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Preface

These lecture notes serve as an introduction to the analysis of 1�harmonic functions, a
subject that has significantly matured in recent years within the field of nonlinear partial
differential equations. They are based on the minicourses we taught online during the pan-
demic at the Universidade Federal da Paraíba (João Pessoa, Brazil) and at the 24th Brazil-
ian Mathematical Colloquium in IMPA (Rio de Janeiro, Brazil) in July 2023. Shorter
versions of these lectures were previously delivered by the second author at the Universi-
dade Federal do Ceará (Fortaleza, Brazil) in the (southern hemisphere) Summer of 2013,
at Aalto University (Helsinki, Finland) in the (northern hemisphere) Spring of 2013 and at
KAUST (Thuwal, Saudi Arabia) early in 2017, and by the first author at the Universidade
Federal do Rio de Janeiro (Rio de Janeiro, Brazil) in the (southern hemisphere) Summer
of 2020.

The material covered ranges from the Lipschitz extension problem to questions of
existence, uniqueness, and regularity for 1�harmonic functions and to free boundary
problems ruled by the 1�Laplacian. A rigorous and detailed analysis of the equiva-
lence between being absolutely minimizing Lipschitz, enjoying comparison with cones,
and solving the 1�Laplace equation in the viscosity sense is the backbone of the set of
lectures. At the heart of the approach adopted lies the notion of comparison with cones,
which is pivotal throughout the text. The course includes the proof of the existence of
1�harmonic functions in the case of an unbounded domain, several regularity results (in-
cluding the Harnack inequality and local Lipschitz continuity), and an easy proof, due to
Armstrong and Smart, of the celebrated uniqueness theorem of Jensen. The everywhere
differentiability of 1�harmonic functions is treated with detail, and we digress into the
optimal regularity issue, an outstanding open problem in the field. The course concludes
with an analysis of two free boundary problems involving the 1�Laplacian.

We have written the book with students in mind, aiming to address the difficulties
we ourselves encountered when we first approached this subject. While experts may find



certain parts trivial, we hope they discover helpful material within these pages. The writ-
ing of the first two chapters has been strongly influenced by the survey papers Crandall
2008 and Aronsson, Crandall, and Juutinen 2004, and we claim no originality whatsoever.
As the material has evolved from our handwritten notes while studying those sources, it
is natural that some portions are reproduced almost verbatim, including some of the pro-
posed exercises. Our contributions lie primarily in the level of detail provided in certain
proofs (that’s where the devil is), the simplification of some arguments, and the overall
organization of the text. For instance, we believe the topics covered are well-suited for
an advanced graduate course on nonlinear PDEs. We include in the final chapter a list of
exercises and propose solutions to most of them. Needless to say, the reader should try
hard to solve the exercises before jumping to the solutions.

We are immensely grateful for our interactions with the excellent students who at-
tended the minicourses in Fortaleza, Helsinki, João Pessoa, Rio de Janeiro and KAUST.
The suggested solutions to the problems were provided by our PhD students, Aelson So-
bral and Ginaldo Sá, whom we warmly thank. Over the years, we have engaged in many
exciting discussions on this topic with our colleagues. We want to mention, in particular,
Diogo Gomes, Eduardo Teixeira, Juan Manfredi, Juha Kinnunen, Juha Videman, Juhana
Siljander, Julio Rossi, Levon Nurbekyan, Mikko Parviainen, Petri Juutinen, and Tuomo
Kuusi, whose input directly influenced the writing of some of the proofs. Any remaining
typos or inaccuracies are, of course, our sole responsibility.

(The writing of this preface was (slightly) enhanced by the use of Grammarly and Chat-
GPT.)

João Pessoa and KAUST, August 2023

DAMIÃO J. ARAÚJO
Department of Mathematics
Universidade Federal da Paraíba
58059-900, João Pessoa, PB, Brazil
araujo@mat.ufpb.br

JOSÉ MIGUEL URBANO
Applied Mathematics and Computational Sciences (AMCS)
Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE)
King Abdullah University of Science and Technology (KAUST)
Thuwal, 23955-6900, Kingdom of Saudi Arabia
and
University of Coimbra
CMUC, Department of Mathematics
3001-501 Coimbra, Portugal
miguel.urbano@kaust.edu.sa



1 Lipschitz
extensions

Extending a given function to a larger domain is a fundamental problem in Analysis, aris-
ing in numerous contexts and with significant practical applications. An emblematic ex-
ample is extending a Lipschitz function from the boundary of an open bounded set in R

n

to its interior without increasing the Lipschitz constant. It is obvious1 the constant can not
be decreased, so keeping it the same is indeed the best we can hope for. As we will see in
a while, the problem turns out to be easily solvable, but it is rather ill-posed, not enjoying
uniqueness, comparison, stability, or locality. This pushes for the search for a canonical
Lipschitz extension satisfying the aforementioned properties, particularly the uniqueness,
leading to the notion of Absolutely Minimising Lipschitz Extension or AMLE, in short.

A very contemporary application (see Calder 2019; Calder and Slepčev 2020) emerges
in the context of Semi-Supervised Learning (SSL). Labelling vast amounts of data is one
of the most prominent challenges in Machine Learning. If performed by a human (say,
a medical doctor analysing medical images or a computer analyst classifying websites),
this is invariably a costly task, being thus crucial to find reasonable alternatives. Since
acquiring unlabelled data has, by comparison, a negligible cost, one of the most effec-
tive options is SSL, which uses very little labelled data and explores the topological or
geometric structure of the overwhelmingly more abundant unlabelled data in the learning
process. The technique is typically implemented using graph-based algorithms, each data
point corresponding to a vertex, with edges being assigned weights gauging the similarity
of the vertices. Since the problem is highly ill-posed (there are plenty of possible exten-
sions of the labelled data), it is necessary to make a smoothness assumption on the graph,

1If not, review the definition of Lipschitz constant.



2 1. Lipschitz extensions

guaranteeing the learned labels vary smoothly throughout dense regions of the graph. This
amounts to minimising a regulariser measuring the smoothness of a labelling, subject to
the given label constraints. Classical attempts use Laplacian regularisation leading, in the
continuum limit, to the minimisation of the L2�norm of the gradient of the learned func-
tion. It turns out that in the limit of infinite unlabelled data and finite labelled data, the
problem degenerates into a constant label that is a sort of average of the given labels with
sharp spikes near the labelled data; roughly speaking, the learned function forgets about
the labelled data. The underlying reason is that a W 1;2�function does not necessarily at-
tain boundary data continuously. Minimising, for large p, the Lp�norm of the gradient
circumvents this difficulty as placing a heavier penalty on large gradients prevents the for-
mation of spikes. In fact, W 1;p�functions are known to be Hölder continuous up to the
boundary provided p is greater than the dimension of the underlying space, so the learned
function transitions more smoothly between labelled and unlabelled data. For data sets
of increasing dimension, we may as well consider the limit as p ! 1, thus bringing
about Lipschitz learning, consisting of minimising the L1�norm of the gradient of the
learned function, which turns out to be its Lipschitz constant in the case of a convex do-
main. The problem is then no other than finding a Lipschitz extension from the labelled
to the unlabelled data that conserves the Lipschitz constant.

1.1 The Lipschitz extension problem

We start with the basic definition of a Lipschitz function and by fixing some notation.

Definition 1.1. Let X � R
n. A function f W X ! R is Lipschitz continuous on X ,

equivalently f 2 Lip.X/, if there exists a constant L 2 Œ0;1/ such that

jf .x/ � f .y/j 6 L jx � yj; 8x; y 2 X: (1.1)

Any L 2 Œ0;1/ for which (1.1) holds is called a Lipschitz constant for f in X . The least
constantL 2 Œ0;1/ for which (1.1) holds is the Lipschitz constant of f inX and denoted
by Lipf .X/.

If there is no L for which (1.1) holds, we write Lipf .X/ D 1.

Let U � R
n be open and bounded and denote its boundary with @U . We will be

concerned with the problem of extending a Lipschitz function defined on @U toU without
increasing its Lipschitz constant. Since decreasing it is out of the question, the best we
can hope for is to keep it the same.

The Lipschitz Extension Problem (LEP) . Given f 2 Lip.@U /, find u 2 Lip.U / such
that

u D f on @U and Lipu.U / D Lipf .@U /:

In fact, we are both extending the function and minimising the Lipschitz constant.
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If y; z 2 @U and x 2 U , then any solution to (LEP) trivially satisfies

f .z/ � Lipf .@U /jx � zj 6 u.x/ 6 f .y/C Lipf .@U /jx � yj

since f .z/ D u.z/ and f .y/ D u.y/. Let us show that these two bounds belong to
Lip.U /.

Let z 2 @U and put

Fz.x/ D f .z/ � Lipf .@U /jx � zj; x 2 U :

We then have, for any x; zx 2 U ,

jFz.x/ � Fz.zx/j D
ˇ̌
f .z/ � Lipf .@U /jx � zj � f .z/C Lipf .@U /jzx � zj

ˇ̌

D Lipf .@U / jjzx � zj � jx � zjj
6 Lipf .@U / jzx � z � x C zj
D Lipf .@U / jx � zxj :

This means that Fz 2 Lip.U / and that Lipf .@U / is a Lipschitz constant for Fz in U . The
result is, in fact, a triviality because Fz is a cone (cf. Definition 1.9 and Corollary 1.12).
Since Lipf .@U / is independent of z, it is a common Lipschitz constant for all Fz , z 2 @U .

Given y 2 @U , an entirely analogous reasoning holds for

Gy.x/ D f .y/C Lipf .@U /jx � yj; x 2 U :

Definition 1.2. The McShane–Whitney extensions of f 2 Lip.@U / are the functions
defined in U by

MW�.f /.x/ WD sup
z2@U

Fz.x/ D sup
z2@U

˚
f .z/ � Lipf .@U /jx � zj

	

and
MW�.f /.x/ WD inf

y2@U
Gy.x/ D inf

y2@U

˚
f .y/C Lipf .@U /jx � yj

	
:

Proposition 1.3. The infimum and the supremum of a family of Lipschitz functions F D
ffa W X ! Rga2A, with Lipschitz constant L is Lipschitz and has, if it is finite, the same
Lipschitz constant .

Proof. We have
fa.x/ 6 fa.y/C L jx � yj ; 8x; y 2 X

so, taking the supremum, we get

sup
a2A

fa.x/ 6 sup
a2A

fa.y/C L jx � yj ; 8x; y 2 X
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and thus �
sup
a2A

fa

�
.x/ �

�
sup
a2A

fa

�
.y/ 6 L jx � yj ; 8x; y 2 X:

Interchanging x and y we get the result for the supremum; for the infimum, the proof is
analogous.

Using Proposition 1.3, we conclude that both MW�.f / and MW�.f / are Lipschitz
functions in U , with Lipschitz constant Lipf .@U /.

We next show that MW�.f / D f on @U (the same holds, of course, for MW�.f /).
Let x 2 @U . Then

MW�.f /.x/ > Fx.x/ D f .x/ � Lipf .@U /jx � xj D f .x/:

On the other hand, since f 2 Lip.@U /,
f .z/ � Lipf .@U /jx � zj 6 f .x/;

for any z 2 @U , and thus

MW�.f /.x/ D sup
z2@U

˚
f .z/ � Lipf .@U /jx � zj

	
6 f .x/:

This implies that

LipMW�.f /.U / D LipMW�.f /.U / D Lipf .@U /:

We have just proved the following result.
Theorem 1.4. The McShane–Whitney extensions, MW�.f / and MW�.f /, solve the
Lipschitz extension problem for f 2 Lip.@U / and if u is any other solution to the problem
then

MW�.f / 6 u 6 MW�.f / in U :

The Lipschitz Extension Problem is then uniquely solvable if

MW�.f / D MW�.f / in U ;

which rarely happens.
Example 1.5. Let n D 1 and U D .�1; 0/ [ .0; 1/. Consider f W @U ! R defined by
f .�1/ D f .0/ D 0 and f .1/ D 1. Then Lipf .@U / D 1 and a simple computation gives

MW�.f /.x/ D

8
<
:

�x � 1 if �1 6 x 6 � 1
2

x if � 1
2

6 x 6 1

and

MW�.f /.x/ D

8
<
:
x C 1 if �1 6 x 6 � 1

2

jxj if � 1
2

6 x 6 1;

which are, of course, different functions.
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�1 0 1

0

Figure 1.1: Functions MW�.f /.x/ and MW�.f /.x/ in Example 1.5.

1.2 Absolutely minimising Lipschitz extensions (AMLEs)
The lack of uniqueness in the Lipschitz extension problem illustrated by the previous ex-
ample is an issue, but other features are perhaps even more relevant. We will address them
again using example 1.5.

Non comparison Take as boundary data g W @U ! R defined by g.�1/ D 0, g.0/ D 1
2

and g.1/ D 1. Then Lipg.@U / D 1
2

and we easily see that MW�.g/ D MW�.g/,
so the problem is uniquely solvable. But we have f 6 g and, nevertheless, neither

MW�.f / 6 MW�.g/

nor
MW�.f / > MW�.g/

hold.

Non stability Let V D
�
� 3

4
;� 1

4

�
. Then MW�.f /j@V � 1

4
and so also

MW�
�
MW�.f /j@V

�
� 1

4
¤ MW�.f / in V:

In particular, a repeated application of the McShane-Whitney extension in a subset
may decrease the local Lipschitz constant.
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Non locality Again let V D
�
� 3

4
;� 1

4

�
; then

LipMW�.f /.V / D 1 ¤ 0 D LipMW�.f /.@V /:

The extension defined by

u.x/ D

8
<
:
0 if �1 6 x 6 0

x if 0 6 x 6 1

satisfies this property for any V �� U (this means V is a compact subset of U ). In
a certain sense, it locally varies as little as possible.

The notion of locality is embedded in the following definition that meets the need to
define a sort of canonical Lipschitz extension, which we will eventually prove is unique.

Definition 1.6. A function u 2 C.U / is absolutely minimising Lipschitz on U , and we
write u 2 AML.U /, if

Lipu.V / D Lipu.@V /; 8V �� U: (1.2)

This notion is trivially local in the sense that if u 2 AML.U / and V � U , then
u 2 AML.V /. It does not involve boundary conditions, being a property of continuous
functions defined on open sets alone.

Still, we can try to recast the Lipschitz extension problem as the following problem:
given f 2 Lip.@U /, find u 2 C.U / such that

u 2 AML.U / and u D f on @U: (1.3)

The two problems do not necessarily have the same solutions (convince yourself through
examples), but for a bounded U , it can be shown that a solution to the second problem
satisfies the Lipschitz extension problem.

1.3 Strongly absolutely minimising Lipschitz

Given u 2 C.U /, define the Lipschitz constant of u at the point x, taking values in Œ0;1�,
as

Tu.x/ WD lim
r#0

Lipu .Br .x//

D inf
0<r<dist.x;@U /

Lipu .Br .x// ; x 2 U:

It is the smallest number satisfying the following property: given � > 0, we can find
r� > 0 such that Tu.x/C � is a Lipschitz constant for u on Br�

.x/.
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Proposition 1.7. Let u 2 C.U /. Then
1. Tu.x/ is upper semi-continuous in U ;

2. if u is differentiable at x 2 U , then

Tu.x/ > jDu.x/j I

3. if x 2 U and Tu.x/ D 0 then u is differentiable at x andDu.x/ D 0.
Proof.

1. Let x0 2 U and consider a sequence xn ! x0, with xn 2 U . We want to show that

lim sup
n!1

Tu.xn/ 6 Tu.x0/:

For n sufficiently large, we have

jxn � x0j < 1

2
dist .x0; @U / ;

and so
Bjxn�x0j.xn/ � B2jxn�x0j.x0/ � U:

Then

Tu.xn/ D lim
r#0

Lipu .Br .xn//

6 Lipu

�
Bjxn�x0j.xn/

�

6 Lipu

�
B2jxn�x0j.x0/

�
:

Taking the limit when n ! 1, we obtain

lim sup
n!1

Tu.xn/ 6 lim
n!1

Lipu

�
B2jxn�x0j.x0/

�

D Tu.x0/:

2. If Du.x/ D 0, the result is trivial so we may suppose Ep WD Du.x/ ¤ 0. Let

y D x C � Ep; 0 < � 6 1I
then

Lipu

�
B�j Epj.x/

�
>

ju.y/ � u.x/j
jy � xj

D
ˇ̌
u.x C � Ep/ � u.x/

ˇ̌

�j Epj

D h Ep; � Epi C o.�j Epj/
�j Epj

D j Epj C o.1/ .� ! 0/:
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Taking the limit when � ! 0, we get

Tu.x/ > j Epj D jDu.x/j :

3. If Tu.x/ D 0, given � > 0, we can find ı > 0 such that

0 < r < ı ) Lipu .Br .x// < �:

Then
jy � xj < ı

2
) ju.y/ � u.x/j

jy � xj 6 Lipu

�
B ı

2
.x/
�
< �:

and u is differentiable at x, with Du.x/ D 0.

