K ′
n)

3
2

γ
1
pn

1
2
− 1

p

+
(bσ2)

1
3 (K ′

n)
7
6

γ
1
3n

1
6

+ γ

and optimizing in γ yields
(

(K′
n)

12p
p+1

n

) 1
8

. Thus, the rate of convergence of Theorem 5.14 is

better. Moreover, Theorem 5.14 does not require the existence of an envelope and holds for
p ∈ (2,∞). Meanwhile, Theorem 5.16 requires an envelope in Lq(P ) for p ∈ [4,∞).

Remark 5.19. One might also want to compare Theorem 5.14 with the more recent results
by [Giessing, 2023] for sample means. Although [Giessing, 2023] present bounds independent
of the metric entropy and does not require F to be a VC-subgraph class, they require the
existence of an envelope in L3(P ) and attain a worse dependence in n.

5.4 Proof ideas

Our proofs are based on the trimming and truncation strategy discussed in §2.2, where the goal
is to adjust the trimming level k (and the corresponding truncation level M) in order to control
the approximation of T̂ ε

n,k(f) by P̂n(τM ◦ f) over the class F . In this section we illustrate the
main proof ideas discussing the case d := |F| <∞.
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5.4.1 Gaussian approximation. We begin discussing the proof of Theorem 5.1.
The proof start using the trimming and truncation relation discussed in §2.2.

First step: counting and bounding.

Recall that

VM(F) = max
f∈F

n∑

i=1

1{|f(Xi)|>M}.

We start using the following finite-dimensional version of Lemma 2.2:

Lemma 5.20 (Finite-dimensional counting lemma). Let d := |F| <∞, given M > 0 we have

P
[
VM(F) ≥ 3 ln(1 + d) + 7n

νpp
Mp

]
≤ 2 exp

{
−n ν

p
p

Mp

}
.

Proof It follows directly from Lemma A.3 noticing that

max
j∈[d]

1

n

n∑

i=1

E
[
1{|f(Xi)|>M}

]
= max

j∈[d]
P [|f(X1)| > M ] ≤ νpp

Mp
,

where the last inequality holds by Markov’s inequality.

Thus, taking t ≥ 3 ln(1 + d) + 7n
νpp
Mp one can ensure that, with high probability, VM(F) ≤ t.

Set
k := ϕn where ϕ =

⌊εn⌋+ t

n
,

we proceed using the Bounding Lemma (Lemma 2.3) to obtain, for all λ ∈ R,

P
[
Zε

n,k(F) ≤ λ
]
≤ P

[
Zn(τM ◦ F) ≤ λ+ 6ϕM

√
n
]
+ 2 exp

{
−n ν

p
p

Mp

}
.

Second step: use the Gaussian approximation result for the empirical average.

We are almost ready to approximate Zn(τM ◦ F) by Z(τM ◦ F) via Theorem 5.2, but first we
need to center the class τM ◦ F . Let Fo

M := {τM ◦ f − P (τM ◦ f) : f ∈ F}, thus

P
[
Zε

n,k(F) ≤ λ
]
≤ P

[
Zn(Fo

M) ≤ λ+

(
6ϕM + sup

f∈F
P (τM ◦ f)

)√
n

]
+ 2 exp

{
−n ν

p
p

Mp

}
.

Now, Theorem 5.2 yields, for all λ ∈ R,

P
[
Zε

n,k(F) ≤ λ
]
≤P
[
Z(Fo

M) ≤ λ+

(
6ϕM + sup

f∈F
P (τM ◦ f)

)√
n

]

+ C

(
M2 ln5(nd)

n

) 1
4

+ 2 exp

{
−n ν

p
p

Mp

}
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where the constant C depends on ν2(F) and on σFo
M ,P . As will become clear in the end of the

proof, (5.3) implies σFo
M ,P ≥ 1

2
σF ,P we can say that C depends only on ν2(F) and σF ,P .

Third step: use a Gaussian to Gaussian comparison inequality.

The next step is to use the Gaussian to Gaussian comparison inequality (Lemma A.4), to obtain

sup
λ∈R

|P [Z(F , P ) ≤ λ]− P [Z(Fo
M , P ) ≤ λ]| ≤ C ′(ln d)

√
∆π(ΣF ,P − ΣFo

M ,P ),

where C ′ depends only on σF ,P and π(f) = τM ◦ f − P (τM ◦ f) ∈ FM
o for all f ∈ F . The RHS

of the inequality above is bounded using the following Lemma:

Lemma 5.21 (Covariance bounds). Let F and P be 2-compatible and M > 0,

∆π(ΣF ,P ,ΣFo
M ,P ) ≤ 4νppM

2−p.

This bound also holds when |F| = ∞.

Proof Given f, g ∈ F we need to bound,

P (fg − π(f)π(g)) = P (fg − (τM ◦ f)(τM ◦ g)) + P (τM ◦ f)P (τM ◦ g).

We start using Hölder to get P (τM ◦ f) = P (τM ◦ f − f) ≤ P |f |1|f |>M ≤ νppM
1−p. Using

Holder two more times yields:

P |fg − (τM ◦ f)(τM ◦ g)| ≤MP |f − τM ◦ f |1|f |>M +MP |g − τM ◦ g|1|g|>M

+ P
(
|f |1|f |>M |g|1|g|>M

)

≤ 2νppM
2−p + P

(
|f |1|f |>M |g|1|g|>M

)

≤ 2νppM
2−p + sup

j∈[d]
P |f |21|f |>M

≤ 2νppM
2−p +

(
νpp
) 2

p

(
νpp
Mp

)1− 2
p

≤ 3νppM
2−p.

We can now bound

sup
λ∈R

∣∣∣∣P
[
Zε

n,k(F) ≤ λ
]
− P

[
Z(F) ≤ λ+

(
6ϕM + sup

f∈F
P (τM ◦ f)

)√
n

]∣∣∣∣

≤ C ′(ln d)
√
4νppM2−p + C

(
M2 ln5(nd)

n

) 1
4

+ 2 exp

{
−n ν

p
p

Mp

}
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Fourth step: use a Gaussian anti-concentration inequality.

We are almost done. To get rid of the term
(
6ϕM + supf∈F P (τM ◦ f)

)√
n we bound

sup
f∈F

P (τM ◦ f) ≤ νppM
1−p (5.7)

and make use of a Gaussian anti-concentration inequality, in this case we use Lemma A.5,

sup
λ∈R

∣∣P
[
Zε

n,k(F) ≤ λ
]
− P [Z(F) ≤ λ]

∣∣ ≤
(
6ϕM + νppM

1−p
) 2 +

√
2 ln d

σF ,P

√
n

+ C ′(ln d)
√

4νppM2−p (5.8)

+ C

(
M2 ln5(nd)

n

) 1
4

+ 2 exp

{
−n ν

p
p

Mp

}

Final step: optimize M .

Once we arrive at a bound such as Equation (5.8), we finish by optimizing M , as done in §5.5.1.

