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1 Introduction

This is the poster proposal for the IMPA workshop on Special holonomy. It is based on my paper “A
special class of k-harmonic maps inducing calibrated fibrations” [1] with my supervisor Spiro Karigiannis.
I will quickly highlight the importance of such maps, list some results and discuss numerous future
questions. I understand that it currently has too much information for the poster itself but if you aprove
it, I will make everything more compact. Thank you for the consideration!

2 Abstract

We consider two special classes of k-harmonic maps between Riemannian manifolds which are related
to calibrated geometry, satisfying a first order fully nonlinear PDE. The first is a special type of weakly
conformal map u: (L*,g) — (M™,h) where k < n and « is a calibration k-form on M. Away from
the critical set, the image is an a-calibrated submanifold of M. These were previously studied by
Cheng-Karigiannis-Madnick when « was associated to a vector cross product, but we clarify that such
a restriction is unnecessary. The second, which is new, is a special type of weakly horizontally conformal
map u: (M™, h) — (L*, g) where n > k and « is a calibration (n — k)-form on M. Away from the critical
set, the fibres u=!{u(x)} are a-calibrated submanifolds of M.

We also review some previously established analytic results for the first class; we exhibit some explicit
noncompact examples of the second class, where (M, h) are the Bryant—Salamon manifolds with excep-
tional holonomy; we remark on the relevance of this new PDE to the Strominger—Yau—Zaslow conjecture
for mirror symmetry in terms of special Lagrangian fibrations and to the Gy version by Gukov—Yau—
Zaslow in terms of coassociative fibrations; and we present several open questions for future study.

3 Importance

The natural partial differential equations with arise in Riemannian geometry are usually second order.
Some important examples are:
(i) an Einstein metric [Ric, = Ag, where Ric is the Ricci curvature]
(ii) a minimal submanifold [H = 0, where H is the mean curvature]
(iii) a Yang-Mills connection V on a vector bundle [(dV)*FV = 0, where FV is the curvature]
)

(iv) a k-harmonic map u: (M, g1) — (Mz, g2) between Riemannian manifolds [div(|du|*~2du) = 0]



All of the above geometric objects are also variational. That is, the PDEs are Euler-Lagrange equations
for some natural geometric functional or “energy”, and hence such objects are critical points of these
functionals, but may not in general be (local) minima.

A common feature is that when there is additional geometric structure present, one can identify a natural
special class of solutions which:

e satisfy a (usually fully nonlinear) first order PDE, and

e are actually global minimizers of the functional within a particular class of variations.
With respect to the particular examples above, these special first order solutions are:

(i) a special holonomy metric: Calabi—Yau, hyperkihler, quaternionic-Kéhler, Ga, or Spin(7). These
are all Einstein, and most are Ricci-flat.

(ii) a calibrated submanifold of a special holonomy manifold. These are all minimal. The calibrated
condition is a first order condition on the immersion. They are global minimizers of the volume
functional in a given homology class.

(iii) an instanton on a vector bundle over a special holonomy manifold. These are all Yang—Mills. The
instanton condition is a first order condition on the connection, being an algebraic condition on the
curvature. In many cases, a characteristic class argument shows that they are global minimizers of
the Yang—Mills energy.

Here, we discuss two classes of special first order solutions to (iv) above, called Smith maps. They are
special types of k-harmonic maps u: (M1, g1) — (Ma, g2) between pairs of Riemannian manifolds, which
are intimately related to both calibrated geometry and conformal geometry:

e For u: (L¥,g) — (M™, h), with k¥ < n and a € QF(M) a closed calibration, we define a Smith
immersion, which is a special type of weakly conformal k-harmonic map. If L is the open subset
on which du # 0, then u: L — M is an immersion, whose image u(L°) is k-dimensional a-
calibrated submanifold of (M, h). Moreover, this notion is invariant under conformal change of the
domain metric g.

e For u: (M™,h) — (L¥ g), with n > k and a € Q"~*(M) a closed calibration, we define a Smith
submersion, which is a special type of weakly horizontally conformal k-harmonic map. If M? is the
open subset on which du # 0, then the fibres u={u(z)} of u: M° — L are (n — k)-dimensional a-
calibrated submanifolds of (M, h). Moreover, this notion is invariant under horizontally conformal
change of the domain metric h.

The notion of Smith immersions was previously studied by Cheng—Karigiannis—Madnick, inspired by an
unpublished preprint of Smith. The notion of Smith submersions is new.

The two constructions should also be viewed as special first order versions of the following particular
classical results from harmonic map theory:

e a Riemannian immersion u: (L,g) — (M, h) is harmonic <= the image is minimal,

e a Riemannian submersion u: (M, h) — (L, g) is harmonic <= the fibres are minimal.