Definition 1.8. A function u 2 C.U / is strongly absolutely minimising Lipschitz on U ,
and we write u 2 SAML.U /, if

sup
x2V

Tu.x/ 6 sup
x2V

Tv.x/; 8V �� U; (1.4)

and all v 2 C.V / such that v D u on @V .

We have AML.U / D SAML.U / (see Aronsson, Crandall, and Juutinen 2004, Section
4). The reason for using the qualitative strong is that the inclusion AML.U / � SAML.U /
is significantly harder to prove.

1.4 Comparison with cones

We now introduce a more geometric notion, that of comparison with cones. It will be
instrumental in most of the analysis hereafter.

Definition 1.9. A cone with vertex x0 2 R
n is a function of the form

C.x/ D aC bjx � x0j; a; b 2 R:

The height of C is a, and its slope is b.

Definition 1.10. For a cone C with vertex at x0, the half-line

fx0 C t .x � x0/; t > 0g

is the ray of C through the point x.
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Lemma 1.11. If a set V contains two distinct points on the same ray of a cone C with
slope b, then

LipC .V / D jbj:
Proof. Let C.x/ D aC bjx � x0j. Then, for any x; y 2 R

n,

jC.x/ � C.y/j
jx � yj D jbj

ˇ̌
ˇjx � x0j � jy � x0j

ˇ̌
ˇ

jx � yj 6 jbj;

so jbj is a Lipschitz constant for C in any set.
If w; y are distinct points on the same ray of C , we have, for a certain x�, y D x0 C

˛.x� � x0/ and w D x0 C ˇ.x� � x0/, with ˛; ˇ > 0, ˛ ¤ ˇ. Then

jC.y/ � C.w/j
jy � wj D jC.x0 C ˛.x� � x0// � C.x0 C ˇ.x� � x0//j

jx0 C ˛.x� � x0/ � x0 � ˇ.x� � x0/j

D

ˇ̌
ˇaC bjx0 C ˛.x� � x0/ � x0j � a � bjx0 C ˇ.x� � x0/ � x0j

ˇ̌
ˇ

j˛ � ˇjjx� � x0j

D jbj j˛ � ˇjjx� � x0j
j˛ � ˇjjx� � x0j D jbj;

and if w; y 2 V then LipC .V / D jbj.
Corollary 1.12. Let V � R

n be non-empty and open, and C be a cone with slope b. Then

LipC .V / D jbj:

Moreover, if V is bounded and does not contain the vertex of C , then

LipC .@V / D jbj:

Definition 1.13. A function w 2 C.U / enjoys comparison with cones from above in U
if, for every V �� U and every cone C whose vertex is not in V ,

w 6 C on @V H) w 6 C in V:

A function w enjoys comparison with cones from below if �w enjoys comparison with
cones from above. A function w enjoys comparison with cones if it enjoys comparison
with cones from above and from below.

Lemma 1.14. The following is an equivalent condition to u 2 C.U / enjoying comparison
with cones from above in U : for every V �� U , b 2 R and z … V ,

u.x/ � bjx � zj 6 max
w2@V

.u.w/ � bjw � zj/ ; 8 x 2 V:
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Proof. To prove the necessity of the condition, let V �� U , b 2 R and z … V . We
trivially have

u.x/ � bjx � zj 6 max
w2@V

.u.w/ � bjw � zj/ ; 8 x 2 @V: (1.5)

This can be rewritten as

u.x/ 6 C.x/ WD max
w2@V

.u.w/ � bjw � zj/C bjx � zj; 8 x 2 @V;

for the cone C centred at z … V . Since u enjoys comparison with cones from above in U ,
(1.5) also holds for any x 2 V .

Reciprocally, let V �� U and let

C.x/ D aC bjx � zj; with a; b 2 R;

be any cone with vertex at z … V such that u 6 C on @V . We know that for every x 2 V ,

u.x/ � bjx � zj 6 max
w2@V

.u.w/ � bjw � zj/

) u.x/ � a � bjx � zj 6 max
w2@V

.u.w/ � a � bjw � zj/

) u.x/ � C.x/ 6 max
w2@V

.u.w/ � C.w// 6 0

since u 6 C on @V . We conclude that also u 6 C in V .

1.5 Comparisonwith cones and absolutely minimising Lip-
schitz

One of the main results in these notes is the following equivalence between being abso-
lutely minimising Lipschitz and enjoying comparison with cones.

Theorem 1.15. A function u 2 C.U / is absolutely minimising Lipschitz in U if, and only
if, it enjoys comparison with cones in U .

Proof. We start with sufficiency. Suppose u enjoys comparison with cones in U and let
V �� U . We want to show that

Lipu.V / D Lipu.@V /:

Since u 2 C.V /, we have Lipu.V / D Lipu.V / (see Problem 1). Then, as @V � V , we
trivially have that Lipu.V / > Lipu.@V /, and it remains to prove the other inequality.
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First, observe that for any x 2 V ,

Lipu .@ .V n fxg// D Lipu.@V [ fxg/ D Lipu.@V /: (1.6)

To see if this holds, we need only check that, for any y 2 @V ,

ju.y/ � u.x/j 6 Lipu.@V / jy � xj;

which is equivalent to

u.y/ � Lipu.@V / jx � yj 6 u.x/ 6 u.y/C Lipu.@V / jx � yj: (1.7)

This clearly holds for any x 2 @V , but we want to prove it for x 2 V . Let’s focus on the
second inequality in (1.7). The right-hand side can be regarded as the cone

C.x/ D u.y/C Lipu.@V / jx � yj;

centred at y 2 @V . Since y … V and u enjoys comparison with cones from above in U ,
the inequality holds in V because it holds on @V . We argue analogously to obtain the first
inequality in (1.7), using comparison with cones from below.

Now let x; y 2 V . Using (1.6) twice, we obtain

Lipu.@V / D Lipu .@ .V n fxg// D Lipu .@ .V n fx; yg// :

Since x; y 2 @ .V n fx; yg/ D @V [ fx; yg, we have

ju.x/ � u.y/j 6 Lipu .@ .V n fx; yg// jx � yj D Lipu.@V / jx � yj:

Thus
Lipu.V / 6 Lipu.@V /:

Now the necessity. Suppose u 2 AML.U /. For V �� U , we have

Lipu.V / D Lipu.@V /:

Due to Lemma 1.14, we want to prove that for every b 2 R and z … V ,

u.x/ � bjx � zj 6 max
w2@V

.u.w/ � bjw � zj/ ; 8 x 2 V:

Setting

W D
�
x 2 V W u.x/ � bjx � zj > max

w2@V
.u.w/ � bjw � zj/

�
;

the result will follow by proving that W D ;. We will argue by contradiction. Consider
the cone

C.x/ WD max
w2@V

.u.w/ � bjw � zj/C bjx � zj:
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Then W D V \ .u � C/�1 ..0;1// is open and

u D C on @W: (1.8)

To prove this, note first that, trivially, if x 2 @V , then .u � C/.x/ 6 0. Now suppose
x 2 @W , with .u � C/.x/ > 0. Then x … @V , and since @W � V , x 2 V , in which case
x 2 W , which is a contradiction sinceW is open. If x 2 @W , with .u�C/.x/ < 0, then,
since u � C 2 C.U /, there is a neighbourhood Nx of x such that u � C < 0 in Nx . So
Nx \W D ;, again a contradiction.

We then have, since u 2 AML.U /,

Lipu.W / D Lipu.@W / D LipC .@W / D jbj;

due to Corollary 1.12, because z … W , since z … V and W � V .
Take x0 2 W . The ray of C through x0

fz C t.x0 � z/; t > 0g

contains a segment in W , containing x0, which meets @W at its endpoints. Consider the
functions

F.t/ D C.z C t.x0 � z// D aC bjx0 � zj t; t > 0;

with a D maxw2@V .u.w/ � bjw � zj/, and

G.t/ D u.z C t.x0 � z//; t > 0:

They coincide at the segment’s endpoints since u D C on @W . Now F is affine with slope
jbjjx0 � zj, while G has jbjjx0 � zj as Lipschitz constant on the segment. In fact,

jG.t1/ �G.t2/j
jt1 � t2j D ju.z C t1.x0 � z// � u.z C t2.x0 � z//j

jt1 � t2j

6
jbjj.t1 � t2/.x0 � z/j

jt1 � t2j D jbjjx0 � zj;

because Lipu.W / D jbj and the segment is contained in W . We conclude that F and G
are the same function on the segment (cf. Problem 6), and since it contains x0,

G.1/ D u.x0/ D C.x0/ D F.1/:

We have reached a contradiction because x0 2 W and so u.x0/ > C.x0/.
The proof that u satisfies comparison with cones from below in U is analogous and

uses a lemma similar to Lemma 1.14.



2 The 1�Laplace
equation

In this chapter, we explore the connection with 1�harmonic functions. We introduce the
notion of viscosity solution to the 1�Laplace equation and prove that it is equivalent to
enjoying comparison with cones. We then treat questions of existence, uniqueness and
regularity.

2.1 The 1�Laplacian
Definition 2.1. The partial differential operator defined on smooth functions ' by

�1' WD
nX

i;j D1

'xi
'xj

'xi xj
D hD2'D';D'i

is called the 1�Laplacian.

This operator is not in divergence form, so we can not (formally) integrate by parts
to define a notion of weak solution. The appropriate one to consider is that of viscosity
solution.

Definition 2.2. A function w 2 C.U / is a viscosity subsolution of �1u D 0 (or a
viscosity solution of �1u > 0 or 1�subharmonic) in U if, for every Ox 2 U and every
' 2 C 2.U / such that w � ' has a local maximum at Ox, we have

�1'. Ox/ > 0:
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A function w 2 C.U / is 1�superharmonic in U if �w is 1�subharmonic in U . A
function w 2 C.U / is 1�harmonic in U if it is at the same time 1�subharmonic and
1�superharmonic in U .

Lemma 2.3. If u 2 C 2.U / then u is 1�harmonic in U if, and only if, �1u D 0 in the
pointwise sense.

Proof. Suppose u is 1�harmonic. Then it is 1�subharmonic, and we take ' D u in
the definition. Since every point x 2 U will then be a local maximum of u � ' � 0,
�1u.x/ > 0, for every x 2 U . Since also �u is 1�subharmonic, we get in addition

�1.�u/.x/ > 0 , ��1u.x/ > 0 , �1u.x/ 6 0; 8x 2 U
and so �1u D 0 in the pointwise sense.

Reciprocally, suppose �1u D 0 in the pointwise sense and take Ox 2 U and ' 2
C 2.U / such thatu�' has a local maximum at Ox. We want to prove that�1'. Ox/ > 0, thus
showing that u is 1�subharmonic (the 1�superharmonicity is obtained in an analogous
way). We have, since u � ' 2 C 2.U / and Ox 2 U is a local maximum,

D.u � '/. Ox/ D 0 , Du. Ox/ D D'. Ox/
and

D2.u � '/. Ox/ � 0 , hD2u. Ox/�; �i 6 hD2'. Ox/�; �i; 8� 2 R
n:

Then

�1'. Ox/ D hD2'. Ox/D'. Ox/;D'. Ox/i
> hD2u. Ox/D'. Ox/;D'. Ox/i
D hD2u. Ox/Du. Ox/;Du. Ox/i
D �1u. Ox/
D 0:

We now show that the celebrated flatland example of Aronsson

A.x1; x2/ D x
4
3

1 � x
4
3

2

is 1�subharmonic in R
2. The proof that it is also 1�superharmonic is analogous.

Take any point .x0; y0/ 2 R
2 and ' 2 C 2.R2/ such that u � ' has a local maximum

at .x0; y0/. We start by observing that, since u 2 C 1.R2/,

D.u � '/.x0; y0/ D 0

and, consequently,

'x.x0; y0/ D ux.x0; y0/ D 4

3
x

1
3

0 (2.1)
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and
'y.x0; y0/ D uy.x0; y0/ D �4

3
y

1
3

0 : (2.2)

We first exclude the case x0 D 0. If ' 2 C 2.R2/ is such that u � ' has a local
maximum at .0; y0/, then

.u � '/.x; y0/ 6 .u � '/.0; y0/

, x
4
3 6 '.x; y0/ � '.0; y0/; (2.3)

for every x in a neighbourhood of 0, and this simply can not happen. In fact, letting
F.x/ D '.x; y0/ � '.0; y0/, we have F.0/ D 0 and also

F 0.0/ D 'x.0; y0/ D ux.0; y0/ D 0:

Then, by Taylor’s theorem,

lim
x!0

F.x/

x2
D F 00.0/

2
D 'xx.0; y0/

2
< C1:

On the other hand, if (2.3) would hold,

lim
x!0

F.x/

x2
> lim

x!0

x
4
3

x2
D lim

x!0
x� 2

3 D C1;

a contradiction.
We next consider the case x0 ¤ 0 and y0 D 0. If ' 2 C 2.R2/ is such that u � ' has

a local maximum at .x0; 0/, then
.u � '/.x; 0/ 6 .u � '/.x0; 0/

, x
4
3 � '.x; 0/ 6 x

4
3

0 � '.x0; 0/; (2.4)
for every x in a neighbourhood of x0. This means that the function

G.x/ D x
4
3 � '.x; 0/

has a local maximum at the point x0. Since it is of class C 2 in a neighbourhood of x0

(small enough that it does not contain 0), we have G0.x0/ D 0 and

G00.x0/ 6 0 , 'xx.x0; 0/ >
4

9
x

� 2
3

0 > 0: (2.5)

Then, using (2.1), (2.2) and (2.5),

�1'.x0; 0/ D
�
'2

x'xx C 2'x'y'xy C '2
y'yy

�
.x0; 0/

D '2
x.x0; 0/'xx.x0; 0/ > 0

as required.
Finally, if both x0 ¤ 0 and y0 ¤ 0, u is C 2 in a neighborhood of .x0; y0/ and the

equation is satisfied in the pointwise sense, the calculation being trivial.
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2.2 Comparison with cones and 1�harmonic

A crucial fact for 1�harmonic functions is that they can be characterised through com-
parison with cones.

Theorem 2.4. If u 2 C.U / is 1�subharmonic, then it enjoys comparison with cones
from above.

Proof. According to Lemma 1.14, we want to prove that, given V �� U , b 2 R and
z … V ,

u.x/ � bjx � zj 6 max
w2@V

.u.w/ � bjw � zj/ ; 8 x 2 V: (2.6)

Note that if G is smooth, we have (cf. Problem 4)

�1G.jxj/ D G00.jxj/
�
G0.jxj/

�2
; x ¤ 0:

Taking G.t/ D bt � 
 t2, we have, for all x 2 V (recall that z … V ),

�1

�
bjx � zj � 
 jx � zj2

�
D �1G.jx � zj/
D G00.jx � zj/

�
G0.jx � zj/

�2

D �2
 .b � 2
 jx � zj/2
< 0

if 
 > 0 is small enough. In particular, since V is bounded, we must have, if b > 0 (the
case b 6 0 is trivial),


 <
b

2 sup
x2V

jx � zj :

Now, since u is 1�subharmonic in V �� U (due to the local character of the notion
of viscosity sub-solution),

u.x/ �
�
bjx � zj � 
 jx � zj2

�

can not have a local maximum in V . Then

u.x/ �
�
bjx � zj � 
 jx � zj2

�
6 max

w2@V

�
u.w/ �

�
bjw � zj � 
 jw � zj2

��
;

for all x 2 V . Finally, let 
 ! 0 to obtain (2.6) and thus the result.

Magnificently, the reciprocal also holds.

