Paths and connectivity
in temporal graphs

o Coléquio
3 4 B 4 Brasileiro de
Matematica

T " A 0 e @G e W) T

Paths and connectivity
in temporal graphs

Paths and connectivity in temporal graphs
Primeira impressao, setembro de 2023
Copyright © 2023 Andrea Marino e Ana Silva.
Publicado no Brasil / Published in Brazil.

ISBN 978-85-244-0541-9 (print)
ISBN 978-85-244-0536-5 (ebook)
MSC (2020) Primary: 05C40, Secondary: 05C38, 68R10, 68Q17, 68Q27

Coordenacio Geral Carolina Araujo

Producio Books in Bytes Capa IMPA

Realizagao da Editora do IMPA
IMPA www.impa.br
Estrada Dona Castorina, 110 editora@impa.br

Jardim Botéanico
22460-320 Rio de Janeiro RJ

M339p Marino, Andrea
Paths and connectivity in temporal graphs / Andrea Marino e Ana
Silva. - 1.ed. -- Rio de Janeiro: IMPA, 2023.

34 Coléquio Brasileiro de Matematica; v. 5, 78p.: il.

ISBN 978-85-244-0541-9 (print)

ISBN 978-85-244-0536-5 (ebook)

1. Temporal Graphs. 2. Connectivity. I. Silva, Ana. II. Série.
III. Titulo

UDC: 519.1

; 23cm

Carolina Celano Lima/CRB-7: 2438

As tool to model practical problems, graphs are increasingly prominent. Thanks to its sim-
plicity, they capture relationships between objects in an easily comprehensible manner,
in addition to providing a rich model of the underlying structure. This becomes particu-
larly relevant in a world where an enormous volume of data is generated by the minute
and where companies become increasingly interested in collecting and analyzing this data.
Thus, the use of graphs for the representation, visualization and study of practical prob-
lems have become common practice in many applications, such as web searches through
search engine, route planning, etc.

Such a wide usage of graphs (also called networks depending on the application) is
not surprising as graphs occur everywhere, representing a wide variety of relationships
between objects in different applications, from biology to archaeology, from physics to
sociology, from chemistry to politics. In this scenario, graph nodes represent entities and
graph edges represent relationships between these entities. For example, in the case of
social networks, the nodes (called vertices) are users and their relationships (called edges)
correspond to friendships. In the case of public transport networks, the vertices are the
stops and the edges are the transport lines connecting these stops. In the case of frequency
assignment, vertices are antennas and edges represent physical proximity, which indicates
possible interference among the antennas. These are just a few among numerous real-life
situations that can be modeled as a graph.

Additionally, many of the practical scenarios mentioned above have a time component
related to it, capturing the dynamic nature of the connections between the involved entities.
For instance, in a public transportation network, one wishes to know not only which stops
are connected by bus lines, but also at what time such buses pass by each stop. This type of
situation lead the scientific community to define temporal graphs, that is, graphs in which
vertices and edges can appear and disappear over time. In other words, in a temporal graph
vertices and edges are active at specific time intervals. The interest in these structures is
because they occur naturally in practice. To cite an example with great current relevance,

consider a graph that models the physical proximity between people. In this graph, the
vertices are people and we connect two vertices by an edge if these people were within a
radius of less than 2 meters from each other at any given time. In the context of the COVID-
19 pandemic, this model can be used to trace possible cases of infection. In it, a person
will be at risk if she has had contact with a sick person. Note however that the contact will
only be relevant if it occurs within a specific time window, the one in which exactly one
of the two persons was sick. Therefore, any application using this model should take the
time of contact into account before alerting users of any risk. This is just one example of
the many possible real-life applications of temporal graphs.

A disadvantage of this diversity of applications is that many concepts have been re-
discovered or developed in parallel, using different terminology. Even the name of the
field itself undergoes many variations, such as time-varying networks, dynamic networks
temporal graphs, and link streams. The wide range of applications has been one of the
main reasons why this field has developed so quickly in the past two decades. In fact, the
interest in these structures has been so expressive that two international conferences ded-
icated to the subject were recently created: a satellite event of the “EATCS International
Colloquium on Automata, Languages and Programming - ICALP”, an international event
considered to be of the highest level that held its 49th edition in Paris in July 2022; and the
“Symposium on Algorithmic Foundations of Dynamic Networks - SAND”, which held its
Ist edition in 2022 in an entirely virtual way, and whose 2nd edition will be held in June
2023 in Pisa, Italy.

Considering that the theoretical basis for these structures is still being consolidated,
and that most of the existing works analyze problems from the point of view of applica-
tions, we see that there is great importance in investigating more basic problems in these
structures. In particular, among the problems of greatest interest, both from a practical and
theoretical point of view, there are problems that involve finding paths between objects,
or subsets of objects with large interconnection with each other, or even critical subsets of
objects whose removal (failure) can compromise the robustness of a network. For exam-
ple, consider again the model for a public transportation network. The existence of paths
that take any stop of the network to any other stop is extremely important, since it is de-
sired that the inhabitants can move freely between regions. In a similar way, identifying
which are the critical bottlenecks that separate one region from another can help in plan-
ning line schedules. These and other examples are problems that in graphs are known as
connectivity problems.

We highlight that such connectivity problems are inherently different from the corre-
sponding ones in static graphs as they rely on a more constrained definition of path. For
temporal graphs, a path between two nodes makes sense only if the time of the traversed
edges are time-increasing, in the same way as the bus rides of a same journey must be
consecutive. As a toy example, suppose that one wants to go by bus from A to C passing
through B. This is possible if one can leave from A and arrive in B before the bus from
B to C has left. In the same way, an infected individual A can transfer the virus to C
indirectly trough B only if A first meets B and affer (within a certain time window) B
meets C. This difference in the notion of a path dramatically changes the nature of con-

nectivity problems, meaning that static graph theory cannot be directly applied but it can
be interestingly revisited to deal with temporal graphs.

This book was written to serve as a textbook for a 5 hours mini-course offered at the
34th Brazilian Mathematics Colloquium, held in Rio de Janeiro in July 2023. However,
we tried to cover many of the results on paths problems, and vertex connectivity problems,
that existed in the literature by the time of writing. It could then be used in a longer course
on advanced topics of graph theory. Most of the presented results concern computational
complexity and parameterized computational complexity of problems on temporal graphs.
We first focus on reachability and routing, i.e. computing optimal paths according to cer-
tain criteria. We then present theoretical results on possible versions of Menger’s Theorem.
The book is mostly self contained, but previous knowledge of basic graph theory and com-
putational complexity is desired.

1 Basic definitions and terminology
1.1 Graphterminology
1.2 Temporal graphs
1.3 Link Stream e
1.4 Computational complexity
1.5 Common constructions
1.6 EXEICISES . . . v v v v v ot e e e

2 Paths
2.1 Weighted Paths and Reachable Sets
2.2 Notionsof Distances
2.3 Computing Distances
2.3.1 Two useful constructions
2.3.2 Single Source Earliest Arrival Paths
2.3.3 Single Target Earliest Arrival Paths, assuming unitary weights
2.3.4 Single Source: Fastest and Shortest Time
2.4 Computing Diameter
2.4.1 On the complexity of computing diameters
2.5 EXEICISES « . . v v v e e e e

3 Connectivity
3.1 Basicdefinitionsandresults oo oL
3.2 Vertex disjointnesso
3.2.1 Menger’s Theorem and vertex disjointness
3.2.2 Complexity of vertex disjoint problems
3.3 Temporal Vertex disjointwalks

3.4 Temporal Vertex disjointpaths 47

3.4.1 Menger for t-vertex disjointpaths 49

3.4.2 Complexity of t-vertex disjoint paths problems 52

35 EXEICISES . . . o v v v o 56
Bibliography 59

Index 62

In this chapter, we will present most of the notation that will be used throughout the book.
Some further definitions and notation will be presented in the following chapters. If the
reader is comfortable with basic graph theory terminology and (parameterized) computa-
tional complexity, then Sections 1.1 and 1.4 can be skipped. It should be noted that our
aim in this chapter is simply to set out the tools needed in the following chapters, and
not show all possible terminology being used by the community. In fact, at the time of
production, there is no consensus about terminology. We refer the reader to the surveys
by Holme (2015) and Latapy, Viard, and Magnien (2018) for alternative notation.

1.1 Graph terminology

A graph is pair G = (V, E) of finite sets, where V' # @, together with a function f that
assigns to each element of E a subset of size at most 2 of V. Set V is called the set of
vertices, while set E, the set of edges of the graph. If a graph is denoted by G, then we can
also refer to the set of vertices and edges of G as V(G) and E(G), respectively. Given a
graph G, if e € E(G) has size 1, then it is called a loop. Here we will be working only
on graphs without loops. Additionally, if f(e) = {u, v} for e € E(G), then we say that
e has endpoints u and v. In general, the same set {u, v} can be the image of more than
one edge in E(G). In such cases, some authors choose to call G a multigraph and call the
set {u, v} a multiedge. And if the graph has no loops and no set is the image of more than
one edge of E(G), then G is called a simple graph. Since here we will be working only

2 1. Basic definitions and terminology

on simple graphs, from now on we refrain from using the word “simple” and of making
reference to the function f, i.e., an edge e will be represented directly by its endpoints.
Additionally, if {u, v} is an edge of G, then for simplicity we write uv.

Similarly, a (simple) directed graph is a pair G = (V, E) of finite sets, where V # @
and £ C VxV. Some authors choose to refer to the elements of the set E as arcs, but since
in what follows we will sometimes simultaneously refer to graphs and directed graphs, we
opt to call them edges as well. Hence, as before, V is called the set of vertices of G, and
E the set of edges, and we also use V(G) and E(G) to refer to these sets. Additionally, if
e = (u,v) is an edge of G, then we say that e has endpoints u and v, that u is the tail of e,
and that v is the head of v. For simplicity we also write uv instead of (1, v). We will also
be working with simple directed graphs, which means that at most one occurrence of uv
is possible (i.e. all edges have multiplicity one), and that uu ¢ E(G) forevery u € V(G)
(i.e., no loops are allowed). See Figures 1.1a and 1.1b for an example of a graph, and of a
directed graph. If we want to emphasize the fact that we are dealing with a graph instead
of a directed graph, we might also say undirected graph.

(a) Example of a graph. (b) Example of a directed graph.

Given a (directed) graph G = (V, E), ifuv € E(G), we say that u and v are adjacent
or that they are neighbors. We also say that e is incident in u and v. We denote by N (u)
the set of neighbors of u, and call | N (u)| the degree of u, denoting it by d (u). In the graph
of Figure 1.1a, for instance, the degree of vertex a is equal to 3, while its neighborhood is
the set {b, g, h}. If G is directed and uv € E(G), then we say that u is a in-neighbor of
v, while v is an out-neighbor of u. We denote the set of in-neighbors (out-neighbors) of
u by N~ (u) (N1 (u)), and the in-degree (out-degree) of u is equal to | N~ (u)| (|N T (u)|)
and is denoted by d ~(u) (d T (u)). In the directed graph of Figure 1.1b, for instance, a has
in-degree and out-degree 2, with N ~(a) = {b, h} and N *(a) = {b, g}. A vertex is called
isolated if it has degree 0, when G is undirected, or if it has in-degree and out-degree 0,
when G is directed. Finally, the maximum degree of a (directed) graph is equal to the
maximum over all (in and out) degrees of vertices of G, and is denoted by A(G). We can
also talk about maximum in-degree and maximum out-degree, denoting them by A~(G)

1.1. Graph terminology 3

and A1 (G), respectively.

A subgraph of a (directed) graph G is a another (directed) graph H such that V(H) C
V(G) and E(H) C V(G). It is said to be induced if all edges appearing in G between
vertices of H are also present in H ; formally, whenuv € E(H) ifandonlyifu,v € V(H)
and uv € E(G). And it is said to be spanning if V(H) = V(G). We also write G[X]
to denote the induced subgraph of G with vertex set X (alternatively the subgraph of G
induced by X). In Figures 1.1a and 1.1b, if we pick vertices X = {b, h, [}, then G[X]
contains all edges between these vertices.

A (directed) graph G is complete if uv € E(G) for every u,v € V(G), u # v, and it
is empty if E(G) = @. A subset X C V(G) is called a cliqgue if G[X] is complete, and is
called a stable (or independent) set if G[X] is empty. In Figure 1.1a, the set {b, f, h} is a
clique, while {a, c, e} is a stable set. As for the directed graph in Figure 1.1b, {a, b} is a
clique, while {a, c, e} is also a stable set. Note that {a, b} is the only clique of size bigger
than one. If C C V(G) is a clique of size k, we also say that C is a k-clique.

A walk in a (directed) graph G is a sequence P = (vo, ..., Vq) such that v;_jv; €
E(G) for every i € [g]. We also write vg, vg-walk and say that vy, v, are the extremities
(or endpoints) of P, and that vy reaches vg. If P is such that v; # v; foreveryi,j €
{0,....q} with i # j, then we say that P is a vo, vg-path. And if P is a path and
vgVo € E(G), then we also say that P is a cycle. Observe Figures 1.1a and 1.1b to see
that the dashed edges form a walk, while the dotted edges form a path. Finally, we denote
by V(P) the set {vo, ..., v4}, and by E(P) the set of edges {vov1, ..., vg—1V4}

A cycle in a (directed) graph G is a path P = (vo,...,vy) such that vov, € E(G).
We say that G is acyclic if it does not contain a cycle. If G is undirected, this is also called
a forest. And we use DAG to write directed acyclic graph for short.

Now, given two u, v-walks/paths P = (u = vg,...,v4 = v) and P’ = (u =
Vg, ..., U, = V), we say that P and P’ are internally vertex disjoint if V(P) N V(P’) =
{u, v}. Since here we will be dealing only with internally vertex disjointness, we refrain
from using the word “internally” from hereon. In Figure 1.1a, the dashed and dotted walks
are two vertex disjoint a, e-walks. Observe that in Figure 1.1b, there are no two vertex
disjoint a, e-walks, as e has in-degree 1. Additionally, supposing uv ¢ E(G), we say
that a subset S € V(G) \ {u, v} is a u, v-separator if there is no u, v-path in G — S.
In Figure 1.1a, the set { f, d} is an a, e-separator, while in Figure 1.1b, the set { f} is an
a, e-separator. We denote by p(u, v) the maximum number of vertex disjoint u, v-paths
and, when uv ¢ E(G), we denote by c(u, v) the minimum size of a u, v-separator. These
metrics would be the same if defined in terms of walks instead. The famous Menger’s
Theorem tells us that these two values are equal.

Theorem 1 (Menger (1927)). Let G be a (directed) graph, and u,v € V(G) be two
vertices in G such that uv ¢ E(G). Then p(u,v) = c(u,v).

Finally, given a (directed) graph G and vertices u,v € V(G), the identification of u
and v is the graph H obtained from G by removing u and v, and adding a new vertex z
and edges in a way that: if G is undirected, then Ng(z) = Ng(u) U Ng(v); and if G is
directed, then N;i'(z) = Ng(u) U Na’ (v) and Ng (z) = Ng (1) U Ng (v).

4 1. Basic definitions and terminology

1.2 Temporal graphs

In what follows, given a positive integer n, we denote the set {1,...,n} by [n]. Also, we
use [¢,1] to denote the set {z,7 + 1,...,t'} and we call it interval [t,1'].

A temporal (directed) graph is a pair G = (G, A) where G = (V, E) is a (directed)
graph (called base graph) and A : E — 2N is a time-function from the edges of G into
nonempty finite subsets of positive integers. The value t = mealz_({t | t € A(e)} is called the

e

lifetime of G. We can also see G as a sequence of (directed) graphs (G;)7_,, where every
G; is a spanning subgraph of G and e € E(G;) if and only if i € A(e). See Figures 1.2
and 1.3 for the two possible representations that will be used throughout the text. The
graph G; is called snapshot of G at time i, while a value i € [t] is called timestep. For
anedge e € E(G) andi € A(e), we call the pair (e,7) a temporal edge and say that e is
active in timestep i. Additionally, for each v € V(G) and i € [z], we call the pair (v, i)
a temporal vertex. The set of temporal edges of G is denoted by E7 (G), while the set of
temporal vertices is denoted by V7 (G). Similarly, the set of vertices of G (e.g., vertices
of the base graph G) is denoted by V(G), while the set of edges, by E(G). If not clear
from the context, we might also use Ag to denote the time-function, and 7(G) to denote
the lifetime.

Figure 1.2: Example of a temporal graph, with the A function being represented on top of
each edge. We omit brackets in order to make the figure cleaner.

Observe that an equivalent definition is to have a pair (H, y) where H is a multigraph
and y : E(H) — Z+. Indeed, if (G, A) is a temporal graph as defined above, then we
can obtain a pair (H, y) by adding |A(e)| copies of e to H, making each edge active in
a distinct timestep in A(e). On the other hand, if (H, y) is such that H is a multigraph
and y : E(H) — Z4, then we can collapse all the occurrences of a multiedge uv to a
single occurrence, making A(uv) be equal to the union of y(e), for every e € E(H) with
endpoints uv. Such alternative definition can sometimes be more convenient and has been
used by Ibiapina and Silva (2022) to characterize Mengerian graphs, which will be defined

1.2. Temporal graphs 5

Figure 1.3: Example of a temporal graph represented as a sequence of subgraphs. For
simplicity, we omit isolated vertices. Observe that this is the same temporal graph as the
one in Figure 1.2.

shortly.

Another possible, more general, notion is the following. A temporal graph with life-
time t is a triple G = (G, «, ¢) such that G is the base multigraph, o is the starting-time
function that assigns to each e € E(G) a value in [t], and ¢ is the travel-time function that
assigns to each e € E(G) a value in [t — A(e)]. The idea is that an edge e = (u, v) leaves
from u at time «(e) and arrives in v at time «(e) + ¢ (e). Observe that this generalizes
the previous notions, with ¢(¢) = 0 for every e € E(G) for the non-strict model, and
¢(e) = 1 for the strict model. Such model is more convenient to present positive results,
and indeed this is used in Chapter 2 to present polynomial algorithms for the many mini-
mum paths notions. In fact, we will use a more convenient structure, which can be seen as
a temporal graph where the edges are ordered according to their starting time. This will be
presented in Section 1.3. Nevertheless, this more general notion will also be used in Chap-
ter 3 to present some negative results. The sets V(G), E(G), VT (G) and E(G) as before,
except that now a temporal edge is a tuple (u, v,?,d) where t = A(e) and d = ¢(e). In
what follows, we continue to use the simpler model (G, A), but the reader should observe
that all the notions can be adapted for this more general notion.

A temporal subgraph of a temporal (directed) graph G is a another temporal (directed)
graph H such that V(H) € V(G) and ET (H) € ET(G). Note that this implies E(H) €
E(G),as Ag(e) # 0 forevery e € E(H). We say that H is spanning if V(H) = V(G).
Given a temporal (directed) graph G = (G, A) with lifetime 7, and a set S € V(G),
we denote by G[S] the temporal (directed) subgraph induced by S, which is equal to
(G[S], M) with A/ being equal to A restricted to E(G[S]). Additionally, given a subset
of timesteps T C [r], we denote by G[T] the temporal (directed) subgraph induced by
T, which is equal to (G, ") with A'(uv) = A(uv) N T for every uv € E(G). Finally,
given S C V(G), we denote by G — S the temporal graph obtained from G by removing
all vertices of S. We use the same notation in case S € E(G) or S € ET(G).

Given a temporal (directed) graph G = (G, A) and vertices vg, v, € V(G), a temporal

6 1. Basic definitions and terminology

Vo, Vg-walk in G is defined as a sequence of vertices and timesteps
P = (vo.t1,v1,....14.Vq)

such that#; <t < ... < 1y, and for each i € [g], we have that (v;—;v;, ;) is a temporal
edgeof G. Ift; <t <... <y, then we say that P is strict. We also say that P starts in
time t| and finishes in time t4, and, for each i € [q — 1], that P waits in v; from t; to t; 1.
Additionally, if no vertices of G are repeated in P, then we say that P is a temporal vy, vg-
path. As we will see shortly, differently from static graphs, when dealing with temporal
graphs, the notions of paths and walks might lead to different measures, depending on the
type of disjointness being considered. Given two vertices u,v € V(G), we say that u
reaches v in G if there exists a temporal u, v-walk in G.