5.4.2 Bootstrap approximations. Here we discuss the proof of Theorem 5.8.

Part (i). We start with the empirical bootstrap approximation, in this case we have

T̃ε
n,k(f) :=

√
n

n− 2k

n−k∑

i=k+1

f(X̃ε
(i))− T̂n,k(f,X

ε
1:n), (f ∈ F),

where the points X̃ε
i are independently and uniformly drawn from {Xε

i : i ∈ [n]}.

The strategy to prove the empirical bootstrap approximation is to approximate Z̃ε
n,k(F) by

Z̃n(τM ◦ F) and then use Lemma 5.9. This approximation requires a conditional version of the
counting lemma.

First step: conditional counting.

Recall that given X1:n, we sample X̃1:n from the empirical distribution 1
n

∑n
i=1 δXi

, define

ṼM(F) = max
f∈F

n∑

i=1

1{|f(X̃i)|>M}

to be the analogous of VM(F) for the empirical bootstrap.

Lemma 5.22 (Conditional finite-dimensional counting lemma). Assume d = |F| <∞. Given
M > 0 and t ≥ 0 we have

P
[
ṼM(F) ≥ 3 ln(1 + d) + 7t

∣∣∣VM(F) ≤ t
]
≤ 2e−t.
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Proof Follows using Lemma A.3 conditionally on X1:n.

By Lemma 5.20 we know that the event

E =

{
VM(F) < 3 ln(1 + d) + 7n

νpp
Mp

}
(5.9)

satisfies P [E] ≥ 1− e−n
ν
p
p

Mp . From now on we will be conditioning on E.

Set t =
⌈
24 ln(1 + d) + 49n

νpp
Mp

⌉
use Lemma 5.22 to get

P
[
ṼM(F) < t | E

]
≥ 1− 2 exp

{
−
(
3 ln(1 + d) + 7n

νpp
Mp

)}
≥ 1− 2e−

t
8 .

Second step: control the contamination level on the bootstrap sample.

Let ε̃ be the ratio of copies of contaminated samples on X̃ε
1:n, i.e.,

ε̃ =
|{i : X̃ε

i ̸= X̃i}|
n

.

Notice that ε̃ is independent of X1:n. By Chernoff’s bound for the binomial distribution:

P [ε̃n− εn ≥ εn ∨ t] ≤ exp

{
−εn

3

(
1 ∨ t

εn

)2
}

≤ e−
t
3 ≤ e−

t
8

Third step: bounding as usual.

Now we can use Lemma 2.3 to approximate Z̃ε
n,k(F) by Zn(τM ◦ F) with high probability

conditioned on E, this is done using the lemma twice:

1√
n

∣∣∣T̃ε
n,k(f)− G̃n(f)

∣∣∣ ≤
∣∣∣T̂n,k(f, X̃ε

1:n)− P̂n(τM ◦ f, X̃1:n)
∣∣∣+
∣∣∣T̂n,k(f,Xε

1:n)− P̂n(τM ◦ f,X1:n)
∣∣∣

≤ 12ϕM.

Up to now we have shown that, with probability at least 1− e−n
ν
p
p

Mp taking

k = ϕn where ϕ =
⌊εn+ (εn ∨ t)⌋+ t

n

yields
P
[∣∣∣Z̃ε

n,k(F)− Z̃n(τM ◦ F)
∣∣∣ ≤ 6ϕM

√
n
∣∣∣E
]
≥ 1− 3e−

t
8 .

Next steps: from now on we follow as on the proof of Gaussian approximation.
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Centering the functions τM ◦ F and using (5.7) gives:

P
[∣∣∣Z̃ε

n,k(F)− Z̃n(Fo
M)
∣∣∣ ≤

(
6ϕM + νppM

1−p
)√

n
∣∣∣E
]
≥ 1− 3e−

t
8 . (5.10)

The proof now follows in a similar fashion as the proof of the Gaussian approximation: we use
Lemma 5.9 to obtain a approximation of Z̃n(Fo

M) by Z(Fo
M) and then we make use of Gaussian

to Gaussian comparison and Gaussian anti-concentration inequalities.

Part (ii). Finally, we discuss the proof of the Gaussian multiplier bootstrap. This proof is
simpler than the one we have just discussed for the empirical bootstrap. Its main ingredient is
the following version of the bounding lemma capable of dealing with Gaussian weights.

Lemma 5.23 (Gaussian bounding lemma). Let t and M ≥ 0 be such that VM(F) ≤ t. Assume
that X̃ε

1:n come from a Gaussian bootstrap.

⌊εn⌋+ t

n
≤ ϕ <

1

2
.

Then, with probability at least 1− 2
n
,

sup
f∈F

∣∣∣T̃ε
n,k(f)− G̃n(τM ◦ f)

∣∣∣ ≤ 28ϕM
√
2n ln 2n+ 6ϕM

√
2 lnn. (5.11)

Proof The proof is similar to the proof of the original bounding lemma (Lemma 2.3), but we
now have to bound some random elements. Let k = ϕn and f ∈ F be fixed. Let S ⊂ [n] be
the set of active indexes in T̃ε

n,k(f), by the triangular inequality:

∣∣∣T̃ε
n,k(f)− G̃n(τM ◦ f)

∣∣∣ ≤

(b)︷ ︸︸ ︷∣∣∣∣∣
1√

n(1− 2ϕ)

∑

i∈S

ξif(X
ε
i )−

1√
n

n∑

i=1

ξiτM(f(Xi))

∣∣∣∣∣

+

∣∣∣∣∣
1√
n

n∑

i=1

ξi

(
P̂n(τM ◦ f)− T̂ ε

n,k(f)
)∣∣∣∣∣

︸ ︷︷ ︸
(a)

First step: control probabilities.

Recall that the Gaussian weights ξi are standard i.i.d. Gaussians, so

E =

{
max
i∈[n]

ξi ≤ 2
√
2 ln 2n and

n∑

i=1

ξi ≤
√
2n lnn

}
satisfies P [E] ≥ 1− 2

n
.

In the remainder of the proof we assume that E happens.
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Second step: bound (a).

Since the term P̂n(τM ◦ f)− T̂ ε
n,k(f) is constant in the sum one can bound

(a) ≤
∣∣∣∣∣
1√
n

n∑

i=1

ξi

∣∣∣∣∣
∣∣∣P̂n(τM ◦ f)− T̂ ε

n,k(f)
∣∣∣ .

The sum of the weights ξ is bounded in the event E and the term
∣∣∣P̂n(τM ◦ f)− T̂ ε

n,k(f)
∣∣∣ is

bounded by the original bounding lemma (Lemma 2.3), thus

(a) ≤ 6ϕM
√
2 lnn.

Third step: bound (b).