Theorem2.5. Ifu 2 C.U / enjoys comparison with cones from above, then it is 1�subhar-
monic.



2.2. Comparison with cones and 1�harmonic 17

Proof. We start by observing that, for every x 2 Br .y/ �� U ,

u.x/ 6 u.y/C max
w2@Br .y/

�
u.w/ � u.y/

r

�
jx � yj: (2.7)

The inequality clearly holds for x 2 @ .Br .y/ n fyg/ D @Br .y/[ fyg and, since the right-
hand side is a cone with vertex at y … Br .y/ n fyg, the open set Br .y/ n fyg �� U and
u enjoys comparison with cones from above, it also holds for x 2 Br .y/ n fyg.

Now, we rewrite (2.7) as

u.x/ � u.y/ 6 max
w2@Br .y/

.u.w/ � u.x// jx � yj
r � jx � yj : (2.8)

This is just algebra:

u.x/ 6 u.y/C max
w2@Br .y/

�
u.w/ � u.y/

r

�
jx � yj

, u.x/ 6 u.y/C
�

max
w2@Br .y/

u.w/ � u.y/
� jx � yj

r

, u.x/ � r � jx � yj
r

u.y/ 6 max
w2@Br .y/

u.w/
jx � yj
r

, r

r � jx � yju.x/ � u.y/ 6 max
w2@Br .y/

u.w/
jx � yj

r � jx � yj

,
�
1C jx � yj

r � jx � yj

�
u.x/ � u.y/ 6 max

w2@Br .y/
u.w/

jx � yj
r � jx � yj

, u.x/ � u.y/ 6 max
w2@Br .y/

.u.w/ � u.x// jx � yj
r � jx � yj :

We first prove the result at points of twice differentiability. If u is twice continuously
differentiable at x0, namely if there is a p 2 R

n and a symmetric n � n matrix X such
that, as x ! x0,

u.x/ D u.x0/C hp; x � x0i C 1

2
hX.x � x0/; x � x0i C o.jx � x0j2/; (2.9)

so that
p D Du.x0/ and X D D2u.x0/;

we show that
�1u.x0/ D hXp; pi > 0:

We can assume p ¤ 0 since, otherwise, the result is trivial.
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Let x0 2 U be a point of twice differentiability for u. Denoting

dist.x0; @U / D inffjx0 � yj j y 2 @U g;

choose
r <

1

2
dist.x0; @U /

and � small enough so that, for y0 D x0 � �Du.x0/, Br .y0/ �� U and

x0 2 Br .y0/ , jx0 � y0j < r , � <
r

jDu.x0/j
:

Put x D y0, in (2.9) to obtain, with p D Du.x0/,

u.y0/ D u.x0/C hp;��pi C 1

2
hX.��p/;��pi C o.j � �pj2/

, u.x0/ � u.y0/ D �jpj2 � 1

2
�2hXp;pi � o.�2jpj2/;

as � ! 0.
Then, let wr;� 2 @Br .y0/ be such that

u.wr;�/ D max
w2@Br .y0/

u.w/

and put x D wr;� in (2.9) to obtain

u.wr;�/ � u.x0/ D hp;wr;� � x0i C 1

2
hX.wr;� � x0/; wr;� � x0i C o.jwr;� � x0j2/:

Now, choose x D x0 and y D y0 in (2.8) to get, after division by �,

jpj2 � 1

2
�hXp;pi � o.�/

6

�
hp;wr;� � x0i C 1

2
hX.wr;� � x0/; wr;� � x0i C o..r C �jpj/2/

� jpj
r � �jpj :

Note that
jwr;� � x0j D jwr;� � y0 � �pj 6 r C �jpj:

We now send � # 0 to get

jpj2 6

�D
p;
wr � x0

r

E
C 1

2

D
X
�wr � x0

r

�
; wr � x0

E�
jpj C jpjo.r/

6 jpj2 C 1

2

D
X
�wr � x0

r

�
; wr � x0

E
jpj C jpjo.r/; (2.10)
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where wr 2 @Br .x0/ is any limit point of wr;� and thus
ˇ̌
ˇwr � x0

r

ˇ̌
ˇ D 1:

Next, take r # 0 in the first inequality to get, since jwr � x0j D r ,

jpj 6

�
p; lim

r#0

wr � x0

r

�
6 jpj cos˛;

where ˛ is the angle formed by p and limr#0
wr �x0

r
, which is then ˛ D 0. It follows that

lim
r#0

wr � x0

r
D p

jpj ; p ¤ 0:

To conclude this part, pass to the limit as r # 0 in the extremes inequality in (2.10) to
obtain, after dividing by r ,

0 6
1

2

�
X
p

jpj ;
p

jpj

�
jpj , 0 6 hXp; pi D �1u.x0/:

In the general case, let Ox 2 U and ' 2 C 2.U / be such that u�' has a local maximum
at Ox. Then, for y;w close to Ox,

'. Ox/ � '.y/ 6 u. Ox/ � u.y/
and

u.w/ � u. Ox/ 6 '.w/ � '. Ox/:
Then

'. Ox/ � '.y/ 6 u. Ox/ � u.y/

6 max
w2@Br .y/

.u.w/ � u. Ox// j Ox � yj
r � j Ox � yj

6 max
w2@Br .y/

.'.w/ � '. Ox// j Ox � yj
r � j Ox � yj

and we obtain (2.8) for the twice continuously differentiable function '. Repeating the
reasoning above, we conclude that

�1'. Ox/ > 0

and the proof is complete.

Entirely analogous results hold replacing 1�subharmonic with 1�superharmonic
and comparison with cones from above with comparison with cones from below. We thus
obtain the following result.
Theorem 2.6. A function u 2 C.U / is 1�harmonic if, and only if, it enjoys comparison
with cones.
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2.3 Regularity

We now turn to regularity. For an open set U and x 2 U , we introduce the notation

d.x/ WD dist.x; @U /:

Our first result is a Harnack inequality.

Lemma 2.7 (Harnack Inequality). Let 0 > u 2 C.U / satisfy

u.x/ 6 u.y/C max
w2@Br .y/

�
u.w/ � u.y/

r

�
jx � yj; (2.11)

for x 2 Br .y/ �� U .
If z 2 U and R < d.z/=4, then

sup
BR.z/

u 6
1

3
inf

BR.z/
u: (2.12)

Proof. Take arbitrary x; y 2 BR.z/. Then (2.11) holds for r sufficiently large. Let r "
d.y/ to get, using the fact that u 6 0,

u.x/ 6 u.y/

�
1 � jx � yj

d.y/

�
: (2.13)

We have
d.y/ > 3R and jx � yj 6 2R

and thus, from (2.13), we obtain

u.x/ 6 u.y/

�
1 � 2R

3R

�
D 1

3
u.y/

and the result follows.

We now sharpen the estimate with a direct proof of the result in Lindqvist and Manfredi
1995, where, alternatively, the proof follows from looking at the 1�Laplace equation as
the limit as p ! 1 of the p�Laplace equation.

Theorem 2.8 (The Harnack inequality of Lindqvist–Manfredi). Let 0 > u 2 C.U / satisfy
(2.11). If z 2 U and 0 < R < d.z/, then

u.x/ 6 exp
�

� jx � yj
d.z/ �R

�
u.y/; 8x; y 2 BR.z/: (2.14)
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R

z

y

x

x3 x2 x1

Figure 2.1: Sequence of points xk for m D 4.

Proof. Let x; y 2 BR.z/, m 2 N and define (see Figure 2.1)

xk D x C k
y � x
m

; k D 0; 1; : : : ; m:

We have, for every k,

jxkC1 � xkj D jx � yj
m

< d.xkC1/;

for m large enough, and
d.xkC1/ > d.z/ �R:

We can then apply (2.13), with x D xk and y D xkC1, to get

u.xk/ 6 u.xkC1/

�
1 � jxkC1 � xkj

d.xkC1/

�

6 u.xkC1/

�
1 � jx � yj

m.d.z/ �R/

�
:

Iterating, we obtain

u.x/ D u.x0/ 6 u.y/

�
1 � jx � yj

m.d.z/ �R/

�m

;

and taking m ! 1, we arrive at (2.14).

This is indeed a sharper Harnack inequality when compared with (2.12). For starters,
it is valid for every R < d.z/. Moreover, the constant is also better: taking R D d.z/=4,
we obtain

sup
BR.z/

u.x/ 6 exp
�

� d.z/=2

d.z/ � d.z/=4

�
inf

BR.z/
u.y/ D exp

�
�2
3

�
inf

BR.z/
u.y/
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and exp
�
� 2

3

�
� 0:5134 > 0:3333 � 1

3
.

The local Lipschitz regularity for 1�harmonic functions is now a consequence of the
Harnack inequality.

Theorem 2.9. If u 2 C.U / is 1�harmonic, then it is locally Lipschitz and hence differ-
entiable almost everywhere.

Proof. We know u satisfies (2.11) since it enjoys comparison with cones from above. Take
z 2 U , R < d.z/=4 and x; y 2 BR.z/. Assume first that u 6 0. Then (2.13) and the
Harnack inequality (2.12) hold, and we get

u.x/ � u.y/ 6 �u.y/ jx � yj
d.y/

6 � inf
BR.z/

u
jx � yj
3R

6 � sup
BR.z/

u
jx � yj
R

:

If u is not non-positive, then this holds with u replaced by

v D u � sup
B4R.z/

u 6 0;

since v D uC const still enjoys comparison with cones from above. We thus obtain

u.x/ � u.y/ D v.x/ � v.y/ 6 � sup
BR.z/

v
jx � yj
R

D
 

sup
B4R.z/

u � sup
BR.z/

u

!
jx � yj
R

and, interchanging x and y,

ju.x/ � u.y/j 6
1

R

 
sup

B4R.z/

u � sup
BR.z/

u

!
jx � yj:

The best regularity result to date is due to Evans and Smart 2011 and asserts that
1�harmonic functions are differentiable everywhere (see chapter 3). It remains an out-
standing open problem to prove theC 1 orC 1;˛ regularity (see chapter 4), which are known
to hold only in two dimensions after the breakthroughs of Savin 2005 and Evans and Savin
2008.
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2.4 Existence

It is now time to deal with existence. We will need the following result; a proof is in
Aronsson, Crandall, and Juutinen 2004.

Lemma 2.10. Let F � C.U / be a family of functions that enjoy comparison with cones
from above in U . Suppose

h.x/ D sup
v2F

v.x/

is finite and locally bounded above in U . Then h 2 C.U /, and it enjoys comparison with
cones from above in U .

The existence result holds for U unbounded if the boundary function f is allowed to
grow at most linearly at infinity. Note that it also settles the existence for problem (1.3)
since u is 1�harmonic in U if, and only if, u 2 AML.U /.
Theorem 2.11. Let U � R

n be open, 0 2 @U and f 2 C.@U /. Let A˙; B˙ 2 R,
AC > A� and

A�jxj C B� 6 f .x/ 6 ACjxj C BC; 8x 2 @U: (2.15)

There exists u 2 C.U / which is 1�harmonic inU and satisfies u D f on @U . Moreover,

A�jxj C B� 6 u.x/ 6 ACjxj C BC; 8x 2 U : (2.16)

The proof is an application of Perron’s method. By translation, we can always assume
0 2 @U so this assumption is not restrictive and is used to simplify the notation.

We start by defining two functions h; h W R
n ! R by

h.x/ D supfC.x/ W C.x/ D ajx � zj C b; a < A�; z 2 @U;C 6 f on @U g

and

h.x/ D inffC.x/ W C.x/ D ajx � zj C b; a > AC; z 2 @U;C > f on @U g

with the properties stated in the next lemma.

Lemma 2.12. The functions h and h are well-defined and continuous. Moreover,

A�jxj C B� 6 h.x/ 6 h.x/ 6 ACjxj C BC; 8x 2 R
n; (2.17)

h D h D f on @U; (2.18)

h enjoys comparison with cones from above and h enjoys comparison with cones from
below.
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Proof. We argue for h; similar arguments hold for h. First, observe that any cone in the
family that is used to define h is bounded below by the cone

ACjx � zj C f .z/;

and then so is h. The question is to show that the family is non-empty. Since 0 2 @U , we
may take

C.x/ D .AC C �/jxj C BC; � > 0

and so h is well defined. This also readily implies that h.x/ 6 ACjxj C BC.
To show that (2.18) holds for h, fix 0 ¤ z 2 @U and � > 0. By the continuity of f ,

there exists ı > 0 such that

f .x/ < f .z/C �; 8x 2 Bı.z/ \ @U: (2.19)

Then choose a > maxfAC; 0g such that

f .z/C � C aı > max
Bı.z/

.ACjxj C BC/ (2.20)

and
f .z/C � C ajzj > BC: (2.21)

Define the cones
C.x/ WD ajx � zj C f .z/C �

and
CC.x/ WD ACjxj C BC;

and the open set
W WD

˚
x 2 R

n n Bı.z/ W C.x/ < CC.x/
	
:

Since a > AC, W is bounded:

lim
jxj!1

�
ajx � zj � ACjxj

�
D C1:

Moreover, by (2.20), @Bı.z/\W D ;, and then C D CC on @W . Since both vertices of
the cones, 0 and z, do not belong to W (to see that 0 … W , use (2.21)), we conclude, by
Corollary 1.12 and the reasoning at the end of the proof of Theorem 1.15, that C D CC

also in W . Thus W D ; and

C.x/ > CC.x/; 8x 2 R
n n Bı.z/:

This and (2.19) implies that
C > f on @U:

Now, C.z/ D f .z/C � and so h.z/ D f .z/ and (2.18) holds for h.
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To prove that h 6 h, take any two cones

C.x/ D ajx � zj C b and C.x/ D ajx � zj C b

entering in the definition of h and h, respectively. Since

C 6 f 6 C on @U;

z; z 2 @U
and

a > AC > A� > a;

the set where C > C is bounded, contains neither vertex and the two cones agree on its
boundary. Arguing as before, we conclude the set is empty, and so C 6 C , which implies

h 6 h in Rn

and (2.17) is proved. In particular, h and h are locally bounded, and comparison with cones
(respectively, from above and from below) follows from Lemma 2.10 and its variant.

We are left to prove the continuity of h and h. First, observe that h is lower semi-
continuous (as the supremum of continuous functions) and h is upper semi-continuous
(as the infimum of continuous functions) in Rn. The continuity in U also follows from
Lemma 2.10. Since h enjoys comparison with cones from above, the idea is to use the
Harnack Inequality (Lemma 2.7, which holds for lower semi-continuous functions) as in
the proof of Theorem 2.9.

To prove the continuity of h on @U , use (2.18) and (2.17) to get

f .x/ 6 lim inf
y!x

h.y/ 6 lim sup
y!x

h.y/ 6 lim sup
y!x

h.y/ 6 f .x/; x 2 @U:

The case of h is treated analogously.

We need yet another lemma.

Lemma 2.13. Suppose u 2 C.U / enjoys comparison with cones from above in U but
does not enjoy comparison with cones from below in U . Then, there exists a non-empty
set W �� U and a cone C.x/ D ajx � zj C b, with z … W , such that u D C on @W ,
u < C on W and the function Ou defined by

Ou D u in U nW and Ou D C in W (2.22)

enjoys comparison with cones from above in U . Moreover, if u is Lipschitz in U , then so
is Ou and

Lip Ou.U / 6 Lipu.U /:
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Proof. That there existW and C satisfying the conditions of the lemma follows from the
proof of the necessity in Theorem 1.15, more correctly, from its variant corresponding to
comparison with cones from below.

Let’s show that Ou defined by (2.22) enjoys comparison with cones from above in U .
Suppose not; then, again from the proof of Theorem 1.15, there exists a non-empty set
zW �� U and a cone zC.x/ D zajx � zzj C zb, with zz … zW , such that Ou D zC on @ zW and
Ou > zC in zW . Since u enjoys comparison with cones from above in U and u 6 Ou D zC on
@ zW , we have u 6 zC also in zW . This implies that zW � W because

u 6 zC < Ou in zW and u D Ou in U nW:

Thus, on @ zW � W [ @W ,
zC D Ou D C:

Since the vertices of the cones C and zC are outside zW , this implies

zC � C � Ou in zW

and so zW D ;, a contradiction.
Finally, since

Lip Ou.W / D LipC .W / D LipC .@W / D Lipu.@W / 6 Lipu.U /

(note that the vertex of C is outside W ), we conclude that

Lip Ou.U / D max fLip Ou.W /;Lip Ou.U nW /g 6 Lipu.U /:

We are now ready to prove Theorem 2.11.