In the example of Figures 1.2 and 1.3, the sequence (e, 1,5,2,a,2,d,2,¢,3,) is a
temporal e, f-walk, while only (e, 3, f) is a temporal e, f-path. Additionally, such walk
is not strict, hence if we are considering only strict walks/paths, then (e, 3, f) is the only
possible temporal e, f-walk/path.

For the more general notion in which the edges have a travel time, a temporal walk/path
is defined similarly, except that we must arrive in the next vertex of the walk/path in time
to use the next temporal edge. Because of this, it is not enough to represent the walk
as a sequence of vertices and timesteps. Instead, it will be a sequence of vertices and
temporal edges, P = (vo.e1,V1,...,eq.Vq), such that, for every i € [¢], we have that
ei = (Vi—1,vi,t; = Aa;),d; = ¢(e;)),and t;+1 = t; + d;. We do not need to define
strict paths, as the strictness is implicit in the travel-time function. Also, the notions of
starting time, finishing (or arrival) time, waiting, and reachability are as before.

Still considering a temporal walk P = (vg,?1,v1,...,15,04), We denote the set
{vo,...,vq} by V(P), the set of edges {vov1,...,V5—1V4} by E(P), and the set of tem-
poral edges {(vov1,11), ..., (Vg—1v4,14)} by ET (P). Additionally, we denote by VT (P)
the set of temporal vertices contained in P. Note that this includes the temporal vertices
on which we are simply waiting. Formally, VT (P) = {(vo. 1), (vg.tg)} U {(vi, 1) |
ielg—1],t e{ti.,ti +1...,ti+1}. For example, in Figure 1.2, the temporal a, e-path
(a, 1, f.3,e) hasvertex set {a, f,e},edgeset{af, fe}, temporal edgeset {(af, 1), (fe,3)}
and temporal vertex set {(a, 1), (f, 1), (f.2),(f.3),(e,3)}. We always assume that no
waiting occurs in the beginning nor in the end of every temporal walk. Formally, the
only copy of v added to V7 (P) due to the temporal edge (vovy,?;) is the temporal
vertex (vo,?1); similarly, only (v4,1,) is added due to (v4—1v4,%;). Additionally, for
i,j €{0,...,q}, we denote by v; Pv; the v;, vj-walk (v;, %41, Vi41,...,2;,v;). Fi-
nally, if the more general notion (G, A, ¢) is being considered, for a temporal walk P =
(vo,e1, V1, ,eq,Vq), we define V(P), E(P) and ET(P) as before, while VT (P) is
defined as VT (P) = {(vo, 1), (Vg,tq + dg)} U{(vi,t) | i € [q— 1,1 € {t; +di t; +
di +1,...,ti41}}, where t; = A(e;) and d; = ¢(e;) for eachi € [q].

1.3. Link Stream 7

1.3 Link Stream

The first definition of a temporal graphs given in the previous section was as a pair (G, 1),
where the travel-time of all edges was set either to 0 or to 1, when only strict walks are
considered. While this assumption is reasonable to prove stronger negative results, in
practical applications, when providing positive results, we aim to work also with travel-
time of the edges. This indeed makes sense if your network models for instance the streets
of a city, with the nodes being street crossings. In such cases, when leaving a crossing at
a given time ¢, if the granularity used is small enough (e.g. in minutes or seconds), then it
is natural that you will arrive at the next crossing only at a later time ¢ + ¢. Additionally,
the time ¢ needed to go between a pair of crossings might differ during the day, depending
on rush hours. Hence why work on the model (G, A, ¢) instead.

However, in practice, there is an even more convenient model. Naturally, it matters
how temporal graphs are given as input to the programs. In particular, as the number of
temporal edges in a temporal graph can be much more than n2, where n is the number of
vertices, it is reasonable to assume that the edges are stored in a file (in main memory).
As it would be preferably not to load all the whole file in main memory, algorithms read
the list of temporal edges doing passes on this file, while storing only O(n) memory. This
approach is very common in the case of streaming algorithms when dealing with big data
and has been applied also for temporal graphs. This leads us to the notion of link stream,
which mathematically speaking is equivalent to the notion with edge travel-time, but is
more convenient as the edges are sorted according to their starting time.

A link stream is a pair (V,E), where E is a list of temporal edges e = (u,v,t,),
where (u,v) € V x V,t € T is the starting of e, and ¢ denotes the travel time of e. We
also say that the arrival time of e is equal to ¢ + ¢. Additionally, if the list is sorted in
non-decreasing according to the starting time of the edges, then we write E |, and if it is
sorted non-increasing order, we write [£4. See Figure 1.4 for an example.

Clearly, given a link stream (V, E), then a subjacent directed graph is defined; we call
it the base graph. We can also assume undirected link streams by assuming that each
temporal edge (u,v,t,¢) € E is undirected, i.e., that {u, v} € V. Finally, we will say
that the link stream is delay-1 if all temporal edges have the same positive travel time,
which, without loss of generality, can be assumed to be equal to 1.

As in the previous section, given a link stream G = (V, E), the lifetime of G is the
value 7(G) = max(,y,s,4)ek ! + d, omitting G when it is clearly from the context. Also,
we denote V by V(G), the set {uv | I(u,v.t,d) € E} by E(G), the set V x [t] by VT (G),
and the set {(u,v,d,t) | (u,v.d,t) € E} by ET(G). Observe that there is little difference
between ET (G) and E, with the former being a set, and the latter being the same set put
in a (sorted) list. This is why sometimes refer to them interchangeably.

1. Basic definitions and terminology

%)
q)/' o ListE, List E4

O ’\& (1)1,1)2,1,2) (1)3,1)4,5,])
q/\\ (?/ (vl,v2,2, 1) (v3,v4,4,2)
Q 5 J\E (v1,v3,3,2) (v2,v4,4,1)
U1 = /,. V4 (v2,v3,3,1) (v2,v4,3,3)
T 9 / (v2,v4,3,3) (v2,v3,3,1)
@ Q‘“ (’02,1)4,4, 1) (Ul,’l)3,3,2)
~/ cy\\ (U3,U4,4,2) (vl,v2,2,1)
\&K (v3,v4,5. 1) (v1,02,1,2)

U3

Figure 1.4: An example of link stream with the corresponding lists of temporal edges. The
label of each temporal edge denotes its starting and travel times (separated by a comma).
The list E (respectively, E4) is sorted in non-decreasing (respectively, non-increasing)
order with respect to the edge starting times.

1.4 Computational complexity

A decision problem is alanguage L C X'*, where X is a fixed finite alphabet. For instance,
in modern computers all objects are represented as a sequence of 0’s and 1’s. Hence, a
language is any family of such sequences. This concept however is more useful when
studying the theory behind computational complexity classes and relations between them.
Since here we instead want to classify some problems into such computational classes, it
will be more useful for us to see a decision problem as a “yes/no” question posed on some
object. For instance, given a graph G and a positive integer k, one might be interested to
know whether G has a k-clique. We call such problem the CLIQUE problem, and we say
that it receives G and k as input, and that the related guestion is “Does G have a k-clique?”.
In general, we will be describing a decision problem in the following way:

CLIQUE
Input. A graph G, and an integer k.
Question. Does G have a k-clique?

We call a particular pair given as input an instance. Applying the formal definition
to the above problem, the language L related to the problem CLIQUE would contain a
sequence in X* representing each of the instances of CLIQUE whose answer to the question
is “yes”.

Since the scope of this book is not to dwell into the world of formal computational
complexity theory, here we define the computational classes of interest in a somewhat

1.4. Computational complexity 9

informal way, meaning that some concepts are assumed to be understood. For the reader
interested in learning more about this theory, we refer to Sipser (1996). The size of an
instance x of a problem [T is equal to the size of the sequence needed to represent x; it
will be denoted by |x|. We say that a decision problem is polynomial-time solvable if
there exists an algorithm that correctly computes the answer to the problem’s question
running in time O(|x|¢), for some constant ¢. The set of all polynomial-time solvable
problems is denoted by P. Additionally, a problem [T is said to be non-deterministically
polynomial-time solvable if, for every positive instance x of I1, there exists a certificate
for x that can be checked by a polynomial-time algorithm. For example, given a positive
instance (G, k) of CLIQUE, a certificate for (G, k) can be a k-clique C of G; one can check
whether C is indeed a k-clique in polynomial time simply by testing, for every u,v € C
with u # v, whether uv € E(G). One can think of a certificate as a “short proof” that
x is indeed a positive instance of I1. The set of all non-deterministically polynomial-
time solvable problems is denoted by NP. We also define the class co-NP to contain the
complement of all NP problems. Formally, given a language L € X'*, the complement of
L is the language L = X* \ L. Hence, we define co-NP = {L | L € NP}. Informally,
these are the decision problems for which there exist “short proofs” for negative instances.
Note that this is not the same as the complement of NP. Indeed, it can be proved that P C
NP Nco-NP. As an example of co-NP problem, consider the problem TauToLOGY defined
below. Observe that a short proof for a negative instance would be a truth assignment that
valuates the formula as false.

TAUTOLOGY

Input. A CNF formula ¢.

Question. Is ¢ a tautology, i.e., is ¢ satisfied by every possible truth assignment to its
variables?

Now, given two decision problems, IT and T/, and instances x and x’ of IT and IT’,
respectively, we say that x and x’ are equivalent if x is a “yes” instance of [T if and only
if x’ is a “yes” instance of IT’. Then we say that IT is polynomial-time (Karp) reducible to
IT’ if there exists a polynomial time computable function f that transforms any instance x
of IT into an equivalent instance f(x) of IT’. In the remainder of the text, we omit Karp’s
name when referring to such reductions; we also write IT <, [T’ if such reduction exists.
The interest of such definition is the fact that it preserves polynomiality (see Exercise 2).
Finally, it is said that a problem [1’ is NP-hard if IT <, IT’ for every IT € NP, and that
it is NP-complete if it is NP-hard and IT" € NP.

Intuitively, the class of NP-complete problems represents all problems in NP in terms
of complexity. In other words, since <, is a transitive relation (see Exercise 3), we get
that if any NP-complete problem is polynomial-time solvable, then so are all NP problems,
i.e., P = NP. Now, Cook-Levin’s Theorem is the seed for the construction of a family of
problems that we know to be NP-hard, as it tells us that 3-SAT, defined below for general
k, is NP-complete. Throughout the book, whenever we want to show that a problem
IT is NP-complete, we simply present a polynomial-time reduction to /7 from another

10 1. Basic definitions and terminology

previously known NP-complete problem.

k-SAT
Input. A CNF formula ¢ such that each clause contains at most k literals.
Question. Is there a satisfying truth assignment to the variables of ¢?

Observe that, in some kinds of problems where there is also a related metric, like it
was the case for CLIQUE, we can sometimes be interested in finding cliques with a given
fixed time. For instance, one could be interested simply in finding a triangle (clique of
size 3). Such test can be done in time O(n3) on a graph with n vertices, as it suffices to
test every subset S of size 3 whether S is a clique. Generalizing for a fixed value k, we
have an algorithm running in time O (n*) to solve CLIQUE. This contrasts with some other
problems that do not admit algorithms running in time O (n*), and some that admit even
better algorithms, running in time O(f(k) - n), for some computable function k. This
brings us to the granularity introduced by the study of parameterized complexity.

Formally, a parameterized problem is a language [T € X'* x N, where X is a fixed
finite alphabet. A pair (x,k) € X* x N is called an instance of IT with parameter k, and
we say that it is a “yes” instance if (x, k) € I1. Following the chosen notation for deci-
sion problems, we will be describing parameterized problems in natural language instead.
For the reader interested in the formal definitions, we refer to Cygan et al. (2015). Hence,
a parameterized problem is exactly like a decision problem, equipped with a parameter.
For instance, we can talk about the CLIQUE problem parameterized by k. We emphasize
that the parameter is not necessarily part of the input. We can investigate CLIQUE param-
eterized by the maximum degree of the input graph G, for instance. Other examples of
possible parameters in graphs are the vertex cover number, the treewidth, the neighbor-
hood diversity, the more recently defined twinwidth, etc. If the considered problem has
an input related to the size of a searched object, we usually say that this value is the natural
parameter.

Now, a parameterized problem [T with parameter k is said to be fixed-parameter
tractable (FPT for short) if there exists an algorithm A that correctly answers to the prob-
lem’s question and runs in time f(k) - n9(1), for some computable function f, where n
denotes the size of the corresponding input. We say that A is an FPT algorithm, and the
set of all fixed-parameter tractable problems is also denoted by FPT. Making an abuse of
language, we also say that a decision problem I7 is FPT when parameterized by k if the
related parameterized problem is FPT.

Class FPT works like a sort of P class inside the parameterized complexity theory.
However, another class defined by positive results (i.e., existence of algorithms) is the
following. We say that a parameterized problem [7 is slice-wise polynomial (XP for short)
if there exists an algorithm A that correctly answers to the problem’s question and runs in
time n/®), for some computable function f, where n denotes the size of the corresponding
input. We say that A is an XP algorithm, and the set of all slice-wise polynomial problems
is also denoted by XP. Making an abuse of language, we also say that a decision problem
IT is XP when parameterized by k if the related parameterized problem is XP. We saw

1.5. Common constructions 11

previously that CLIQUE is XP when parameterized by the natural parameter. A natural
question is whether the O (n*) algorithm can be improved to an FPT algorithm. The
answer is “no, unless FPT = W[1]-hard”, where W[1]-hard is defined next. It can be
thought of as the NP-hard counterpart in the parameterized complexity theory.

Given two parameterized problems I7, [T € X*x N, and instances (x, k) and (x’, k")
of IT and IT’, respectively, it is said that they are equivalent if (x, k) is a “yes” instance
of IT if and only if (x, k') is a “yes” instance of IT’. A parameterized reduction from IT
to IT’ is a function that, given an instance (x, k) of IT, computes an equivalent instance
(x’, k") of IT" such that k' < g(k) in time f(k) - |x|°™1), where f and g are computable
functions. If such a reduction exists, we write 11 $; IT'. Let CLIQUE; denote CLIQUE
parameterized by the natural parameter. Finally, we say that a parameterized problem /T
is W[1]-hard if CLiQuEx <7, IT. As CLIQUE is not believed to be FPT, and <7, preserves
solvability in parameterized time (see Exercise 4), intuitively this means that I7 is also not
believed to be FPT. We refer the reader to Cygan et al. (ibid.) for further background on
parameterized complexity.

1.5 Common constructions

When dealing with a generalization of graphs, a natural approach is trying to model the
new problems as a graph problem. A graph theorist might even be tempted to believe that
all the time function overhead can be dealt with as a classical graph problem. This however
is not a good approach as very often the time aspect of the problems indeed plays a crucial
role on the problem’s complexity, with some easily solvable graph problems becoming
hard even on very strict cases when generalized to temporal graphs. Nevertheless, there
are indeed some constructions that have appeared in a number of results, and hence deserve
attention. In what follows, we present the ones that we considered the most relevant.

The first trivial constructions are to allow to go from an undirected temporal graph to
a directed one, or vice-versa. If G is a temporal graph, then the directed version of G is
obtained by replacing each edge uv by two directed edges uv and vu with the same A
function. And if G is a temporal directed graph, then its undirected version is obtained by
ignoring the directions of the edges. Observe that if uv and vu are in G, then these will
be merged in a single undirected edge, appearing in the same timesteps as u¥v and vu.

A more widely used construction is the following. Given a temporal graph G = (G, A)
with lifetime 7, the strict static expansion of G is the DAG (V', E’), where V' = V(G) x
{0,..., 7} and, for each i € [z], we have that (u,i — 1)(v,i) € E’ if and only if either
(uv,i) € ET(G), oru = v. See Figure 1.5. In words, it is the DAG obtained by making
7 + 1 copies of each vertex, and representing the temporal edges of snapshot i by linking
the corresponding copies in layer i — 1 to layer i. Additionally, a path from the first to
the last copy of a vertex, passing by all other copies in order, is added. One can see that
this transformation preserves existence of strict temporal paths (see Exercise 5), but not
of non-strict temporal paths. Indeed, in Figure 1.5, the shaded path is related to the strict
temporal a, d-path (a, 1,b,2,c, 3,d), but the non-strict path (a, 1,5, 1, e, 3, d) does not

12 1. Basic definitions and terminology

f

Figure 1.5: Strict static expansion of the temporal graph depicted in Figure 1.2. The shaded
edges represent the strict temporal path (a, 1,5,2,¢,3,d).

appear in the expansion.

In order to preserve non-strict paths, we define the static expansion of G as the directed
graph (V', E’), where V' = V(G) x [t], and (u,i)(v, j) € E’ ifand only if eitheri = j
anduv € E(G;),or j =i+1andu = v. See Figure 1.6. In words, this can be seen as the
directed graph obtained by taking the disjoint union of the snapshots (if G is undirected,
then we consider the directed version of), and adding a path linking the copies of a given
vertex. Observe that now the path (a, 1,5, 1, e, 3, d) appears as the shaded path between
vertices (a, 1) and (d, 3). The concept of strict static expansion has been used by Mertzios,
Michail, and Spirakis (2019) and Michail (2016), while the definition of static expansion
has been used by Campos et al. (2021). It will also be used in Section 3.3 to prove a
version of Menger’s Theorem for t-vertex disjoint walks.

Another common construction is what we call (strict) temporal line graph. In this,
given a temporal graph G = (G, 1), we construct a directed graph L = L(G) having as
vertex set the set of temporal edges of G, and where ef € E(L) if and only if e and f
have a common endpoint, say u, and A(e) < A(f) (resp. A(e) < A(f)). In other words,
e followed by f form a (strict) temporal path. See Figure 1.7. One can easily check that
there is a one-to-one correspondence between (strict) temporal paths in G and paths in L
(see Exercise 6). In Figure 1.7, the temporal a, d-path (a, 1,b,1,e,3,d) is shaded and
corresponds to the path ((ab, 1), (be, 1), (ef, 3)) in the constructed graph. Observe that,
in particular, the temporal line graph must contain the line graph of each snapshot, but the
same does not hold for the strict temporal line graph. A similar concept has been used
by Kempe, Kleinberg, and Kumar (2000) to prove that the temporal edge disjoint version

1.5. Common constructions 13

Figure 1.6: Static expansion of the temporal graph depicted in Figure 1.2. The shaded
edges represent the temporal path (a, 1,b,1,¢,3,d).

of Menger’s Theorem holds.

Recall that we also introduced a more general notion that allows for the edges to have
a travel-time. Now, we present a useful construction that allows us to go between this to
the simpler model with no travel-time. Such construction has been proposed by Kempe
et al. Kempe, Kleinberg, and Kumar (ibid.) and works as follows (observe Figure 1.8).
So, let (G, «, ¢) be a temporal directed graph with travel-time on the edges. For each
uv € V x V, let Eyy be the set of edges of G with endpoints in uv. Let G’ be such that
V(G') = V U Uupevxy Euv (in words, the vertex set is equal to V' plus a vertex for
each possible multiedge of G). Then, for each uv € V x V and each e € E,,,, let w, be
the related vertex of G’. Add to G’ edges uw, and w.v, and define A(uw,) = {a(e)}
and A(w.v) = {a(e) + ¢(e)}. Observe that there is a bijection between temporal paths
in (G,) and in (G, a, ¢) (see Exercise 7). We call (G’, L) the undelayed version of
(G,a,¢). In case G is an undirected graph, we construct (G’, 1) as before, except that
we interpret uv € E(G) as two separate edges, uv and vu, and that the edges added
to the undelayed version are also undirected. Finally, a less general construction used to
transform strict paths problems into non-strict is used by Zschoche et al. (2020), and the
same one is presented by Crescenzi, Magnien, and Marino (2019) in the context of /ink
streams. The latter will be defined and used in Chapter 2. The undelayed version is also
going to be useful in Section 3.2.2.

Finally, we present a construction that allows to go from vertex disjoint version of
problems to edge disjoint. Such construction is quite well known for static directed graphs.

If the construction is applied to an undirected temporal graph, we are implicitly con-

14 1. Basic definitions and terminology

(ab, 1)

(af.1)

(ad,?2)

(de,3)

Figure 1.7: Temporal Line graph of the temporal graph depicted in Figure 1.2. The shaded
edges represent the temporal path (a, 1,b,1,¢,3,d).

b b

/N 7
PN

~
~
N o o)
/
a (1,3) c a&; ;>\“.C
(1.1) e

Figure 1.8: Example of the undelayed version construction. In the left, a label (¢, d) on
top of an edge e denotes the fact that w(e) = ¢ and ¢(e) = d. In the right, red vertices
are the new vertices added for each e € E(G).