We decompose (b) the same way we do in the proof of the original bounding lemma, so

(b) ≤
∣∣∣∣∣

1√
n(1− 2ϕ)

∑

i∈S

ξif(X
ε
i )−

1√
n

n∑

i=1

ξiτM(f(Xε
i ))

∣∣∣∣∣

+

∣∣∣∣∣
1√
n

n∑

i=1

ξiτM(f(Xε
i ))−

1√
n

n∑

i=1

ξiτM(f(Xi))

∣∣∣∣∣

The last term in the RHS can be bounded observing that at most ⌊εn⌋ terms differ and all
terms are bounded by 2M

√
2 ln 2n, thus

∣∣∣∣∣
1√
n

n∑

i=1

ξiτM(f(Xε
i ))−

1√
n

n∑

i=1

ξiτM(f(Xi))

∣∣∣∣∣ ≤ 4⌊εn⌋M
√

2 ln 2n

n
.

To bound the first term in the RHS we note that

1√
n

n∑

i=1

ξiτM(f(Xε
i )) = (1− 2ϕ)

1√
n(1− 2ϕ)

∑

i∈S

ξiτM(f(Xε
i )) + 2ϕη (5.12)

for some η satisfying |η| ≤ 2M
√
2n ln 2n. In addition,

∣∣∣∣∣
1√

n(1− 2ϕ)

∑

i∈S

ξi (τM(f(Xε
i ))− f(Xε

i ))

∣∣∣∣∣ ≤
4t√

n(1− 2ϕ)
2M

√
2 ln 2n. (5.13)

Where the last inequality happens since VM(F) ≤ t,
∣∣∣T̂ ε

n,k(f)
∣∣∣ ≤M and for every i ∈ S

∣∣∣ξi
(
f(Xε

i )− T̂ ε
n,k(f)

)∣∣∣ ≤ 4M
√
2 ln 2n,
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implying that

|ξi (τM(f(Xε
i ))− f(Xε

i ))| ≤
∣∣∣ξi
(
f(Xε

i )− T̂ ε
n,k(f)

)∣∣∣+
∣∣∣ξi
(
T̂ ε
n,k(f)− τM(f(Xε

i ))
)∣∣∣

≤ 8M
√
2 ln 2n.

It also follows that, for every i ∈ S,

|ξif(Xε
i )| ≤

∣∣∣ξi
(
f(Xε

i )− T̂ ε
n,k(f)

)∣∣∣+
∣∣∣ξiT̂ ε

n,k(f)
∣∣∣ ≤ 8M

√
2 ln 2n.

From Equations (5.12) and (5.13) we obtain
∣∣∣∣∣

1√
n(1− 2ϕ)

∑

i∈S

ξif(X
ε
i )−

1√
n

n∑

i=1

ξiτM(f(Xε
i ))

∣∣∣∣∣ ≤
(
10ϕ+

4t

n

)
2M

√
2n ln 2n.

Thus, (b) ≤ 28ϕM
√
2n ln 2n.

The proof follows applying Lemma 5.20 followed by 5.23 to approximate Z̃ε
n,k(F) by Z̃n(Fo

M).
To finish, we use Lemma 5.9 to approximate Z̃n(Fo

M) by Z(Fo
M) and conclude using Gaussian

to Gaussian comparison and Gaussian anti-concentration inequalities to approximate Z(Fo
M)

by Z(F). We conclude properly selecting M to minimize errors.

5.5 Proofs

5.5.1 High-dimensional results.

Gaussian approximation. Here we finish the proof of Theorem 5.1. Recall Equation (5.8),
which is repeated above

ϱ ≤
(
6ϕM + νppM

1−p
) 2 +

√
2 ln d

σF ,P

√
n+ C ′(ln d)

√
4νppM2−p + C

(
M2 ln5(nd)

n

) 1
4

+ 2e−n
ν
p
p

Mp

and holds taking

t =

⌈
3 ln(1 + d) + 7n

νpp
Mp

⌉
and k := ϕn where ϕ =

⌊εn⌋+ t

n
.

Since d ≥ 2 and n ≥ 3, we can use 3 ln(1 + d) + 1 ≤ 3 ln(nd) and 2 +
√
2 ln d ≤ 5

2

√
ln(nd) to

bound
k ≤ εn+ 3 ln(nd) + 7n

νpp
Mp

69



and

(
6ϕM + νppM

1−p
) 2 +

√
2 ln d

σF ,P

√
n ≤ 5

2σF ,P

(
6εM + 18

ln(nd)

n
M + 43νppM

1−p

)√
n ln(nd).

The previous bounds combined yield

ϱ ≤ 15

σF ,P

εM
√
n ln(nd) +

108

σF ,P

(
ln(nd)

n
M + νppM

1−p

)√
n ln(nd)

+ C ′ν
p
2
p M

1− p
2 ln d+ C

(
M2 ln5(nd)

n

) 1
4

+ 2 exp

{
−n ν

p
p

Mp

}
.

Let C ′′ = 108
σF,P

∨ C ∨ C ′. To finish we let M = nανβp ln
γ(nd) and explore the choices of α, β, γ

to minimize our bound for ϱ. Notice that the term in the exponential can be neglected during
the optimization as it will be of smaller order. We can write

ϱ ≤ 15

σF ,P

εn
1
2
+ανβp ln

1
2
+γ(nd) + C ′′

[
nα(1− p

2)ν
β(1− p

2)+
p
2

p (ln(nd))γ(1−
p
2)+1

+nα− 1
2νβp (ln(nd))

γ+ 3
2 + nα(1−p)+ 1

2νβ(1−p)+p
p (ln(nd))γ(1−p)+ 1

2 + n
2α−1

4 ν
β
2
p (ln(nd))

2γ+5
4

]
.

One can check that
α =

3

4p− 2
, β = 1, and γ = −1

p

yields the desired bound on ϱ and also that (5.3) holds with the previous choice of α, β and γ.

Bootstrap approximations. Here we complete the proof of Theorem 5.8.

Part (i). We start finishing the proof of the empirical bootstrap approximation. Recalling the
discussion in §5.4, (5.10) holds with probability at least 1− e−n

ν
p
p

Mp given that

k = ϕn where ϕ =
⌊εn+ (εn) ∨ t⌋+ t

n
and t =

⌈
24 ln(1 + d) + 49n

νpp
Mp

⌉
.

Lemma 5.9 (case (i)) gives, with probability at least 1− C
(

M2 ln5(nd)
n

) 1
4 ,

sup
λ∈R

∣∣∣P
[
Z̃n(Fo

M) ≤ λ
∣∣∣X1:n

]
− P [Z(Fo

M) ≤ λ]
∣∣∣ ≤ C

(
M2 ln5(nd)

n

) 1
4

for some absolute constant C depending only on ν2(Fo
M) ≤ ν2(F) and on σFo

M ,P . The weak
variance σFo

M ,P can be chosen such that σFo
M ,P ≥ 1

2
σF ,P , it will be a consequence of our final
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choice of M , of assumption (5.4), and of Lemma 5.21. Using the Gaussian to Gaussian compar-
ison inequality (Lemma A.4) and the bound from Lemma 5.21 we get, again with probability

at least 1− C
(

M2 ln5(nd)
n

) 1
4 ,

sup
λ∈R

∣∣∣P
[
Z̃n(Fo

M) ≤ λ
∣∣∣X1:n

]
− P [Z(F) ≤ λ]

∣∣∣ ≤ C

(
M2 ln5(nd)

n

) 1
4

+ C ′(ln d)
√

4νppM2−p

Using (5.10) and Nazarov’s Gaussian anti-concentration inequality (Lemma A.5) yields, with

probability at least 1− C
(

M2 ln5(nd)
n

) 1
4 − e−n

ν
p
p

Mp ,

ϱ̃ ≤
(
6ϕM + νppM

1−p
) 2 +

√
2 ln d

σF ,P

√
n+ C ′(ln d)

√
4νppM2−p + C

(
M2 ln5(nd)

n

) 1
4

+ 3e−
t
8 .