Proof. Define

u.x/ WD sup
n
v.x/ W h 6 v 6 h and v 2 CCA.U /

o
; x 2 U ;

where, by v 2 CCA.U / we mean that v enjoys comparison with cones from above in U .
By Lemma 2.12, the set includes h so it is not empty and u is well defined; it follows

from Lemma 2.10 that it enjoys comparison with cones from above inU , and, from (2.18),
that u 2 C.U / and u D f on @U .

If u enjoys comparison with cones, then u is 1�harmonic, and the proof is complete.
Otherwise, u does not enjoy comparison with cones from below and, by Lemma 2.13,
there exists a non-empty set W �� U and a cone C , with vertex outside W , such that

u D C on @W and u < C in W;
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and a continuous function Ou, enjoying comparison with cones from above, such that

Ou D u in U nW and Ou D C in W:

It is obvious that h 6 u 6 Ou. We also claim that Ou 6 h in U , which contradicts the
definition of u.

Since h enjoys comparison with cones from below and

h > C D u on @W;

we have h > C D Ou also in W . Since in U nW , Ou D u 6 h, the proof is complete.

2.5 Uniqueness

The uniqueness reveals the extent to which the notion of viscosity solution is the appropri-
ate one to deal with the 1�Laplace equation. Given any PDE, we can, of course, define
any reasonable notion of solution; what makes the difference is that, for that notion, not
only existence but also uniqueness holds.

The uniqueness of 1�harmonic functions remained open for more than two decades
before Jensen settled it in Jensen 1993 using the full machinery of viscosity solutions. The
proof we will next present is much simpler and exploits the equivalence between being
1�harmonic and enjoying comparison with cones. It is a surprisingly easy and beautiful
proof due to Armstrong and Smart Armstrong and Smart 2010.

We start with some notation. Given an open and bounded subset U � R
n and r > 0,

let
Ur WD

˚
x 2 U W Br .x/ � U

	
:

For u 2 C.U / and x 2 Ur , define

ur .x/ WD max
Br .x/

u and ur .x/ WD min
Br .x/

u;

and let

SC
r u.x/ D ur .x/ � u.x/

r
and S�

r u.x/ D u.x/ � ur .x/

r
:

Note that both SC
r u > 0 and S�

r u > 0.

The first result we prove is a comparison principle at the discrete level for the finite
difference equation S�

r u D SC
r u.
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Lemma 2.14. Assume u; v 2 C.U / \ L1.U / satisfy

S�
r u.x/ � SC

r u.x/ 6 0 6 S�
r v.x/ � SC

r v.x/; 8x 2 Ur : (2.23)

Then
sup
U

.u � v/ D sup
U nUr

.u � v/:

Proof. Suppose the thesis does not hold, i.e.,

sup
U

.u � v/ > sup
U nUr

.u � v/:

The set
E WD

�
x 2 U W .u � v/.x/ D sup

U

.u � v/
�

is then non-empty, closed, and contained in Ur . Define

F WD
�
x 2 E W u.x/ D max

E
u

�
;

which is also non-empty and closed, and select a point x0 2 @F . Since u � v attains its
maximum at x0 (because x0 2 F D F � E), we have

S�
r v.x0/ 6 S�

r u.x0/ , ur .x0/ � vr .x0/ 6 .u � v/.x0/; (2.24)

which holds since max.f � g/ > minf � ming.1

We now consider two cases.

1. SC
r u.x0/ D 0: from (2.23), we get

S�
r u.x0/ 6 0 ) S�

r u.x0/ D 0

and, from (2.24),
S�

r v.x0/ 6 0 ) S�
r v.x0/ D 0:

Using the other inequality in (2.23),

0 6 0 � SC
r v.x0/ ) SC

r v.x0/ D 0:

So
max

Br .x0/

u D u.x0/ D min
Br .x0/

u

1In fact, max.f � g/ D maxx.f .x/ � g.x// > maxx .min f � g.x// D min f � min g .
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and
max

Br .x0/

v D v.x0/ D min
Br .x0/

v;

and both u and v are constant in Br .x0/. Thus Br .x0/ � F ; in fact, if y 2 Br .x0/
then, since x0 2 E,

.u � v/.y/ D .u � v/.x0/ D sup
U

.u � v/ ) y 2 EI

but also
u.y/ D u.x0/ D max

E
u;

since x0 2 F ; thus y 2 F . We conclude that x0 2 int.F / and so x0 … @F , a
contradiction.

2. SC
r u.x0/ > 0: select a point z 2 Br .x0/ such that

rSC
r u.x0/ D u.z/ � u.x0/:

Since u.z/ > u.x0/ and x0 2 F , we see that z … E. From this, we deduce that

rSC
r v.x0/ > v.z/ � v.x0/ > u.z/ � u.x0/ D rSC

r u.x0/: (2.25)

To justify the strict inequality above, observe that

.u � v/.z/ 6 .u � v/.x0/ D sup
U

.u � v/;

because x0 2 F � E, and equality does not hold since then z 2 E. Finally,
combining (2.24) and (2.25), we get

S�
r v.x0/ � SC

r v.x0/ < S
�
r u.x0/ � SC

r u.x0/;

which contradicts (2.23).

The following result establishes a link between the continuous and the discrete levels,
showing that solutions of the PDE can be suitably modified to solve the finite difference
equation.

Lemma 2.15. If u 2 C.U / is 1�subharmonic in U , then

S�
r u

r .x/ � SC
r u

r .x/ 6 0; 8x 2 U2r ;

and if v 2 C.U / is 1�superharmonic in U , then

S�
r vr .x/ � SC

r vr .x/ > 0; 8x 2 U2r :
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Proof. We just prove the first statement; the second one follows from the fact that .�v/r D
�vr .

Fix a point x0 2 U2r . Select y0 2 Br .x0/ and z0 2 B2r .x0/ such that

u.y0/ D ur .x0/ and u.z0/ D u2r .x0/:

Then,

r
�
S�

r u
r .x0/ � SC

r u
r .x0/

�
D 2ur .x0/ � .ur /r .x0/ � .ur /r .x0/

6 2ur .x0/ � u2r .x0/ � u.x0/

D 2u.y0/ � u.z0/ � u.x0/:

We next justify why the inequality holds.

1. .ur /r .x/ D u2r .x/: we have

.ur /r .x/ D max
z2Br .x/

ur .z/ D max
z2Br .x/

max
y2Br .z/

u.y/

and
u2r .x/ D max

y2B2r .x/

u.y/:

� If z 2 Br .x/ and y 2 Br .z/ then y 2 B2r .x/. In fact,

jz � xj 6 r ^ jy � zj 6 r

) jy � xj 6 jy � zj C jz � xj 6 2r

and thus
.ur /r .x/ 6 u2r .x/:

� If y 2 B2r .x/ then y 2 Br .z/, for a certain z 2 Br .x/; just take z to be the
middle point of the segment Œx; y�. So, also

u2r .x/ 6 .ur /r .x/:

2. .ur /r .x/ > u.x/: we have

.ur /r .x/ D min
z2Br .x/

ur .z/ D min
z2Br .x/

max
y2Br .z/

u.y/:

Since
max

y2Br .z/

u.y/ > u.x/; 8z 2 Br .x/;

the result follows.
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Now, clearly,

u.w/ 6 u.x0/C u.z0/ � u.x0/

2r
jw � x0j; 8w 2 @ .B2r .x0/ n fx0g/ :

Since u enjoys comparison with cones from above, because u is 1�subharmonic, the
inequality also holds for every w 2 B2r .x0/ n fx0g and so for every w 2 B2r .x0/.

Putting w D y0 and using the fact that jy0 � x0j 6 r , we get

u.y0/ 6 u.x0/C u.z0/ � u.x0/

2r
jy0 � x0j

6 u.x0/C u.z0/ � u.x0/

2

and then
2u.y0/ � u.x0/ � u.z0/ 6 0;

and the proof is complete.

Theorem 2.16 (Jensen’s Uniqueness Theorem). Letu; v 2 C.U / be, respectively, 1�sub-
harmonic and 1�superharmonic. Then

max
U

.u � v/ D max
@U
.u � v/:

Proof. From Lemmas 2.14 and 2.15,

sup
Ur

.ur � vr / D sup
Ur nU2r

.ur � vr /; 8r > 0:

To get the result, let r # 0 and use the local uniform convergence of ur and vr to u and v,
respectively.



3 Differentiability
everywhere

In this chapter, we discuss ideas from the works Crandall, Evans, and Gariepy 2001 as well
as Crandall and Evans 2001. We shall explore the relationship between the comparison
with cones property and various findings on linearity for blow-ups and differentiability
results.

3.1 Monotonicity properties and consequences

3.1.1 Definitions and main properties
Let U � R

n be an open set and u W U ! R. Similarly to what is done in Section 2.5, we
define the quantities

LC
r .u; y/ WD max

z2Sr .y/

u.z/ � u.y/
r

and L�
r .u; y/ WD min

z2Sr .y/

u.z/ � u.y/
r

;

for y 2 U and r > 0. Here, we denote

Sr .y/ D fx 2 R
n W jx � yj D rg;

assuming r < dist.y; @U / to guarantee Sr .y/ � U .
Moreover, we define

LC
0 .u; y/ WD lim

r!0
LC

r .u; y/ and L�
0 .u; y/ WD lim

r!0
L�

r .u; y/; (3.1)
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and invite the reader to compare these definitions with that of Tu.y/, introduced in Sec-
tion 1.3.

The following result concerns the monotonicity of LC
r with respect to r . It follows as

a consequence of u enjoying comparison with cones from above.

Proposition 3.1. (Monotonicity properties) Letu enjoy comparison with cones from above
in U . Then, for each y 2 U and r 6 dist.x; @U /,

r 7! LC
r .u; y/ is non-decreasing: (A)

In addition,
LC

0 .u; y/ is a non-negative number: (B)

Proof of property (A). For each y 2 Sr .x/, one holds

u.y/ � u.x/
r

6 max
y2Sr .z/

u.z/ � u.x/
r

DW LC
r .u; x/:

and so,
u.y/ 6 u.x/C LC

r .u; x/jy � xj
for y 2 Sr .x/. From the fact that u enjoys comparison with cones from above, the in-
equality also holds for each y 2 Br .x/ n fxg and so also in Br .x/. In other words, we
obtain

u.y/ 6 u.x/C LC
r .u; x/jy � xj

for each y 2 S� .x/ and � 6 r , which is equivalent to

u.y/ � u.x/
�

D u.y/ � u.x/
jy � xj 6 LC

r .u; x/;

for each y 2 S� .x/. Therefore, LC
s .u; x/ 6 LC

r .u; x/ whenever s 6 r .

Similarly, we can prove exercise 13.

Proof of property (B). Without loss of generality, we assume y D 0. Initially, we prove
that

�M 6 lim
r!0

LC
r .u; 0/; provided lim

r!0
LC

r .u; 0/ < M: (3.2)

Then, if limr!0L
C
r .u; 0/ < 0, we apply (3.2) for the particular case M D 0 and get a

contradiction.
In the sequel, we prove that (3.2) holds. From property (A), we find r > 0 such that,

for each r 6 r , we have LC
r .u; 0/ 6 M . From this,

u.y/ 6 u.0/CM jyj for each y 2 Sr .0/: (3.3)
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In what follows, select x 2 Br .0/ such that 0 < jxj 6 r=3. First, we observe that

u.0/ 6 u.x/C LC
jxj.u; x/jxj 6 u.x/C max

z2Sr .x/

u.z/ � u.x/
r

jxj;

for any r > jxj. In addition, we take xr 2 Sr .x/ such that

u.xr / � u.x/
r

D LC
r .u; x/:

By using (3.3) for y D xr ,

u.xr / 6 u.0/CM jxr j 6 u.0/CM.jxj C r/;

Therefore, from the last three estimates, we get

u.0/ 6 u.x/C u.0/CM.jxj C r/ � u.x/
r

jxj;

and so
u.0/ 6 u.x/C

�
M.jxj C r/

r
� u.x/ � u.0/

r

�
jxj:

This gives us

�M.jxj C r/

r � jxj jxj 6 �M.jxj C r/

r
jxj 6 .u.x/ � u.0//

�
1 � jxj

r

�
:

Note that we are free to select any jxj D ", see Figure 3.1,

�M ."C r/

r � " 6 max
jxjD"

u.x/ � u.0/
"

�
1 � "

r

�
:

Finally, we let " ! 0, obtaining

�M 6 LC
0 .u; 0/:

3.1.2 Inferring existence of derivatives
Next, we show some properties assuming pointwise differentiability for u.

Proposition 3.2. Let p 2 R
n and a 2 R. For affine functions u.x/ D a C hp; xi, we

have
LC

s .u; y/ D LC
r .u; y/ D �L�

r .u; y/ D jpj;
for each y 2 U and 0 < r < s < dist.y; @U /.
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r

xr

x

Figure 3.1: The picture shows how Sjxj.0/ and Sr .x/ are located into Br .0/.

Proof. The second equation follows by observing that if zr is the maximum point for u
in Sr .y/, then �zr is the minimum for u in Sr .y/. More generally, since u is affine, we
observe that there exists e 2 S1.0/, such that

0 6 LC
r .u; y/ D p � .y C re/ � p � y

r
D p � e;

which proves the first and the last estimates.

The following proposition should be compared with Proposition 1.7.

Proposition 3.3. Assume u is differentiable at y 2 U . Then

LC
0 .u; y/ D jDu.y/j: (3.4)

Proof. In case jDu.y/j ¤ 0, denote

� D Du.y/

jDu.y/j :

From this,

jDu.y/j D Du.y/ � � D lim
h!0

u.y C h�/ � u.y/
h

6 lim
h!0

LC
h
.u; y/ D LC

0 .u; y/: (3.5)

In parallel, for each integer j > 0, consider xj 2 S1.0/, such that

L 1
j
.u; y/ D max

x2S1.0/
j.u.y C x=j / � u.y// D j.u.y C xj =j / � u.y//:
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In addition, up to a subsequence, we have that yj ! y0 2 S1.0/. Hence,

j.u.y C 1
j
xj / � u.y// 6 j ju.y C 1

j
yj / � u.y C 1

j
y0/j C j ju.y C 1

j
y0/ � u.y/j

6 Lipu.U /jyj � y0j C j ju.y C 1
j
y0/ � u.y/j;

and so, letting j ! 1, we derive

LC
0 .u; y/ 6 Du.y/ � y0 6 jDu.y/j jy0j D jDu.y/j:

Therefore, from the estimate above and (3.5), we conclude (3.4).

Finally, if jDu.y/j D 0, for a given a 2 R
n n f0g we consider

v.x/ D u.x/C a � x:

We have that Dv.y/ D a. Therefore, from Proposition 3.2, one holds

LC
0 .u; y/C jaj D jLC

0 .u; y/C jajj D jaj;

which implies that LC
0 .u; y/ D 0 D jDu.y/j.

We also point out that, from Rademacher’s theorem, see for instance Weaver 2018,
Theorem 1.41, u is differentiable at almost every point of U , provided u is Lipschitz in U .

Corollary 3.4. Assume u enjoys comparison with cones from above in U . Then,

sup
y2U

LC
0 .u; y/ D kDukL1.U /: (3.6)

3.1.3 Some useful consequences
In the sequel, we explore some consequences of the results above. First, we obtain a
gradient control at almost every point in U . In addition, essentially from property (A),
1�harmonic functions are locally Lipschitz continuous. Alternatively, from Proposi-
tion 3.1, the same holds only requiring comparison with cones from above.