1.6. Exercises

b
iz <2
Ne e
a —
75 /%
d

15

b bo
/ "
v ¢ o
N Ju)\
~ ci

/1.

75 o~

i d°

Figure 1.9: Example of the split vertex construction. In the right, green edges are always

active, i.e., have A’ defined as {1, 2, 3}.

sidering the application to its directed version. So now consider a temporal directed graph
G = (G, A) with lifetime t; observe Figure 1.9 to follow the construction. For each ver-
tex u € V(G), add to G’ two new vertices u’ and u°, and an edge from u’ to u° which is
always active, i.e., such that A’(u’u®) = [z]. Then, for each edge uv € E(G), add to G’
an edge from u° to v’, active in the same time steps as uv, i.e., make A’ (u°v’) = A(uv).
We call G’ the vertex split of G. Kempe, Kleinberg, and Kumar (2000) combine the line
graph with split vertex in order to apply mincut-maxflow on the obtained directed graph.

1.6 Exercises

1. Prove that the minimum size of S € V(G) \ {u, v} such that there are no temporal
u, v-paths in G — § is equal to the minimum size of a temporal vertex u, v-separator.

2. Prove thatif [T’ € P and IT <, IT/, then IT € P;

3. Prove thatif IT <, IT" and IT" <, IT", then IT <, IT”;

4. Prove that if /1" € FPT and IT <}, IT’, then IT € FPT (observe that this is analo-

gous to Exercise 2).

5. Let G be a temporal graph, and u, v € V(G). Prove that there exists a (strict) tempo-
ral u, v-path in G if and only if there exists a (u,7), (v, j)-path in the (strict) static

expansion of G.

16

1. Basic definitions and terminology

6. LetG beatemporal graph, and L = L(G). Then, every (strict) path in L corresponds
to a (strict) temporal path in G, and vice-versa.

7. Let G = (G, «, ¢) be a general temporal graph where the edges have travel times,
and let G’ = (G’, A) be the undelayed version of G. Then every temporal path in G
is uniquely related to a temporal path in G'.

8. Let G = (G, L) be a temporal graph and G’ = (G’, 1) be its vertex split. Given
s,z € V(G), prove that there are k internally vertex disjoint temporal s, z-paths G
if and only if there are k edge disjoint temporal s, z-paths in G’.

In the previous chapter, we have given two notions of temporal graphs, with the more
general notion being the one that allowed the edges to have a duration. The more general
model is of course more appropriate when we are able to offer positive results on it, and it
is the case in this chapter. The simpler model will be used in Chapter 3 to present negative
results. In fact, in this chapter we will be working with the even more convenient model of
link streams, where the temporal edges are sorted. Recall that we write (V, E) to represent
a link stream where the temporal edges are sorted in non-decreasing way according to their
starting time, while we write (V,E4) when they are sorted in non-increasing order. We
will also assume that the travel time of any temporal edge is a positive integer value. Hence
we get only strict temporal paths. Nevertheless, the results extend to non-strict paths at
the price of higher computational cost.

2.1 Weighted Paths and Reachable Sets

In Section 1.2, we defined temporal walks/paths as alternating sequences of vertices and
temporal edges. However, observe that the temporal edges already give the vertices in-
volved in such a sequence. So for convenience, we slightly change the definition given
there to consider only temporal edges. Given a link stream G = (V,E) and vertices
u,v € V(G), a temporal u,v-walk is a sequence of temporal edges (for simplicity, we
omit embracing parenthesis in the sequence)

(u=wy, w2, t1,¢1), ..., (Wk, W1 =V, Ik, Px)

18 2. Paths

such that for each i with 1 < i < k, we have that ; > ;1 + ¢;—1. If the vertices
wi, ..., Wk are all distincet, this is a path.

The departure time of the walk is t1, its arrival time is ty + i, its duration is ty + ¢ —t1,
and its travel time is Zle ¢;. In the following, for any time interval [ty, ¢,], we will say
that the path is [ty, t,]-compatible if its departure time is at least 7, and its arrival time at
most ¢,,. Moreover, for any vertex u, we will denote with reachlfe-fol (u) the set of vertices
v such that there exists a [ty, #,,|-compatible temporal u, v-walk. We assume the empty
sequence to be a u, u-walk, and hence u € reach[t“”w](u) for every #, and t,. Finally,
we denote the set of ordered pairs (u, v) such that v € reachlf«-ol(y) by Rl],

In the following, for the sake of simplicity, we omit the time interval in the superscript,
whenever this interval is the one in which ¢, is the minimum departure time of all temporal
edges and ¢, is the maximum arrival time. Additionally, as all paths/walks considered are
temporal, we omit the word.

By referring to the weighted link stream shown in Figure 1.4, the vy, v4-path 7; =
(v1,v2, 1,2), (v2, 03,3, 1), (v3, v4, 5, 1) has departure time 1, arrival time 6, duration 5,
and travel time 4. On the other hand, the vy, v4-path 7, = (vq,v2,1,2), (v2,v4,3,3)
has the same departure, arrival, and duration times of 7y, but its travel time is 5, while
the vy, vg-path 73 = (v1,v2,2,1), (v2,v3,3, 1), (v3, v4, 4, 2) has the same arrival and
duration times of 77y, but its departure time is 2 and its duration time is 4. Moreover, 7}
and 7, are [1, 6]-compatible but they are not [2, 6]-compatible, while 73 is both [1, 6]-
compatible and [2, 6]-compatible. Finally, we have that reach(vy) = {vi,v2,v3,v4},
reach(vy) = {vz, V3, V4}, reach(vs) = {v3, v4}, and reach(vs) = {v4}. This implies
that |[R| = 10.

2.2 Notions of Distances

By making use of the above four cost functions (that is, starting, arrival, duration, and
travel times), we can then define, for any two distinct vertices u and v, the following four
corresponding distances' from u to v, in a specific time interval [f4, Z,]. For all distances,
we assume that their value is oo, if v & reachl’@®@l(y) (see Bui-Xuan, Ferreira, and Jarry
(2003), Wu, Cheng, et al. (2014), and Wu, Huang, et al. (2016)).

Earliest arrival time dh[ﬁ."t“’](u, v) is the minimum arrival time minus # of any [t4, #]-
compatible u, v-walk.

Latest departure time dL[,t)"{’t‘”](u, v) is equal to 7, minus the maximum departure time
of any [ty, ty]-compatible u, v-walk.

Fastest time dF[i""t“’] (u, v) is the minimum duration time of any [¢,, ,, |-compatible walk
from u to v.

'Note that the term “distance” does not refer to the mathematical notion of distance or metric function, since
neither the symmetry nor the triangle inequality axioms are usually satisfied.

2.2. Notions of Distances 19

Shortest time ds[Tt“’t“’](u, v) is the minimum travel time of any [#y, #,,]-compatible walk
from u to v.

For example, in the case of the weighted link stream shown in Figure 1.4, we have
that dir(v1,v4) = 4, dix(v1,v4) = 3, and dg(v1, v4) = 2 (as witnessed by the path
(v1,v2,2,1), (v2,v4,4, 1)), and we have that d,,;(v1, v4) = 3 (as witnessed by the path
(v1,v3,3,2), (v3,v4,5,1)). In Table 2.1, for all pairs of vertices (v;, v;) of the weighted
link stream (with i # j), we show the four distances from v; to v;.

We leave the proof of the following simple observation as exercise.

Observation 2. Let G be a link stream, and u,v € V(G). If G has a temporal u, v-walk
having duration x, arrival time y, and departure time z, then G has a temporal u, v-path
having duration at most x, arrival time at most y, and departure time at least z.

This implies that for b € {EAT, LDT, FT}, we can assume the existence a path realising
dp(u,v), whenever a u, v-walk exists. In the case of sT, instead, a realising walk will
always be a path. Observe that the lemma only holds for positive values of ¢, meaning
that if non-strict paths is considered, then it does not hold. Notice also that, in such case,
we get that the weaker Observation 2 holds for travel time.

Lemma 3. Let G be a link stream, and u,v € V(G). If there is a temporal u, v-walk in G,
then any temporal u, v-walk realising dg;(u, v) is also a path.

Proof. Letm = (u = wi,wa,t1,¢1), ..., Wk, Wkt+1 = v, 1k, Pr) be a temporal u, v-
walk realising ds(u, v), and suppose by contradiction that w; = wj, for some i < j.
Because we consider only simple (directed) graphs, we get thati < j + 1. If w; = u,
then consider the u, v-walk starting in (wj, wj4+1,¢;,¢;); if w; = v, then consider the
u, v-walk finishing in (wj_1, wj,tj—1,¢;—1); and if w; ¢ {u, v}, then consider the u, v-
walk

(u =wi, w2, t1,¢1), ..., (Wi—1, Wi, i1, i—1), (Wj = Wi, Wjt1,5,P;), ...,
(wkvwk-i-l = lekv ¢k)7

in other words, the walk obtained from 7 by removing the w;, w;-walk contained in 7.
Because ¢p¢ = 1 for every £, in each case we end up with a temporal u, v-walk with smaller
travel time, a contradiction. O

As noticed in Wu, Cheng, et al. (2014), best paths according to all the distances con-
sidered here, i.c. the ones realising the distance, have not optimal substructure.

Observation 4. For any D € {EAT, LDT, FT, ST}, any subpath of a path realising D is not
necessarily a path realising D.

In Figure 2.1, we give an example of a link stream where every temporal u, v-walk P
realizing di(u, v) is such that the x, y-path contained in P does not realize di(x, y), for
every x, y in P such that {x, y} # {u,v}. Observe that such property is even stronger
than what is said above. We leave similar constructions for b € {LDT, ST} as exercise. As
for EaT, such an example is not possible, as the following lemma holds.

20 2. Paths

v

(T2

(1‘v)

R

(1D
(Tv)

e

Figure 2.1: In this example dir(u, v) = 4 but the edges used to realize this distance do
not realize dir(u, x) = 1 and di(x,v) = 1.

v

dexr dypr dix ds;

U1 %) U3 V4 V1 %) U3 Vg U1 %) U3 V4 V1 Uy U3 Vg
vy -1 2 3 4 - | 4 3 3 - 1 2 3 - 1 2|2
vy || o0 | — 3 4 o0 | — 3 2 oo | — 1 1 oo | — 1 1
vy || o0 | 00 | — 5 o0 | oo | — 1 co | 0o | — 1 o0 | 0o | — 1
Vg o oo o0 — o o.¢] o - o0 oo o0 — o [o.¢] o -

Table 2.1: The four distances from v; to v; for all pairs of vertices (v;, v;) withi # j in
the weighted link stream of Figure 1.4, when t, = 1 and ¢, = 6.

Lemma 5 (Wu, Cheng, et al. (2014)). Let G be a link stream, and u,v € V(G). If u
reaches v in the time interval [ty,t,)], then there is an earliest arrival path traversing
U = vy,...,V0k = V in this order such that every prefix subpath, i.e. from vy to v; for
everyi € [k], is an earliest arrival path.

In order to prove Theorem 5, by contradiction suppose that there is no such path, i.e.
for every path from u to v traversing ¥ = vy, ...,V = v not every prefix is an earliest
arrival path. Let us consider one earliest arrival path traversing ¥ = vq,...,vr = v and
let v; be the rightmost vertex in this path for which we are not realizing an earliest arrival
path. Then we can replace the path traversing vy, . .., v; with an earliest arrival path from
u = v; to v; and still obtain an earliest arrival path from u to v. We can hence repeat
the process, finally finding an earliest arrival path from u to v such that every prefix is an
earliest arrival path.

2.3 Computing Distances

In this section, we present some algorithms to compute distances in temporal graphs, and
as previously said, we will use sorted link streams. Several algorithms have been proposed

2.3. Computing Distances 21

in the literature in order to compute the distance from a source vertex s to all other vertices,
for each of the distance definitions considered here. For any D € {EAT, LDT, FT, ST}, let
ssbp,, be a single source best path algorithm that, given a link stream (V, E |) and a source
vertex u, returns an array containing, for each vertex v, the value d,, (1, v), and let Ss-TIME,,
(respectively, ss-SPACE,) be the worst-case time (respectively, space) complexity of this
single source best path algorithm, as a function of the number n of vertices and of the
number m of temporal edges in the link stream. In this book, we mostly refer to the
algorithms proposed in Crescenzi, Magnien, and Marino (2019, 2020), Wu, Cheng, et
al. (2014), and Wu, Huang, et al. (2016), which are the ones with best time and space
complexity so far (see the second and third column of Table 2.2). We observe that if
the temporal graph is not given as a link stream, then all time complexities of Table 2.2
become O(m logm), as the temporal edges need to be ordered according to their starting
time.

We also define a “backward” variation of the single source best path algorithms. For
any D € {EAT,LDT, FT, ST}, let stbp, be a single target best path algorithm that, given
input E4 and a target vertex v, returns an array containing, for each vertex u, the value
dp(u,v), and let ST-TIME,, (respectively, ST-SPACE;,) be the worst-case time (respectively,
space) complexity of this algorithm, as a function of the number n of vertices and of the
number m of temporal edges in the link stream. Once again, here we mostly refer to the
algorithms proposed in Crescenzi, Magnien, and Marino (2019, 2020), Wu, Cheng, et al.
(2014), and Wu, Huang, et al. (2016), as they have the best time and space complexity so
far (see the fifth and sixth column of Table 2.2).

2.3.1 Two useful constructions

In the following, we present two useful link stream transformations. In Section 1.5, we
already saw the undelayed version construction that transforms the more general temporal
graph (G, @, ¢) in a simpler temporal graph with no duration on the edges. We define an
analogous construction, but for link stream and in a way that all edges in the obtained link
stream have travel time equal to 1. So consider a link stream (V, E); we construct a link
stream (V' U I,), where [is a set of at most |E| intermediate vertices. Intuitively, this
transformation changes the travel time of a temporal edge into a waiting time in the cor-
responding intermediate vertex. More precisely (see Figure 2.2), for each temporal edge
e = (u,v,t,1) € E, e is also included in F. For each temporal edge e = (u,v,t,¢) € E
with ¢ > 1, a new vertex i, is inserted in 7, and the two temporal edges (u, i, ?, 1) and
(ie,v,t+¢—1, 1) arcincluded in IF. Itis easy to verify that, for any two verticesu, v € V,
dp(u,v) in (V,E) is equal to dp(u,v) in (V U I,F), where D € {EAT, LDT, FT}. We call
the obtained link stream the delay-1 of (V,EE). This construction has been introduced
in Crescenzi, Magnien, and Marino (2019).

The second useful construction can be seen as reversing the time flow of a link stream.
So again consider a link stream G = (V, [E), and let t be the lifetime of G. Let (V, F) be the
link stream obtained by adding to I the temporal edge p(e) = (v, u, t+1—(t +¢), ¢), for
each temporal edge e = (u,v,t,¢) € E. We call (V,F) the reverse of G. The analogous

22 2. Paths

Table 2.2: The time and space complexity of the single source best path (upper part) and the
single target best path (lower part) algorithms with input E | and [E4, respectively (without
considering the time and space necessary for sorting the link stream).

[o | sstiME, SS-SPACE,, | Ref. I

Wau, Cheng, et al. (2014)
Wu, Huang, et al. (2016)
Crescenzi, Magnien, and Marino (2019)
Crescenzi, Magnien, and Marino (2020)
Crescenzi, Magnien, and Marino (2019)
FT O(m) O(m) Wu, Cheng, et al. (2014)
Wu, Huang, et al. (2016)
Wau, Cheng, et al. (2014)
Wu, Huang, et al. (2016)

EAT O(m) O(n)

LDT O(m) O(m)

sT | O(mlogm) O(m)

D ST-TIME, ST-SPACE,, | Ref.
Crescenzi, Magnien, and Marino (2019)
FAT O(m) 0(m) Crescenzi, Magnien, and Marino (2020)
Wau, Cheng, et al. (2014)
Lot O(m) o) ‘Wu, Huang, et al. (2016)
Crescenzi, Magnien, and Marino (2019)
T 0(m) 0(m) Wau, Cheng, et al. (2014)

Wu, Huang, et al. (2016)
& Theorem 6
Wu, Cheng, et al. (2014)
sT | O(mlogm) O(m) Wu, Huang, et al. (2016)
& Theorem 6

construction on the simpler model (G, A) has been used in Ibiapina and Silva (2022).
The following lemma allows us to easily design a backward version of a best path
search and to relate the EAT distance and the LDT distance (see Figure 2.3).

Lemma 6. Consider a link stream (V,E) with lifetime t, its reverse (V,F), and b €
{r1,s1}. Then, for any two vertices u,v € V and for any time interval [ty,1,], we
have that d,gt""t“’](u, v) in (V,E) is equal to d,£r+1_t“”r+1_t°‘](v, u) in (V,). Moreover,
dg‘}"t“’](u, v) in (V,E) is equal to dL[;;H_t“”tH_t“](v, u) in (V,), and dL[,t)";’t‘”](u, v) in
(V,E) is equal to dE[,fT—’_I_t“”r+1_t“](v, u) in (V,F).

Proof. In order to prove the first assertion, it suffices to show that there exists a [ty, t,]-
compatible u, v-path in (V, E) whose duration (respectively, travel time) is d if and only
if there exists a [t + 1 — #,, T + 1 — t,]-compatible u, v-path in (V,F) whose duration
(respectively, travel time) is d. Let P = eje; ... e be a [ty, t,]-compatible path from u
to v in (V,E), and write ¢; = (u;, v;,t;,¢;) for each i € [k]. Recall that the reverse of
ej is p(ej) = (vi,uj, v+ 1 — (ti + ¢i), ¢;). Hence the starting time of the reverse path
p(P) = plex)plex—1)...ple1)isT+1—(tk + Pr) = T+ 1 —to, a8 (lx + ¢k) < lo,
while the arrival timeist + 1 — (f; + ¢1) + ¢1 < 7+ 1 —14 ast; = t,. Hence p(P)

2.3. Computing Distances 23

%) 1%
I 2,1 3,1) @i
" 1?() (3.1) T 3
N & ~ ~
Q Y ~ N € —
D (% = RN
o Ly LN
vy ; >0 Vg U1 5 ?v4
>/ 1 T
> — N o
m @“ —

O [
75 D z
&
\& i t (4,1) (4,1) »i iy

U3 U3

Figure 2.2: On the right, the delay-1 of the link stream on the left.

is within the window [t + 1 — 7, T 4+ 1 — #,], as desired. One can also see that p(P) is
a vg, vi-walk in (V, F), and that the duration and travel time of p(P) is the same as P.
Observe that this is enough since the reverse of (V,) is equal to (V, E).

In order to prove the second assertion, again because the reverse of (V, F) is equal to
(V,E), it suffices to show that there exists a [t,, f,,]-compatible u, v-path in (V, E) whose
arrival time is ¢ if and only if there exists a [t + 1 —1,,, T + | — 5]-compatible u, v-path in
(V,F) whose departure time is T + 1 — d. Pick P and p(P) as in the previous paragraph.
We already know that p(P)isa [t + 1 —ty, T + 1 —t,]-compatible vg, vq-path in (V,F).
The arrival time of P is tx + ¢, while the departure time of p(P) is t + 1 — (tx + ¢x), as
we wanted. The opposite direction can be proved similarly, and this concludes the proof
of the lemma. O

Observe that the above lemma gives us that computing single target best paths for
D € {FT,SsT} is equivalent to computing single source best paths on the reverse of the
given link stream, which can be obtained in linear time. Additionally, computing single
source/target best paths for LDT is equivalent to computing single target/source best paths
for Eat. Hence, in order to compute all possible values, it is enough to solve single source
best paths for D € {EAT, FT, ST} and single target best path for EAT (as the latter algorithm
can be also used for single source best path for LDT).