4 Definitions and Notation
Definition 4.1. Let o € QF on (M™, h). We say that « is a calibration if

afvy A-AvE) < |Jvp A A forallvg,...,vp €T, M and all x € M. (4.2)

Let L* be an oriented submanifold of M. We say L is calibrated with respect to « if a|y, = voly. (That
is, if equality in (4.2) is attained on each oriented tangent space T, L of L.) A



Definition 4.3. Let u: (M1, g1) — (Mas, g2) be a smooth map. If M; is compact, then the p-energy of
u is defined to be

ya
2

E,(u) = (\/;)p J:Ml |du|Pvolps, = (\[;)]DJMI (trg1 (u*gg)) volpy, .

We say that a map u is p-harmonic if it is a critical point of the functional E,. That is, a p-harmonic
map is a solution to the Euler-Lagrange equation for the p-energy functional. This equation is

div(|dulP~?du) = 0 € T(u*TM>), (4.4)

and is called the p-harmonic map equation. When p = 2, this reduces to the classical elliptic harmonic
map equation div(du) = 0, and a 2-harmonic map is just called a harmonic map. But for p > 2 this
equation is a degenerate elliptic equation.

More generally, the section of u*T M, given by
Tp(u) == div(|du|P~2du) (4.5)
is called the p-tension of u, so a map w is p-harmonic if and only if it has vanishing p-tension.

Note that if M; is not compact we can still take equation (4.4) as the definition of p-harmonic.
ni

Note that p-energy of a map u: (M7, g1) — (M52, g2) is conformally invariant. A

5 Smith immersions

In this section, u: (L¥,g) — (M™, h) is a smooth map between Riemannian manifolds, with k& < n.

Definition 5.1. A smooth map u: (LF,g) — (M™, h) is called (weakly) conformal if

u*h = A%g
for some smooth function A > 0 which is continuous (and smooth away from 0) on L. It then follows
that necessarily A? = ¢|dul>.

Let L° € L be the open set where |du| # 0. From u*h = 1|dul*g, we deduce that u|o: L® — M is an
immersion. A

Theorem 5.2. Let u: (L*,g) — (M™,h) be a smooth map. Let o€ QF(M) be a calibration. Then
u*a < Avolp,  where A = ﬁ|du| (5.3)

Moreover, equality holds if and only if:

o u*h = \2g (so u is a weakly conformal immersion), and

e the image u(L°) is calibrated with respect to .

Definition 5.4. If equality holds in (5.3), we say that u is a Smith immersion with respect to a.
That is, a Smith immersion with respect to a is a smooth map wu: (L¥, g) — (M™, h) such that

1 1
wra = W|du|kvolL7 u*h = %|du|29, (5.5)

at all points on L. [However, recall that the first equation automatically implies the second equation.] A



Proposition 5.6. Let u: (L*,g) — (M"™,h) be a smooth map and o € QX on M be a calibration form.
Then w is a Smith immersion iff
-1 k—1

((\/E))k_z|du|’f—2du. (5.7)

Note that when L? is a Rieamann surface, M™ with o = w is an almost complex manifold, then 5.7 gives
a J-holomorphic map equation.
Also, the benefit of this equation is that we can differentiate it, as differentiating (5.7) just gives 0 = 0.

P, o A*"Y(du) o xf, =

Theorem 5.8 (Energy Inequality). Let a € Q¥(M) be a closed calibration. Let u: (L*,g) — (M™, h) be
a Smith immersion with respect to a. Suppose L is compact. Then u is k-harmonic in the sense that it
is a critical point of Fy.

Proof. For any smooth map u: (L¥,g) — (M™ h), let A = ﬁ|du|. Using (5.3) we have

1
(Vk)*

which is a topological quantit. Moreover, by Theorem 5.2, equality holds if and only if v is a Smith
immersion. This shows that such maps are local minimizers of E}, and thus are k-harmonic. O

Ex(u) = J; |dulFvoly, = JL Mevoly, > J; u*a = [a] - ug[ L],

Theorem 5.9. Let u: (L*,g) — (M™,h) be a Smith immersion with respect to the calibration form
aeQF. Ifda =0, then u is k-harmonic in the sense that T, (u) = 0.

6 Smith submersions

In this section, u: (M™, h) — (L* g) is a surjective smooth map between Riemannian manifolds, with
nz=k.

Definition 6.1. Let u: (M™, h) — (L*, g) be a smooth surjection. Let M® € M be the open set where
|du| # 0. Suppose that the restriction u|y0: M? — L is a submersion, so that rank(du,) = k for all
xz € MY, Then the tangent bundle TM° of M° decomposes as

TM° = (ker du) @, (ker du)™*,

where kerdu = VMO is the vertical subbundle, which has rank n — k, and (kerdu)* = HM?° is the
horizontal subbundle, which has rank k.