The remainder of the proof is analogous to the Gaussian approximation. Since d ≥ 2 and n ≥ 3

we can use 24 ln(1 + d) + 1 ≤ 25 ln(nd) and 2 +
√
2 ln d ≤ 5

2

√
ln(nd) to bound

k ≤ 2εn+ 50 ln(nd) + 98n
νpp
Mp

and

(
6ϕM + νppM

1−p
) 2 +

√
2 ln d

σF ,P

√
n ≤ 5

2σF ,P

(
12εM + 300

ln(nd)

n
M + 589νppM

1−p

)√
n ln(nd).

Taking C ′′ = 1473
σF,P

∨C∨C ′ and M = nανβp ln
γ(nd) we proceed as for the Gaussian approximation

minimizing our bound for ϱ̃. Notice that the terms in the exponential can be neglected during
the optimization as it will be of smaller order. We have

ϱ̃ ≤ 30

σF ,P

εn
1
2
+ανβp ln

1
2
+γ(nd) + C ′′

[
nα(1− p

2)ν
β(1− p

2)+
p
2

p (ln(nd))γ(1−
p
2)+1

+nα− 1
2νβp (ln(nd))

γ+ 3
2 + nα(1−p)+ 1

2νβ(1−p)+p
p (ln(nd))γ(1−p)+ 1

2 + n
2α−1

4 ν
β
2
p (ln(nd))

2γ+5
4

]
.

One can check that
α =

3

4p− 2
, β = 1, and γ = −1

p

yields the desired bound. Moreover, it gives

t =
⌈
24 ln(1 + d) + 49n

p−2
4p−2 ln(nd)

⌉

which implies
3e−

t
8 ≤ 3 exp

{
−6n

p−2
4p−2 ln(nd)

}
.
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Part (ii). We now proceed to the Gaussian bootstrap approximation. Thus, assume that X̃ε
1:n

was obtained via the Gaussian bootstrap and let

k = ϕn where ϕ =
⌊εn⌋+ t

n
and t =

⌈
3 ln(1 + d) + 7n

νpp
Mp

⌉
.

Again, we let E be the event defined in (5.9), which has probability at least 1−e−n
ν
p
p

Mp . Lemma
5.23 yields

P
[∣∣∣Z̃ε

n,k(F)− Z̃n(Fo
M)
∣∣∣ ≤ 44ϕM

√
n ln 2n

∣∣∣E
]
≥ 1− 2

n
,

where we used
28
√
2n ln 2n+ 6

√
2 lnn ≤ 44

√
n ln 2n

for all n ≥ 3.

Lemma 5.9 (case (i)) gives, with probability at least 1− C
(

M2 ln5(nd)
n

) 1
4 ,

sup
λ∈R

∣∣∣P
[
Z̃n(Fo

M) ≤ λ
∣∣∣X1:n

]
− P [Z(Fo

M) ≤ λ]
∣∣∣ ≤ C

(
M2 ln5(nd)

n

) 1
4

for some absolute constant C depending only on ν2(F) ≤ ν2(F) and on σFo
M ,P . As before, the

weak variance σFo
M ,P will be chosen such that σFo

M ,P ≥ 1
2
σF ,P , as consequence of our final choice

of M , of assumption (5.4), and of Lemma 5.21.

Using the Gaussian to Gaussian comparison inequality (Lemma A.4) and Nazarov’s Gaussian
anti-concentration inequality (Lemma A.5) yields

ϱ̃ ≤ 44ϕM
2 +

√
2 ln d

σF ,P

√
n ln 2n+ C ′(ln d)

√
4νppM2−p + C

(
M2 ln5(nd)

n

) 1
4

+
2

n
.

Again we bound

k ≤ εn+ 3 ln(nd) + 7n
νpp
Mp

and

44ϕM
2 +

√
2 ln d

σF ,P

√
n ln 2n ≤ 110

σF ,P

(
εM + 4

ln(nd)

n
M + 7νppM

1−p

)√
n ln(nd).

Taking C ′′ = 770
σF,P

∨C ′ ∨C and M = nανβp ln
γ(nd) we proceed minimizing our bound for ϱ̃. We

have

ϱ̃ ≤ 110

σF ,P

εn
1
2
+ανβp ln

1+γ(nd) + C ′′
[
nα(1− p

2)ν
β(1− p

2)+
p
2

p (ln(nd))γ(1−
p
2)+1

+nα− 1
2νβp (ln(nd))

2+γ + nα(1−p)+ 1
2νβ(1−p)+p

p (ln(nd))γ(1−p)+1 + n
2α−1

4 ν
β
2
p (ln(nd))

2γ+5
4

]
+

2

n
.
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And our result follows taking

α =
3

4p− 2
, β = 1, and γ = −1

p
.

5.5.2 Gaussian approximation for empirical processes. Here we proof The-
orem 5.14. The overall argument is to use a δ-net transforming the infinite-dimensional problem
into a finite-dimensional problem and then controlling the errors.

First step: counting and bounding.

In order to use the original counting lemma (Lemma 2.2) for a class G we need to find t,M

satisfying

sup
g∈G

P

{
|g(X)| > M

2

}

︸ ︷︷ ︸
(i)

+
8Radn(τM ◦ G, P )

M︸ ︷︷ ︸
(ii)

≤ t

8n
.

It will imply that VM(G) ≤ t with probability at least 1 − e−t. We will apply it to the class
G = {f p

2 : f ∈ F}, for that end we must bound (i) and (ii) in order to choose t.

Bound (i). Using Markov’s bound:

sup
g∈G

P

{
|g(X)| > M

p
2

2

}
= sup

f∈F
P

{
|f(X)|p > Mp

4

}
≤ 4

νpp(F)

Mp

Bound (ii). Our strategy will be to apply symmetrization (Lemma 2.1) and then Lemma A.1.
To apply symmetrization we need first to center the class τ

M
p
2
◦ G. Let

Go

M
p
2
=
{
τ
M

p
2
◦ g − P

(
τ
M

p
2
◦ g
)
: g ∈ G

}
.

We have
Radn

(
τ
M

p
2
◦ G, P

)
≤ Radn

(
Go

M
p
2
, P
)
+

1√
n
sup
g∈G

P
(
τ
M

p
2
◦ g
)

and supg∈G P
(
τ
M

p
2
◦ g
)
≤ ν

p/2
p/2(F) ≤ ν

p
2
p (F). We can now apply symmetrization to obtain

8Radn
(
τ
M

p
2
◦ G, P

)

M
p
2

≤
16Empn

(
Go

M
p
2
, P
)

M
p
2

+ 8

√
νpp(F)

nMp
.