2.3.2 Single Source Earliest Arrival Paths

Given a link stream (V,E}), a vertex x € V and a time interval [ty, #»], we show how
to compute earliest arrival time distances from x to every vertex v € V within [z, t,] in
Algorithm 1. Algorithm 1 processes each edge in E and keeps track of current earliest-
arrival times from x to every vertex v that has been seen until then by means of an array
t[v]. Thanks to the condition in Line 4, ¢[v] will be updated with the smallest arrival

24 2. Paths

%) 1%
et AN
P > » 7
Q % &> %
N G)’ N @
Q/\ ~ O\E ‘/\b‘ﬂ —~ /‘/
(O8] [99)
U1 N @ V4 V] @ - V4
= \/7 \ SR
Y i)
& N S Q
< N < N
N —
U3 U3

Figure 2.3: The transformation from a link stream to another link stream to be used in order
to obtain a single target best algorithm starting from a single source best path one. For
instance, the duration time of the path (v1, v3, 3, 2), (v3, v4, 5, 1) in the original link stream
is equal to (5 + 1) — 3 = 3, and the duration time of the path (v4, v3, 1, 1), (v3, v1,2,2)
in the transformed link stream is equal to (2 +2) — 1 = 3.

time of any path from u to v within the time interval [y, t]. In particular, for each edge
e = (u,v,t,¢) in E the algorithm checks if e is compatible with the time constraint of a
temporal path within [y, 7] (i.e. whethert +¢ < 1, and ¢ > ¢[u]). If the time constraints
are respected, ¢[v] will be updated in case ¢ + ¢ is smaller than ¢[v]. The algorithm ends
when all edges in IE| have been processed or when we meet one edge that has starting
time greater than or equal to #,. The correctness of the algorithm is proven in Wu, Cheng,
et al. (2014) and basically follows from Theorem 5.

2.3.3 Single Target Earliest Arrival Paths, assuming unitary weights

Now, for the single target best paths algorithm, we assume that all the travel times of the
input graph are 1 by working on the delay-1 version of the given link stream (see Fig-
ure 2.2).

We now show a sort of “reverse” version of Algorithm 1 that is applied to a destination
vertex d, and that will allow us to compute, for any other vertex x, the earliest arrival
time from x to d. Such algorithm can be seen as an adaptation of the earliest arrival
profile algorithms proposed in Dibbelt et al. (2018), and has been proposed in Crescenzi,
Magnien, and Marino (2020) in order to approximate the temporal closeness, a centrality
measure for temporal graphs. Differently from the case of Algorithm 1, we consider a link
stream (V,E4), i.e. the temporal edges are sorted in non-increasing order with respect to
their starting times. We assume that the appearing times of all temporal edges are distinct,
and in the next section we show how the algorithm can be adapted to the more general case.
We also assume that the temporal graph is directed, and if this not the case, then we simply

2.3. Computing Distances 25

Algorithm 1: ssbp,,, Wu, Cheng, et al. (2014)

Input :Link stream (V,E), source vertex x, time interval [ty #4]
Output : d (x, v) for each v € V within [ty, t]
1 Initialize ¢[x] = ty, and t[v] = oo forallv € V \ {x}
2 foreach e = (u,v,t, @) in the link stream do
3 ift +¢ <ty andt = t[u] then
4 if # + ¢ < t[v] then
5 | thvl<t+¢
6
7
8

else if ¢ = 7., then
\ Break the for-loop and go to line 8
return t[v] for eachv € V

have to examine each edge twice by inverting the source and the destination. The algorithm
maintains, for each vertex x € V, a triple £[x] = (Ix, rx, Sx) which indicates that if we
want to be at the destination d in any time instant # in [/, ry), then the latest departure time
from x is at most sy, i.e. we have to leave no later than s, from x (see Algorithm 2). More
formally, we have that dL[]lgi’rxfl] (x,d) < sx. At the beginning, we do not know anything
about the reachability of d from a vertex x; hence, we set the starting time of x equal to co
for an arbitrary time interval (for example, [z, + 1,1, + 2)) following #,, (line 3). When
we read a new temporal edge (x, y,t,¢ + 1), we first set £[d] to (¢, + 1,¢ + 1), since,
clearly, the destination vertex can always reach itself even starting after the appearance
of the edge (line 7). Let £[x] = (Ix,rx,sx) and £[y] = (/,.ry,s,) be the two triples
associated with x and y, respectively. If [, > [,,, then we update the triple associated with
x by setting £[x] to (I, Ix,¢) (line 12). This update is justified by Theorem 7.

Algorithm 2: stbp,,, Crescenzi, Magnien, and Marino (ibid.)

Data: Link stream (V, E4) whose travel-time of every edge is equal to 1, a
vertex d € V, and a time interval [z, #,].
Result: Earliest arrival time from each vertex to d.
1 for x < 1to |V]do
| L[x] = (tw + 1,15 + 2,00); S[x] < o0;
while there are other edges to be read do
lete < (x, y,t,t + 1) be the next edge;
Ld] < (t,t + 1.t + 1); S[d] < t;
(I, rx, 5x) < £[x];
(Iy.ry,sy) < LIy];
10 if [, <[y then
12 | llx] < (Iy. Ly, 1); S[x] < sx;
13 return [for each x € V, where (Ix, ry, Sx) is £[x].

e e W W

Lemma 7. Let G = (V,E4) be a link stream and d € V. Foranyu € V withu # d,
let 8y = (Tu,1, Tu2s - -+ » Tuhy > Tuhy+1) e the sequence of triples vy ; = (Ly i, Tu,is Su,i)
such that Ly p,+1 = to + L, rypy,+1 = to + 2, Syup,+1 = 00, and, for 1 < i < hy,

26 2. Paths

(Luyis Tuis Su,i) 1S the triple assigned to tu] at the (hy, + 1 —1i)-th execution of line 12 with
X = u during the running of Algorithm 2 with input G and d (note that h,, = 0 if this line
is never executed with x = u). Then, for any u € V withu # d, the intervals [l ;, 1y i),
fori <i < hy + 1, form a partition of the interval (1,1, + 2), and, for any t € [ty, ty),

d[t’t“)](u d) = Fui—t+1 ifsy; <t <syiv1withl <i <hy,
EAT ’ 00 otherwise.

Proof. We prove the lemma by induction on the number k of temporal edges that have
been read. In particular, for any k with 0 < k < |E|, let S(k) be the following statement.

Forany u € V with u # s, let El’f = (‘Cu,hﬁ,...,fu’hu_l,_]) be the suffix of
&, containing the triples assigned to t[u] at line 12 with x = u after having
read k edges. The intervals [/, ;, ry.;), for hﬁ <i < hy + 1, form a partition
of the interval [lu,h/,j’tw +2), and, forany ¢t € [lu,hﬁ ol 15y, <t < Syit1

then dgi}tw](u, d)=ry;—t+1L

We now prove by induction on k that S(k) is true for any k with 0 < k < |E|.

Base case. k = 0. In this case, no edge has been read yet and, hence, line 12 has never
been executed with x = u. We then have that, for any u € V withu # d, hS = hy, + 1,
E2 = (tyn,+1) With 7 p, 41 = (tw + 1,1, + 2,00), and, hence, [l n,+1: Fuhy+1) =
[to + 1,1, +2) = [lu,hg’[w + 2). Moreover, the interval [lu,hg’tw] = [ty + 1,1,] is
empty and the condition on the #-distances is “vacuously” true. Hence, S(0) is true.

Induction step. Given k with 1 < k < |E|, suppose that S(k — 1) is true. We now
prove that S(k) is also true. Lete = (x, y, ¢, + 1) be the k-th temporal edge read by the
algorithm. Clearly, this edge has no influence on any other vertex than x (since the graph is
directed). Hence, we have just to prove that the value of 7[x] is correctly updated. By the
induction hypothesis, we know that the current value of t[x] = (I, rx, Sx) is such that,
for any t' € [y, 1], the starting time of any latest starting ¢'-path from x to d is at least
sx > t. Hence, the edge e cannot improve these starting times since its appearing time is 7.
Analogously, we know that the current value of t[y] = (I, ry, sy) issuchthats, > t isthe
starting time of any latest starting ¢'-path from y tod with ¢’ € [I,,ry). If],, = I, the edge
e does not add any information for the vertex x, since we already know the starting time
of any latest starting ¢’-path from x to d, for any ¢’ = [,. On the contrary (see Figure 2.4),
if I, < Iy, then, for any time instant ¢’ € [/, /) (for which we did not know yet the
corresponding latest starting time from x), we can now say that we can first reach y (at
time t with# < s, < [, by using the temporal edge), and then wait until starting the path
from y to d at time s,: hence, for all these time instants, the latest starting time at x can
now be set equal to ¢, that is, the value of z[x] becomes (/y, [,) (note that subsequent
edges cannot improve this value since their appearing times are smaller than ¢). Hence,
if E;ffl = <Tx’h§—l,...,fu’hx+1>, we have that E)’C‘ = <Tx,h§’ rx’hl)\;—l,...,ru,th)

with hX = hk=1 — 1 and T,k = (Iy.lx.1). By the induction hypothesis, the intervals
[lx.isTx,i), for h’;_l < i < hy, form a partition of the interval [/, w1 o + 2): by adding

2.3. Computing Distances 27

I
t sy Ly ot I
X -~ mmmmmm e m e e e -
A e

R .

Figure 2.4: The update rule of the “backward” version of the temporal breadth-first search
algorithm.

the triple (I, [x,t), we obtain a partition of the interval [lx,h’; o +2) (since I, = lx’h§—1
andly =7, Kk). From the previous argument, it also follows that, for any ¢’ € [, Rk twl,
ifse; <t < Sxi+1 then dp(x,d) = ry; —t' + 1. We have thus proved that S(k)
is satisfied.

The lemma follows from the fact that its statement is exactly equivalent to S(| E]). [

How to Deal with Multiple Edges

In the previous sections, we have assumed that, for each time ¢ in the interval [¢,, 7,,], there
exists at most one edge whose appearing time is equal to ¢. Clearly, this assumption is not
realistic since, in the vast majority of real-world temporal graphs, many edges can appear
at the same time. In this section, we show how we can modify Algorithm 2, in order to
deal with this more general case. For the sake of clarity, we will assume that, for each
vertex u, the algorithm maintains a list 7,, of triples (instead of just one triple). However,
it is not hard to show that only the last two triples are really necessary at each iteration of
the algorithm, thus assuring that the algorithm itself has linear space complexity.

Consider the iteration of temporal edge e = (x, y,,¢+ 1), and let (I, ry, sx) (respec-
tively, (/,, 7y, s,)) be the last triple inserted in /. (respectively, /). This implies that that
if we want to arrive at the destination d in the interval [/, rx) (respectively, [/, 7)), then
we cannot start from by (respectively, y)
later than s (respectively, s,). Remember that, in Algorithm 2, the temporal edges are
scanned in non-increasing order with respect to their appearing times; hence, we know
that 1 < sx < Iy < ry (respectively, t < sy, < [, < ry). We now distinguish the
following cases.

1.t < syandt < s,. In this case, neither x nor y has yet used an edge at time ¢.
Hence, we can update the set of intervals as we did in the case of edges with distinct
appearing times. That is, if /, < [, then add to I the triple (/,, [y, ¢).

2.t < syand? = sy. In this case, y has already “encountered” an edge at time ¢.
Let (I}, r},, 5,) be the triple just before (I, ry, 5y) in I (note that [, = ry and that
t =35y < s;). If l;, < Iy, then we add to I the triple (//,[l,t): indeed, since

28 2. Paths

< s’y, we now know that, to arrive at d in the interval [l;, lx), we can start from u
at time ¢ (by using the edge ¢), wait until time s’,, and then follow the journey from

ytod.

3.t = sy and ¢ < sy. In this case, x has already “encountered” an edge at time ¢.
If I, < [x, then we extend to the left the triple of x until /,,: indeed, since s, < sy,
we now know that, even to arrive at d in the interval [/, [,), we can start at time ¢
(by using the edge e), wait until time s,, and then follow the journey from y to d.

4.t = sy and ¢t = s,. In this case, both x and y have already “encountered” an edge
attimet. Let (/},, 7}, 5,) be the triple just before (I, ry, sy) in Iy (note that [}, = ry,
and 1 = 5, < s'). Similarly to the previous case, if /}, < Iy, then we extend to the

left the triple of x until /..

2.3.4 Single Source: Fastest and Shortest Time

In this section we show how to compute ssbp,, and ssbp,, in log linear time. For clarity
purposes, the algorithm we present here does not work in a streaming fashion (i.e., sorted
link stream) like the ones we have provided for ssbp,,; and stbp,,,. A better algorithm
which works in streaming can be found in Wu, Cheng, et al. (2014). Moreover, in the cited
paper, the algorithm given for Fr is linear and, hence, meets the bound shown in Table 2.2.

The approach we follow here uses a variation of the strict static expansion introduced
in the previous chapter (see Section 1.5). We do some modifications to this transformation,
in order to make it linear on the size of the link stream and to deal with travel time on the
edges higher than 1. Indeed, given a temporal graph on n vertices and lifetime , note that
the strict static expansion in Section 1.5 requires 7 copies of the vertices appearing in the
temporal graph, independently of how many temporal edges there are. Hence, if we have
only two temporal edges in the temporal graph, one at time 1 and one at time 7, then the
strict static expansion has O(nt) vertices and edges instead of O(1).

The static expansion of a link stream G = (V,E) is the DAG SE(G) = (V', E’),
where:

V' = U(u,v,s,d))E]E{(uv S)» (v7 s+ ¢)}
e £/ = M UW, where M and W are defined next.
o M = {((u,s), (v,s +@)) : (u,v,s,¢) € E}. These are called moving edges.

* For every vertex v € V, let ((v,t1),..., (v,1;)) be the ordered sequence of pairs
in V'’ having as first component v. Then W = {((v,t;), (v,t;+1)) : i € [k — 1]}.
These are called waiting edges.

Observe that SE(G) = (V’, E’) has linear size on the number of temporal edges m in E,
as it has O(m) vertices and O(m) edges.

Now, let us suppose that we want to compute ssbp,, from a vertex r in V. To this
aim we define a suitable weight function for the edges of SE(G) = (V’, E’) and run

2.4. Computing Diameter 29

Dijkstra’s algorithm for computing lightest paths in the resulting weighted DAG.? The
weight function of an edge is defined as follows.

 For each edge e = ((u,s), (v,s + ¢)) in M, we set war(e) = ¢.

» For each edge e = ((v,1;), (v,ti4+1)) in W, we set wy (e) = tix1 —t; ifv # r;
otherwise, we set wy (e) = 0 otherwise.

Analogously, if we want to compute ssbp,, from a vertex r, we define the following
weight function for the edges of SE(G) = (V’, E’). For the edges in M, we use the same
wy defined above, while, for each edge e in W, we set wy, (e) to 0.

Running Dijkstra’s algorithm in SE(G) = (V’, E’) with the weights wps and wg, and
starting from (r, 7,,), we obtain for each vertex (u, t) € V' a value of distance correspond-
ing to the minimum path from (r, t,)?, denoted as d’((r, ty), (u. t)). Hence,

der(r,u) = min d'((r,ty), (u,1)).
(r,u) o in, ((r,1a), (u. 1))

Denoting by d”(-) the distance in SE(G) = (V’/, E’) with the edges weighted using
wp and wy,, we obtain:

dST(rv u) = (ugl)lenV/ d ((ra t()l)’ (uv t))

We leave the correctness of such algorithms as exercise.

2.4 Computing Diameter

Once a definition of distance is adopted, the corresponding notions of eccentricity and of
diameter can be introduced, analogously to the case of standard graphs. Thatis, given a link
stream G = (V,E), for each b € {EAT, LDT, FT, ST}, the (forward) eccentricity ECCF(u)
of a vertex u is its maximum finite distance to any other vertex, and the diameter D, (G)
of G is the maximum eccentricity of the vertices whose eccentricity is defined (i.e., finite).
For example, in the case of the link stream shown in Figure 1.4 and by referring to the
values of Table 2.1, we have that ECCF,,.(v1) = 4, ECCF,,;(v2) = 4, ECCF,.(v3) = 5,
and, hence, D, (G) = 5, while D, (G) = 4, D (G) = 3, and D (G) = 2.

We denote by EcCB, (1) the backward eccentricity of a vertex u, that is its maximum
finite distance from any other vertex. Note that the diameter D, (G) of a link stream can
also be defined as the maximum (defined) backward eccentricity of all its vertices. For
example, in the case of the link stream shown in Figure 1.4 and by referring to the values

2Dijkstra’s Algorithm computes the lightest path from a node to all the other nodes in a weighted graph
with non-negative weights in log linear time wrt the size of the graph (number of nodes plus number of edges).
See Cormen et al. (2022).

3Wlog, we can suppose that there is at least one temporal edge leaving r at time .

30 2. Paths

of Table 2.1, we have that EcCB,,;(v2) = 2, ECCB
hence, D,,.(G) = 5, as we already noticed.

For any D € {EAT, LDT, FT, ST}, in order to compute the corresponding diameter D (G),
we can execute the algorithm ssbp,, for each source vertex u; we refer to such “text-
book™ approach as Algorithm TB,. However, the time complexity of this approach is
O(n - ss-TIME, (1, m)). By looking at Table 2.2, we have that this time complexity is not
affordable whenever we have thousands or millions of vertices, and millions or billions of
temporal edges in the link stream. Unfortunately, in the following section, we show that
it is very unlikely that there exists an algorithm computing any of the four diameters in
time sub-quadratic in the number of temporal edges. In other words, it is reasonable to
conjecture that the known algorithms for computing any of the four diameters are, indeed,
optimal. An algorithm that is often linear in practice when computing the diameter of
real-world link streams has been proposed in Calamai, Crescenzi, and Marino (2021).

(v3) = 3, EccB,,.(v4) = 5, and,

EAT EAT

2.4.1 On the complexity of computing diameters

In this section, we present a conditional lower bound on the complexity of computing the
diameter of a link stream proven in Calamai, Crescenzi, and Marino (ibid.).

The Strong Exponential Time Hypothesis (in short, SETH) states that there is no algo-
rithm to solve k-SAT in time O((2 — €)"), where € > 0 does not depend on k (see Im-
pagliazzo, Paturi, and Zane (2001)). This hypothesis has been repeatedly used in the
past few years in order to prove lower bounds for the time complexity of algorithms
for some polynomial-time solvable problem. See, for example, Williams and Williams
(2010), which is one of the first papers along this line of research, where the authors give
bounds of many problems, like computing all pairs shortest paths and finding triangles in a
graph. We use the same approach here in order to prove that the diameter of a link stream
cannot be computed in time sub-quadratic on the number of temporal edges, even if the
travel-time of each edge is equal to 1.

To this aim, we will refer to the k-Two Disjoint Sets (in short, k-TDS) problem, which
is defined below.

k-TDS
Input. A set X and a collection C of subsets of X such that | X| < logk acp.
Question. Are there two disjoint sets in C?

Clearly, this problem can be solved in quadratic time, up to poly-logarithmic factors.
It is also known that, for any k, the k-TDS problem is not solvable in time 9] (1C179),
unless the SETH fails (see Borassi, Crescenzi, and Habib (2016)), where the O notation
ignores poly-logarithmic factors.

Theorem 8. Given a link stream G = (V,), for any b € {EAT, FT, ST}, computing the

diameter D, (G) cannot be done in time 5(|E|2_€)for any € > 0, unless SETH fails, even
if the link stream is delay-1 and undirected, and the diameter is either 2 or 3.

2.4. Computing Diameter 31

1,2,3
X3
X2 1,2 1,2,3 c3
1,2
1,2 C2
1,2
X1 C1

1,2,3

Figure 2.5: The reduction from disjoint sets to diameter computation. In this case, c; =
{x1,x3}, c2 = {x2,x4}, and c3 = {x3,x4}. All temporal edges have travel time equal
to 1, so for simplicity we represent on top of each edge only the starting time of each
temporal edge with same endpoints. For any distance, the diameter is 3, and, indeed, c;
and ¢, are disjoint.

Proof. We show that the k-TDS problem is reducible (in quasi-linear time) to the link
stream diameter computation problem, even in the very constrained described situations.
This reduction has been presented in Calamai, Crescenzi, and Marino (2021) and is a
temporal adaptation of the reduction shown in the extended version of Borassi, Crescenzi,
and Habib (2016).

Given an input (X = {x1,...,xx|},C = {c1,...,cc}) of k-TDS with |X| <
logk(|C|), we construct a delay-1 undirected link stream (X U C,E), where the set E
of temporal edges is defined as follows (see Figure 2.5).

* Foreachx;, x; € X, E contains the two temporal edges (x;, x;, 1, 1) and (x;, x;, 2, 1).

* For each c; and for each x; € c;, [E contains the three temporal edges (x;,cj, 1, 1),
(xi,cj,2,1),and (x;,c;,3,1).

