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1 Introduction

This is the poster proposal for the IMPA workshop on Special holonomy. It is based on my paper “A
special class of k-harmonic maps inducing calibrated fibrations” [1] with my supervisor Spiro Karigiannis.
I will quickly highlight the importance of such maps, list some results and discuss numerous future
questions. I understand that it currently has too much information for the poster itself but if you aprove
it, I will make everything more compact. Thank you for the consideration!

2 Abstract

We consider two special classes of k-harmonic maps between Riemannian manifolds which are related
to calibrated geometry, satisfying a first order fully nonlinear PDE. The first is a special type of weakly
conformal map u : pLk, gq Ñ pMn, hq where k ¤ n and α is a calibration k-form on M . Away from
the critical set, the image is an α-calibrated submanifold of M . These were previously studied by
Cheng–Karigiannis–Madnick when α was associated to a vector cross product, but we clarify that such
a restriction is unnecessary. The second, which is new, is a special type of weakly horizontally conformal
map u : pMn, hq Ñ pLk, gq where n ¥ k and α is a calibration pn�kq-form on M . Away from the critical
set, the fibres u�1tupxqu are α-calibrated submanifolds of M .

We also review some previously established analytic results for the first class; we exhibit some explicit
noncompact examples of the second class, where pM,hq are the Bryant–Salamon manifolds with excep-
tional holonomy; we remark on the relevance of this new PDE to the Strominger–Yau–Zaslow conjecture
for mirror symmetry in terms of special Lagrangian fibrations and to the G2 version by Gukov–Yau–
Zaslow in terms of coassociative fibrations; and we present several open questions for future study.

3 Importance

The natural partial differential equations with arise in Riemannian geometry are usually second order.
Some important examples are:

(i) an Einstein metric [Ricg � λg, where Ric is the Ricci curvature]

(ii) a minimal submanifold [H � 0, where H is the mean curvature]

(iii) a Yang–Mills connection ∇ on a vector bundle [pd∇q�F∇ � 0, where F∇ is the curvature]

(iv) a k-harmonic map u : pM1, g1q Ñ pM2, g2q between Riemannian manifolds [divp|du|k�2duq � 0]
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All of the above geometric objects are also variational. That is, the PDEs are Euler–Lagrange equations
for some natural geometric functional or “energy”, and hence such objects are critical points of these
functionals, but may not in general be (local) minima.

A common feature is that when there is additional geometric structure present, one can identify a natural
special class of solutions which:

� satisfy a (usually fully nonlinear) first order PDE, and

� are actually global minimizers of the functional within a particular class of variations.

With respect to the particular examples above, these special first order solutions are:

(i) a special holonomy metric: Calabi–Yau, hyperkähler, quaternionic-Kähler, G2, or Spinp7q. These
are all Einstein, and most are Ricci-flat.

(ii) a calibrated submanifold of a special holonomy manifold. These are all minimal. The calibrated
condition is a first order condition on the immersion. They are global minimizers of the volume
functional in a given homology class.

(iii) an instanton on a vector bundle over a special holonomy manifold. These are all Yang–Mills. The
instanton condition is a first order condition on the connection, being an algebraic condition on the
curvature. In many cases, a characteristic class argument shows that they are global minimizers of
the Yang–Mills energy.

Here, we discuss two classes of special first order solutions to (iv) above, called Smith maps. They are
special types of k-harmonic maps u : pM1, g1q Ñ pM2, g2q between pairs of Riemannian manifolds, which
are intimately related to both calibrated geometry and conformal geometry :

� For u : pLk, gq Ñ pMn, hq, with k ¤ n and α P ΩkpMq a closed calibration, we define a Smith
immersion, which is a special type of weakly conformal k-harmonic map. If L0 is the open subset
on which du � 0, then u : L0 Ñ M is an immersion, whose image upL0q is k-dimensional α-
calibrated submanifold of pM,hq. Moreover, this notion is invariant under conformal change of the
domain metric g.