Proposition 3.5. Assume that u enjoys comparison with cones from above. Then u 2
W

1;1
loc

.U /. Furthermore, there exists a constant C , depending only on n, such that for
radii r 6 dist.x; @U /, there holds

jDu.x/j 6 LC
0 .u; x/ 6 max

z2Sr .x/

u.z/ � u.x/
r

6 2
kukL1.U /

dist.x; @U /
; a.e. x 2 U:
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Proof. Let x; y 2 U such that for r WD jx � yj, we have Sr .x/ [ Sr .y/ � U . From
property (A), we immediately obtain

u.x/ � u.y/ 6 LC
r .u; y/jx � yj and u.y/ � u.x/ 6 LC

r .u; x/jx � yj:

Hence,
ju.x/ � u.y/j 6 maxfLC

r .u; y/; L
C
r .u; x/gjx � yj;

so u is locally Lipschitz. By Rademacher’s theorem, u is differentiable at almost every
point of U . Let x 2 U be a Lebesgue point for u (which means u is differentiable at x).
From the inequality above,

jDu.x/j 6 lim
r!0

�
lim

y!x
maxfLC

r .u; y/; L
C
r .u; x/g

�
D lim

r!0
LC

r .u; x/ D LC
0 .u; x/:

Here, we only use the upper semi-continuity of r 7! LC
0 .u; r/. The upper semi-continuity

property follows from the continuity of u and the fact thatLC
r .u; y/ is evaluated by taking

the maximum of u on Sr .y/.

Corollary 3.6. Assume u enjoys comparison with cones from above in R
n, and u.x/ 6

aC hp; xi, for some a 2 R and p 2 R
n. Then jDuj 6 jpj a.e. in R

n.

Proof. Assume, without loss of generality that u.0/ D 0. From Proposition 3.5,

jDu.x/j 6 max
z2Sr .x/

u.z/

r
6 max

z2Sr .x/

jaj C jpj.jxj C r/

r
; a.e. in R

n:

Letting r ! 1, we conclude the proof.

We conclude the first part of this chapter by exploiting the ideas in the proof of Propo-
sition 3.1, property (B).

Corollary 3.7. Let u enjoy comparison with cones from above and below. Then, for each
y 2 U , there holds

LC
0 .u; y/ D �L�

0 .u; y/:

Proof. Without loss of generality, assume y D 0. From (3.2),

�.LC
0 .u; 0/C "/ 6 L�

0 .u; 0/; (3.7)

for each " > 0 arbitrary chosen, and so, �L�
0 .u; 0/ 6 LC

0 .u; 0/. Arguing similarly for
�u, which has the property of comparison with cones from above, and applying exercise
11, we derive �LC

0 .u; 0/ > L�
0 .u; 0/.
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3.2 Blow-up analysis
As in the previous section, we assume u enjoys comparison with cones (from above and
below). For each x 2 U , a blow-up of u at x is the function

ux.y/ WD lim
k!1

u.rky/ � u.x/
rk

;

where frkgk is a sequence of positive numbers such that rk ! 0. From property (A), for
each integer k > 0, the function

ux;k.y/ WD u.rky/ � u.x/
rk

;

is locally uniformly Lipschitz, so the limit above exists. We follow ideas in Crandall and
Evans 2001 to show that blow-ups of functions enjoying comparison with cones (form
above and below) must be linear.

For convenience, we assume 0 2 U and proceed with the blow-up analysis at the
origin. Next, we prove some properties of L˙

r .�; y/ related to blow-up functions.

Proposition 3.8. Let u enjoy comparison with cones from above and below. Then, the
following property holds:

max
˚
LC

r .u0; y/;�L�
r .u0; y/

	
6 LC

0 .u; 0/; for each y 2 R
n and r > 0: (C)

In addition,
L0.u; 0/ WD LC

0 .u; 0/ D LC
0 .u0; 0/ D �L�

0 .u0; 0/: (D)

Proof of property (C). Fix any y 2 R
n and let zr 2 Sr .y/ be such that

LC
r .u0; y/ D u0.zr / � u0.y/

r
D lim

j !1

u.rj z/ � u.rjy/
rj r

: (3.8)

From Proposition 3.1, property (A), for rj r 6 R < dist.rjy; @U /,

u.rj z/ � u.rjy/
rj r

6 LC
rj r .u; rjy/ 6 LC

R.u; rjy/:

Letting j ! 1 in the estimate above, we obtain

LC
r .u0; y/ D lim

j !1

u.rj z/ � u.rjy/
rj r

6 LC
R.u; 0/:

Now, letting R ! 0, we conclude that

LC
r .u0; y/ 6 LC

0 .u; 0/:
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Proof of property (D). Consider y D 0 and u0.0/ D 0 in .3:8/ to get

LC
r .u0; 0/ D u0.zr /

r
D lim

j !1

u.rj zr / � u.0/
rj r

:

Hence, from Corollary 3.7 and exercise 17

�L�
0 .u0; 0/ D LC

0 .u0; 0/ D lim
j !1

LC
rj r .u; 0/ D LC

0 .u; 0/:

Corollary 3.9. Let u enjoy comparison with cones from above and below. Then,

L0.u; 0/ D kDu0kL1.Rn/:

Proof. From Proposition 3.1, property (A),

kDu0kL1.Rn/ 6 sup
y2Rn

LC
r .u0; y/:

Hence, from Proposition 3.8, property (C), we obtain

kDu0kL1.Rn/ 6 L0.u0; 0/:

On the other hand, from Corollary 3.4, we easily get

L0.u0; 0/ 6 sup
y2Rn

LC
0 .u0; y/ D kDu0kL1.Rn/:

The following technical result concerns linearity properties for Lipschitz functions in
R

n under tightness on a given line. This is crucial for obtaining classification results of
blow-up functions.

Lemma 3.10. Assume v W B1 ! R satisfies Lipv.B1/ D 1, and there exists e 2 S1.0/,
such that v.te/ D t , for each t 2 .�1; 1/. Then v.x/ D e � x, for each x 2 B1.

Proof. Let us first denote .x; y/ 2 B1 � R
n, for x 2 R and y 2 R

n�1. Up to a rotation,
we can assume, with no loss of generality, that e D .1; 0/. Given .x1; y/; .s; 0/ 2 B1, we
have

jv.x1; y/ � v.s; 0/j2 D jv.x1; y/ � v.x1; 0/C v.x1; 0/ � v.s; 0/j2

D 2.v.x1; y/ � v.x1; 0//.v.x1; 0/ � v.s; 0//

Cjv.x1; y/ � v.x1; 0/j2 C jv.x1; 0/ � v.s; 0/j2

> 2.v.x1; y/ � v.x1; 0//.v.x1; 0/ � v.s; 0//C jx1 � sj2:
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On the other hand, since Lipv D 1,

jv.x1; y/ � v.s; 0/j2 6 jyj2 C jx1 � sj2 for each s 2 R;

which implies

2.v.x1; y/ � v.x1; 0//.x1 � s/ 6 jyj2 for each s 2 R:

Since x1 < 1 and s 2 .�1; 1/ is arbitrary, we deduce

v.x1; y/ D v.x1; 0/ D x1v.e/ D x1;

which means that v depends only on the first variable.

Lemma 3.11. Let g W Œ0; 1� ! R be such that Lipg.Œ0; 1�/ D jg.1/ � g.0/j. Then

g.t/ D g.1/t C g.0/; 8t 2 Œ0; 1�:
Proof. To prove this, without loss of generality, we assume g.0/ D 0. Hence,

jg.t/j
t

6
jg.t/ � g.0/j

t
6 jg.1/ � g.0/j D jg.1/j:

On the other hand,

jg.1/j � jg.t/j
1 � t 6

jg.1/ � g.t/j
1 � t 6 jg.1/j:

This implies that jg.t/j � jg.1/j > �jg.1/j.1 � t /, and so jg.t/j > jg.1/jt .

Next, we prove the main result of this section.

Theorem 3.12. Let u enjoy comparison with cones from above and below in U . Then, u0

is an affine function.

Proof. For the sake of simplicity, we assume that u.0/ D 0. For each radius r , we select
points zC

r ; z
�
r 2 Sr .0/, such that

LC
r .u0; 0/ D u0.z

C
r / � u0.0/

r
D u0.z

C
r /

r
and L�

r .u0; 0/ D u0.z
�
r /

r
: (3.9)

By monotonicity, we have that LC
0 .u0; 0/ 6 LC

r .u0; 0/. Hence, from properties (C) and
(D) in Proposition 3.8 and exercise 17, we obtain L0.u; 0/ D L0.u0; 0/ D LC

r .u0; 0/.
Additionally, we have �L�

r .u0; 0/ D L0.u; 0/. Hence,

L0.u; 0/ D u0.z
C
r / � u0.z

�
r /

2r
: (3.10)
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Next, consider gr W Œ0; 1� ! R defined by

gr .t/ D u0.z
�
r C t.zC

r � z�
r // � u0.z

�
r /: (3.11)

From Proposition 3.8, property (C), since g has Lipschitz constant L, we obtain

L WD sup
t;s2.0;1/

jgr .t/ � gr .s/j
jt � sj 6 LC

jt�sjjzC
r �z�

r j
.u0; z

�
r C s.zC

r � z�
r //jzC

r � z�
r j

6 LC
2r .u0; z

�
r C s.zC

r � z�
r //jzC

r � z�
r j

6 L0.u; 0/jzC
r � z�

r j
6 L0.u; 0/2r:

On the other hand, from (3.10), we have

L > jgr .1/ � gr .0/j D ju0.z
C
r / � u0.z

�
r /j D 2rL0.u; 0/:

From the last two estimates, we conclude

jzC
r � z�

r jL0.u; 0/ D L D jgr .1/ � gr .0/j D 2rL0.u; 0/:

From this, we deduce some consequences. First, since jzC
r �z�

r j D 2r and zC
r ; z

�
r 2 Sr .0/,

we have that zC
r and z�

r are diametrically opposed, which means

zC
r D �z�

r : (3.12)

Thus, for each r > 0, we have that zC
r and z�

r are uniquely determined. Second, we
observe that jgr .1/�gr .0/j is the Lipschitz constant of gr , and so, from Lemma 3.11, we
get

gr .t/ D 2rL0.u; 0/ t: (3.13)

Consequently, from (3.11), (3.12) and (3.13), we obtain

2L0.u; 0/ t D u0..2t � 1/zC
1 / � u.�zC

1 /; (3.14)

and so, taking t D 1 and t D 1=2, we conclude that

u.zC
1 / D L0.u; 0/:

In the sequel, denote e WD zC
1 . We claim that

u0.te/ D tL0.u; 0/; for each 0 6 t 6 1: (3.15)

In fact, in the case we find t? 2 .0; 1/, such that

u0.t?e/ < t?L0.u; 0/;
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r

r

�zC
r

zC
r

z�
r

r

r
z�

r

zC
r

��
r

�C
r

Figure 3.2: Points zC
r and z�

r are diametrically opposed and unique.

then, from Corollary 3.9, we derive

u0.e/ � u0.t?e/ 6 .1 � t?/kDu0kL1.Rn/ D .1 � t?/L0.u; 0/

and so,
u0.e/ < .1 � t?/L0.u; 0/C u0.t?e/ 6 L0.u; 0/ D u0.e/;

which is a contradiction.
From (3.14) and (3.15), we also have

u.�zC
1 / D �L0.u; 0/:

Hence, arguing as above, we obtain

u0.se/ D sL0.u; 0/; for each � 1 6 s 6 1:

Therefore, we conclude that u0 is affine on some line crossing the origin. By Lemma 3.10,
we obtain that u0 is affine in B1.

To conclude the proof, we define

�? WD maxf� > 0 j u0.x/ D L0.u; 0/x; for each jxj 6 �g:
Note that �? > 1. Now, assume �? < C1, and define

u?.x/ WD u0..�? C 1/x/

�? C 1
:

From exercise 15, note that u? is a blow-up for u at 0. Hence, from the arguments above

u?.x/ D L0.u; 0/x; for each x 2 B1:

From this, we easily obtain u0.x/ D L0.u; 0/x, for each x 2 B�?C1. However, this
contradicts the definition above. Therefore, �m D 1, which is equivalent to obtaining
that u0 is affine in R

n.
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In conclusion, the previous arguments permit us to state the following Liouville-type
property.

Lemma 3.13 (Liouville). Let u enjoy comparison with cones from above and below in R
n

and satisfies properties (C) and (D). Then u must be linear.

3.3 Everywhere differentiability
This section addresses everywhere differentiability of functions that enjoy comparison
with cones. It is worth noting that, according to Rademacher’s theorem, Lipschitz func-
tions are differentiable almost everywhere. The pioneering work on this topic was done
by Crandall and Evans 2001.

3.3.1 Preiss’ example
Initially, one could expect that Lipschitz functions, with the property that any blow-up is
affine, would be differentiable. However, this is not the case. In ibid., the authors exhibit
a counter-example due to D. Priess. Consider

P.x/ D
(
x � sin .log .j log.jxj/j// for x 2 .�1; 0/ \ .0; 1/;

0 for x D 0:

This function is differentiable everywhere except at the origin and Lipschitz near that point.
However, all blow-up limits u.rjx/=rj at the origin, as rj ! 0, are affine. Precisely, the
blow-ups might exhibit any slope between �1 and 1.

3.3.2 An equivalence for differentiability
Next, we provide the first result towards differentiability, assuming the condition below.
Choosing zr 2 Sr .x0/ such that

LC
r .u; x0/ D max

z2Sr .x0/

u.z/ � u.x0/

r
D u.zr / � u.x0/

r
;

we shall assume that
lim
r!0

jzr � x0j
r

exists: (Lim)

We point out that differentiability at x0 implies that (Lim) holds, provided jDu.x0/j >
0. In fact, for x 2 Sr .x0/, we consider Taylor’s expansion for u at x0,

u.x/ D u.x0/C hDu.x0/; x � x0i C o.r/:
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From this, we obtain

0 6
u.zr / � u.x/

r
D hDu.x0/;

zr � x
r

i C o.1/;

for each x 2 Sr .x0/. From exercise 18, we conclude the validity of (Lim).

Next, we show the equivalence between differentiability and condition (Lim). Here-
after, we say u has differentiability condition at a point x0 if, and only if, condition (Lim)
holds.

Theorem 3.14. Assume u satisfies (Lim) and enjoys comparison with cones in a given
domain. Then u is differentiable everywhere.

Proof. Assume that x0 D 0 and v.0/ D 0. We shall split the argument into two parts.
First, we consider the case L0.u; 0/ D 0. Then

ju.x/ � u.0/j
jxj 6 max

�
LC

r .u; 0/;�L�
r .u; 0/

�
;

for 0 < jxj < r . From this, we conclude that Du.0/ D 0. More generally, we leave it as
an exercise to show that L0.u; 0/ D 0 if, and only if,Du.0/ D 0. Next, we treat the case
L0.u; 0/ > 0. For a sequence rj ! 0, we consider

v.x/ D lim
j !1

u.rjx/ � u.0/
rj

: (3.16)

From Theorem 3.12, there exists p 2 R
n, such that

v.x/ D hp; xi:

From properties (C) and (D), we have that jpj D jDv.0/j D L0.u; 0/. To guarantee that
u is differentiable at 0, we shall guarantee that p is unique for any blow-up of u at 0. From
(Lim), we denote

lim
r!0

zr

r
DW � 2 S1.0/:

Then, for each x 2 S1.0/, we have

v.x/ D lim
j !1

u.rjx/ � u.0/
rj

6 lim
j !1

u
�
rj

zrj

rj

�
� u.0/

rj
D v.�/:

In view of this, hp; xi 6 hp; �i, for each x 2 S1.0/, which implies � D p=jpj.
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3.3.3 Differentiability via uniqueness of blow-ups
Next, we treat differentiability for 1�harmonic functions - remember the equivalence
with comparison with cones, see Theorem 2.6. For this, we shall prove that any limit

lim
r!0

u.ry � x/ � u.x/
r

D ha; yi

is obtained uniquely for a D Du.x/ and L0.u; x/ D jDu.x/j. We proceed from ideas in
Evans and Smart 2011, omitting some technical details, which can be found precisely in
that reference.

Theorem 3.15. Let u be a viscosity solution of

��1u D 0 in B1.0/:

Then u is differentiable at each point in B1.0/.