For any D € {Ear, FT, sT}, let us now compute the eccentricities of all vertices, by
distinguishing between vertices in X and vertices in C.

vertices in X For each x;,x; € X, dy(x;,x;) = 1, since we can use the temporal edge
(xi,xj,1,1). Foreachx; € X andc; € C, dp(x;,c;) = 1 if x; € ¢, since we can

32 2. Paths

use the temporal edge (x;,cj, 1, 1). Otherwise, by letting x; be any element in ¢},
we get that (x;, xg, 1, 1), (xg, c;j,2, 1) isatemporal x;, ¢ ;-path; hence d (x;, c;) =
2. Therefore for each x; € X, we have that ECCF,(x;) < 2.

vertices in C Foreachc; € Cand x; € X, dp(cj,x;) = 1if x; € cj, since we can
use the temporal edge (c;, x;, 1,1). Otherwise, again by picking any xx € c; ,
we get the temporal ¢, x;-path (c;, xx, 1, 1), (X, x;, 2, 1). Therefore we have that
dp(cj,x;) <2, forevery x; € X.

Now consider ¢, € Cwithh # j. If c; Ncp # @, then we have the temporal ¢, ¢j-
path (cj, x;, 1, 1), (xi,cp, 2, 1), where x; € ¢; N cp; hence dy(c;, cp) = 2. Finally
consider cjNcp, = @. We argue thatdy,(c;, cp) = 3. Toseethatd,(cj, cp) < 3, just
consider the temporal c;, cy-path (cj,x;, 1, 1), (x;, x¢,2, 1), (x¢, cp, 3, 1), where
x; € ¢;j and xy € cj. Now to see that dp(cj, cj) = 3, note that there is no way of
arriving in ¢y, starting from c; before time 3, since no neighbor of ¢; is also a neigh-
bor of ¢j, and, hence, we are forced to pass through two vertices in X. Therefore,
for each ¢ € C, we have that ECCF,(c;) = 3 if and only if there exists ¢, € C such
thatc; Nep = @.

We can the conclude that the diameter D, of the link stream is either at most 2 or equal to
3: itis equal to 3 if and only if there exist two c;, ¢; € C which are disjoint.

Since |X| < log®(|C]), the reduction can be executed in O(|C|) time, and |E| =
9] (|C]). Hence, if we can compute the diameter of the link stream in 0 (|E|?>~¢) for some
€ > 0, then we could solve the k-TDS in 5(|C |27€) for some € > 0. From the result
of Borassi, Crescenzi, and Habib (2016), it follows that the SETH would fail, and the
theorem is proved. O]

Note that the proof of the above theorem gives also strong evidence that a sub-quadratic
(3/2 — €)-approximation algorithm for the diameter may be very hard to find, even for
undirected delay-1 link streams.

2.5 Exercises

1. Prove Observation 2.

2. reachl@l(y) for every time o and f,,, and for every u can be computed using
Algorithm 1 assuming that each edge has traversal time at least one. For this reason,
this algorithm works for the strict variation defined in Section 1.2 but not for the
non-strict one. Write an algorithm to compute reachl@’» (1) which works for the
non-strict case.

3. For each D € {LDT, sT}, give an example of a link stream where every temporal
u, v-walk P realizing d,(u, v) is such that the x, y-path contained in P does not
realize d(x, y), for every x, y in P such that {x, y} # {u, v}.

2.5. Exercises 33

4. Give an example of a link stream containing a temporal u, v-walk P realizing
dpar(u, v) is such that the x, y-path contained in P does not realize dy(x,), for
every x, y in P such that {x, y} # {u, v}

5. Prove the correctness of the single source best paths algorithms presented in Sec-
tion 2.3.4.

6. Give a quadratic algorithm to solve k-TDS.

In this chapter, we present existing results on problems related to connectivity concepts,
which intuitively are concepts related to the robustness of the temporal graph. More specif-
ically, given a temporal graph G and a pair of vertices s, ¢ of G, connectivity problems are
concerned with the existence of multiple ways of going from s to . The more options there
are to do this trip in independent (or disjoint) ways, the more robust is the graph. Alterna-
tively, one can also think of robustness as a measure of how easy it would be to disconnect
these two vertices by the removal of structures in the graph. In static graphs, these concepts
lead to the famous Menger’s Theorem (see Theorem 1). In temporal graphs, instead, there
are multiple ways of interpreting what “independence” between possible routes mean, not
all of them leading to a valid version of Menger’s Theorem. The possible interpretations
made so far are presented in the following sections.

3.1 Basic definitions and results

For the basic definitions of temporal graphs and temporal paths, go to Section 1.2. In what
follows, we introduce the definitions and problems related to temporal graph connectivity.
We also lay out some basic results that will be useful in the rest of this chapter.

Given two temporal vy, vg-walks, P = (u = vo,t1,V1,...,V4-1,%4, V4 = V) and
P = (u=vo.t],v],...,v._,, 1., v, = v), we say that they are vertex disjoint if V(P) N
V(P') = {vo, vg}, and that they are temporal vertex disjoint (t-vertex disjoint for short) if
VIE(PYNVT(P) C {(u,tr), (v, 1q), (u,1}), (v,1})}. In other words, they are allowed to

3.1. Basic definitions and results 35

intersect in their extremities, but not allowed to have common internal (temporal) vertices.
Ifuv ¢ E(G),thenaset S C V(G) \ {u, v} is a temporal vertex u, v-separator if there is
no temporal u, v-walkin G — S, and aset S € (V(G) \ {u, v}) x [t] is a temporal t-vertex
u, v-separator if VT (P) N S # @ for every temporal u, v-walk P in G. Observe that the
latter can be informally described as a subset S such that there is no temporal u, v-walk
in G — S. However this is not well-defined as the removal of temporal vertices does not
lead to a temporal graph in the used notation.

We reproduce again the example seen in Chapter 1 (see Figure 3.1). The temporal b, d -
walks Py = (b, 1,a,1, f,3,e,3,d) and P, = (b, 1,e,2,d) are not vertex disjoint, since
they intersect in e, but are t-vertex disjoint, since their intersection in e occurs in different
timesteps (namely, P; contains (e, 3) while P, contains (e, 1) and (e, 2)). We first show
that, when dealing with vertex disjointness, if we replace “walks” by “paths” in the above
definitions, then there would be no difference in the related optimization parameters.

b 2,3 c

Figure 3.1: Example of a temporal graph, with the A function being represented on top of
each edge. This example has also been shown in Chapter 1 (Figure 1.2).

Proposition 9. Let G be a temporal (directed) graph and u,v € V(G) be such that uv ¢
E(G). Then, the maximum number of vertex disjoint temporal u, v-paths is equal to the
maximum number of vertex disjoint temporal u, v-walks. Additionally, the minimum size
of S C V(G) \ {u, v} such that there are no temporal u, v-paths in G — S is equal to the
minimum size of a temporal vertex u, v-separator. The same hold if strict temporal paths
are considered.

Proof. Denote the maximum number of vertex disjoint temporal u, v-paths by p and the
maximum number of vertex disjoint temporal u, v-walks by w. We want to prove that
p = w. Since a temporal path is also a temporal walk, we get p < w. To prove that p > w,
the idea is to pick a set of vertex disjoint temporal u, v-walks, Pq,..., P, and obtain a
temporal u, v-path from P;, foreveryi € [k]. Foreach P;, write P; as (u = vi, ..., vfh_
v). If vi- #* vz for every j, £ € [k] with j # £, then just define P to be equal to P;.

36 3. Connectivity

Otherwise, let j be minimum such that v;- = vfZ for some € € [k], £ # j. Suppose £ is
maximum, i.e., that v}, is the last occurrence of v; in P;. If v;'. = v, then consider P/ =
(v‘i, ey v?). Otherwise, define P/ = (v‘i, e v}, 1y, vz+1, ey vil_), where (vi.vé_H, tr)
is the temporal edge used in P to get from v} = v; to vy, . This decreases the number of
repeated vertices in P/, and we can exhaustively apply this argument until all the obtained
walks, P{,..., P/, are paths. Also, because V(P/) C V(P;) for every i € [k], it follows
that Pl/ AU P,é are also vertex-disjoint. Therefore p = w and we are done. The reader
should notice that the same arguments hold for temporal directed graphs, and in case only
strict temporal paths are considered.

We leave the second part of the proposition as exercise (Exercise 4). O

Now, when we deal with t-vertex disjointness, there is a difference between picking
walks or paths. To see this, consider the graph in Figure 3.2. Because in a path we are not
allowed to go out of x and come back to x in a later timestep, and since every temporal
s, z-path contains the temporal vertex (x, 2), we get that there are no 2 t-vertex disjoint
temporal s, z-paths. In contrast, there are 2 t-vertex disjoint temporal s, z-walks, namely
(s,1,x,1,y,3,x,3,z) and (s, 2, x, 2, z). In fact, such example can be generalized to ob-
tain a temporal graph with no 2 t-vertex disjoint s, z-paths, and arbitrarily many t-vertex
disjoint s, z-walks (see Exercise 5).

X

SQ—I,ZWZ,:%—QZ

L B

V)

Figure 3.2: Temporal graph having 2 t-vertex disjoint temporal s, z-walks, and no 2 t-
vertex disjoint temporal s, z-paths.

We will then treat separately the cases of t-vertex disjoint walks and paths. To do this,
we need one last definition. We say that S C (V(G) \ {u, v}) x [t] is a temporal t-vertex
u, v-path-separator if VT (P) N S # @ for every temporal u, v-path P in G. We define
also the following parameters, related to each definition and each type of disjointness.

* pg(u,v): maximum number of vertex disjoint temporal u, v-paths in G;

* cg(u,v): minimum size of a temporal vertex u, v-separator in G;

* twg(u, v): maximum number of t-vertex disjoint temporal u, v-walks in G;
* tcg(u, v): minimum size of a temporal t-vertex u, v-separator in G;

* tpg(u, v): maximum number of t-vertex disjoint temporal u, v-paths in G;

3.1. Basic definitions and results 37

* tpcg(u, v): minimum size of a temporal t-vertex u, v-path-separator in G.

If G is clear from the context, we omit it in the subscript. Finally, we formally define
all the problems whose computational complexity are going to be studied in the following
sections.

VERTEX DISJOINT PATHS
Input. A temporal graph G, a pair of vertices s,z € V(G), and an integer k.
Question. Are there k vertex disjoint temporal s, z-paths in G?

VERTEX SEPARATOR
Input. A temporal graph G, a pair of vertices s,z € V(G), and an integer k.
Question. Is there a temporal vertex s, z-separator in G of size at most k?

The following are simple adaptations of the above definitions to the other contexts.

T-VERTEX DISIOINT WALKS
Input. A temporal graph G, a pair of vertices s, z € V(G), and an integer k.
Question. Are there k t-vertex disjoint temporal s, z-walks in G?

T-VERTEX SEPARATOR
Input. A temporal graph G, a pair of non-adjacent vertices s, z € V(G), and an integer k.
Question. [s there a temporal t-vertex s, z-separator in G of size at most k?

T-VERTEX DISJOINT PATHS
Input. A temporal graph G, a pair of vertices s, z € V(G), and an integer k.
Question. Are there k t-vertex disjoint temporal s, z-paths in G?

T-VERTEX PATH SEPARATOR
Input. A temporal graph G, a pair of non-adjacent vertices s, z € V(G), and an integer k.
Question. Is there a temporal t-vertex s, z-path-separator in G of size at most k?

Note that each of the above problems can be defined also on temporal directed graphs;
in such cases, we add the prefix Dir to each of them. Additionally, each of them can
also be defined in terms of strict temporal paths; in such cases, we add the prefix STRICT.
Therefore, concerning just the first problem, we can get also the variations DIR VERTEX
DisjoINT PATHS, STRICT VERTEX DISJIOINT PATHS, and STRICT DIR VERTEX DISJIOINT PATHS.

38 3. Connectivity

In what follows, we always present the main results in terms of the problems defined above,
but also comment on the complexities of these variations.

3.2 Vertex disjointness

3.2.1 Menger’s Theorem and vertex disjointness

Recall that Menger’s Theorem on static graphs tells us that the maximum number of vertex
disjoint s, z-paths is equal to the minimum size of an s, z-separator. Translating this to the
temporal context, and using the previously defined notation, would be equal to say that
p(s,z) = c(s,z). This is shown not to hold by Berman (1996) still in 96, and here we
present a more famous example, presented by Kempe, Kleinberg, and Kumar (2000). See
Figure 3.3. Observe that there are no 2 vertex disjoint temporal s, z-paths. In contrast, one
can check that no single vertex in {u, v, w} can be a temporal vertex s, z-separator. It thus
follows that p(s,z) = 1 < c(s,z) = 2. Note that this example works even if only strict
paths are considered. Also, we can orient the its edges to obtain a temporal directed graph
instead. This means that p(s,z) = 1 < ¢(s,z) = 2 for all possible variations. Kempe,
Kleinberg, and Kumar (ibid.) generalize this construction in order to obtain an example
where p(s,z) = 1 < c¢(s,z) = k, for arbitrary k.

Figure 3.3: Temporal graph G having no 2 t-vertex disjoint temporal s, z-paths, and whose
minimum size of a temporal vertex s, z-separator is 2.

The interesting thing about the above example is that, if each edge is active exactly
once, then such graph is exactly the minimal structure that must occur in order to have
inequality p(s,z) < c(s, z). We formalize such idea next.

Given a graph G, an edge subdivision consists in replacing an edge of G by a path.
For example, in Figure 3.4, graph H is obtained from G by subdividing edge uv. If H is
obtained from G by a sequence of edge subdivisions, then we say that H is a subdivision
of G. It is also said that G is a topological minor of H.

Kempe, Kleinberg, and Kumar (ibid.) defined a Mengerian graph as being a graph G
such that, for every A : E(G) — (If) (i.e., edges receive subsets of size 1), and every
non-adjacent s,z € V(G), we get that pg(s,z) = cg(s, z), where G = (G, A). In words,

3.2. Vertex disjointness 39

w w
u v u ® v
G H

Figure 3.4: Edge subdivision operation.

a graph is Mengerian if, constrained to timefunctions allowing for only one appearance of
each edge, we get that G can never be used to get an example where the vertex disjoint
version of Menger does not hold. They then prove the following (the gem is the base graph
of the temporal graph presented in Figure 3.3).

Theorem 10 (Kempe, Kleinberg, and Kumar (ibid.)). 4 graph G is Mengerian if and only
if G does not have the gem as topological minor.

Kempe et al.’s result has been recently generalized by Ibiapina and Silva (2022) to al-
low for multiple appearances of an edge. Because these proofs are long and consist mainly
of structural analysis of static graphs, we refrain from presenting them here. Nevertheless,
we present in Figure 3.5 a temporal graph G not having the gem as a topological minor,
but such that p(s, z) < c(s, z). This shows how indeed the theorem above only holds with
the additional constraint that each edge is active exactly once.

A
W

Figure 3.5: Example of temporal graph G = (G, A) where p(s,z) < c(s,z), while G
does not have the gem as topological minor.

40 3. Connectivity

3.2.2 Complexity of vertex disjoint problems

In this section, we present the many known results concerning the (parameterized) com-
plexity of problems VERTEX DISJOINT PATHS and VERTEX SEPARATOR, and their variations.
We start by the simple reduction presented by Berman (1996). Such reduction helps us
understand why it is often the case that the directed version of paths-related problems
are harder than their undirected versions. Indeed, it happens because a reduction from
LINKAGE (defined below) is made, and it is known that such problem is NP-complete on
directed graphs even if k = 2 (Fortune, Hopcroft, and Wyllie (1980)), while it is NP-
complete on undirected graphs (Karp (1975)), but polynomial-time solvable if k is a fixed
value (Robertson and Seymour (1990)).

LINKAGE

Input. A (directed) graph G, and k pairs of vertices {(s1, 21), . . ., (Sk, Zk)}, k = 2.
Question. Are there vertex disjoint paths Py, ..., P, where P; is an s;, z;-path for every
i €[k]?

Theorem 11 (Berman (1996)). Let G be a temporal (directed) graph with lifetime <, s, z
be a pair of vertices of G, and k be a positive integer. Solving VERTEX DISJOINT PATHS
is NP-complete on (G, s, z,k). And if G is directed, then DIR VERTEX DISJOINT PATHS is
NP-complete even ifk = 7 = 2.

Proof. Because a set of s, z-paths can be checked to be vertex disjoint temporal s, z-paths
in polynomial time (Exercise 1), we get that VERTEX DISJOINT PaTHS is in NP. To prove
hardness, we make a reduction from LINKAGE. Let (G, P) be an instance of LINKAGE,
where P = {(s1,21),...,(Sk, zx)}. We construct a temporal graph G from G as follows.
First, add two new vertices, s and z, and make s adjacent to s; and z adjacent to z;, for
every i € [k]. Then, as timefunction, assign to each edge e € E(G) all values within [k]
(i.e., A(e) = [k]). Additionally, for each i € [k], let A(ss;) = A(z;z) = {i}. We show
that (G, P) is equivalent to (G, s, z, k), i.e., that there are vertex disjoint paths P1, ..., P,
where P; is an s;, z;-path for every i € [k], if and only if there are k vertex disjoint
temporal s, z-paths in G.

First, suppose that Py, ..., Py are vertex disjoint paths solving LINKAGE. Write P; as
(i =xh,xh,...,z; = xéi), and define the temporal s, z-path
P! = (s,i,8i,i,X5,...,1,2;,1,2);

in words, P/ is equal to P; in timestep i extended by (ss;,i) and (z;z,i). Because
Py, ..., Py are vertex disjoint, it follows directly that P{, ..., P; are (internally) vertex
disjoint. Now, let Py, ..., P, be (internally) vertex disjoint temporal s, z-paths. Because
s has exactly k temporal edges incident to it, we get that each such edge belongs to one
of these paths. Suppose, without loss of generality, that P/ starts with the temporal edge

(ss;, i) foreachi € [k]. By asimilar argument, we get that each (z; z, i) belongs to exactly

3.2. Vertex disjointness 41

one of these paths. Observe that (z;z, 1) can only belong to P{, and hence P| contains
a s1, z1-path of G, P;. Then, because Pl/ has already arrived to z before timestep 2, we
get that (222, 2) can only belong to P,, and hence P, contains a s,, zo-path of G, P,. By
iteratively applying this argument, we get the k desired paths.

Observe that the construction also works if G is a directed graph. Indeed, in such case
it is enough to add edges from s to s; and from z; to z, for every i € [k]. O

The theorem above raises the natural question about whether the problem is NP-complete
also on temporal undirected graphs when &k = 2. This was answered positively by Kempe
et al. in their seminal paper. In fact, the proof'is an interesting application of the undelayed
construction (see definition in Section 1.5). Before we present the simple proof, we show
the following important property. Recall that a more general model for temporal graphs
is a triple (G, «, ¢), where G is a multigraph, « gives the starting time of each edge, and
¢ gives the travel time.

Lemma 12. Let G = (G, @, ¢) be a general temporal graph, with travel time on the edges.
Also, let G' = (G’, L) be the undelayed version of G. Given s,z € V(G), we have that
there are k vertex disjoint temporal s, z-paths in G if and only if there are k vertex disjoint
temporal s, z-paths in G'.

Proof. Given e € E(G), denote by w, the vertex of G’ related to e. First, consider
P1, ..., Py to be vertex disjoint s, z-paths in G. Then, for each i € [k], let Pi/ be obtained
from P; by replacing each edge e = uv € E(P;) with the subpath (u, a(e), we, a(e) +
¢(e).v). Because Py, ..., Py are vertex disjoint, and the only new vertices in P{,..., P]
are of the type w,, one can see that also the latter paths are vertex disjoint. Now, if
P{,..., P are vertex disjoint temporal s, z-paths in G’, because G’ is a bipartite graph
with parts V(G) and W = {w, | e € E(G)}, and each w, € W has degree exactly two,
one can see that we can obtain temporal s, z-paths Py, ..., Py in G by replacing subpaths
(u,t, we,t', v) with the corresponding edge of G. Additionally, as V(P;) S V(P/) for
every i € [k],and V(P/) N V(P}) = @ foreveryi,j € [k],i # j, we get that the same
holds for Py, ..., Py, i.e., these are vertex disjoint in G. O

Now, we apply the above lemma to make a simple reduction from the following prob-
lem to our problem of interest.

BOUNDED LENGTH DISJIOINT PATHS

Input. A (directed) graph G, a pair of vertices s, z, and two positive integers £ and k.
Question. Are there internally vertex disjoint s, z-paths Py, ..., P in G such that each
P; has length at most £?