It follows that an m-tensor « € 7™ on M is a smooth section of

@ (ker du)®p ® ((ker du)J‘)®q,

p+g=m
with p < n —k,q < k. We denote by a9 the component of o which lies in
T@9 = T((ker du)®” @ ((ker du)*)®?)

and we say that a9 is of type (p, q).

It follows that the metric h on M° decomposes as h = h?° + h%2 where h?° is the metric on the vertical
subbundle ker du, and k%2 is the metric on the horizontal subbundle (ker du)*. In particular, we have

tr, (h%?) = k. (6.2)

Finally, we use Q"% to denote the totally skew-symmetric elements of 7). A



Definition 6.3. A smooth surjection u: (M™, h) — (L*,g) is called (weakly) horizontally conformal if
for every point x € M, we either have du, = 0, or if du, # 0, then rank(du,) = k is maximal and

U*g — )\2h(0,2)

for some smooth function A > 0 on M°. We can extend A? by zero to obtain a continuous non-negative
function on M. It then follows that necessarily A? = |dul?. A

Theorem 6.4. Let u: (M™, h) — (L*,g) be a smooth surjection. Let o € Q"~*(M) be a calibration.
Then |
U
a A ufvoly, < Mvolyy,  where A = —. 6.5
L M NG (6.5)
Moreover, equality holds if and only if:
o u*g = A2h(%2) (so0 u is a weakly horizontally conformal submersion) and,

e the fibres of the restriction of u to M° are calibrated with respect to a.

Definition 6.6. If equality holds in (6.5), we say that u is a Smith submersion with respect to a.
That is, a Smith submersion with respect to « is a smooth map u: (M™, h) — (L*, g) such that

1
|du|Fvolys,  u*g = %|du|2h(072), (6.7)

a A u*voly, =

1
(VE)
at all points on M. [However, recall that the first equation automatically implies the second equation.] A

Proposition 6.8. Let u: (M™, h) — (L*, g) be a smooth map and o € Q"% on M is a calibration form.
Then u is a Smith submersion iff

_1yk—1
*LAk_l(du)(-_l *Q) = ((\/%))162|du|k_2du. (6.9)

The benefit of this equation is that we can differentiate it, as differentiating (6.7) just gives 0 = 0.

Theorem 6.10 (Energy Inequality). Let u: (M™,h) — (L*,g) be a Smith map. Let o € Q"% be a
closed calibration form on M. Then u is k-harmonic in the sense that it is a critical point of Ej,.

Proof. For any smooth map u: (M", h) — (LF,g), let A = ﬁ|du|. Using (6.5) we have

1 * k
Ei(u) = Nk fM |du|"volpr = jM Mvolys > JMQ A u*voly = ([a] v u*[volr]) - [M],

which is a topological quantity. Moreover, by Theorem 6.4, equality holds if and only if w is a Smith
submersion. This shows that such maps are local minimizers of E} and thus are k-harmonic. O]

Theorem 6.11. Let u: (M™, h) — (L*,g) be a Smith submersion with respect to the calibration form
ae Q" F. Ifda =0, then u is k-harmonic in the sense that T(u) = 0.

7 Future Questions

7.1 Analytic results for Smith immersions

Numerous analytic results for Smith immersions were established in Cheng—Karigiannis—Madnick. In
that paper the authors assumed that the calibration form a € QF(M) was associated to a vector cross
product (VCP), but this assumption was not necessary. Here is the list of the results:



Removable singularities. If v is a Cf,, Smith immersion on a punctured open ball in R* with finite

k-energy, then v extends to a C' Smith immersion across the puncture.

Energy gap. There exists a “threshold energy” ey > 0 such that every Smith immersion u: S¥ — M
with k-energy less than g is constant. (That is, any nontrivial solution has a minimum k-energy.) This
is used to show that there are only a finite number of “bubbles”.

Compactness modulo bubbling. Let W € L be open, and let {W,,}men an increasing sequence of
open sets exhausting W, and g¢,, a sequence of metrics on Wy, such that g,, — ¢ in C}5, on W. Let

Um: (Wi, [gm]) = (M, h) be a sequence of Smith immersions with uniformly bounded k-energy.

Then there exists a Smith immersion uy,: (L,g9) — (M,h) and a (possibly empty) finite subset B =
{x1,...,xN} of L such that (after passing to a subsequence) the following three properties hold:

(a) Uy, — Uy in CL . on U\B uniformly on compact subsets of U\,

(b) as Radon measures on L, we have |du,,|"voly, — |du|Fvoly, + vazlci(S(xi), where §(x;) is a Dirac
measure at x;, and each ¢; > %50, where ¢ is the “threshold energy”. This says that the energy
density can concentrate at points, where a minimum amount of energy is lost.

(c) If the u,, have uniformly bounded p-energy for some p € (k, 0], then B = &. (There is no bubbling.)