� For u : pMn, hq Ñ pLk, gq, with n ¥ k and α P Ωn�kpMq a closed calibration, we define a Smith
submersion, which is a special type of weakly horizontally conformal k-harmonic map. If M0 is the
open subset on which du � 0, then the fibres u�1tupxqu of u : M0 Ñ L are pn� kq-dimensional α-
calibrated submanifolds of pM,hq. Moreover, this notion is invariant under horizontally conformal
change of the domain metric h.

The notion of Smith immersions was previously studied by Cheng–Karigiannis–Madnick, inspired by an
unpublished preprint of Smith. The notion of Smith submersions is new.

The two constructions should also be viewed as special first order versions of the following particular
classical results from harmonic map theory:

� a Riemannian immersion u : pL, gq Ñ pM,hq is harmonic ðñ the image is minimal,

� a Riemannian submersion u : pM,hq Ñ pL, gq is harmonic ðñ the fibres are minimal.

4 Definitions and Notation

Definition 4.1. Let α P Ωk on pMn, hq. We say that α is a calibration if

αpv1 ^ � � � ^ vkq ¤ |v1 ^ � � � ^ vk| for all v1, . . . , vk P TxM and all x PM. (4.2)

Let Lk be an oriented submanifold of M . We say L is calibrated with respect to α if α|L � volL. (That
is, if equality in (4.2) is attained on each oriented tangent space TxL of L.) ▲
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Definition 4.3. Let u : pM1, g1q Ñ pM2, g2q be a smooth map. If M1 is compact, then the p-energy of
u is defined to be

Eppuq :� 1

p?pqp
»
M1

|du|pvolM1 �
1

p?pqp
»
M1

�
trg1pu�g2q

	 p
2

volM1 .

We say that a map u is p-harmonic if it is a critical point of the functional Ep. That is, a p-harmonic
map is a solution to the Euler–Lagrange equation for the p-energy functional. This equation is

divp|du|p�2duq � 0 P Γpu�TM2q, (4.4)

and is called the p-harmonic map equation. When p � 2, this reduces to the classical elliptic harmonic
map equation divpduq � 0, and a 2-harmonic map is just called a harmonic map. But for p ¡ 2 this
equation is a degenerate elliptic equation.

More generally, the section of u�TM2 given by

τppuq :� divp|du|p�2duq (4.5)

is called the p-tension of u, so a map u is p-harmonic if and only if it has vanishing p-tension.
Note that if M1 is not compact we can still take equation (4.4) as the definition of p-harmonic.
Note that p-energy of a map u : pMn1

1 , g1q Ñ pMn2
2 , g2q is conformally invariant. ▲

5 Smith immersions

In this section, u : pLk, gq Ñ pMn, hq is a smooth map between Riemannian manifolds, with k ¤ n.

Definition 5.1. A smooth map u : pLk, gq Ñ pMn, hq is called (weakly) conformal if

u�h � λ2g

for some smooth function λ ¥ 0 which is continuous (and smooth away from 0) on L. It then follows
that necessarily λ2 � 1

k |du|2.
Let L0 � L be the open set where |du| � 0. From u�h � 1

k |du|2g, we deduce that u|L0 : L0 Ñ M is an
immersion. ▲

Theorem 5.2. Let u : pLk, gq Ñ pMn, hq be a smooth map. Let α P ΩkpMq be a calibration. Then

u�α ¤ λkvolL, where λ � 1?
k
|du|. (5.3)

Moreover, equality holds if and only if:

� u�h � λ2g (so u is a weakly conformal immersion), and

� the image upL0q is calibrated with respect to α.

Definition 5.4. If equality holds in (5.3), we say that u is a Smith immersion with respect to α.
That is, a Smith immersion with respect to α is a smooth map u : pLk, gq Ñ pMn, hq such that

u�α � 1

p?kqk |du|
kvolL, u�h � 1

k
|du|2g, (5.5)

at all points on L. [However, recall that the first equation automatically implies the second equation.] ▲
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Proposition 5.6. Let u : pLk, gq Ñ pMn, hq be a smooth map and α P Ωk on M be a calibration form.
Then u is a Smith immersion iff

Pα � Λk�1pduq � �L � p�1qk�1

p?kqk�2
|du|k�2du. (5.7)

Note that when L2 is a Rieamann surface, Mn with α � ω is an almost complex manifold, then 5.7 gives
a J-holomorphic map equation.
Also, the benefit of this equation is that we can differentiate it, as differentiating (5.7) just gives 0 � 0.