The problem above has been thoroughly investigated, both on directed and undirected
graphs, as well as from the point of view of parameterized complexity, and even its edge
version. The complete picture has been summarized by Golovach and Thilikos (2011),
where the authors also present new results. Particularly, it is known that the problem is

42 3. Connectivity

NP-complete when G is undirected, even if k = 2 (Li, McCormick, and Simchi-Levi
(1990)). This is what is used in the theorem below.

Theorem 13 (Kempe, Kleinberg, and Kumar (2000)). Let G be a temporal graph with
lifetime t, s,z be a pair of vertices of G, and k = 2 be a fixed positive integer. Solving
VERTEX DISJIOINT PaTHS is NP-complete on (G, s, z, k).

Proof. The problem is in NP, as argued already in the proof of Theorem 11. Consider now
an instance (H, s, z, £, 2) of BOUNDED LENGTH DisjOINT PATHS, where H is undirected.
Observe Figure 3.6 to follow the construction. Let G be the multigraph obtained from H
by adding £ — 1 copies of each edge (hence, each edge of G has multiplicity £). Finally,
let G = (G, a, @), be constructed in a way that ¢(e) = 1 for every e € E(G), and such
that each copy of e € E(H) starts in a different time. Formally, for every ¢’ € E(H), we
have that {o(e) | e has same endpoints as e’} = {1,...,£}. It is not hard to see that each
path of bounded length in H is related to a temporal s, z-path in G and vice-versa. Finally,
applying Theorem 12 the theorem follows.

a a

—_

c d c 2 d

Figure 3.6: Construction in the proof of Theorem 13, with £ = 2. As all travel times are
equal to 1, we refrain from representing them in the figure. Observe that the two paths of
length at most 2 in H (to the left) are related to the green paths in G (to the right). The
non-valid path of length 3 in H is also not a temporal path in G as it arrives too late in d
in order to use any of the edges from d to z (red path).

To obtain the same result for higher values of k, one can simply add artificial s, z-paths
of length 2. O

Observe that the proof of Theorem 13 actually works also for the strict case, since
a temporal path in (G, «, ¢) is exactly a strict temporal path in (G, «), and vice-versa.
Additionally, the lifetime of the constructed temporal (directed) graph is either £ + 1 (non-
strict case) or £ (strict case). Because BOUNDED LENGTH DIsJOINT PATHS is NP-complete
on directed and undirected graphs when k = 2, and on directed or undirected graphs when

3.2. Vertex disjointness 43

k T k+t
VERTEX DisJOINT Pats | pNP k = 2 - Theorem 13 | pNP ¢ = 5 | Open
Dir VDP pNP k = 2,7 = 2 - Theorem 11
StricT VDP pNP k =2 -Theorem 13 | pNP 7 =5 | Open
StrICT DIR VDP pNP k =2 -Theorem 13 | pNP 7 =5 | Open

Table 3.1: VDP stands for VERTEX DisjoINT PATHS; pNP stands for para-NP-complete.
Parameterized complexity of paths problems when parameterized by: the number of paths
k; the lifetime 7; and the sum k + 7. Results by Itai, Perl, and Shiloach (1982) directly
imply the entries of the table for column t by using the same reduction as the one in
Theorem 13.

£ = 5 (Itai, Perl, and Shiloach (1982)), we get that VERTEX DisJOINT PATHS, DIR VERTEX
DisjoINT PaTHS, STRICT VERTEX DISIOINT PATHS and STRICT DIR VERTEX DISJOINT PATHS
according to parameters k and t, where t denotes the lifetime. As for the parameter
k 4+ 7, Golovach and Thilikos (2011) give FPT algorithms for all variations of BOUNDED
LENGTH DisjoINT PATHS. Because we do not have a reduction on the opposite direction,
i.e., from our problems to BOUNDED LENGTH DIsJOINT PATHS, it remains open whether our
problems can also be solved in FPT time when parameterized by k + 7, except for the
case DIR VERTEX DisJOINT PATHS which is NP-complete even for k = t = 2 (Berman
(1996)). Even though the observations about the complexity parameterized by t are quite
straightforward, they were not mentioned by Kempe, Kleinberg, and Kumar (2000). This
is why we cite Itai, Perl, and Shiloach (1982) in Table 3.3.

Concerning VERTEX SEPARATOR, Kempe, Kleinberg, and Kumar (2000) also give an
NP-complete proof for it. Observe however, that this problem cannot be NP-hard for fixed
values of k (see Exercise 7). In other words, while the paths problem is para-NP-complete
when parameterized by k, the separator problem is in XP, and hence polynomial-time
solvable for fixed values of k. A natural question therefore is whether the XP complexity
could be improved to FPT. The answer is no, as proved by Zschoche et al. (2020). In
fact, such reduction relies again on the complexity of length bounded paths and a lemma
similar to Theorem 12. Zschoche et al. (ibid.) treat only the simpler case where ¢ (e) = 1
in order to reduce the problem on strict increasing paths to the problem on non-strict paths.
We leave the proof of the following lemma as exercise. Again, the notion of a separator in
G = (G, o, ¢) is analogous to ours. Formally, given non-adjacent s, z € V(G), a temporal
vertex s, z-separator is a subset X C V(G) \ {s, z} such that X intersects every temporal
s, z-path in G.

Lemma 14. Let G = (G, «, ¢) be a general temporal graph, with travel time on the edges.
Also, let G' = (G’, M) be the undelayed version of G. Given s,z € V(G), we have that
there is a temporal vertex s, z-separator in G of size at most k if and only if there is a
temporal vertex s, z-separator in G' of size at most k.

Now, the reduction is made from the following problem, known to be W([1]-hard when

44 3. Connectivity

parameterized by k (Golovach and Thilikos (2011)).

SEPARATOR FOR BOUNDED LENGTH PATHS

Input. A (directed) graph G, a pair of non-adjacent vertices s, z, and two positive integers
fand k.

Question. Isthereaset X € V(G))\ {s, z} of size at most k that intersects every s, z-path
of length at most £?

Theorem 15 (Zschoche et al. (2020)). Let G be a temporal (directed) graph, s, z be a pair
of non-adjacent vertices of G, and k be a positive integer. Solving VERTEX SEPARATOR is
W[1]-hard on (G, s, z, k), when parameterized by k.

Proof. We make a reduction from SEPARATOR FOR BOUNDED LENGTH PATHS. Consider
then an instance of such problem, (H, s, z, £, k). We show that the same construction as
the one in the proof of Theorem 13 works here; so let G = (G, «, ¢) be obtained as before.
We prove that (H,s,z,£,k) is a “yes” instance for SEPARATOR FOR BOUNDED LENGTH
ParHs if and only if G has a temporal vertex s, z-separator of size at most k. The theorem
then follows by applying Theorem 14.

So suppose that X € V(H) \ {s, z} is a set of size at most k that intersects every
s, z-path of length at most £. Because a temporal s, z-path in G gives also an s, z-path in
H of length at most £, we get that X must be also a temporal vertex s, z-separator in G.
Now, if X € V(G) \ {s, z} is a temporal vertex s, z-separator in G, then note that we can
suppose that X N W = @. Indeed, let w, € X N W, where e = uv € E(H). Since
s, t are not adjacent, we get that either u# or v is not in {s, ¢}, suppose u. Then, since w,
has degree 2 in G, we get that all temporal s, z-path passing by w, must also pass by u.
Therefore, (X \ {we}) U {u} is also a temporal vertex s, z-separator in G. Now, because
every s, z-path of length at most £ in H defines also a temporal s, z-path in G, we get that
X must intersect every such path, i.e., (H, s, z, £, k) is a “yes” instance for SEPARATOR FOR
BOUNDED LENGTH PATHS. O

As before, one can see that the proof also works for the strict variation of the problem.
And, again, because SEPARATOR FOR BOUNDED LENGTH PatHs is W([1]-hard when param-
eterized by k even on directed graphs, it follows that VERTEX SEPARATOR, DIR VERTEX
SEPARATOR, STRICT VERTEX SEPARATOR and STRICT DIR VERTEX SEPARATOR are all W([1]-
hard when parameterized by k. To close this section, we mention that another parameter of
interest is the lifetime of the temporal graph. Table 3.4 summarizes all known results. The
polynomiality results in the table for 7 < 4 are related to the fact that a version of Menger
for bounded length paths in static graphs holds when the length is bounded by 4 (Lovasz,
Neumann-Lara, and Plummer (1978)). A good question is whether the polinomiality re-
sults when 7 < 4 extend for the paths problems.

Before we proceed, we comment about the classical complexity of VERTEX SEPARATOR.
When proving W([1]-hardness, the authors usually do not bother to prove completeness
(i.e., that the problem is also contained in the class of problems W[1]). To do this, one needs

3.3. Temporal Vertex disjoint walks 45

k T k+t

VERTEX SEPARATOR | W[1] | pNP-7 =2 | XP (T)

Dir VSP WI[1] | pNP-7 =2 | XP(T)

StricT VSP WI[1] | pNP-7 =5 | XP(T)
Poly-7 <4

StrICT DIR VSP WI1] | pNP-7 =5 | XP (T)
Poly-t <4

Table 3.2: All results presented in this table are presented by Zschoche et al. (2020), except
the ones marked with T, which stands for “trivial”. VSP stands for VERTEX SEPARATOR;
pNP stands for para-NP-complete; W[1] stands for W[1]-hard. Parameterized complexity
of separator problems when parameterized by: the size of the separator k; the lifetime 7;
and the sum k + 7.

to provide what is called a circuit with weft at most 1 to solve the problem, which entails in
giving all the appropriate definitions, and building such circuit. The authors hence usually
choose not to do it as such work can be tedious and not very enlightening as to how hard
the problem really is (after all, W[1]-hardness is already established). Since the scope of
this book is not parameterized complexity theory, we also refrain from dwelling in such
deep waters. Nevertheless, a simpler question is whether the problem is NP-complete.
Observe that, since SEPARATOR FOR BOUNDED LENGTH PaTHS is also NP-hard (Golovach
and Thilikos (2011)), we get that VERTEX SEPARATOR is NP-hard too. Additionally, note
that the algorithms seen in Chapter 2 can be used to prove that the following problem is
polynomial-time solvable.

TEMPORAL VERTEX SEPARATOR TESTING

Input. A temporal (directed) graph G, a pair of non-adjacent vertices s, z, and a subset
X CV(G)\{s,z}.

Question. Is X a temporal vertex s, z-separator?

Now, observe that this means that VERTEX SEPARATOR is also in NP (and hence is NP-
complete), as a polynomial certificate would be a temporal vertex s, z-separator of size at
most k. As we will see later, the analogous problem for temporal t-vertex s, z-separators
is also in P, but the same is not true for temporal t-vertex s, z-path-separators.

3.3 Temporal Vertex disjoint walks

Recall that rw(s, z) denotes the maximum number of t-vertex disjoint temporal s, z-walks
in G, while t¢(s, z) denotes the minimum size of a temporal t-vertex s, z-separator in G.
In this section, we prove that a version of Menger’s Theorem concerning t-vertex disjoint

46 3. Connectivity

walks holds, on both directed and undirected temporal graphs. This is a nice application
of the static expansion graph (see Section 1.5).

Theorem 16 (Ibiapina, Lopes, et al. (2022)). Let G = (G, A) be a temporal (directed)
graph with lifetime t, and s,z € V(G) be such that sz ¢ E(G). Thentw(s,z) = tc(s, z),
and such values can be computed in polynomial time.

Proof. Let D denote the directed graph obtained from the static expansion of G by identi-
fying all vertices {(s,i) | i € [t]} into a single vertex, s, and all vertices {(z,7) | i € [t]}
into a single vertex, z. We prove that fw(s, z) is equal to the maximum number of vertex
disjoint s, z-paths in D, while ¢c(s, z) is equal to the minimum size of an s, z-separator
in D. The theorem thus follows by Menger’s Theorem on static directed graphs, and the
fact that computing these parameters in a static directed graph is largely known to be
polynomial-time solvable (see e.g. West (2000)).

First, given an s, z-path P in D, we explain how to construct a temporal s, z-walk P’
inG. Solet P = (ag = s,e1,...,e4.044 = z) be an s, z-path in D. We start with P’
being equal to P, and replace objects in P’ until we obtain a temporal s, z-walk in G. So
for each i € [¢ — 1], write «; as (u;, ;). Also, for simplicity of notation, we consider
ap to be equal to (s, 71) and o to be equal to (z, 74—1). Observe that e; = s(uy, ;) and
eq = (Ug—1,t4-1)z,1.e.,] and ¢, are the starting and finishing times of P, respectively.
Now, for each i € [¢], if u;—1 = u; (and hence t; = t;—1 + 1), remove ¢; and ¢; from P’.
And ifu;—7 # u; (and hence t; = t;_1), then replace ¢; in P’ by ¢;. Note that in the latter
case, we get that (u;_1u;, ;) is atemporal edge of G; call such fact (*). Observe that we are
now left with a sequence that alternates temporal vertices and timesteps. Because of (*),
andsincet; <t <...<tgas(u,i)(v, j)isnotanedge of D wheneveri > j, it suffices
to replace each temporal vertex (u;, ;) in the sequence by simply u; in order to obtain a
temporal walk in G. One can verify that VT (P') \ ({s,z} x [t]) = {o1,...,04—1} =
V(P)\ {s,t}. Additionally, observe that the backward transformation satisfying the same
property can also be defined, i.e., given a temporal s, z-walk P’, we can construct an s, z-
path P in D such that VT (P")\ ({s,z} x [t]) = V(P) \ {s, z}. This directly implies that
tw(s, z) is equal to the maximum number of vertex disjoint s, z-paths in D.

So now suppose that X € (V(G) \ {s,z}) x [r] is a minimum temporal vertex s, z-
separator. Note that X C V(D) and that, if there is an s, z-path not intersecting X in D,
then there is a temporal s, z-walk not intersecting X in G by the previous paragraph, a
contradiction. On the other hand, consider X C V(D) \ {s, z} to be an s, z-separator in
D. By construction, X € (V(G) \ {s,z}) x [t]. And, again by the previous paragraph,
there cannot be a temporal s, z-walk in G not intersecting X . O

The above theorem then gives us that (DIR) T-VERTEX DIsJOINT PATHS and (DIR) T-
VERTEX SEPARATOR are all polynomial-time solvable. Now, one might be tempted to apply
the same argument to the strict versions of such problems, but using the strict static expan-
sion of G instead. Such argument cannot work, as witnessed by the example in Figure 3.7.
In it, we have 2 vertex disjoint s, z-paths in the obtained static digraph D, when instead,
because (u, 2) is contained in every temporal s, z-walk, we get that the maximum number

3.4. Temporal Vertex disjoint paths 47

of t-vertex disjoint strict temporal s, z-walks in G is just 1. The problem with this approach
is that it makes no distinction between vertices (1,7 — 1) and (u, i), when such vertices
are actually representing the single temporal vertex (u,i). We believe that this mistake
was made by Mertzios, Michail, and Spirakis (2019), where they state that a version of
Menger’s Theorem on t-vertex disjoint strict walks holds. Indeed, as can be witnessed
by the temporal graph depicted in Figure 3.8b, an analogous of Theorem 16 for the strict
case does not hold, contrary to what is stated by Mertzios, Michail, and Spirakis (ibid.) in
Corollary 2 of their work. The fact that such temporal graph is indeed an example where
Menger does not hold for strict t-vertex disjoint temporal walks follows from Theorem 18,
seen in the next section, and the fact that every strict temporal s, z-walk in such temporal
graph is also a strict temporal s, z-path. We then get that the complexity of STRiCT (DIR)
T-VERTEX DISJOINT PATHS and STRICT (DIR) T-VERTEX SEPARATOR are all open.

v

\/‘\9 v e \o °
s@]%—&?ﬁ%‘z e *

Figure 3.7: Construction analogous to the one in Theorem 16, but using the strict static
expansion. For simplicity, we omit the edges linking the copies of u and of v, presenting
only the 2 vertex disjoint s, z-paths.

3.4 Temporal Vertex disjoint paths

In this section, we study the last type of (temporal) vertex disjointness that has been inves-
tigated in the literature so far, namely t-vertex disjointness among temporal paths. This
concept has been recently introduced by the authors of this book and co-authors (Ibiapina,
Lopes, et al. (2022)). This is why all results known so far are due to them.

As we have seen in the previous section, if we consider t-vertex disjoint walks, then
a version of Menger’s Theorem holds. This is not the case for paths, as can be seen by
the example in Figure 3.8a. Recall that #p(u, v) denotes the maximum number of t-vertex
disjoint temporal u, v-paths, while ¢pc(u, v) denotes the minimum size of a temporal t-
vertex u, v-path-separator.

Proposition 17 (Ibiapina, Lopes, et al. (ibid.)). Let G be the temporal graph depicted in
Figure 3.8a. Then tp(s,z) = 2 while tpc(s,z) = 3.

48 3. Connectivity

Ne N

bt u
s w z

. s
. e b

7 " Ve N >

V - \L A/%
3

y v w

(a) Non-strict case. (b) Strict case.

Figure 3.8: Examples of temporal graphs where the maximum number of (strict) tem-
poral s, z-paths is smaller that the minimum size of a (strict) temporal t-vertex s, z-path-
separator.

Proof. Because (s, 1,x,2,z)and (s, 1, y, 2, z) are t-vertex disjoint, we get that tp(s, z) =
2. Tosee thattp(s, z) < 2, suppose by contradiction that P, P, Pz are 3 t-vertex disjoint
temporal s, z-paths. Observe that each of the 3 temporal edges incident in s must be used,
so we can suppose, without loss of generality, that Py starts with (s, 1, x), P, with (s, 2, x)
and P3 with (s, 1, y). Now, since Py, P, are t-vertex disjoint, we get that P, must use the
temporal edge (xw, 1) as otherwise P; and P, would intersect in (x, 2). But then, because
P is a path, not a walk, it must continue through y. If it contains temporal edge (wy, 1),
then it intersects P3 in (y, 1); hence it must contain (wy, 2). But note that P3 also cannot
use (wy, 1) nor (wy, 2), which means that P3 is “stuck” in y until time at least 2. This
is a contradiction as in this case P, and Pj intersect in (y,2). We leave the proof of
tpc(s, z) = 3 as exercise (Exercise 11). O

One can now recall the example seen in Section 3.2, Figure 3.3, where we had p(s, z) =
1 < ¢(s,z) = 2, and wonder whether an example where tp(s,z) = 1 < tpc(s,z) = 2
exists. The answer is no, as a version of Menger’s Theorem holds when zp(s, z) = 1. This
will be discussed in Section 3.4.1. Then, as usual, we present complexity results in Sec-
tion 3.4.2. But before moving on, we emphasize the fact that, as happened in the t-vertex
walks case, the mentioned version of Menger only holds for non-strict paths. Indeed, the
same example showing that, in the strict case, we can have tw(s,z) = 1 < tc(s,z) = 2,
also shows that we can have tp(s,z) = 1 < tpc(s,z) = 2. It is presented in Figure 3.8b.

Proposition 18 (Ibiapina, Lopes, et al. (2022)). Let G be the temporal graph depicted in
Figure 3.8a. Considering strict temporal paths, we get tp(s,z) = 1 while tpc(s,z) = 2.

3.4. Temporal Vertex disjoint paths 49

3.4.1 Menger for t-vertex disjoint paths

In this section, we will present the main ideas behind the proof of Theorem 19, presented
below. We will not present the entire proof, as it is quite long and can be found in the
manuscript by Ibiapina, Lopes, et al. (ibid.), and because we believe that the most interest-
ing exercise will be to contrast the ideas behind the proof of Ibiapina et al. with the proof
of Menger’s Theorem on static graphs.

Theorem 19 (Ibiapina, Lopes, et al. (ibid.)). Let G be a temporal (directed) graph, and let
s,z € V(G) be such that sz ¢ E(G). Then, tp(s,z) = 1 ifand only iftpc(s,z) = 1.

Observe that tp(s, z) < tpc(s, z) always holds and if there are no temporal s, z-paths,
then no temporal vertex would be needed (i.e., the emptyset would be a temporal t-vertex
s, z-path-separator). Therefore the sufficient part of the theorem follows. It remains to
prove that, in case tp(s,z) = 1, there must exist a temporal vertex which is contained
in every temporal s, z-path (i.e., tpc(s,z) = 1). Before we comment on this proof, we
revisit some of the ideas behind the proof of Menger’s Theorem. The complete version of
the proof studied here can be found in the book byWest (2000).