This result can be applied to a sequence u,,: L — M of Smith immersions representing the same
homology class in Hp(M), as they have a uniform k-energy bound. For each x;, by rescaling about x;
and using conformal invariance, and reapplying this result, we obtain a “bubbled oft” Smith immersion
U i S* — M. This process stops after a finite number of iterations due to the energy gap.

No energy loss. We have lim,, , Ex(tm) = Er(uy) + X Ex(tp,;). This says that the limiting
k-energy is the sum of the k-energy of u,. plus the k-energy of each of the bubble maps.

Zero neck length. We have uy(z;) = @ ;(p~). This says that for m >> 0, then w,, is homotopic to
the connect sum ., #(#o ;).
i

It would of course be very interesting to establish analogous analytic results for Smith submersions.
However, the conformal invariance of Smith immersions was used crucially to establish the above analytic
results. By contrast, Smith submersions are only horizontally conformally invariant. But perhaps this
is indeed the right notion that is needed in this context.

7.2 Calibrated fibrations and the SYZ and GYZ “conjectures”

Strominger—Yau—Zaslow argue that one should expect (at least for certain types of points near the
boundary of the moduli space) that a compact Calabi—Yau 6-manifold should admit a fibration over
a 3-dimensional base, necessarily with singular fibres. The generic (smooth) fibre should be a special
Lagrangian torus. The mathematical inspiration comes from the deformation theory of McLean, which
shows that a compact special Lagrangian 3-manifold L3 in a Calabi-Yau 6-manifold locally smoothly
deforms in a family of dimension b!(L?). One then expects to construct the “mirror Calabi-Yau manifold”
by dualizing smooth fibres and then somehow compactifying.

Similarly, Gukov—Yau-Zaslow explain in that, again under certain conditions, a compact torsion-free
Go-manifold should admit a fibration over a 3-dimensional base, again with singular fibres. The generic
(smooth) fibre should be a coassocative submanifold with is topologically either T or K3. Again, this is
inspired by McLean’s result in that a compact coassociative 4-manifold L? in a torsion-free Go-manifold
locally smoothly deforms in a family of dimension b% (L*), modulo orientations.

7.3 Questions for future study

Deformation theory of Smith maps. Currently we have shown that the only deformations of Smith
submersions are the ones induced by a flow of a conformally horizontal Killing vector field. For the Smith



immersions, the only purely vertical deformations are, again, the conformally Killing ones. We wish to
investigate this further and see if other deformations are obstructed or not. The work of McClean studied
the deformation theory of calibrated submanifolds, and depending on the calibration some cases such
as Special Lagrangian and coassociative submanifolds deform smoothly, while complex, associative, and
Cayley submanifolds in general have obstructed deformations. It would also be interesting to see if the
deformation theory of Smith immersions is “better behaved”. This is not completely unreasonable, given
the added freedom of precomposing by an orientation-preserving conformal diffeomorphism. For example,
start with a (compact) associative or Cayley submanifold, and describe it by a Smith immersion. Can we
always deform it as a Smith immersion in a smooth family? We would expect that the images of these
deformations would immediately acquire singular points. That is, perhaps the reason that associative
or Cayley submanifolds do not deform easily is because “they generically want to be singular”, but a
singular calibrated submanifold could still be described as the image of a smooth Smith immersion.

Stability. We have seen from the energy inequalities that Smith immersions and Smith submersions are
global minimizers of the k-energy in a particular class of maps. Suppose that u is a k-harmonic map,
which is stable in the sense that the second variation of the k-energy at u is nonnegative, so u is a local
minimum of the k-energy. Under what additional assumptions on the geometry of the source and target
could we ensure that such a stable k-harmonic map is necessarily a Smith map? The classical example
of such a stability theorem is the demonstration by Siu-Yau that a stable harmonic map from S? = CP!
into a compact Kéhler manifold (M, h,w) with positive holomorphic bisectional curvature is necessarily
+-holomorphic. Generalizing such a result should involve finding analogues of “positive holomorphic
bisectional curvature” in Riemannian manifolds with special holonomy.

Constructing Smith maps via flows. If a general stability theorem as described in the previous
paragraph could be established, then one could use this to attempt to construct examples of Smith
immersions or Smith submersions by running the k-harmonic map heat flow. This is the negative gradient
flow of the k-energy. One would have to show that (under certain assumptions on the geometries of the
source and target) that the flow exists for all time and converges to a k-harmonic map. Then one would
hope to argue that the limit must in fact be a Smith map.

Local properties. A Smith immersion equation is a generalization of a J-holomorphic map equa-
tion between a Rieamann surface and an almost complex manifold. Many local properties hold for
J-holomorphic maps, such as: unique continuation, which says that two maps with the same oo-jet at a
point must be equal; preimages of critical values are isolated; existence of injective points, etc. We want
to investigate if these also hold for Smith maps.
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