To use Lemma A.1 we must first bound the entropy of τ
M

p
2
◦ G, this is done by Lemma 5.13:

sup
Q

N
(
τ
M

p
2
◦ G, dQ, δM

p
2

)
≤
(
8e

δ

)v

∀δ ∈ (0, 1],
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where v = 2vc(F). By Lemma A.1 we have

Empn

(
Go

M
p
2
, P
)
≤ C1





√√√√vνpp(F)

n
ln

8eM
p
2

ν
p
2
p

+
vM

p
2

n
ln

8eM
p
2

ν
p
2
p





for some absolute constant C1.

Choose t. Using the AM-GM inequality we can now bound

(i) + (ii) ≤ 16C1





√√√√vνpp(F)

nMp
ln

8eM
p
2

ν
p
2
p

+
v

n
ln

8eM
p
2

ν
p
2
p



+ 8

√
νpp(F)

nMp
+ 4

νpp(F)

Mp

≤ 24C1
v

n
ln

8eM
p
2

ν
p
2
p

+ (4 + 8C1)
νpp(F)

Mp
+ 8

√
νpp(F)

nMp

Assuming that (we will verify it latter)

n
νpp(F)

Mp
≥ 1 (5.14)

one can take C = 8 (24C1 ∨ (12 + 8C1)) and

t ≥ C

(
v ln

8eM
p
2

ν
p
2
p

+ n
νpp(F)

Mp

)
.

It gives VM(F) ≤ t with probability at least 1− e−t. Moreover, the bounding lemma (Lemma
2.3) can be used taking

k = ϕn where ϕ =
⌊εn⌋+ t

n
,

to obtain
sup
f∈F

∣∣Tε
n,k(f)−Gn(τM ◦ f)

∣∣ ≤ 6ϕM
√
n.

In addition, centering the class τM ◦ F gives

∣∣Zε
n,k(F)− Zn(Fo

M)
∣∣ ≤

(
6ϕM + νppM

1−p
)√

n.

Second step: approximating by a δ-net.

Let δ = n− 3p
8p−4 and let HM be a δM -net of τM ◦ F , also let H be the corresponding set in F

(notice that it may not be a δM -net for F), i.e.,

HM = {τM ◦ f : f ∈ H}.
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By Lemma 5.13 we have

|H| = |HM | ≤
(
8e

δ

)v

∀δ ∈ (0, 1]

and so ln |H| ≤ 2Kn(F).

We can bound the error of approximating by a δ-net by

Zn(Fo
M)− Zn(Ho

M) ≤ sup
f,g∈F :dP (τM◦f,τM◦g)≤δM

Gn(τM ◦ f − PτM ◦ f)−Gn(τM ◦ g − PτM ◦ g).

We now use Lemma A.2 (notice that its assumptions hold because of (5.5)) to bound the RHS
by

Zn(Fo
M)− Zn(Ho

M) ≤ C2δM
√
Kn(F)

with probability at least 1− 1
n

for some universal constant C2.

Third step: approximate Zn(Ho
M) by Z(H).

Apply Theorem 5.2, Lemma A.4 and Lemma 5.21 to get:

sup
λ∈R

|P [Zn(Ho
M) ≤ λ]− P [Z(H) ≤ λ]| ≤ C3

(
M2Kn(F)5

n

) 1
4

+ C4Kn(F)
√
νppM2−p

for constants C3 and C4 that will depend only on σF ,P and ν2(F , P ) by (5.6).

Forth step: approximate Zn,k(F) by Z(F).

By the second and third steps together with Nazarov’s inequality (Lemma A.5) we also have,
for every λ ≥ 0,

sup
λ>0

∣∣P
[
Zε

n,k(F) ≤ λ
]
− P [Z(H) ≤ λ]

∣∣ ≤
(
(6ϕM + νppM

1−p)
√
n+ C2Mn− 3p

8p−4

√
Kn

) 2 +
√
2Kn

σF ,P

+ C3

(
M2K5

n

n

) 1
4

+ C4Kn

√
νppM2−p + e−t +

1

n

On the other hand, if dP (τM ◦ f, τM ◦ g) ≤ δM , then

P (f − g)2 = Pf 2 − 2Pfg + Pg2 ≤ dP (τM ◦ f, τM ◦ g)2 + 16νppM
2−p ≤ δ2M2 + 16νppM

2−p.

Thus the dP distance between a point f ∈ F and its closest point g ∈ H is at most√
δ2M2 + 16νppM2−p. Borell-TIS inequality gives

P

[
Z(F)− Z(H) ≤ Ξ

(√
M2

n
+ 16νppM2−p

)
+

√
2

(
M2

n
+ 16νppM2−p

)
lnn

]
≥ 1− 1

n
.
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Up to redefining the constant C4,

√
32νppM2−p lnn

2 +
√
2Kn

σF ,P

≤ C4Kn

√
νppM2−p.

Using Nazarov’s inequality again and 2 +
√
2Kn ≤ 3

√
Kn yields (up to redefining C2)

sup
λ>0

∣∣P
[
Zε

n,k(F) ≤ λ
]
− P [Z(F) ≤ λ]

∣∣ ≤3
√
nKn

σF ,P

(
6ϕM + νppM

1−p
)
+ C2KnMn− 3p

8p−4

3
√
Kn

σF ,P

Ξ

(√
M2

n
+ 16νppM2−p

)

+ 3C3

(
M2K5

n

n

) 1
4

+ 2C4Kn

√
νppM2−p + e−t +

1

n

Taking M = nανβpK
γ
n and optimizing gives

α =
3

4p− 2
, β = 1, and γ = −1

p
.

We now verify (5.14). Since Kn ≥ ln 8e ≥ 1 and n ≥ 1

n
νpp(F)

Mp
= n

p−2
4p−2Kn ≥ 1.

Moreover v ln 8eM
p
2

ν
p
2
p

≤ 2Kn and so we can take t =
⌈
Cn

p−2
4p−2Kn

⌉
≥ n

p−2
4p−2Kn up to redefining

C.
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Chapter 6

Vector mean estimation under arbitrary

norms

6.1 Introduction

In this chapter we dive deeper in the problem of vector mean estimation under general norms,
which was discussed in §3.1.2. This will be an application of our uniform mean estimation and
Gaussian approximation results. We here let X = Rd and P be a distribution over X. Our goal
is to estimate the mean µP of P given samples Xε

1:n. Let ∥ · ∥ be a norm in Rd, and S ⊂ Rd be
a symmetric set that spans Rd such that

∀x ∈ Rd : ∥x∥ = sup
v∈S

⟨x, v⟩.

Such a set S always exists: for instance, one can take it to be the unit ball of the dual norm.
Recall that the mean of distribution P in Rd is characterized by

∀v ∈ S : ⟨v, µP ⟩ = P ⟨v, ·⟩.