Theorem 5.8 (Energy Inequality). Let α P ΩkpMq be a closed calibration. Let u : pLk, gq Ñ pMn, hq be
a Smith immersion with respect to α. Suppose L is compact. Then u is k-harmonic in the sense that it
is a critical point of Ek.

Proof. For any smooth map u : pLk, gq Ñ pMn, hq, let λ � 1?
k
|du|. Using (5.3) we have

Ekpuq � 1

p?kqk
»
L

|du|kvolL �
»
L

λkvolL ¥
»
L

u�α � rαs � u�rLs,

which is a topological quantit. Moreover, by Theorem 5.2, equality holds if and only if u is a Smith
immersion. This shows that such maps are local minimizers of Ek and thus are k-harmonic.

Theorem 5.9. Let u : pLk, gq Ñ pMn, hq be a Smith immersion with respect to the calibration form
α P Ωk. If dα � 0, then u is k-harmonic in the sense that τkpuq � 0.

6 Smith submersions

In this section, u : pMn, hq Ñ pLk, gq is a surjective smooth map between Riemannian manifolds, with
n ¥ k.

Definition 6.1. Let u : pMn, hq Ñ pLk, gq be a smooth surjection. Let M0 �M be the open set where
|du| � 0. Suppose that the restriction u|M0 : M0 Ñ L is a submersion, so that rankpduxq � k for all
x PM0. Then the tangent bundle TM0 of M0 decomposes as

TM0 � pker duq `K pker duqK,
where ker du � VM0 is the vertical subbundle, which has rank n � k, and pker duqK � HM0 is the
horizontal subbundle, which has rank k.

It follows that an m-tensor α P T m on M0 is a smooth section of

à
p�q�m

pker duqbp b ppker duqKqbq,

with p ¤ n� k, q ¤ k. We denote by αpp,qq the component of α which lies in

T pp,qq :� Γppker duqbp b ppker duqKqbqq
and we say that αpp,qq is of type pp, qq.
It follows that the metric h on M0 decomposes as h � h2,0�h0,2, where h2,0 is the metric on the vertical
subbundle ker du, and h0,2 is the metric on the horizontal subbundle pker duqK. In particular, we have

trhph0,2q � k. (6.2)

Finally, we use Ωpp,qq to denote the totally skew-symmetric elements of T pp,qq. ▲
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Definition 6.3. A smooth surjection u : pMn, hq Ñ pLk, gq is called (weakly) horizontally conformal if
for every point x PM , we either have dux � 0, or if dux � 0, then rankpduxq � k is maximal and

u�g � λ2hp0,2q

for some smooth function λ ¡ 0 on M0. We can extend λ2 by zero to obtain a continuous non-negative
function on M . It then follows that necessarily λ2 � 1

k |du|2. ▲

Theorem 6.4. Let u : pMn, hq Ñ pLk, gq be a smooth surjection. Let α P Ωn�kpMq be a calibration.
Then

α^ u�volL ¤ λkvolM , where λ � |du|?
k
. (6.5)

Moreover, equality holds if and only if:

� u�g � λ2hp0,2q (so u is a weakly horizontally conformal submersion) and,

� the fibres of the restriction of u to M0 are calibrated with respect to α.

Definition 6.6. If equality holds in (6.5), we say that u is a Smith submersion with respect to α.
That is, a Smith submersion with respect to α is a smooth map u : pMn, hq Ñ pLk, gq such that

α^ u�volL � 1

p?kqk |du|
kvolM , u�g � 1

k
|du|2hp0,2q, (6.7)

at all points onM . [However, recall that the first equation automatically implies the second equation.] ▲

Proposition 6.8. Let u : pMn, hq Ñ pLk, gq be a smooth map and α P Ωn�k on M is a calibration form.
Then u is a Smith submersion iff

�LΛk�1pduqp� �αq � p�1qk�1

p?kqk�2
|du|k�2du. (6.9)

The benefit of this equation is that we can differentiate it, as differentiating (6.7) just gives 0 � 0.