A flatness property for an auxiliary equation

To prove this, we will consider the following perturbed Dirichlet problem involving the
1�Laplacian, (

L"Œv� WD ��1v � "�v D 0 in B1.0/;

v D u on @B1.0/:
(3.17)

For each " > 0, there exists a unique smooth solution u" to (3.17). From ibid., Theorem
2.1, for some universal C > 0, depending only on dimension and kuk1, we have

sup
B1.0/

ju"j C sup
B1=2.0/

jDu"j 6 C1: (3.18)

The idea is to differentiate the equation in (3.17), observing that

v" WD .jDu"j2 C u2/=2

satisfies L"Œv"� & 0. From this and Arzelà–Ascoli, we conclude that u" converge in B1

uniform in ". By uniqueness, see Theorem 2.6, we have

lim
"!0

u" D u:

The core of the argument is the following lemma, which proves that solutions u" are
universally close to an affine function provided the n-flatness assumption (3.19) holds.
The proof can be found in ibid., Theorem 2.2.
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Lemma 3.16. For � > 0 small enough, assume

sup
B1.0/

ju" � xnj 6 �: (3.19)

Then
sup

B1=4.0/

jDu"j2 �Dnu" 6 C2

�
�1=2 C

� "
�

�1=2
�
; (3.20)

for C2 depending only on dimension and C1, but not depending on ".

We also need the following technical lemma.

Lemma 3.17. Consider b 2 S1.0/ and letw W B�.0/ ! R be a smooth function satisfying

max
y2B�.0/

jw.y/ � b � yj
�

6 �;

for some � > 0. Then, there exists x 2 B�.0/, such that

jDw.x/ � bj 6 4�:

Proof. We first argue the case � D 1. Defining h.y/ WD b � y � 2�jyj2, we note that
.w�h/.0/ 6 �. By the triangle inequality, we have .w�h/.y/ D w.y/�b �yC2� > �,
for each y 2 S1.0/. Therefore, w�h attains a minimum at some interior point x 2 B1.0/,
which implies

jDw.x/ � bj D jDh.x/ � bj D 4�jxj:
To conclude the proof, we consider w� W B1.0/ ! R, given by w�.y/ D w.�y/=�, and
apply the previous analysis.

Proof of Theorem 3.15:

We shall proceed with the arguments at the origin. According to Theorem 3.12, consider
sequences of positive numbers frj gj >1 and fsj gj >1, converging to zero, such that

ˇ̌
ˇ̌u.rjy/

rj
� ha; yi

ˇ̌
ˇ̌C

ˇ̌
ˇ̌u.sjy/

sj
� hb; yi

ˇ̌
ˇ̌ �! 0; as j ! 0; (3.21)

for a; b 2 R
n. From exercise 17, we observe that jaj D jbj D L0.u; 0/. As commented

in the proof of Theorem 3.14, if jaj D 0, we already have a D b D Du.0/ D 0. We now
assume a; b 2 R

n n f0g, such that a ¤ b. Without loss of generality, let us consider in
addition

a D en D .0; � � � ; 0; 1/; jbj D 1 with b ¤ en:

Denote b D .b1; � � � ; bn/ and
�b WD 1 � jbnj: (3.22)
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Note that since jbj D 1, we easily have �b > 0.

Next, for C2 as in Lemma 3.16, we choose

� D
�
�b

8C2

�2

:

From (3.21), we take a radius r� D r , such that

max
Br .0/

ju.y/ � ynj
r

6
�

2
:

Since u" converges uniformly to u, we consider "1 > 0 small enough, such that

max
Br .0/

ju".y/ � ynj
r

6 �; (3.23)

for each 0 < " 6 "1. In addition, using (3.21) once more, we find a small �, such that

max
B�.0/

ju.y/ � b � xj
�

6
�b

96
:

Hence, for some "2, we get

max
B�.0/

ju".y/ � b � xj
�

6
�b

48
;

for any 0 < " 6 "2 6 "1.
From now on, we consider " D minf"2; �

2g. We use the last estimate and apply
Lemma 3.17, thus obtaining

jDu".x/ � bj 6
�b

12
;

for some point x 2 B�.0/. In particular,

jDnu".x/ � bnj 6
�b

12
: (3.24)

By the reverse triangle inequality, we also have

1 � �b

12
6 jDu".x0/j: (3.25)

Now, we are ready to apply Lemma 3.16. From the previous choices and (3.23),

jDu".x/j2 6 Dnu".x/C 2C2�
1=2 D Dnu".x/C �b

4
:
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However, from (3.24) and (3.25), we derive
�
1 � �b

12

�2

6 bn C �b

12
C �b

4
:

Finally, taking into account (3.22), we get

�b D 1 � jbnj 6 1C �b

3
�
�
1 � �b

12

�2

6
�b

3
C �b

6
� �2

b

144

6
.48C 24C 1/�b

144

D 73

144
�b;

(3.26)

which is a contradiction since we assumed �b > 0.



4 Beyond
differentiability

This chapter delves into the issue of the optimal regularity of viscosity solutions to the
1�Laplace equation, both in the homogeneous and the non-homogeneous scenarios.

We start by pointing out that in general, a differentiable function might not have con-
tinuous derivatives. For example, the function

g.x/ D

8
<
:
x2 sin

�
1

x

�
if x ¤ 0

0 if x D 0

is differentiable, with derivative

g0.x/ D

8
<
:

� cos
�
1

x

�
C 2x sin

�
1

x

�
if x ¤ 0

0 if x D 0;

but g0.x/ is not continuous at zero since cos.1=x/ oscillates as x ! 0. Differentiable
functions whose derivatives are continuous are called continuously differentiable. The
class of such functions is denoted by C 1.

4.1 1�harmonic functions
One of the main open problems in the modern theory of PDEs is whether 1�harmonic
functions or, equivalently, functions that enjoy comparison with cones, see Theorem 2.6,
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are continuously differentiable. This conjecture has been answered positively by Savin
2005 in the plane. Evans and Savin 2008 sharpened the result to C 1;˛ for some universal
and small ˛ > 0, but still in dimension two. More precisely, for a universal C > 0, one
can show that

jDu.x/ �Du.y/j 6 C jx � yj˛; (4.1)

for u1�harmonic in the plane. Nevertheless, no continuity feature ofDu can be inferred
from their reasoning. The famous example of the 1�harmonic function

A.x1; x2/ WD x
4
3

1 � x
4
3

2 ; .x1; x2/ 2 R
2;

due to Aronsson, in the late 1960s, sets the ideal optimal regularity theory for such a
problem. That is, no universal regularity theory for 1�harmonic functions can go beyond
C 1; 1

3 .

Figure 4.1: Aronson’s function in the plane.

Up to our knowledge, it remains entirely open for debate whether 1�harmonic func-
tions satisfy universal C 1; 1

3 regularity estimates.

4.2 The inhomogeneous case

A very natural generalization of the theory of the 1�Laplacian arises in the inhomoge-
neous case

�1u D f .x/: (4.2)

Lu and Wang 2008 show existence, uniqueness, and stability results for viscosity solutions
of the Dirichlet problem, assuming that f does not change sign. Lindgren 2014, assuming
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f is bounded and continuous, obtained that any blow-up is linear, which is the inhomoge-
neous counterpart of Theorem 3.12. The author follows the same strategy of Crandall and
Evans 2001, obtaining an almost monotonicity property for the following function

r 7! LC
r .u; x0/C r;

see Lindgren 2014, Corollary 1. As previously observed, linear blow-ups are not neces-
sarily unique. Given this, assuming f of class C 1, the author proves the uniqueness of
blow-ups, which is equivalent to showing that solutions are differentiable.

A possible way to deal withC 1;˛ regularity of solutions to (4.2) would be by exploring
the scaling properties of the equation. For instance, if one writes the 1�Laplacian as

�1u D .Du/t �D2u �Du;
it becomes tempting to compare the degeneracy feature of (4.2) with

jDuj2 ��u � f 2 L1: (4.3)

This equation has the same scaling invariance as (4.2). This fact might be closely related
to obtaining estimate (4.1) for ˛ D 1=3. Assuming u is a viscosity solution of (4.2) in
B1.0/, we note that, for positive parameters � and � , the rescaled function

u�.x; t/ D u.�x/

��
in B1=�

solves, in the viscosity sense (see Definition 2.2),

�1u� D �2��C2.1��/f .�x/ D f .�x/ DW f�.x/;

under the choice � D 4=3. It is worth noting that f� is bounded, as much as f . We arrive
at the same conclusion by considering equation (4.3) instead of (4.2).

In relation to equation (4.3), we observe that the uniform ellipticity property of the
Laplacian � degenerates along the set of critical points

C.u/ D fx W Du.x/ D 0g:
Furthermore, it is reasonable to extend the study of equations of the form (4.2) to the more
general context of

jDuj
F.D2u/ D f 2 L1; (4.4)
for a parameter 
 > 0 and F a concave uniformly elliptic fully-nonlinear operator (see
Caffarelli and Cabré 1995 for the definition). Recently, Imbert and Silvestre 2013 proved
that solutions to (4.4) are in factC 1;˛ , for ˛ universally small. The optimalC 1;˛ regularity
result for the degenerate equation (4.4) was obtained by Araújo, Ricarte, and Teixeira 2015.
Precisely, the authors show that estimate (4.1) holds, for

˛ D 1

1C 

: (4.5)

Applying the result above, we consider 1�harmonic functions with separable vari-
ables. Notice that Aronsson’s example A is a function of this class.
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Theorem 4.1. Let u W B1 ! R be 1�harmonic and assume u is a function of separable
variables,

u.x/ D �1 .x1/C �2 .x2/C � � � C �n .xn/

for �i continuous in B1. Then u 2 C 1; 1
3

�
B1=2

�
.

Proof. A formal direct computation gives

�1u D
ˇ̌
� 0

1 .x1/
ˇ̌2
� 00 .x1/C

ˇ̌
� 0

2 .x2/
ˇ̌2
� 00 .x2/C � � � C

ˇ̌
� 0

d .xd /
ˇ̌2
� 00 .xd / : (4.6)

It is a matter of routine to justify the above computation using the viscosity solutions
machinery. We notice, however, that the i -th term in (4.6) depends only upon the variable
xi . Thus, since they sum up to zero, each of them must be constant,

ˇ̌
� 0

i .xi /
ˇ̌2
� 00 .xi / D �i ;

dX

iD1

�i D 0:

Taking 
 D 2 in (4.5), we obtain the C 1; 1
3 -regularity of each �i .

In a number of geometrical problems, it is often the case that solutions behave asymp-
totically radially near singular points. It is therefore interesting to analyze the regularity
theory for solutions that are smooth up to a possible radial singularity. More precisely, a
function u is called smooth up to a possible radial singularity at a point x0 if we can write,

u.x/ D '.x/C  .jx � x0j/ near x0;

with ' 2 C 2 and  .x/ D O.jx � x0j2/. In the sequel, we shall prove that functions
smooth up to a possible radial singularity and whose 1�Laplacian is bounded in the
viscosity sense are of class C 1; 1

3 . This regularity is optimal as

�1jxj 4
3 D cte:

Theorem 4.2. Let u satisfy (4.2) in B1.0/, in the viscosity sense, and assume u is smooth
up to a possible radial singularity. Then u is of the class C 1; 1

3 in B1=2.0/.

Proof. Without loss of generality, we can assume x0 D 0. If u D '.x/C .jxj/ is smooth
up to a radial singularity near the origin, then formally, a direct computation yields

Du.x/ D D'.x/C  0.jxj/ xjxj
and

D2u.x/ D D2'.x/C 1

jxj2 
00.jxj/x ˝ x C  0.jxj/

�
1

jxj Id � 1

jxj3 x ˝ x

�
:
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Figure 4.2: The radial function jxj 4
3 .

Owing to the estimates

jxj�2j'j C jxj�1jD'j C
ˇ̌
D2'

ˇ̌
6 C1; j j C j 0j 6 C2;

and
j�1uj 6 C3;

we end up with �
O.r/C

ˇ̌
 0
ˇ̌2� �

ˇ̌
 00
ˇ̌

6 C4: (4.7)

Since  is radial, see exercise 4, we derive

�1 .jxj/ D
nP

i;j D1

Dij .jxj/Di .jxj/Dj .jxj/

D  00.jxj/ 0.jxj/2Pn
i;j D1

xixj

jxj4

C 0.jxj/3Pn
i;j D1

"
xixj ıij

jxj3 �
x2

i x
2
j

jxj5

#

D  00.jxj/ 0.jxj/2:

(4.8)

From this and (4.7), we reach

j�1 j D j 00. 0/2j 6 C5;

which gives the desired regularity for  , applying (4.5) for 
 D 2.



5 Free boundary
problems ruled

by the
1�Laplacian

Free boundary problems (FBPs) belong to a class of mathematical problems characterized
by the presence of partial differential equations that are satisfied in regions or domains
that depend on the solution itself. In these problems, the boundaries between different
regions or domains are not predefined but are determined as part of the solution process.
Applications of free boundary problems include the study of fluid flows with evolving
interfaces, phase transitions, optimal control problems, financial modelling, shape opti-
mization, and biological processes such as tumour growth or population dynamics. For
classical references on the topic of free boundary problems, we recommend the works
Petrosyan, Shahgholian, and Uraltseva 2012, Caffarelli and Salsa 2005, Rodrigues 1987,
and Friedman 1982.

In this chapter, we shall focus on the study of free-boundary problems with reaction-
diffusion equations governed by the 1�Laplacian

�1u D f .x; u/ in B1 \ fu > 0g; (5.1)

u > 0 in B1: (5.2)

Hereafter, we denote fu > 0g WD fx 2 B1 W u.x/ > 0g. Our analysis consists of obtain-
ing improved C 1;˛ regularity at the free boundary

@ fu > 0g ;
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for an optimal exponent ˛ > 0. We also highlight that the results below have no dimen-
sional restriction, so according to the results mentioned in Section 4.1, they are stronger
than those obtained locally in higher dimensions.

5.1 Obstacle problems for the 1�Laplacian
In this section, we turn our analysis towards optimal regularity estimates at free boundary
points for the following obstacle-type problem:

minf�1u � f .x/; ug D 0 in B1: (5.3)

This problem is equivalent to the zero-obstacle problem (5.1), in which solutions are un-
derstood in the viscosity sense. The case of the Laplacian is pretty well understood and
appears as the Euler–Lagrange equation of the functional

J .u/ D
Z
1

2
jDuj2 C f udx:

We refer to Petrosyan, Shahgholian, and Uraltseva 2012 for a complete account of the
study of obstacle-type problems. Rossi, Teixeira, and Urbano 2015 study problem (5.3),
obtaining existence, uniqueness, and regularity at free boundary points. Later, Araújo,
Leitão, and Teixeira 2016 study problem (5.1) with 
 -strong absorption f .x; u/ D .uC/


 ,
obtaining, in particular, that non-negative solutions are surprisingly smoother along the
boundary of the non-coincidence set.

Our goal here is to present the results in Rossi, Teixeira, and Urbano 2015, showing
in particular that solutions to (5.3) grow precisely as

Œdist.x; @fu > 0g/�4=3

away from the free boundary. This highlights the C 1; 1
3 regularity at free boundary points,

in the sense of estimate (4.1). In fact, given x 2 B1, consider x0 2 @fu > 0g such that
jx � x0j D dist.x; @fu > 0g/. From Corollary 5.4 below, we conclude that

jDu.x/ �Du.x0/j 6 C jx � x0j1=3:

We shall work under the assumption that f .x/ is continuous and bounded away from
zero and infinity, i.e., for some M > 1 there holds

1=M 6 f .x/ 6 M for each x 2 B1: (5.4)

Such a condition is natural in the context of obstacle-type problems and allows us to prove
existence and uniqueness for problem (5.3) using a Perron-type method.
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Figure 5.1: Solution of a free boundary problem with zero-obstacle.

Theorem 5.1. Given a function g 2 C.@B1/, with g > 0, and f satisfying (5.4), there
exists a unique function u 2 C.B1/, satisfying

�
minf�1u � f .x/; ug D 0 in B1

u D g on @B1
(5.5)

in the viscosity sense. Assuming further that f is uniformly Lipschitz continuous in B1,
then u is locally Lipschitz continuous in B1.