In this problem we are interested in finding a measurable function µ̂(x1:n) satisfying

P [∥µ̂(Xε
1:n)− µP∥ ≤ ΦP (n, α, ε)] ≥ 1− α (6.1)

for the smallest possible ΦP (n, α, ε). Also notice that there is a natural family F of functions
associated with the norm ∥ · ∥ given by

F := {⟨·, v⟩ : v ∈ S}.
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As discussed in §3.1.2, the problem of estimating µP is closely related to the problem of uniform
mean estimation over the class F . To see this let Êf be any given estimator for f ∈ F . Assume
there is a measurable map µ̂ : (Rd)n ! Rd such that

∀x1:n ∈ (Rd)n : µ̂(x1:n) ∈ argmin
µ∈Rd

(
sup
f∈F

∣∣∣Êf (x1:n)− f(µ)
∣∣∣
)
. (6.2)

Then

∥µ̂(X1:n)− µP∥ = sup
f∈F

|f(µ̂(X1:n)− µP )|

= sup
f∈F

|f(µ̂(X1:n))− f(µP )|

= sup
f∈F

∣∣∣f(µ̂(X1:n))− Êf (X1:n)
∣∣∣+ sup

f∈F

∣∣∣Êf (X1:n)− f(µP )
∣∣∣

≤ sup
f∈F

∣∣∣f(µP )− Êf (X1:n)
∣∣∣+ sup

f∈F

∣∣∣Êf (X1:n)− f(µP )
∣∣∣

= 2 sup
f∈F

∣∣∣Êf (X1:n)− f(µP )
∣∣∣

where in the inequality we used the definition of µ̂ as a minimizer.

On the other hand, given a mean estimator µ̂ for µP , we can easily construct estimators
Êf (x1:n) = f(µ̂(x1:n)) for each f ∈ F , and obtain

sup
f∈F

∣∣∣Êf (X1:n)− f(µP )
∣∣∣ = ∥µ̂(X1:n)− µP∥.

6.1.1 Relevant parameters. The parameters considered on Problem 3.1 are still
relevant for this problem. Namely,

νP (F , P ) = sup
f∈F

(P |f(X − µP )|p)
1
p = sup

v∈S
(P |⟨X − µP , v⟩|p)

1
p , (6.3)

Empn(F , P ) = E

∥∥∥∥∥
1

n

n∑

i=1

Xi − µP

∥∥∥∥∥ = E

[
sup
v∈S

∣∣∣∣∣
1

n

n∑

i=1

⟨Xi − µP , v⟩
∣∣∣∣∣

]
. (6.4)

In the special case were ∥ · ∥ is the euclidean norm we have, for P with covariance ΣP ,

νP (F , P ) = ∥ΣP∥op and Empn(F , P ) ≤
√

tr(ΣP )

n
.

We also define the Gaussian width of a set A ⊂ Rd as

w(A) := E
[
sup
v∈A

⟨v,W ⟩
]

where W ∼ N (0, Id).
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6.1.2 Historical background. Early work on vector mean estimation in the sense
of (6.1) includes [Minsker, 2015, Joly et al., 2017]. In the Hilbert space setting, a break-
through result by Lugosi and Mendelson [Lugosi and Mendelson, 2019d] presented a higher-
dimensional analogue of median of means. A more recent estimator by the same authors
[Lugosi and Mendelson, 2021], based on a “high-dimensional trimmed mean” 1, gives better
results2:

ΦP (n, α, ε) = C

(√
tr(ΣP ) + ∥ΣP∥op ln(1/α)

n
+ inf

p>1
νp(F , P )ε1−

1
p

)
. (6.5)

Notice that the contamination term is optimal by §3.1.2, the other term is also known to be
optimal if we only assume finite second moments (see Theorem 6.1 and the discussion following
it).

The problem of general norms was studied by Lugosi and Mendelson
[Lugosi and Mendelson, 2019b] and Depersin and Lecué [Depersin and Lecué, 2021]. Both
papers present median of means based estimators; [Depersin and Lecué, 2021] gives the
following upper bound:

ΦP (n, α, ε) = C

(
E

∥∥∥∥∥
1

n

n∑

i=1

Xi − µP

∥∥∥∥∥+ ν2(F , P )
√
ε+

ln(1/α)

n

)
. (6.6)

They also present a matching lower bound for Gaussian distributions with ε = 0, as we discuss
below.

6.1.3 A characterization in terms of the Gaussian width. The following
result characterizes ΦP (n, α, ε) for P Gaussian and ε = 0 in terms of the Gaussian width of
Σ

1
2S and a fluctuation term.

Theorem 6.1 (Theorem 3 of [Depersin and Lecué, 2021]). Let Σ be a positive-definite matrix.
Assume that S, F and ∥ · ∥ are as above. If µ̂ : (Rd)n ! Rd satisfies for all α ∈

(
0, 1

4

]
and for

all µ ∈ Rd,
PX1:n∼⊗n

i=1N (µ,Σ) [∥µ̂(X1:n)− µ∥ ≤ ΦΣ(n, α, 0)] ≥ 1− α,

then

ΦΣ(n, α, 0) ≥ c

(
w(Σ

1
2S)√
n

+ ν2(F)

√
1

n
ln

1

α

)

1Their estimator involves a truncation at sample quantiles, and is more properly called a “Winsorized mean.”
2They only derive explicit bounds for p = 2, but the more general bounds follow from the same methods.
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for some absolute constant c > 0. Moreover, taking µ̂ as the empirical mean yields

ΦΣ(n, α, 0) ≤ C

(
w(Σ

1
2S)√
n

+ ν2(F)

√
1

n
ln

1

α

)

for some absolute constant C > 0.

An interpretation of Theorem 6.1 is that the correct complexity term for the problem of vector
mean estimation is the Gaussian width of Σ

1
2
PS. When ∥ · ∥ is the euclidean norm we have (see

Proposition 2.5.1 of [Talagrand, 2014])

Empn(F , P ) ≈
√

tr(Σ)
n

≈ w(Σ
1
2Sd−1)√
n

,

and so the complexity term Empn(F , P ) matches the Gaussian width. However, it is unclear if
it also happens under general norms. In addition, Theorem 6.1 also points to the optimality of
the fluctuation term

ν2(F)

√
1

n
ln

1

α
.

6.2 Our estimator

To define our estimator we follow the strategy outlined in (6.2). Ideally we would like to define

µ̂n,k(x1:n) ∈ argmin
µ∈Rd

(
sup
f∈F

∣∣∣T̂n,k(f, x1:n)− f(µ)
∣∣∣
)
,

but for that end we must check if it is possible to define µ̂n,k(x1:n) in a way that the estimator
is measurable. This is done in the next lemma.