So let us recall Menger’s Theorem, which is stated as Theorem 1 in Section 1.1. There,
given a (directed) graph G and vertices 5,z € V(G), we used p(s, z) and c(s, z) to de-
note the maximum number of vertex disjoint s, z-paths and the minimum size of an s, z-
separator in G. There is an abuse of language, as this notation is used also in the vertex
disjoint temporal context. This is why, when we use this notation for the temporal con-
text in what follows, we will always accompany with the temporal graph in the underline.
Coming back to Menger’s Theorem, it then states that p(s,z) = c(s,z). As it happens
with temporal paths, the inequality p(s, z) < c(s, z) holds in a straightforward way, since
a separator must contain at least one vertex of each path in a maximum set of vertex dis-
joint paths. Hence, the hard part of the proof of Menger’s Theorem is also proving that
p(s,z) = c(s,z). A first difference with relation to Theorem 19 is that, in the latter, the
inequality tp(s, z) = tpc(s, z) only holds with certainty if tp(s, z) = 1.

Now, to prove that p(s,z) = c(s, z) holds on static graphs, we apply induction on
n = |V(G)|. For this, consider a minimum s, z-separator, X, and denote c(s, z) by k.
The objective is to construct k vertex disjoint s, z-paths in G. For this, consider V; to
be the set of vertices contained in paths between s and X. Similarly, let V, be the set
of vertices contained in paths between X and z. Let also G; be obtained from G[V;] by
adding a vertex z’, and adding edge xz’ for every x € X. Similarly, let G, be obtained
from G[V,] by adding a vertex s/, and adding edge s’x for every x € X (see Figure 3.9).
Applying the induction hypothesis on G; and G, we obtain k vertex disjoint s, z’-paths
in G that can be combined with k vertex disjoint s, z-paths in G in order to obtain the
desired s, z-paths in G (see Figure 3.10). The difficulty however is that if either G or G,
is not smaller than G, then we cannot apply the induction hypothesis. Observe that this
happens when either X = N(s) or X = N(z). To overcome this, one first argues that
V(G) = N[s] U N|z], then apply the notion of vertex cover and matchings, as well as
Konig-Egervary’s Theorem, in order to obtain the desired disjoint paths. As we will see
shortly, this last part of the proof is also quite different from what is needed in Theorem 19.

50 3. Connectivity

Figure 3.9: Example of the construction in the proof of Menger’s Theorem on static graphs.
Small black vertices denote V; \ X, big black vertices denote X and white vertices denote
A\ X.

Going back to the proof of Theorem 19, we need to prove that if tp(s,z) = 1, then
tpc(s,z) = 1. This is done by the counterpositive (i.e., by proving that if tpc(s,z) > 1,
then tp(s,z) > 1) in a way that reminds us somehow of the proof of Menger’s Theo-
rem. We apply induction on |V(G)| + |ET(G)|. The first part of the proof, which we
leave as exercise (see Exercise 14), consists in showing that if tpc(s,z) > 2, then we
can apply induction to obtain the desired paths. So, suppose that tpc(s,z) = 2, and let
X = {(u, ty), (v, ty)} be a temporal t-vertex s, z-path-separator in G. The idea here is also
to combine temporal paths from s to X, and from X to z in order to obtain at least two
t-vertex disjoint temporal s, z-paths. However, there are many difficulties in this approach.
The first one concerns the temporal graphs on which induction hypothesis will be applied.
These are defined by first picking the following temporal graphs, which are spanning sub-
graphs of G (i.e., by “union of paths” below, we mean that we pick the temporal edges
contained in such paths, while all temporal vertices of G are taken).

* G5 = (Gsu, Asy): union of all temporal s, u-paths not passing by v;
. QSSU = (Ggyp, Asy): union of all temporal s, v-paths not passing by u;
* G5 = (Gyr, Ayr): union of all temporal u, z-paths not passing by v; and
* G5 = (Gys, Ayr): union of all temporal v, z-paths not passing by u.

Then, a temporal graph G; is constructed from the union of G5, and G5, by adding
a new vertex z’ adjacent to each x € {u, v} in timestep 7. Similarly, G, is constructed
from the union of G5 and G5 by adding a new vertex s” adjacent to each x € {u, v} in
timestep 1. The idea then is to apply induction hypothesis in G; to pick temporal s, z’-paths
Py, P, apply induction hypothesis also in G, to obtain temporal s’, z-paths Py, P;, then
finally combine P; and Py, and P, and P, to obtain temporal s, z-paths. This brings us

3.4. Temporal Vertex disjoint paths 51

Figure 3.10: Example of the construction in the proof of Menger’s Theorem on static
graphs. Blue s, X -paths in G; are combined with red X, z-paths in G, to form 3 vertex
disjoint s, z-paths in G.

to the next three difficulties. First, it is not clear that these paths agree on the arrival and
starting time, i.e., it might happen that P; arrives inx € {u, v} after the starting time of P;.
Second, even if they do agree, it could be that the combination of such paths produce walks
instead of paths. Indeed, as can be seen if Figure 3.11, two t-vertex disjoint s, z-walks do
not necessarily contain two t-vertex disjoint paths. And third, as it happens in the proof of
Menger’s Theorem on static graphs, it is not clear that G; and G, are in fact smaller than
G, and that induction hypothesis can be applied. All of these issues are dealt with by the
definition of what was called extreme separator, which can be seen as a separator where
(u,t,) is the closest to s as possible, while (v, t,,) is the closest to z as possible. By then
investigating the properties of the temporal graph, the authors are able to prove that such
a separator either exists, or we can trivially find the desired paths. Finally, they show that
such separator, if it exists, solves all the other issues. The interested reader can access the
full proof by Ibiapina, Lopes, et al. (2022).

X

SFI,ZWZJ—QZ

LS I

v,

Figure 3.11: Example of graph containing 2 t-vertex disjoint s, z-walks and no 2 t-vertex
disjoint s, z-paths.

52 3. Connectivity

3.4.2 Complexity of t-vertex disjoint paths problems

In this section, we study the (parameterized) complexity of problems T-VERTEX DISJOINT
PaTHs and T-VERTEX PATH SEPARATOR, as well as their directed and strict versions. We start
by presenting some negative results.

Negative results on t-vertex disjoint paths problems

Ibiapina, Lopes, et al. (2022) present two main constructions from which they derive all
their negative results. The first one is a reduction from a well known variation of SAT,
defined below and known to be NP-complete (Dehghan and Ahadi (2019)).

(2,2,3)-SAT

Input. A CNF formula ¢ where each clause has at most 3 literals, and each literal appears
exactly twice positively and exactly twice negatively.

Question. Is there a satisfying assignment to ¢?

We present how the construction works and leave the proof of correctness as an exer-
cise (Exercise 15).

Theorem 20 (Ibiapina, Lopes, et al. (2022)). 7-VERTEX DisJOINT PATHS is NP-complete.

Proof. The reader should convince themselves that this problem is in NP. For the hardness
part, we make a reduction from (2, 2, 3)-SAT, as previously said. So consider an instance
¢ of (2,2,3)-SAT, and let {x1, ..., x,} be its set of variables and {cy, ..., ¢} be its set
of clauses. Let s; denote the number of literals in ¢; for each j € [m].

q li,l q i,z
q;,l q lz .
(b) Clause c; = (x1 Vv (c) Breaking gadget related to the clause
(a) Variable x;. —X2 V X3). in 3.12b.

Figure 3.12: Reduction in Theorem 20.

We construct a temporal graph G together with a pair of vertices s, z such that ¢ is
satisfiable if and only if there exist p t-vertex disjoint s, z-paths in G, where p = 1 +m +

3.4. Temporal Vertex disjoint paths 53

Z;";ll s ;. Start by adding two vertices s and z and creating the variable gadgets. The idea
is that each variable x; will be related to a square whose columns will represent the positive
appearances of x; and rows will represent the negative appearances of x;. Formally, let
Q; be the square (cycle on 4 vertices) (¢} ;. ¢} 5. 45 - 45 1) (see Figure 3.12a). Now, for
each clause c;, do as follows (see Figure 3.12b). Add two new vertices, f; and £;, and
for each variable x; appearing in c;, add an f;, £ ;-path passing by the /-th column of Q;,
if this is the A-th appearance of x;, or by the &-th row of Q;, if this is the h-th appearance
of —x;. This subgraph is denoted by H ;. We also create what is called a breaking gadget
related to c¢; (see Figure 3.12¢), which consists simply of adding all edges between {s, z}
and V(H;) \ {{;}; denote this by B;. These are created only for ¢1, ..., c,—1. Finally,
add edges {sf1, £z}, identify vertices £ ; and f;; foreach j € [m —1], and let G be the
obtained graph. Now, we assign time labels in a way that s f; is the first active edge, then
each clause gadget is active in its own timestep, followed by its breaking gadget, with the
last edge being £,,z. Formally, let G = (G, A) be such that A(sf1) = {1}, 2] € A(e) for
every j € [m] and every e € E(H;), A(e) = {2j + 1} for every j € [m — 1] and every
e € E(Bj), and A({;,z) = {2m + 1}. This is best seen as a sequence of graphs. See
Figure 3.13. In the proof of correctness, left as exercise, in order to ensure consistency of
variable assignment, it is crucial to use the fact that the path passing by all clause gadgets
must indeed be a path (i.e, no vertex repetition is allowed).

O

The reader should also observe that the construction presented in Theorem 20 can pro-
duce directed temporal graphs. Additionally, by “spreading the snapshots”, one can de-
duce a proof of hardness also for the strict problems. We leave these as exercises (Exer-
cise 16).

Corollary 21 (Ibiapina, Lopes, et al. (ibid.)). DIR 7-VERTEX DISJOINT PATHS, STRICT T
VERTEX DISJOINT PATHS, and DIR STRICT T-VERTEX DISJOINT PATHS are NP-complete.

Now, let N7 (s) denote the set {(u,7) | (su,i) € ET(G)}; we call this set the temporal
neighborhood of s. As an example, in Figure 3.13 we have

NT(s) = {(f1. D. (/1.3). (41,1.3): (42,1-3). (47.1.3). (47 2. 3)}-

Observe that X = N7 (s)\ {(f1.1)} is a temporal t-vertex s, z-path-separator if and only
if there are at most p — 1 t-vertex disjoint s, z-paths in G. In other words, the answer
to the following problem on (G, s, z, X) is “yes” if and only if the answer to T-VERTEX
DisjoINT PATHS on (G, 5, z, p) is “no”. This gives us that such problem is co-NP-hard, in
contrast with the analogous versions of the problem for temporal vertex s, z-separators
and temporal t-vertex s, z-separator, which are polynomial-time solvable.

TEMPORAL T-VERTEX PATH SEPARATOR TESTING

Input. A temporal (directed) graph G with lifetime t, a pair of non-adjacent vertices s, z,
and a subset X C (V(G) \ {s,z}) x [7].

Question. Is X a temporal t-vertex s, z-path-separator?

54 3. Connectivity

Observe additionally that the problem is in co-NP. Indeed, if X is not a temporal t-
vertex s, z-path-separator, then a temporal s, z-path not intersecting X is a certificate that
can be checked in polynomial time.

Theorem 22 (Ibiapina, Lopes, et al. (2022)). TEMPORAL T-VERTEX PATH SEPARATOR TESTING
is co-NP-complete.

Now, observe also that any temporal t-vertex s, z-path-separator must contain X as
X € NT(s) N NT(z2), i.e., the only way to break the temporal path passing by o € X is
by removing «. This gives us that G has a temporal t-vertex s, z-path-separator of size | X |
ifand only if X is a temporal t-vertex s, z-path-separator. Because the proof can be adapted
to work on the directed and strict versions, we get the following corollary. Note also that
in this case a polynomial certificate for a no instance is not clear to exist, i.e., it is not
known whether the problems below are also in co-NP (and hence are co-NP-complete).

Corollary 23 (Ibiapina, Lopes, et al. (ibid.)). (DIR) (STRICT) T-VERTEX PATH SEPARATOR is
co-NP-hard.

Unfortunately, this construction does not bound the number of paths/size of separator,
nor the lifetime. This means that it does not give us any insight into how hard it would be
to get FPT algorithms when parameterizing by such parameters. Ibiapina et al. present a
proof bounding the number of paths, and the lifetime, but only for the directed case. We
refrain to present this reduction, as it is from 2-LINKAGE and has same characteristics as
the one presented in Section 3.2.2.

Theorem 24 (Ibiapina, Lopes, et al. (ibid.)). Let G be a temporal directed graph, and
s, z be a pair of non-adjacent vertices of G. Solving DIR VERTEX DISJOINT PATHS is NP-
complete on (G, s, z, 3) even if G has lifetime 3.

Positive results on t-vertex disjoint paths problems

By Theorem 23, TEMPORAL T-VERTEX PATH SEPARATOR TESTING is co-NP-complete, which
is in stark contrast with the other types of separator (see Exercises 6 and 13). A natural
question is whether such problem is still hard even for bounded-length sets. This is an-
swered negatively with an algorithm presented in the next theorem, which is FPT when
parameterized by the size of the input set X. Observe that as a consequence we also get
that (DIR) (STRICT) T-VERTEX PATH SEPARATOR is XP when parameterized by the size of
the separator.

Theorem 25 (Ibiapina, Lopes, et al. (ibid.)). Let G be a temporal (directed) graph with
lifetime t, s, z be a pair of non-adjacent vertices of G, and X C (V(G) \ {s,z}) x [1] be
of size h. One can solve TEMPORAL T-VERTEX PATH SEPARATOR TESTING in time O(h"). The
same holds if only strict temporal paths are allowed.

Proof. Let Vx denote the set {u € V(G) | (u,i) € X forsomei € [t]}. Observe that,
if P is a (strict) temporal s, z-path not passing by X, but containing some u € Vy, then

3.4. Temporal Vertex disjoint paths 55

the temporal edges incident in u belonging to P, say (vu,i) and (uw, j), are such that
(u,f) ¢ X forevery £ € {i,i + 1,...,j}. On the other hand, if suppose we obtain an
auxiliary temporal (directed) graph G’ such that, for every u € Vx, whenever (vu, i) and
(uw, j) are temporal edges of G’, we have that (u,£) ¢ X forevery £ € {i,i +1,...,/},
then we can argue that any (strict) temporal s, z-walk in G contains a (strict) temporal
s, z-path that does not intersect X. Since finding (strict) temporal walks can be done in
polynomial time (see Chapter 2), by creating the right set of instances G’, one can arrive
to the desired algorithm. We leave the formalization as exercise. O

As previously observed, the theorem above gives us an XP algorithm to solve (DIRr)
(STrICT) T-VERTEX PATH SEPARATOR. Indeed, it suffices to solve TEMPORAL T-VERTEX PATH
SEPARATOR TESTING on X, for every X C (V(G) \ {s,z}) x [tr]. This takes total time
O((hnt)"), where n is the number of vertices in G.

Corollary 26. (DIR) (STRICT) T-VERTEX PATH SEPARATOR can be solved in time O((hnt)")
on instance (G, s, z, h).

Now, consider problem (DIR) T-VERTEX DISJOINT PATHS on (G, s,z,2). We can ap-
ply the described algorithm running in time O(nt) to find out whether G has a temporal
t-vertex s, z-path-separator of size 1. If so, by Theorem 19 we get that the maximum num-
ber of t-vertex disjoint s, z-paths is also 1, and we can return “no”. Otherwise, again by
Theorem 19 we get that the maximum number of t-vertex disjoint s, z-paths is at least
2, and hence we can return “yes”. This is a simple algorithm to solve (DIR) T-VERTEX
DisjoINT PaTHS when the number of searched paths is 2, which contrasts with the vertex
disjoint paths problem (recall the theorems in Section 3.2.2). In fact, Ibiapina et al. have
used Theorem 19 to provide a polynomial-time algorithm that also finds 2 t-vertex disjoint
s, z-paths, if they exist.

Theorem 27 (Ibiapina, Lopes, et al. (ibid.)). Let G be a temporal (directed) graph with
lifetime t, and s, z be a pair of non-adjacent vertices of G. One can find 2 t-vertex disjoint
s, z-paths in G in time O(mnt?), if they exist, where m = |E(G)| and n = |V(G)|.

Proof. The general idea of the proof'is to remove temporal edges from G while ensuring the
existence of 2 t-vertex disjoint temporal s, z-paths. This is done by applying Theorem 19
and the algorithm described in Theorem 25 as an oracle. Indeed, if it holds that zpc(s, z) =
2, then Theorem 19 also holds, i.e., we can test whether tpg(s,z) = 2 in time O(nt), as
described previously. So we start by applying such test, returning “no” if this is the case.
Otherwise, we try to remove a temporal edge o, testing whether 1pg_gq3 (s, z) = 2; if the
answer is “yes”, then we remove «, and we keep it otherwise. By iteratively applying this,
one arrives to a temporal graph G’ formed exactly by 2 t-vertex disjoint s, z-paths; this
takes time O(mnt?), as there are O (mt) temporal edges. Finally, we finish the algorithm
by applying a search that runs in time O(n) and finds the paths in G’. The reader interested
in the formal arguments should go to the manuscript by Ibiapina, Lopes, et al. (ibid.). [

Observe that the algorithm described previously cannot be applied to the strict case,
as Theorem 19 does not hold for strict temporal paths (recall the example in Figure 3.8b).

56 3. Connectivity

k T k+t
NPc - Theorem 20 NPc - Theorem 20 NPc - Theorem 20
TVDP Poly k = 2 - Theorem 27 Polyr =2

(Exercise 18)
pNP k = 3 - Theorem 24 | pNP t = 3 - Theorem24 | pNPk =1 =3

Dr TVDP

Poly k = 2 - Theorem 27 Polyt =2 Theorem 24
(Exercise 18)
STrRICT TVDP NPc - Th.21
STRICT DIR TVDP NPc - Th.21

Table 3.3: All results presented in this table are presented by Ibiapina, Lopes, et al. (2022).
TVDP stands for T-VERTEX Di1sJOINT PaTHS; NPc stands for NP-complete; pNP stands for
para-NP-complete. Note that in the second row, we get para-NP-completeness for all
parameters, while the others are open.

Summing up

We close this section presenting tables that summarize the known complexity results. Ob-
serve that most of the results actually classify the problems in the classical computational
complexity, and hence the parameterized complexity of most of them is still open. We
present in terms of the parameters anyway just to maintain the same pattern as the one
used in Section 3.2.

hlz] h+t
T-VERTEX PATH SEPARATOR co-NP-hard - Theorem 23
DIr TVSP
STRICT TVSP XP in /i and /& + 7 - Theorem 26
StrIiCT DIR TVSP

Table 3.4: All results presented in this table are presented by Ibiapina, Lopes, et al. (2022).
All problems in this table are co-NP-hard, and XP when parameterized by the size of the
separator /1, which means that it is also in XP when parameterized by the sum k& + 7. All
other parameterized complexities are open.

3.5 Exercises

1. Prove that VERTEX DisJOINT PATHS is in NP, as well as T-VERTEX DISJIOINT WALKS
and T-VERTEX DISJOINT PATHS. Can your algorithms be adapted to work also on the
directed and on the strict versions of such problems?

2. Prove that VERTEX SEPARATOR is in NP, as well as T-VERTEX SEPARATOR. Can your
algorithms be adapted to work also on the directed and on the strict versions of such

3.5. Exercises 57

10.
I1.
12.

13.

14.

15.
16.
17.
18.

problems?

. Prove that there are no 2 vertex disjoint temporal s, z-paths in the temporal graph

depicted in Figure 3.3.

. Prove the second part of Theorem 9.

. Find a temporal graph G, together with a pair of vertices s and z, such that there are

no 2 t-vertex disjoint s, z-paths, and arbitrarily many t-vertex disjoint s, z-walks.

. Find a polynomial-time algorithm that, given a temporal (directed) graph G, a pair

of non-adjacent vertices s,z € V(G),and S C V(G) \ {s, z}, decides whether S is
a temporal vertex s, z-separator in G. Do the same for the case of strict temporal
walks.

. Give an XP algorithm for the problem VERTEX SEPARATOR when parameterized by

the size of the desired separator.

. Prove Theorem 14.

. Let G be the temporal graph depicted in Figure 3.8a. Prove that ¢pc(s, z) is equal

to 3.
Construct an example where 7p(s, z) is arbitrarily smaller than tpc (s, z).
Prove Theorem 18

In the strict model, construct an example where ¢p(s, z) is arbitrarily smaller than
tpc(s, z).