Theorem 6.10 (Energy Inequality). Let u : pMn, hq Ñ pLk, gq be a Smith map. Let α P Ωn�k be a
closed calibration form on M . Then u is k-harmonic in the sense that it is a critical point of Ek.

Proof. For any smooth map u : pMn, hq Ñ pLk, gq, let λ � 1?
k
|du|. Using (6.5) we have

Ekpuq � 1

p?kqk
»
M

|du|kvolM �
»
M

λkvolM ¥
»
M

α^ u�volL � prαs Y u�rvolLsq � rM s,

which is a topological quantity. Moreover, by Theorem 6.4, equality holds if and only if u is a Smith
submersion. This shows that such maps are local minimizers of Ek and thus are k-harmonic.

Theorem 6.11. Let u : pMn, hq Ñ pLk, gq be a Smith submersion with respect to the calibration form
α P Ωn�k. If dα � 0, then u is k-harmonic in the sense that τkpuq � 0.

7 Future Questions

7.1 Analytic results for Smith immersions

Numerous analytic results for Smith immersions were established in Cheng–Karigiannis–Madnick. In
that paper the authors assumed that the calibration form α P ΩkpMq was associated to a vector cross
product (VCP), but this assumption was not necessary. Here is the list of the results:
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Removable singularities. If u is a C1
loc Smith immersion on a punctured open ball in Rk with finite

k-energy, then u extends to a C1 Smith immersion across the puncture.

Energy gap. There exists a “threshold energy” ε0 ¡ 0 such that every Smith immersion u : Sk Ñ M
with k-energy less than ε0 is constant. (That is, any nontrivial solution has a minimum k-energy.) This
is used to show that there are only a finite number of “bubbles”.

Compactness modulo bubbling. Let W � L be open, and let tWmumPN an increasing sequence of
open sets exhausting W , and gm a sequence of metrics on Wm such that gm Ñ g in C8loc on W . Let
um : pWm, rgmsq Ñ pM,hq be a sequence of Smith immersions with uniformly bounded k-energy.

Then there exists a Smith immersion u8 : pL, gq Ñ pM,hq and a (possibly empty) finite subset B �
tx1, . . . , xNu of L such that (after passing to a subsequence) the following three properties hold:

(a) um Ñ u8 in C1
loc on UzB uniformly on compact subsets of UzB,

(b) as Radon measures on L, we have |dum|kvolL Ñ |du8|kvolL �
°N

i�1ciδpxiq, where δpxiq is a Dirac
measure at xi, and each ci ¥ 1

2ε0, where ε0 is the “threshold energy”. This says that the energy
density can concentrate at points, where a minimum amount of energy is lost.

(c) If the um have uniformly bounded p-energy for some p P pk,8s, then B � ∅. (There is no bubbling.)

This result can be applied to a sequence um : L Ñ M of Smith immersions representing the same
homology class in HkpMq, as they have a uniform k-energy bound. For each xi, by rescaling about xi

and using conformal invariance, and reapplying this result, we obtain a “bubbled off” Smith immersion
ũ8,i : S

k ÑM . This process stops after a finite number of iterations due to the energy gap.

No energy loss. We have limmÑ8Ekpumq � Ekpu8q �
°

i Ekpũ8,iq. This says that the limiting
k-energy is the sum of the k-energy of u8 plus the k-energy of each of the bubble maps.

Zero neck length. We have u8pxiq � ũ8,ipp�q. This says that for m ¡¡ 0, then um is homotopic to
the connect sum u8#p#

i
ũ8,iq.

It would of course be very interesting to establish analogous analytic results for Smith submersions.
However, the conformal invariance of Smith immersions was used crucially to establish the above analytic
results. By contrast, Smith submersions are only horizontally conformally invariant. But perhaps this
is indeed the right notion that is needed in this context.