Lemma 6.2. Given 1 ≤ k < n/2, there exists a measurable function µ̂n,k : (Rd)n ! R such
that

∀x1:n ∈ (Rd)n : µ̂n,k(x1:n) ∈ argmin
µ∈Rd

(
sup
f∈F

∣∣∣T̂n,k(f, x1:n)− f(µ)
∣∣∣
)
. (6.7)

Proof Recall that S is a symmetric set and so F is a symmetric class of functions, thus

sup
f∈F

∣∣∣T̂n,k(f, x1:n)− f(µ)
∣∣∣ = sup

f∈F
T̂n,k(f, x1:n)− f(µ).

Define
F (µ, x1:n) = sup

f∈F
T̂n,k(f, x1:n)− f(µ),
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which is convex in µ for fixed x1:n because it is a supremum of affine functions. F is also a
measurable function of (µ, x1:n) because the supremum can be taken over a countable dense
subset D ⊂ F . For fixed x1:n, the values T̂n,k(f, x1:n) are uniformly bounded, and one can
deduce from this that the set

K(x1:n) := argmin
µ∈Rd

F (µ, x1:n)

is convex, compact and nonempty.

It remains to show that we can take a measurable function µ̂n,k with µ̂n,k(x1:n) ∈
K(x1:n). In order to use Kuratowski and Ryll-Nardzewski measurable selection theorem
[Kuratowski and Ryll-Nardzewski, 1965] we need to show that for every open set U ⊂ Rd,
the set

AU := {x1:n : K(x1:n) ∩ U ̸= ∅}

is measurable. If U = ∅ we are done. Otherwise, we can write U =
⋃n

i=1Ki where Ki is
compact and has non-empty interior for every i ∈ N. Thus, it suffices to show that

AK := {x1:n : K(x1:n) ∩K ̸= ∅}

is measurable for every compact set K with non-empty interior. Let D be dense and countable
in Rd, and also assume that K ∩D is dense in K. Notice that K(x1:n)∩K ̸= ∅ if there is some
minimizer of F (·, x1:n) in K. For a given x1:n ∈ (Rd)n,

K(x1:n) ∩K ̸= ∅
⇔

∃µ ∈ K such that F (µ, x1:n) ≤ F (µ′, x1:n)∀µ′ ∈ Rd

⇔
∃µ ∈ K such that F (µ, x1:n) ≤ F (µ′, x1:n) ∀µ′ ∈ D

⇔
∀m ∈ N, ∃µ ∈ K ∩D such that F (µ, x1:n) ≤ F (µ′, x1:n) +

1
m

∀µ′ ∈ D.

The first equivalence follows from our previous observation. The second equivalence follows
noticing that F is continuous on µ. The last equivalence is less obvious and uses that K is
compact:

• (⇒): assume µ ∈ K is such that F (µ, x1:n) ≤ F (µ′, x1:n) ∀µ′ ∈ D; since K ∩D is dense
in K there exists (µk)

∞
k=1 ⊂ K ∩D satisfying µk ! µ as k ! ∞. Since F is continuous

on µ we have F (µk, x1:n) ! F (µ, x1:n) as k ! ∞, given m ∈ N exists km such that
F (µkm , x1:n) ≤ F (µ, x1:n) +

1
m

and so F (µkm , x1:n) ≤ F (µ′, x1:n) +
1
m

∀µ′ ∈ D.
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• (⇐): Take a sequence (µm)
∞
m=1 ⊂ K∩D satisfying F (µm, x1:n) ≤ F (µ′, x1:n)+

1
m

∀µ′ ∈ D.
Since K is compact there is a sub-sequence (µkm)

∞
m=1 ⊂ (µm)

∞
m=1 such that µkm ! µ as

m!∞ for some µ ∈ K. Moreover, F (µ, x1:n) = limm!∞ F (µkm , x1:n) and so F (µ, x1:n) ≤
F (µ′, x1:n) ∀µ′ ∈ D.

Writing the previous observations using the appropriate set operation for each logical quantifier
yields

AK =
∞⋂

m=1

⋃

µ∈K∩D

⋂

µ′∈D

{
x1:n : F (µ, x1:n) ≤ F (µ′, x1:n) +

1

m

}

and so AK is measurable.

6.3 Main results

We now apply our results for uniform mean estimation (Theorem 3.1) and for Gaussian ap-
proximation (Theorem 5.14) to this problem.

6.3.1 Consequences of our uniform mean estimation results. Our result
on uniform mean estimation (Theorem 3.1) gives, for k = ϕn with

ϕ :=
1

n

(
⌊εn⌋+

⌈
ln

2

α

⌉
∨
⌈(

1
2
− ε
)
∧ ε

2
n

⌉)
<

1

2
,

the following bound

ΦP (n, α, ε) = Cε

(
8Empn(F , P ) + inf

q∈[1,2]
νq(F , P )

(
ln 3

α

n

)1− 1
q

+ inf
p≥1

νp(F , P )ε1−
1
p

)
,

where Cε is a constant depending only on ε.

In the general case, it is also an improvement over (6.6), as it allows for a better de-
pendence on the contamination level. In the case of the Euclidean norm, this bound
is optimal (by Theorem 6.1) and provides a slight improvement over the main result of
[Lugosi and Mendelson, 2021] showed in (6.5) as it allows for a better fluctuation term.

6.3.2 Consequences of our Gaussian approximation results. Assume that
νp(F , P ) <∞ for some p > 2. To apply Theorem 5.14 to the mean vector estimation problem
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we first notice that the VC-subgraph dimension of F is at most d + 2, this is because for a
given f = ⟨·, v⟩ its subgraph

sg(f) := {(x, t) : ⟨·, v⟩ ≤ t} ∈ Rd+1

is a half-space and the VC dimension of all half-spaces is d+ 2, thus vc(F) ≤ d+ 2. Let

Kn = (2d+ 4)(lnn ∨ ln 8e)

and assume n is large enough so it satisfies 16Kn ≤ n
p−2
4p−2 and ν2p(F)n− 3p−6

4p−2K
1− 2

p
n ≤ 3

8
σF ,P .

Then, Theorem 5.14 says that exists an absolute constant C such that taking

k := ⌊εn⌋+
⌈
Cn

p−2
4p−2Kn

⌉
<
n

2
,

yields

P

[
∥µ̂n,k(X

ε
1:n)− µP∥ ≤ C

(
w(Σ

1
2S)√
n

+ ν2(F)

√
1

n
ln

1

α

)]
≥ 1− α− ϱ

where

ϱ ≤ C ′
(
νp ∨ ν

1
2
p

)

K

6− 4
p

n

n
2p−4
2p−1




1
4

+ 18
νp
σF ,P

εn
1
2
+ 3

4p−2K
1
2
− 1

p
n +

3
√
Kn

σF ,P

Ξ

(
5νpK

1
2
− 1

p
n n

9
16p−8

− 3
8

)

for a constant C ′ depending only on ν2(F) and on σF ,P .

Notice that for a given δ we can use an entropy integral bound and the fact that S is contained
in a euclidean ball to obtain, for some absolute constant C ′′ > 0,

Ξ(δ) ≤ C ′′δ

√
d ln

diam(S)

δ
.