Proof. The existence, uniqueness, and continuity up to the boundary follow as in Lu and
Wang 2008 (see Rossi, Teixeira, and Urbano 2015 for further details). The solution is
given by

u.x/ WD inf
v2AC

f;g

v.x/; for x 2 B1; (5.6)

where

AC
f;g

WD
˚
v 2 C.B1/

ˇ̌
v > 0; �1v 6 f .x/ in B1; and v > g on @B1

	
: (5.7)

Let us concentrate on the local Lipschitz continuity of u. Locally in fu > 0g, u
satisfies �1u 2 L1 in the viscosity sense, thus u is locally Lipschitz continuous in the
non-coincidence set (see, for instance, Lindgren 2014, Corollary 2). Hence, the result
needs only to be proven near the free boundary. By continuity of u and the fact that g > 0
on @B1, there exists a small number �0 > 0 such that u > 0 in B1 n B1��0

. Arguing as
before, we find a constant C > 0, depending on M and �0, such that

jDu.x/j < C; 8x 2 B
1�

�0
5

n B
1�

�0
10
: (5.8)

For any vector �, with j�j < �0

100
, define �� by

�3
� WD inf

B
1�

�0
100

f .x/

f .x C �/
:
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Since f is strictly positive and Lipschitz continuous, it follows that

j1 � �� j C j1 � �3
� j 6 K0j�j:

In the sequel, let us label r0 WD 1 � 3
20
�0 and define u� W Br0

! R by

u�.x/ WD ��u.x C �/C
 
C CK0 sup

B1

u

!
j�j:

We now apply the analysis from the beginning of this proof to the domainBr0
. One simply

verifies that u� belongs to the set

zAC
f;g

WD
˚
v 2 C.Br0

/
ˇ̌
v > 0; �1v 6 f .x/ in Br0

; and v > u on @Br0

	
:

By uniqueness, ujBr0
is the infimum among all functions in zAC

f;g
. Thus, we can write, for

any x 2 Br0
,

u�.x/ > u.x/;

which immediately yields

u.x C �/ � u.x/ > �
 
C C 2K0 sup

B1

u

!
j�j

and the local Lipschitz estimate for u follows.

We remark that assuming only the boundedness of f .x/, the local Lipschitz continuity
of the solution to the infinity obstacle problem is a consequence of the following lemma.

Lemma 5.2. Let (5.4) be in force and let u be the viscosity solution to the obstacle problem
(5.5). Then

j�1uj 6 M;

in the viscosity sense.

Proof. The idea of the proof is to perform a singular approximation of the obstacle problem.
Let � be a non-negative real C 1 function satisfying supp � D Œ0; 1� and

R
�.t/dt D 1. For

each � > 0, consider the penalized boundary value problem
8
ˆ̂<
ˆ̂:

�1u� D f .x/

Z u�=�

0

�.t/ dt in B1

u� D g on @B1:

(5.9)

Notice that the reaction term

ˇ.x; u�/ WD f .x/

Z u�=�

0

�.t/ dt (5.10)
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is monotone non-decreasing with respect to u� . Hence, as before, using a Perron-type
method (see Bhattacharya and Mohammed 2011, 2012), the Dirichlet problem (5.9) is
uniquely solvable. Clearly,

jˇ.x; u�/j 6 M:

Thus, it follows from Lipschitz estimates (cf., for instance, Lindgren 2014, Corollary 2)
and uniform continuity up to the boundary that the family fu�g�>0 is equicontinuous inB1.
By the Arzelà–Ascoli Theorem, u� converges uniformly, up to a subsequence, to a function
v. The limiting function v is non-negative, agrees with g on the boundary and satisfies
j�1vj 6 M , in the viscosity sense. In particular, v is locally Lipschitz continuous in B1.
Now, given a point z 2 fv > 0g \ B1, by the triangular inequality, one easily checks that

B WD B v.z/
2L

.z/ �
�
v >

v.z/

2
> 0

�
;

where L is the Lipschitz norm of v on B1�jzj. In particular,

�1u� D f .x/ in B;

for all � < v.z/
2

. By stability, we deduce that �1v D f .x/ in B as well. Since z 2
fv > 0g was taken arbitrary, it follows that v satisfies �1v D f .x/ in fv > 0g. We have
verified that v solves the same boundary value problem as u. Thus, by uniqueness, u D v,
and the lemma is proven.

We are now ready for our main result, which gives the optimal C 1; 1
3 �regularity esti-

mate for solutions of the infinity obstacle problem along the free boundary.

Theorem 5.3 (Optimal C 1; 1
3 �regularity at the free boundary). Let u be a solution to (5.3)

and x0 2 @fu > 0g be a generic free boundary point. Then

sup
y2Br .x0/

u.y/ 6 C r4=3; (5.11)

for a constant C that depends only upon the data of the problem.

Proof. For simplicity, and without loss of generality, assume x0 D 0. By combining
discrete iterative techniques and a continuous reasoning (see, for instance, Caffarelli, Karp,
and Shahgholian 2000), it is well established that proving estimate (5.11) is equivalent to
verifying the existence of a constant C > 0, such that

sj C1 6 max
n
C 2�4=3.j C1/; 2�4=3

sj

o
; 8 j 2 N; (5.12)

where
sj D sup

B
2�j

u:
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Let us suppose, for the sake of contradiction, that (5.12) fails to hold, i.e., that for each
k 2 N, there exists jk 2 N such that

sjkC1 > max
n
k 2�4=3.jkC1/; 2�4=3

sjk

o
: (5.13)

Now, for each k, define the rescaled function vk W B1 ! R by

vk.x/ WD u.2�jkx/

sjkC1

:

One easily verifies that
0 6 vk.x/ 6

3
p
16; 8x 2 B1I (5.14)

vk.0/ D 0I (5.15)

sup
B 1

2

vk D 1: (5.16)

Moreover, we formally have

�1vk.x/ D 2�jk

sjkC1

Du.2�jkx/ �
�
2�2jk

sjkC1

D2u.2�jkx/

�
� 2

�jk

sjkC1

Du.2�jkx/

D 2�4jk

s
3
jkC1

�1u.2
�jkx/ DW fk :

It is a matter of routine to rigorously justify the above calculations using the language of
viscosity solutions (see, e.g., Teixeira 2006, section 2). We estimate

jfkj 6
2�4jk

2�4.jkC1/ k3
M D 16M

k3
6 16M; (5.17)

using Lemma 5.2 and (5.13).
Combining the uniform bounds (5.14), (5.17), and local Lipschitz regularity results

for the inhomogeneous 1�Laplace equation (cf., for example, Lindgren 2014, Corollary
2), we obtain both the equiboundedness and the equicontinuity of the sequence .vk/k . By
the Arzelà–Ascoli Theorem, and passing to a subsequence if needed, we conclude that vk

converges locally uniformly to an 1�harmonic function v1 inB1 (observe that fk ! 0)
such that

0 6 v1 6
3
p
16 and v1.0/ D 0:

We now use the Harnack inequality of Lindqvist–Manfredi (Theorem 2.8) to obtain the
bound

v1.x/ 6 e2jxj v1.0/ D 0; 8 x 2 B1=2:

It follows that v1 � 0 in B1=2, which contradicts (5.16). The theorem is proven.
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As a first consequence, we improve the local Lipschitz regularity estimate provided
by Theorem 5.1, where f needs only to satisfy (5.4). Indeed we obtain a finer gradient
control near the free boundary.

Corollary 5.4. Let u be a solution to (5.3) in B1. Then u is locally Lipschitz continuous,
and for any point

z 2 fu > 0g \ B1;

there holds
jDu.z/j 6 Cdist.z; @fu > 0g/1=3:

Proof. Fix z 2 fu > 0g \ B1=2 and label d WD dist.z; @fu > 0g/. Let � 2 @fu > 0g be a
free boundary point satisfying

j� � zj D d:

From the C 1; 1
3 -smoothness of u at �, we know

sup
Bd .z/

u 6 sup
B2d .�/

u 6 Cd4=3: (5.18)

We now define the auxiliary function v W B1 ! RC, by

v.x/ WD u.z C dx/

d4=3
:

As argued before, v satisfies

�1v D f .z C dx/; in B1: (5.19)

From (5.18) we can estimate
sup
B1

v 6 C: (5.20)

Finally, applying the gradient estimate for bounded solutions to (5.19), we conclude

jDv.0/j D d�1=3jDu.z/j 6 C2;

and the corollary is proven.

Our next theorem establishes aC 1; 1
3 –estimate from below, which implies that u leaves

the zero-obstacle trapped by the graphs of two functions of the order dist4=3.x; @fu > 0g/.
Theorem 5.5 (Optimal non-degeneracy estimates). Let u be a viscosity solution to (5.3)
and y0 2 fu > 0g be a generic point in the closure of the non-coincidence set. Then

sup
Br .y0/

u > c r4=3;

for a constant c > 0 that depends only uponM .
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Proof. By continuity arguments, it is enough to prove the result for points in the non-
coincidence set. For simplicity and without loss of generality, take y0 D 0. Define the
barrier

B1.x/ WD 3

4

3

r
3

M
jxj4=3;

which satisfies, by direct computation,

�1B1 D 1

M
:

Hence,

�1u D f .x/ >
1

M
D �1B1; in fu > 0g;

in the viscosity sense. On the other hand,

u � 0 < B1 on @fu > 0g \ Br :

Therefore, for some point y? 2 @Br \ fu > 0g, there must hold

u.y?/ > B1.y
?/I (5.21)

otherwise, by Jensen’s comparison principle for 1�harmonic functions (Jensen 1993),
we would have, in particular,

0 < u.0/ 6 B1.0/ D 0:

Estimate (5.21) implies the thesis of the theorem.

As usual, as soon as we establish the precise, sharp asymptotic behaviour for a given
free boundary problem, obtaining certain soft geometric properties of the phases becomes
possible. We conclude this section by proving that the region where the solution is above
the obstacle has uniform positive density along the free boundary, which is then inhibited
from developing cusps pointing inwards to the coincidence set. We use jEj for the n-
dimensional Lebesgue measure of the set E.

Corollary 5.6. Let u be a solution to (5.3) and x0 2 @fu > 0g be a free boundary point.
Then

jB�.x0/ \ fu > 0gj > ı?�
n; (5.22)

for a constant ı? > 0 that depends only upon the data of the problem.

Proof. It follows from Theorem 5.5 that there exists a point

z 2 @B�.x0/ \ fu > 0g
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such thatu.z/ > c �4=3. ByC 1; 1
3 –bounds along the free boundary, Theorem 5.3, it follows

that
B��.z/ � fu > 0g;

where the constant

� WD 4

r� c

2C

�3

depends only on the data of the problem. In fact, if this were not true, there would exist a
free boundary point y 2 B��.z/. From (5.11), we would reach

c �4=3 6 u.z/ 6 sup
B��.y/

u 6 C .��/4=3 D 1

2
c �4=3;

which is a contradiction. Thus,

B�.x0/ \ B��.z/ � B�.x0/ \ fu > 0g

and, finally,
jB�.x0/ \ fu > 0gj > jB�.x0/ \ B��.z/j > ı?�

n;

and the corollary is proven.

We conclude by remarking that the thesis of Corollary 5.6 implies that the free bound-
ary @fu > 0g is porous, with porosity constant � > 0 that depends only on the data of the
problem. In particular, the Hausdorff dimension of the free boundary is strictly less than
n, and hence it has Lebesgue measure zero.

5.2 1�Laplace equations with singular absorptions
In this section, we include some comments on the geometric and analytic properties of
non-negative viscosity solutions of the singular free boundary problem

�1u D u�
 in B1 \ fu > 0g; (5.23)

for a parameter 0 6 
 < 1. Singular equations as in (5.23) appear in several contexts in
the engineering sciences, for example, as simplified stationary models for fluids passing
through a porous medium. The Laplacian case, �u D u�
 , is fairly well understood and
appears as the Euler–Lagrange equation of the non-differentiable functional

J
 .u/ D
Z
1

2
jDuj2 C u1�
 dx:

Regularity results for minimizers of J
 have been studied in Alt and Phillips 1986; Gi-
aquinta and Giusti 1983 (see also Araújo and Teixeira 2013, for a non-variational ap-
proach). The pde satisfied in (5.23) can be considered the intermediate case between the
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infinity obstacle problem, the case 
 D 0 (see Rossi, Teixeira, and Urbano 2015), and
the infinity cavitation problem, the case 
 D 1 (see Araújo, Teixeira, and Urbano 2021;
Crasta and Fragalá 2020; Ricarte, Silva, and Teymurazyan 2017).

The study of this type of free boundary problem presents significant difficulties since
the source term blows up along the a priori unknown set @fu > 0g. To circumvent these
issues, viscosity solutions to the penalized problem

(
�1u D ˇ".u/ u

�
 in B1

u D ' on @B1

(P")

are considered, here the term ˇ".s/ is a suitable approximation of �fs>0g as in (5.10).
Araújo and Sá 2022 provide existence of Perron’s solutions for each parameter ", and
"-uniform oscillation estimates for viscosity solutions of (P"), denoted by u". As a conse-
quence, C 1;˛ estimates at free boundary points are derived for limiting solutions of (5.23).

Figure 5.2: Gradient of solutions for (5.23), cases 
 D 0 and 
 D 0:996, respectively. It
is observed that the singularity parameter 
 plays a crucial role in determining the smooth-
ness of solutions. As the value of 
 increases, solutions tend to exhibit less smoothness
(up to Lipschitz regularity). This phenomenon highlights the influence of the singularity
parameter on the smoothness properties of the solutions.

Theorem 5.7 (Optimal regularity at free boundary points). Let u be a limit solution of
problem (5.23). There exist positive constants C and r0, depending only on 
 , kukL1.˝/,
and dimension, such that, for points

x 2 @fu > 0g \ ˝ 0;

there holds
cr

4
3C
 6 sup

Br .x/

u 6 C r
4

3C
 ; (5.24)

for any 0 < r 6 r0. Furthermore,

@fu > 0g � fjDuj D 0g;

which implies that u is C 1; 1�

3C
 along @fu > 0g.
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We remind that solutions for (5.23) are limits of minimal Perron’s solutions of (P").
Theorem 5.7 consists in obtaining asymptotic growth estimates derived from Ishii–Lions
techniques. From this, the upper estimate in (5.24) follows from a discrete iterative argu-
ment, together with the use of Hopf’s Lemma (see Araújo and Sá 2022, Theorem 6). The
lower estimate is obtained by constructing entire radial supersolutions for (P"), whose
geometric properties are analyzed in contrast with the minimality of Perron’s solutions.

Corollary 5.8. Let u be a limit solution of problem (5.23). Then for any point

z 2 fu > 0g \ B1;

there holds
jDu.z/j 6 Cdist.z; @fu > 0g/ 1C


3�
 :

Note that the estimate above is reduced to Corollary 5.4 for the choice 
 D 0. In
addition, we observe that estimate (5.22) for solutions of (5.23) also holds by following
ideas in the proof of Corollary 5.6.



6 Problems with
solutions

Problems

1. Let u 2 C.U /. Show that

Lipu.U / D Lipu.U /:

2. Let n D 1 and U D .�2;�1/ [ .1; 2/. Consider f W @U ! R defined by
f .�2/ D 0 and f .�1/ D f .1/ D f .2/ D 1.

(a) Determine Lipf .@U /.

(b) Compute the MacShane–Whitney extensions of f to U .

(c) Choose the extension of f which is in AML.U /.

3. Consider the modulus function u.x/ D jxj in R
n.
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(a) Prove u is 1�subharmonic.

(b) Give a short justification for the fact that it is not 1�harmonic.

(c) Use the definition to show the previous fact.

4. Show that, if u W R ! R is smooth, then

�1u.jxj/ D
�
u0.jxj/

�2
u00.jxj/; x ¤ 0:

5. Consider the function v W R ! R given by

v.x/ D

8
<
:
x2 sin

�
1
x

�
if x ¤ 0

0 if x D 0:

Show that
Tv.0/ > jv0.0/j:

6. Let F;G be functions defined in a segment I D Œr; s� such that

i/ F is affine, that is, F.t/ D aC bt , with b > 0;
i i/ F D G at the ends of I ;
i i i/ LipG.I / 6 b.

Show that F D G.

7. Show that if u 2 CCA.U / then the map

r ! ur .x/ D max
Br .x/

u

is convex on Œ0; d.x//, for every x 2 U .

8. Show that, as r ! 0, ur converges locally uniformly to u in U .

9. Let n D 2, u.x/ D jxj and v.x/ D x1.



67

(a) Construct a bounded set U � R
2 n f0g such that v < u on @U except at two

points and u D v on the line segment joining these two points.