7.2 Calibrated fibrations and the SYZ and GYZ “conjectures”

Strominger–Yau–Zaslow argue that one should expect (at least for certain types of points near the
boundary of the moduli space) that a compact Calabi–Yau 6-manifold should admit a fibration over
a 3-dimensional base, necessarily with singular fibres. The generic (smooth) fibre should be a special
Lagrangian torus. The mathematical inspiration comes from the deformation theory of McLean, which
shows that a compact special Lagrangian 3-manifold L3 in a Calabi–Yau 6-manifold locally smoothly
deforms in a family of dimension b1pL3q. One then expects to construct the “mirror Calabi–Yau manifold”
by dualizing smooth fibres and then somehow compactifying.

Similarly, Gukov–Yau–Zaslow explain in that, again under certain conditions, a compact torsion-free
G2-manifold should admit a fibration over a 3-dimensional base, again with singular fibres. The generic
(smooth) fibre should be a coassocative submanifold with is topologically either T 4 or K3. Again, this is
inspired by McLean’s result in that a compact coassociative 4-manifold L4 in a torsion-free G2-manifold
locally smoothly deforms in a family of dimension b2�pL4q, modulo orientations.

7.3 Questions for future study

Deformation theory of Smith maps. Currently we have shown that the only deformations of Smith
submersions are the ones induced by a flow of a conformally horizontal Killing vector field. For the Smith
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immersions, the only purely vertical deformations are, again, the conformally Killing ones. We wish to
investigate this further and see if other deformations are obstructed or not. The work of McClean studied
the deformation theory of calibrated submanifolds, and depending on the calibration some cases such
as Special Lagrangian and coassociative submanifolds deform smoothly, while complex, associative, and
Cayley submanifolds in general have obstructed deformations. It would also be interesting to see if the
deformation theory of Smith immersions is “better behaved”. This is not completely unreasonable, given
the added freedom of precomposing by an orientation-preserving conformal diffeomorphism. For example,
start with a (compact) associative or Cayley submanifold, and describe it by a Smith immersion. Can we
always deform it as a Smith immersion in a smooth family? We would expect that the images of these
deformations would immediately acquire singular points. That is, perhaps the reason that associative
or Cayley submanifolds do not deform easily is because “they generically want to be singular”, but a
singular calibrated submanifold could still be described as the image of a smooth Smith immersion.

Stability. We have seen from the energy inequalities that Smith immersions and Smith submersions are
global minimizers of the k-energy in a particular class of maps. Suppose that u is a k-harmonic map,
which is stable in the sense that the second variation of the k-energy at u is nonnegative, so u is a local
minimum of the k-energy. Under what additional assumptions on the geometry of the source and target
could we ensure that such a stable k-harmonic map is necessarily a Smith map? The classical example
of such a stability theorem is the demonstration by Siu–Yau that a stable harmonic map from S2 � CP1

into a compact Kähler manifold pM,h, ωq with positive holomorphic bisectional curvature is necessarily
�-holomorphic. Generalizing such a result should involve finding analogues of “positive holomorphic
bisectional curvature” in Riemannian manifolds with special holonomy.

Constructing Smith maps via flows. If a general stability theorem as described in the previous
paragraph could be established, then one could use this to attempt to construct examples of Smith
immersions or Smith submersions by running the k-harmonic map heat flow. This is the negative gradient
flow of the k-energy. One would have to show that (under certain assumptions on the geometries of the
source and target) that the flow exists for all time and converges to a k-harmonic map. Then one would
hope to argue that the limit must in fact be a Smith map.

Local properties. A Smith immersion equation is a generalization of a J-holomorphic map equa-
tion between a Rieamann surface and an almost complex manifold. Many local properties hold for
J-holomorphic maps, such as: unique continuation, which says that two maps with the same 8-jet at a
point must be equal; preimages of critical values are isolated; existence of injective points, etc. We want
to investigate if these also hold for Smith maps.
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