Thus, if n is high enough to satisfy ϱ ≤ α we match the optimal bound given by Theorem 6.1
up to constant factors.
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Chapter 7

Conclusions

We now discuss a few research questions that this work inspired. Most of this research questions
focus on the extension of our proof techniques to other problems.

Research question 1. When the data is contaminated, the percentage ε of con-
taminated sample points is typically unknown. Under which assumptions we can
estimate the mean even when ε is unknown? What about non-adversarial contami-
nation models?

In terms of informational-theoretical bounds, this question is related to the discussion on the
dependence on the confidence level made in [Devroye et al., 2016]. In [Devroye et al., 2016]
is proved that previous knowledge of the confidence level α is necessary to construct a mean
estimator E that, as asked in Question 1, behaves as if data were Gaussian irrespective of its
distribution. This is reflected in the choices of k ≈ ln 1

α
necessary for the trimmed mean in

the problem of uniform mean estimation and regression (Theorems 3.1 and 4.4). An analogous
question can be made for the dependence on the contamination level ε and the answer might
come from similar techniques.

The Huber contamination model might also be considered. Experiments using cross-validation
in §4.4.1, §4.4.2 and also in [Lecué and Lerasle, 2020] to select the contamination level for robust
regression in artificial data contaminated via Huber’s model have shown to perform well. An
enlightening result may come from studying the cross-validation parameter selection in terms
of the distributional distance between the clean sample distribution and the distribution used
for contamination.
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Research question 2. Can we apply the trimming and truncation proof techniques
described in §2.2 to other problems and estimators?

The proofs in Chapters 3, 4 and 5 are similar, as the same basic arguments are used to translate
the study of the trimmed mean to the study of a truncated empirical process related to it. I’m
currently working with Zoraida Rico to apply the same techniques to the problem of robust
null space estimation using an estimator similar to the least trimmed squares (a version of the
trimmed mean where only the k largest entries are removed before taking the average).

Research question 3. Can we derive bootstrap approximation bounds in the
infinite-dimensional setting? What about entropy-free and weak-variance-free
bounds?

The arguments used to proof the high-dimensional bootstrap approximation results in §5.2,
together with the δ-net approximation argument used to proof the Gaussian approximation
result for the infinite dimensional case presented in §5.3, might be useful to obtain infinite-
dimensional bootstrap approximation results.

Moreover, in a recent paper [Giessing, 2023], entropy-free and weak-variance-free bounds are
obtained for the Gaussian and bootstrap approximations of the empirical mean, assuming the
existence of an envelope F ∈ L3(P ). Our proof techniques might also be capable of translating
these results to the trimmed mean while removing the requirement of an envelope function.
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Appendix A

Auxiliary results

A.1 Inequalities for empirical processes

We state here some classical results used on our proofs. Recall the definitions from §2.1.4 and
from §5.3.

Lemma A.1 (Expectation bound for VC-type classes, Corollary 5.1 of
[Chernozhukov et al., 2014b]). Let G be a VC-type class with a square-integrable envelope G

and constants A ≥ e, v ≥ 1. Then,

Empn(G, P ) ≤ C

{√
vν22(G)
n

ln
A∥G∥L2(P )

ν2(G)
+
v∥M∥L2(P )

n
ln
A∥G∥L2(P )

ν2(G)

}

for some absolute constant C and where

M = max
i∈[n]

G(Xi).

Lemma A.2 (Talagrand’s concentration inequality for VC-type classes, as in Theorem B.1
of [Chernozhukov et al., 2014a]). Let G be a VC-type class with a constant envelope function b

and constants A ≥ e, v ≥ 1. Consider also that σ2 satisfies ν22(G) ≤ σ2 ≤ b2. If b2v ln Ab
σ

≤ nσ2,
then for all t ≤ nσ2

b2
,

P

[
sup
g∈G

∣∣∣∣∣
1

n

n∑

i=1

g(Xi)− Pg

∣∣∣∣∣ ≥ C

√
σ2

n

(
t ∨
(
v ln

Ab

σ

))]
≤ e−t,

where C > 0 is an absolute constant.
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A.2 Tail bounds for the maxima of random variables

The following theorem allow us to control the tails of the maxima of random variables when
the set G is finite, this result will be used to proof our finite-dimensional counting lemmata.

Lemma A.3 (Counting lemma for boolean random variables). Let X1, . . . , Xn be independent
random vectors taking values in {0, 1}d. Then,

P

[
max
j∈[d]

1

n

n∑

i=1

Xi,j ≥ 3
ln(1 + d)

n
+ 7ρ

]
≤ 2e−nρ,

where ρ = maxj∈[d]
1
n

∑n
i=1 E [Xi,j].

Proof Let m ≥ 2 and pi,j = E [Xi,j], then

E [|Xi,j − pi,j|m] = pi,j(1− pi,j)
[
(1− pi,j)

m−1 + pm−1
i,j

]
≤ pi,j ≤

m!

2

(
2

3

)m−2

pi,j.

It follows directly from Lemma 4 of [van de Geer and Lederer, 2013] taking τ =
√

6σ2

n
, L =√

6K2

σ2n
, K = 2

3
, σ2 = ρ that for every θ > 0

P

[
max
j∈[d]

∣∣∣∣∣
1

n

n∑

i=1

Xi,j − E [Xi,j]

∣∣∣∣∣ ≥
√
6ρ

ln(1 + d)

n
+ 2

ln(1 + d)

n
+

√
6ρ
θ

n
+

2θ

n

]
≤ 2e−θ.

Using the AM-GM inequality and taking θ = nρ we can simplify it to

P

[
max
j∈[d]

∣∣∣∣∣
1

n

n∑

i=1

Xi,j − E [Xi,j]

∣∣∣∣∣ ≥ 3
ln(1 + d)

n
+ 6ρ

]
≤ 2e−nρ.

The desired result follows removing the centering at a cost of ρ.

A.3 Gaussian comparison and anti-concentration

inequalities

In our proofs it is sometimes required to compare two Gaussian’s with different covariances.
For that end we make use of the Gaussian comparison inequality.
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Lemma A.4 (Proposition 2.1 of [Chernozhuokov et al., 2022]). Let P, P ′ be distributions over
X and G,G ′ be classes of P and P ′ centered functions, respectively. Let d := |G| < ∞ and
π : G ! G ′. Assume σG,P > 0, then

sup
λ∈R

|P [Z(G, P ) ≤ λ] ,P [Z(G ′, P ′) ≤ λ]| ≤ C(ln d)
√
∆π(ΣG,P − ΣG′,P ′)

for some constant C depending only on σG,P .

To prove Gaussian approximation results, in both the high-dimensional and the infinite-
dimensional cases anti-concentration inequalities are required to control errors. The
following lemma, which is due to [Nazarov, 2003] and has a self-contained proof in
[Chernozhukov et al., 2017].

Lemma A.5 (Nazarov’s inequality). Let G be a family of P -centered functions with |G| = d.
If σG,P > 0, then for all δ > 0,

sup
λ∈R

P [λ ≤ Z(G) ≤ λ+ δ] ≤ δ

σG,P

(
2 +

√
2 ln d

)
.
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