(b) Conclude there is no strong comparison principle for 1�harmonic functions.

10. (Liouville’s Theorem) Prove that if u is 1�harmonic in R
n and u is bounded below,

then u is constant.

11. Show that
�L˙

r .u; y/ D L�
r .�u; y/: (6.1)

12. Prove that
L�

0 .u; x/ D lim
r!0

L�
r .u; x/

exists and L�
0 .u; x/ 6 0.

13. Let u be a function enjoying comparison with cones from below. Then, for each
y 2 U , the function r 7! �L�

r .u; y/ is non-decreasing. Moreover, prove that
�L�

0 .u; y/ is a non-negative number.

14. Let u enjoy comparison with cones from above and below in B1. Show that each
blow-up ux of u at x 2 B1 enjoys comparison with cones from above and below in
R

n. In addition, prove that

Lipux
.Rn/ 6 Lipu.U /:

15. Show that, for each � > 0, the rescaled blow-up

x 7! u0.�x/�
�1

is also a blow-up for u. Moreover,

L0.u0.�x/�
�1; 0/ D L0.u0.x/; 0/:

16. Analogously to Proposition 3.8, prove that

�L�
r .u0; y/ 6 L0.u; 0/:
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17. Show that
LC

0 .u; 0/ D LC
0 .u0; 0/:

Also, conclude that LC
0 .u; 0/ is invariant with respect to blow-up functions of u at

the origin.

18. Let p 2 R
n n f0g. Assume that for each r > 0, there exists �r 2 Sr .0/ such that

hp; xi 6 hp; �ri C o.r/, for each x 2 Sr .0/. Then �r=r ! p=jpj, as r ! 0.

Solutions

We propose here possible solutions to the exercises, strongly encouraging the reader to try
to solve the problems prior to coming to this section.

1. Since U � U , if follows that

Lipu.U / 6 Lipu.U /:

Now, let x; y 2 U . Then there exists sequences .xm/m2N and .yk/k2N such that

xm ! x and yk ! y as m; k ! 1: (6.2)

Since xm; yk 2 U , we have

ju.xm/ � u.yk/j 6 Lipu.U /jxm � ykj:

By continuity, (6.2) and passing to the limit as m ! 1, we obtain

ju.x/ � u.yk/j 6 Lipu.U /jx � ykj:

Now we pass to the limit as k ! 1 to obtain

ju.x/ � u.y/j 6 Lipu.U /jx � yj:

This implies that
Lipu.U / 6 Lipu.U /;

from which the desired equality follows.
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2. (a) First note that
@U D f�2;�1; 1; 2g:

In order to compute Lipf .@U /, we first calculate all possible Newton quotients
of f over @U :

•
ˇ̌
ˇf .2/�f .1/

2�1

ˇ̌
ˇ D 0;

•
ˇ̌
ˇf .2/�f .�1/

2�.�1/

ˇ̌
ˇ D 0;

•
ˇ̌
ˇf .2/�f .�2/

2�.�2/

ˇ̌
ˇ D 1

4
;

•
ˇ̌
ˇf .1/�f .�1/

2�.�1/

ˇ̌
ˇ D 0;

•
ˇ̌
ˇf .1/�f .�2/

1�.�2/

ˇ̌
ˇ D 1

3
;

•
ˇ̌
ˇf .�1/�f .�2/

.�1/�.�2/

ˇ̌
ˇ D 1.

Thus,

Lipf .@U / D max
�
0;
1

4
;
1

3
; 1

�
D 1:

(b) We start with the lower extension. Since

MW�.f /.x/ D sup
z2@U

˚
f .z/ � Lipf .@U /jx � zj

	

D sup f1 � jx � 2j; 1 � jx � 1j; 1 � jx C 1j;�jx C 2jg
we have

MW�.f /.x/ D

8
ˆ̂̂
<
ˆ̂̂
:

1 � jx C 1j; if x 2 Œ�2;�1�

1 � jx � 1j; if x 2
�
1; 3

2

�

1 � jx � 2j; if x 2
�

3
2
; 2
�

D

8
ˆ̂̂
<
ˆ̂̂
:

2C x; if x 2 Œ�2;�1�

2 � x; if x 2
�
1; 3

2

�

�1C x; if x 2
�

3
2
; 2
�
:

Similarly,

MW�.f /.x/ D inf
z2@U

˚
f .z/C Lipf .@U /jx � zj
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D inf f1C jx � 2j; 1C jx � 1j; 1C jx C 1j; jx C 2jg
and so

MW�.f /.x/ D

8
ˆ̂̂
<
ˆ̂̂
:

jx C 2j; if x 2 Œ�2;�1�

1C jx � 1j; if x 2
�
1; 3

2

�

1C jx � 2j; if x 2
�

3
2
; 2
�

D

8
ˆ̂̂
<
ˆ̂̂
:

2C x; if x 2 Œ�2;�1�

x; if x 2
�
1; 3

2

�

3 � x; if x 2
�

3
2
; 2
�
:

(c) The extension which is in AML.U / is

u.x/ D

8
<
:
2C x; if x 2 Œ�2;�1�

1; if x 2 Œ1; 2� :

3. (a) Letbx 2 R
n and ' 2 C 2.Rn/ be such that .u � '/ has a local maximum atbx.

Initially, let us consider Ox 6D 0. In this case, the function u is of class C 2 in a
neighbourhood ofbx, and we can compute its derivatives:

uxi
.bx/ D bxi

jbxj

uxi xj
.bx/ D

ıij jbxj �bxi
bxj

jbxj

jbxj2 :

Thus,
Dw.bx/ D bx

jbxj

D2w.bx/ D 1

jbxj

�
In �bx b̋x

jbxj2

�
:

(6.3)

Since .u � '/ has a local maximum atbx, we have

D.u � '/.bx/ D 0 , Du.bx/ D D'.bx/ (6.4)

and
D2.u � '/.bx/ � 0 , D2u.bx/ � D2'.bx/: (6.5)
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Then,

�1'.bx/ D hD2'.bx/D'.bx/;D'.bx/i
(6.5)
> hD2u.bx/D'.bx/;D'.bx/i

(6.4)D hD2u.bx/Du.bx/;Du.bx/i
(6.3)D

�
1

jbxj

�
In � bx ˝bx

jbxj2
� bx

jbxj ;
bx
jbxj

�

D 1

jbxj3
�

jbxj2 � 1

jbxj2 h.bx ˝bx/bx;bxi
�

D 1

jbxj3
�

jbxj2 � 1

jbxj2 hbx;bxi2

�

D 1

jbxj3
�

hbx;bxi � 1

hbx;bxi hbx;bxi2

�

D 0:

Now, let’s look at the case of the origin. Since u is not differentiable at 0, the
computations above do not apply. But as .u � '/ has a local maximum at 0,
we have

.u � '/.0/ > .u � '/.x/ D jxj � '.x/;
for all x in a neighborhood of 0. Thus,

'.x/ � '.0/ > jxj > 0;
that is,

'.x/ > '.0/;

for all x in a neighborhood of 0, and ' has a local minimum at 0. Hence,

D'.0/ D 0 e D2'.0/ � 0:

Therefore,
�1'.0/ D hD2'.0/D'.0/;D'.0/i D 0:

This shows that u is a 1�subharmonic function in the viscosity sense.
(b) It clearly does not enjoy comparison with cones from below. Given a set con-

taining the origin, it is possible to find a cone with vertex outside that set such
that the cone is below the function on the boundary of the set but not in the
interior.

(c) Let’s now show that u fails to be 1�superharmonic. The problem is at the
origin. Consider ' 2 C 2.R2/ given by

'.x/ D 1

5
jxj2 � hb; xi;
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where jbj D 2
5
. Notice that .u � '/ has a local minimum atbx D 0 because

.u � '/.x/ D jxj � 1

5
jxj2 C hb; xi

> jxj � 1

5
jxj2 � jbjjxj

> jxj � 1

5
jxj � jbjjxj

D
�
1 � 1

5
� 2

5

�
jxj

D 2

5
jxj > 0;

for jxj < 1. Since .u � '/.0/ D 0, we have

.u � '/.0/ 6 .u � '/.x/; x 2 B1:

Then, we conclude that

.u � '/.0/ D min
B1

.u � '/:

If u were 1�superharmonic, we should have

�1'.0/ 6 0

but in fact

�1'.0/ D hD2'.0/D'.0/;D'.0/i

D
�
2

5
In.�b/; .�b/

�

D 2

5
jbj2 D 8

125
:

4. By the chain rule, for x ¤ 0, we have

@iu.jxj/ D u0.jxj/ xi

jxj I

@iju.jxj/ D
�
u00.jxj/ � u0.jxj/

jxj

�
xixj

jxj2 C ıij

u0.jxj/
jxj :
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Hence,

�1u.jxj/ D
nX

i;j D1

@iu.jxj/@ju.jxj/@iju.jxj/

D
nX

i;j D1

�
u0.jxj/ xi

jxj

��
u0.jxj/ xj

jxj

�
:

:

��
u00.jxj/ � u0.jxj/

jxj

�
xixj

jxj2 C ıij

u0.jxj/
jxj

�

D Œu0.jxj/�2
�
u00.jxj/ � u0.jxj/

jxj

� nX

i;j D1

x2
i x

2
j

jxj4

CŒu0.jxj/�3
nX

i;j D1

xixj

jxj3 ıij

D Œu0.jxj/�2
�
u00.jxj/ � u0.jxj/

jxj

�
C Œu0.jxj/�3

jxj
D Œu0.jxj/�2u00.jxj/:

5. At x D 0, we have

v0.0/ D lim
h!0

v.0C h/ � v.0/
h

D lim
h!0

h sin
�
1

h

�
D 0:

Therefore

v0.x/ D

8
<
:
2x sin

�
1
x

�
� cos

�
1
x

�
if x ¤ 0

0 if x D 0:

Observe that v0 is not continuous at x D 0 because

lim
x!0

cos
�
1

x

�

does not exist. We want to show that

Tv.0/ > 0

and we offer both a proof by contradiction and a more direct proof.

Suppose that Tv.0/ D 0. Let rn be an arbitrary sequence of real numbers such that
rn ! 0. By Proposition 1.7, we have

�Tv.rn/ 6 v0.rn/ 6 Tv.rn/
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and, by the upper semicontinuous of Tv , also

lim sup
n!1

v0.rn/ 6 lim sup
n!1

Tv.rn/ 6 Tv.0/ D 0:

Moreover,

0 6 � lim sup
n!1

Tv.rn/ D lim inf
n!1

.�Tv.rn// 6 lim inf
n!1

v0.rn/:

Thus lim
x!0

v0.x/ exists (and is equal to 0), which is a contradiction.

Alternatively, let xn ! 0, with xn ¤ 0. We have

Tv.0/ > lim sup
n!1

Tv.xn/

> lim sup
n!1

ˇ̌
v0 .xn/

ˇ̌

D lim sup
n!1

ˇ̌
ˇ̌2xn sin

�
1

xn

�
� cos

�
1

xn

�ˇ̌
ˇ̌

D 1:

6. Note that, for t1; t2 2 I , we have

jG.t1/ �G.t2/j 6 LipG.I /jt1 � t2j
6 bjt1 � t2j
D jbt1 � bt2j
D jaC bt1 � .aC bt2/j
D jF.t1/ � F.t2/j:

So, given t 2 I D Œr; s�, we have

G.t/ �G.r/ 6 jG.t/ �G.r/j 6 jF.t/ � F.r/j D F.t/ � F.r/;
since F is non-decreasing because b > 0. Since G.r/ D F.r/, we obtain

G.t/ 6 F.t/; 8t 2 I:
Similarly,

G.s/ �G.t/ 6 jG.s/ �G.t/j 6 jF.s/ � F.t/j D F.s/ � F.t/:
As G.s/ D F.s/, it follows that

�G.t/ 6 �F.t/ H) F.t/ 6 G.t/ 8t 2 I:
Thus, G D F in I .



75

7. Denote
g.r/ D ur .x/ D max

w2Br .x/

u.w/:

We will show that the function g is convex. We claim that, for 0 < s < r < d.x/,

u.y/ 6 g.s/C g.r/ � g.s/
r � s .jy � xj � s/; (6.6)

for s 6 jy�xj 6 r . Indeed, observe that the right side of (6.6) is a cone with vertex
in x that does not belong to the ring s 6 jy � xj 6 r . Also, on the boundary of this
ring, (6.6) holds because trivially

jy � xj D s H) u.y/ 6 g.s/;

jy � xj D r H) u.y/ 6 g.r/:

As u 2 CCA.U /, it follows that (6.6) holds also in s < jy � xj < r .
Now, let

� D �s C .1 � �/r; with � 2 Œ0; 1�:
As u.y/ 6 g.s/, for jy � xj 6 s, then

u.y/ 6 g.s/C g.r/ � g.s/
r � s .� � s/; (6.7)

for 0 6 jy � xj 6 � . Maximizing the left-hand side of (6.7) over jy � xj 6 � , we
have

max
y2B� .x/

u.y/ 6 g.s/C g.r/ � g.s/
r � s .�s C .1 � �/r � s/ )

) g.�/ 6 g.s/C g.r/ � g.s/
r � s .1 � �/.r � s/

) g.�/ 6 �g.s/C .1 � �/g.r/:

Therefore, the function g.r/ is convex.

8. Remember that, given u 2 C.U / and x 2 Ur , we define

ur .x/ WD max
Br .x/

u:

Note that if r < s, then
Br .x/ � Bs.x/

and thus
ur .x/ 6 us.x/:
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As u is continuous at x, given " > 0, there exists ı > 0 such that

ju.z/ � u.x/j 6
"

2
; 8z 2 Bı.x/:

We can now take the supremum over Br .x/, for r 6 ı, to obtain

jur .x/ � u.x/j 6
"

2
< ":

In other words,
lim
r!0

ur .x/ D u.x/:

We will now show that the convergence is locally uniform. Take z 2 U and ı > 0
such that Bı.z/ � U . Let " > 0. Since u is uniformly continuous in Bı.z/, there
exists � D �."/ > 0 such that

jx � yj < � H) ju.x/ � u.y/j < "; 8x; y 2 Bı.z/:

Note that if x 2 B ı
2
.z/ and r 6 ı

2
, then

Br .x/ � Bı.z/

because, for y 2 Br .x/,

jy � zj 6 jy � xj C jx � zj 6 r C ı

2
6 ı:

Therefore, if r < min
�
�; ı

2

�
, then

jur .x/ � u.x/j D
ˇ̌
ˇ̌
ˇmax
Br .x/

u � u.x/
ˇ̌
ˇ̌
ˇ

D ju.xr / � u.x/j
�
xr 2 Br .x/

�

< ";

for all x 2 B ı
2
.z/.

9. The reader is given here the opportunity to work out a problem without guidance.

10. The first correct solution e-mailed to the authors will be included, with an acknowl-
edgement, in a future edition.
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11. The reader is given here the opportunity to work out a problem without guidance.

12. From the previous exercises,

L�
0 .u; x/ D lim

r!0
.�L�

r .�u; x//

D � lim
r!0

LC
r .�u; x/

D �LC
0 .�u; x/;

which implies,
�L�

0 .u; x/ D LC
0 .�u; x/ > 0:

13. For each r > 0, note that

L�
r .u; x/ D min

y2Sr .x/

u.y/ � u.x/
r

D .�1/ max
y2Sr .x/

.�u/.y/ � .�u/.x/
r

D �LC
r .�u; x/:

Also, we have that the function

r 7! LC
r .u; x/

is non-decreasing. Hence, we get that if s 6 r , then

LC
s .�u; x/ 6 LC

r .�u; x/:

Hence,

L�
s .u; x/ D .�1/LC

s .�u; x/
> .�1/LC

r .�u; x/
D L�

r .u; x/:

14. The reader is given here the opportunity to work out a problem without guidance.

15. The reader is given here the opportunity to work out a problem without guidance.

16. The reader is given here the opportunity to work out a problem without guidance.



78 6. Problems with solutions

17. The reader is given here the opportunity to work out a problem without guidance.

18. We consider x D r p
jpj and obtain

hp; r pjpj i 6 hp; �ri C o.r/;

which implies

1 6 h pjpj ;
�r

r
i 6 1C o.r/:

Hence,

lim
r!0

�r

r
D p

jpj :
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