Find a polynomial-time algorithm that decides, given a temporal (directed) graph
G with lifetime 7, a pair of vertices s,z € V(G), and S € (V(9) \ {s,z}) x [1],
decides whether S is a temporal t-vertex s, z-separator in G. Do the same for the
case of strict temporal paths.

Suppose that, for every G’ such that |V(G')| 4+ |ET(G')| < nandevery s,z € V(G')
with s'z" ¢ E(G’), we have that if tpcg/(s’,z’) > 1, then tpg/(s’,z") > 1. Now,
consider G such that |V(G)|+|ET(G)| = n+1,andlets, z € V(G) withsz ¢ E(G).
Prove that if tpcg (s, z) > 2, then tpg/ (s, z) > 1.

Prove that the reduction presented in Theorem 20 is correct.
Adapt the proof of Theorem 20 to prove Theorems 21 and 23.
Formalize the algorithm described in the proof of Theorem 25.

Let G be a temporal graph with lifetime 2 and consider s,z € V(G). Prove that
the maximum number of t-vertex disjoint temporal s, z-paths in G is equal to the
maximum number of t-vertex disjoint temporal s, z-walks. Use this to deduce that
(D1r) T-VERTEX DIsJOINT PATHS is polynomial-time solvable on G.

3. Connectivity

58

N
N
S o)
[N}
S((
— —
—— —
S S
N
N
S
—
WO
S
— —
—— —
S S
fCoTTTTTTTTT T 1
1 1
1 1
1 LR
L @S (5
" _
1 1
! 1

Figure 3.13: Example of construction of Theorem 20 related to formula (x; vV —x3) A

(—x1 V Xx3). Isolated vertices are omitted in the snapshots.

K. A. Berman (1996). “Vulnerability of scheduled networks and a generalization of
Menger’s theorem.” Networks 28, pp. 125-134. MR: 1418583. Zbl: 0865 . 90048
(cit. on pp. 38, 40, 43).

M. Borassi, P. Crescenzi, and M. Habib (2016). “Into the Square: On the Complexity of
Some Quadratic-time Solvable Problems.” Electron. Notes Theor. Comput. Sci. 322,
pp- 51-67. MR: 3515493. Zbl: 1345.68170 (cit. on pp. 30-32).

B. Bui-Xuan, A. Ferreira, and A. Jarry (2003). “Computing Shortest, Fastest, and Foremost
Journeys in Dynamic Networks.” Int. J. Found. Comput. Sci. 14.2, pp. 267-285. Zbl:
1075.68545 (cit. on p. 18).

M. Calamai, P. Crescenzi, and A. Marino (2021). “On Computing the Diameter of
(Weighted) Link Streams.” In: /9th International Symposium on Experimental Algo-
rithms, SEA 2021, June 7-9, 2021, Nice, France. Ed. by D. Coudert and E. Natale.
Vol. 190. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 11:1-11:21. MR:
4288690 (cit. on pp. 30, 31).

V. Campos, R. Lopes, A. Marino, and A. Silva (2021). “Edge-Disjoint Branchings in Tem-
poral Graphs.” The Eletronic Journal of Combinatorics 28, a.4. MR: 4328901. Zbl:
1476.05065 (cit. on p. 12).

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein (2022). Introduction to algo-
rithms. MIT press (cit. on p. 29).

P. Crescenzi, C. Magnien, and A. Marino (2019). “Approximating the Temporal Neigh-
bourhood Function of Large Temporal Graphs.” Algorithms 12.10, p. 211. MR:
4026822 (cit. on pp. 13, 21, 22).

— (2020). “Finding Top-k Nodes for Temporal Closeness in Large Temporal Graphs.”
Algorithms 13.9, p. 211. MR: 4158546 (cit. on pp. 21, 22, 24, 25).

M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk,
and S. Saurabh (2015). Parameterized Algorithms. 1st. Springer Publishing Company,
Incorporated. MR: 3380745. Zbl: 1334.90001 (cit. on pp. 10, 11).

http://dx.doi.org/10.1002/(SICI)1097-0037(199610)28:3<125::AID-NET1>3.0.CO;2-P
http://dx.doi.org/10.1002/(SICI)1097-0037(199610)28:3<125::AID-NET1>3.0.CO;2-P
http://www.ams.org/mathscinet-getitem?mr=MR1418583
http://zbmath.org/?q=an:0865.90048
http://dx.doi.org/10.1016/j.entcs.2016.03.005
http://dx.doi.org/10.1016/j.entcs.2016.03.005
http://www.ams.org/mathscinet-getitem?mr=MR3515493
http://zbmath.org/?q=an:1345.68170
http://dx.doi.org/10.1142/S0129054103001728
http://dx.doi.org/10.1142/S0129054103001728
http://zbmath.org/?q=an:1075.68545
http://dx.doi.org/10.4230/LIPIcs.SEA.2021.11
http://dx.doi.org/10.4230/LIPIcs.SEA.2021.11
http://www.ams.org/mathscinet-getitem?mr=MR4288690
http://www.ams.org/mathscinet-getitem?mr=MR4328901
http://zbmath.org/?q=an:1476.05065
http://dx.doi.org/10.3390/a12100211
http://dx.doi.org/10.3390/a12100211
http://www.ams.org/mathscinet-getitem?mr=MR4026822
http://dx.doi.org/10.3390/a13090211
http://www.ams.org/mathscinet-getitem?mr=MR4158546
http://www.ams.org/mathscinet-getitem?mr=MR3380745
http://zbmath.org/?q=an:1334.90001

60 Bibliography

A. Dehghan and A. Ahadi (2019). “(2/2/3)-SAT problem and its applications in domi-
nating set problems.” Discrete Mathematics & Theoretical Computer Science 21. MR:
3995591. Zbl: 1430.05031 (cit. on p. 52).

J. Dibbelt, T. Pajor, B. Strasser, and D. Wagner (2018). “Connection Scan Algorithm.”
ACM Journal of Experimental Algorithmics. MR: 3863870. Zbl: 07043408 (cit. on
p. 24).

S. Fortune, J. Hopcroft, and J. Wyllie (1980). “The directed subgraph homeomorphism
problem.” Theoretical Computer Science 10.2, pp. 111-121. MR: 05651599. Zbl: 0419.
05028 (cit. on p. 40).

P. A. Golovach and D. M. Thilikos (2011). “Paths of bounded length and their cuts: Pa-
rameterized complexity and algorithms.” Discrete Optimization 8.1, pp. 72—-86. MR:
2772562. Zbl: 1248.90071 (cit. on pp. 41, 43-45).

P. Holme (2015). “Modern temporal network theory: a colloquium.” The European Physi-
cal Journal B 88.39, p. 234 (cit. on p. 1).

A. Ibiapina, R. Lopes, A. Marino, and A. Silva (2022). “Menger’s Theorem for Temporal
Paths (Not Walks).” arXiv: 2206. 15251 (cit. on pp. 4649, 51-56).

A. Ibiapina and A. Silva (2022). “Mengerian graphs: characterization and recognition.”
arXiv: 2208.06517 (cit. on pp. 4, 22, 39).

R. Impagliazzo, R. Paturi, and F. Zane (2001). “Which Problems Have Strongly Expo-
nential Complexity?” J. Comput. Syst. Sci. 63.4, pp. 512-530. MR: 1894519. Zbl:
1006.68052 (cit. on p. 30).

A. Ttai, Y. Perl, and Y. Shiloach (1982). “The complexity of finding maximum disjoint
paths with length constraints.” Networks 12.3, pp. 277-286. MR: 0671829. Zbl: 0504 .
68041 (cit. on p. 43).

R. M. Karp (1975). “On the computational complexity of combinatorial problems.” Net-
works 5.1, pp. 45—68. Zbl: 0324 .05003 (cit. on p. 40).

D. Kempe, J. Kleinberg, and A. Kumar (2000). “Connectivity and inference problems
for temporal networks.” In: STOC "00: Proceedings of the thirty-second annual ACM
symposium on Theory of computing. MR: 2115287. Zbl: 1296.68015 (cit. on pp. 12,
13, 15, 38, 39, 42, 43).

M. Latapy, T. Viard, and C. Magnien (2018). “Stream graphs and link streams for the
modeling of interactions over time.” Social Network Analysis and Mining 8 (1), p. 61.
Zbl: 1426 .68227 (cit. on p. 1).

C.-L. Li, S. T. McCormick, and D. Simchi-Levi (1990). “The complexity of finding two
disjoint paths with min-max objective function.” Discrete Applied Mathematics 26.1,
pp- 105-115. MR: 1028879. Zbl: 0693.05035 (cit. on p. 42).

L. Lovasz, V. Neumann-Lara, and M. Plummer (1978). “Mengerian theorems for paths of
bounded length.” Periodica Mathematica Hungarica 9.4, pp. 269-276. MR: 0509677.
Zbl: 0393.05033 (cit. on p. 44).

K. Menger (1927). “Zur allgemeinen kurventheorie.” Fundamenta Mathematicae 10.1,
pp. 96—-115. Zbl: 563.0561.01 (cit. on p. 3).

http://www.ams.org/mathscinet-getitem?mr=MR3995591
http://zbmath.org/?q=an:1430.05031
http://www.ams.org/mathscinet-getitem?mr=MR3863870
http://zbmath.org/?q=an:07043408
http://dx.doi.org/10.1016/0304-3975(80)90009-2
http://dx.doi.org/10.1016/0304-3975(80)90009-2
http://www.ams.org/mathscinet-getitem?mr=MR0551599
http://zbmath.org/?q=an:0419.05028
http://zbmath.org/?q=an:0419.05028
http://dx.doi.org/10.1016/j.disopt.2010.09.009
http://dx.doi.org/10.1016/j.disopt.2010.09.009
http://www.ams.org/mathscinet-getitem?mr=MR2772562
http://zbmath.org/?q=an:1248.90071
http://dx.doi.org/10.1140/epjb/e2015-60657-4
http://arxiv.org/abs/2206.15251
http://arxiv.org/abs/2206.15251
http://arxiv.org/abs/2206.15251
http://arxiv.org/abs/2208.06517
http://arxiv.org/abs/2208.06517
http://dx.doi.org/10.1006/jcss.2001.1774
http://dx.doi.org/10.1006/jcss.2001.1774
http://www.ams.org/mathscinet-getitem?mr=MR1894519
http://zbmath.org/?q=an:1006.68052
http://dx.doi.org/10.1002/net.3230120306
http://dx.doi.org/10.1002/net.3230120306
http://www.ams.org/mathscinet-getitem?mr=MR0671829
http://zbmath.org/?q=an:0504.68041
http://zbmath.org/?q=an:0504.68041
http://dx.doi.org/10.1002/net.1975.5.1.45
http://zbmath.org/?q=an:0324.05003
http://www.ams.org/mathscinet-getitem?mr=MR2115287
http://zbmath.org/?q=an:1296.68015
http://dx.doi.org/10.1007/s13278-018-0537-7
http://dx.doi.org/10.1007/s13278-018-0537-7
http://zbmath.org/?q=an:1426.68227
http://dx.doi.org/10.1016/0166-218X(90)90024-7
http://dx.doi.org/10.1016/0166-218X(90)90024-7
http://www.ams.org/mathscinet-getitem?mr=MR1028879
http://zbmath.org/?q=an:0693.05035
http://dx.doi.org/10.1007/BF02019432
http://dx.doi.org/10.1007/BF02019432
http://www.ams.org/mathscinet-getitem?mr=MR0509677
http://zbmath.org/?q=an:0393.05033
http://dx.doi.org/10.4064/fm-10-1-96-115
http://zbmath.org/?q=an:53.0561.01

Bibliography 61

G. Mertzios, O. Michail, and P. Spirakis (2019). “Temporal Network Optimization Subject
to Connectivity Constraints.” Algorithmica 81, pp. 1416-1449. MR: 3936163. Zbl:
1421.68139 (cit. on pp. 12, 47).

O. Michail (2016). “An Introduction to Temporal Graphs: An Algorithmic Perspective.”
Internet Mathematics 12.4, pp. 239-280. MR: 3508358. Zbl: 1461 . 68161 (cit. on
p. 12).

N. Robertson and P. Seymour (1990). An outline of a disjoint paths algorithm, in “Paths,
Flows, and VLSI-Layout”(B. Korte, L. Lov! asz, HJ Pr. omel, and A. Schrijver, Eds.)
MR: 1083383 (cit. on p. 40).

M. Sipser (1996). “Introduction to the Theory of Computation.” ACM Sigact News 27.1,
pp- 27-29 (cit. on p. 9).

D. B. West (Sept. 2000). Introduction to Graph Theory. 2nd ed. Prentice Hall. Zbl: 0845.
05001 (cit. on pp. 46, 49).

V. V. Williams and R. Williams (2010). “Subcubic Equivalences between Path, Matrix
and Triangle Problems.” In: 5/th Annual IEEE Annual Symposium on Foundations of
Computer Science. Las Vegas, Nevada, USA: IEEE Computer Society, pp. 645-654.
MR: 3025239 (cit. on p. 30).

H. Wu, J. Cheng, S. Huang, Y. Ke, Y. Lu, and Y. Xu (2014). “Path Problems in Temporal
Graphs.” PVLDB 7.9, pp. 721-732 (cit. on pp. 18-22, 24, 25, 28).

H. Wu, Y. Huang, J. Cheng, J. Li, and Y. Ke (2016). “Reachability and time-based path
queries in temporal graphs.” In: /CDE, pp. 145-156 (cit. on pp. 18, 21, 22).

P. Zschoche, T. Fluschnik, H. Molter, and R. Niedermeier (2020). “The complexity of find-
ing small separators in temporal graphs.” Journal of Computer System and Sciences
107, pp. 72-92. MR: 4015681. Zbl: 1436 .68265 (cit. on pp. 13, 43—-45).

http://dx.doi.org/10.1007/s00453-018-0478-6
http://dx.doi.org/10.1007/s00453-018-0478-6
http://www.ams.org/mathscinet-getitem?mr=MR3936163
http://zbmath.org/?q=an:1421.68139
http://dx.doi.org/10.1080/15427951.2016.1177801
http://www.ams.org/mathscinet-getitem?mr=MR3508358
http://zbmath.org/?q=an:1461.68161
http://www.ams.org/mathscinet-getitem?mr=MR1083383
http://dx.doi.org/10.1145/230514.571645
http://zbmath.org/?q=an:0845.05001
http://zbmath.org/?q=an:0845.05001
http://www.ams.org/mathscinet-getitem?mr=MR3025239
http://dx.doi.org/10.14778/2732939.2732945
http://dx.doi.org/10.14778/2732939.2732945
http://dx.doi.org/10.1016/j.jcss.2019.07.006
http://dx.doi.org/10.1016/j.jcss.2019.07.006
http://www.ams.org/mathscinet-getitem?mr=MR4015681
http://zbmath.org/?q=an:1436.68265

(strict) temporal line graph, 12
[ts, t»]-compatible, 18
“yes” instance, 10

A

active in timestep i, 4
acyclic, 3

adjacent, 2

arcs, 2

arrival time of e, 7

B
base
graph, 4, 7
multigraph, 5
breaking gadget, 53

C

certificate for x, 9

circuit with weft at most 1, 45
clique, 3

complement of L, 9
complete, 3

connectivity problems, ii
cycle, 3

D
decision problem, 8

62

degree of u, 2
delay-1, 7
delay-1 of (V,E), 21
directed
graph, 2
version, 11
directed graph, 2

E

edge subdivision, 38
edges, 1

endpoints, 2, 3
endpoints ¥ and v, 1
equivalent, 9, 11
extreme separator, 51
extremities, 3

F

finishes in time #,4, 6
fixed-parameter tractable, 10
forest, 3

G
gem, 39
graph, 1,2

H
head, 2

Index

|

identification of # and v, 3
incident, 2

in-degree, 2

induced, 3

in-neighbor, 2

input, 8

instance, 8, 10

internally vertex disjoint, 3
interval [z, 1], 4

isolated, 2

K
k-clique, 3

L

lifetime, 4, 7
link stream, 7
link streams, 13
loop, 1

M
maximum
degree, 3
in-degree, 3
out-degree, 3
Mengerian graph, 38
moving edges, 28
multiedge, 1
multigraph, 1

N

natural parameter, 10

neighbors, 2

non-deterministically polynomial-time
solvable, 9

NP-complete, 9

NP-hard, 9

(0]
out-degree, 2
out-neighbor, 2

P
parameter k, 10

63

parameterized
problem, 10
reduction, 10
parameterized problem, 10
parameterized reduction, 11
path, 18
polynomial-time (Karp) reducible to
.9
polynomial-time solvable, 9
positive integer value, 17

R
reverse of G, 21

S

simple graph, 1

single source best path, 21
single target best path, 21
size, 9

slice-wise polynomial, 10
snapshot, 4

spanning, 3, 5

stable (or independent) set, 3
starting-time function, 5
starts in time #1, 6

static expansion, 12, 28
strict, 6

strict static expansion, 11
subdivision of G, 38
subgraph, 3

subgraph of G induced by X, 3

T
tail, 2
temporal
(directed) subgraph induced by S,
5
edge, 4
graph, 4
graph with lifetime , 5
neighborhood of s, 53
subgraph, 5
Vo, Vg-path, 5
Vo, Vg-walk, 5

64

vertex, 4
vertex disjoint, 34
temporal t-vertex u, v-path-separator,
36
temporal t-vertex u, v-separator, 35
temporal vertex u, v-separator, 35
time
arrival, 6
finishing, 6
starting, 6
time-function, 4
timestep, 4
topological minor, 38
travel-time function, 5

U
u reaches v, 6
u, v-separator, 3

undelayed version, 13, 21
undirected

graph, 2
version, 11
v
Vo, Vg-path, 3

vertex disjoint, 34
vertex split, 15
vertices, 1

W

WI[1]-hard, 11

waiting edges, 28

waits in v; from #; to tj4+1, 6
walk, 3

when parameterized by &, 10

Index

Titulos Publicados — 34° Coloquio Brasileiro de Matematica

Uma introduc¢éo a convexidade em grafos — Jilio Araujo, Mitre Dourado, Fabio Protti e Rudini
Sampaio

Uma introducdo aos sistemas dinamicos via exemplos — Lucas Backes, Alexandre Tavares Bara-
viera e Flavia Malta Branco

Introducao aos espacgos de Banach — Aldo Bazan, Alex Farah Pereira e Cecilia de Souza Fernandez

Contando retas em superficies no espago projetivo — Jacqueline Rojas, Sally Andria e Wallace
Mangueira

Paths and connectivity in temporal graphs — Andrea Marino e Ana Silva
Geometry of Painlevé equations — Frank Loray

Implementagao computacional da tomografia por impedancia elétrica — Fabio Margotti, Edu-
ardo Hafemann e Lucas Marcilio Santana

Regularidade eliptica e problemas de fronteiras livres — Jodo Vitor da Silva e Gleydson Ricarte
The «-Laplacian: from AMLEs to Machine Learning — Damido Araujo e José Miguel Urbano

Homotopical dynamics for gradient-like flows — Guido G. E. Ledesma, Dahisy V. S. Lima, Mar-
garida Mello, Ketty A. de Rezende e Mariana R. da Silveira

impa

— Instituto de
~ Matematica
Pura e Aplicada

Andrea Marino

PhD in Computer Science at University of Florence (Italy) in
2013, advised by Pierluigi Crescenzi. Currently Associate
Professor at University of Florence. Best Italian PhD Thesis on
’Algorithms, Automata, Complexity and Game Theory” 2013 and
Best Italian Young Researcher in "Theoretical Computer Science”
2022 awarded by Italian Chapter of the EATCS (European
Association for Theoretical Computer Science). Interested in:
Algorithms and Complexity, Complex Networks analysis,
Enumeration Algorithms, Temporal graphs, Boxe, Music
(currently into MPB), and Guitars.

Ana Silva

PhD at the University of Grenoble (France) in 2010, advised by
Frédéric Maffray. Associate Professor at the Federal University
of Ceara since 2011, Brazil. Won the Brazilian edition of the
’Oreal Prize for Women in Science in 2014 (math track), and is
currently an affilliated member of the Brazilian Academy of
Science (ABC). In addition to her passion for math and general
science, Ana also loves (as most “cearences” do) the beach, the
sun, a good beer and lots of laughter.

Paths and connectivity
in temporal graphs

978-85-244-0536-

4140536 H

365

impa
— Instituto de
‘ Matematica

Pura e Aplicada

9 ‘788

52

	Basic definitions and terminology
	Graph terminology
	Temporal graphs
	Link Stream
	Computational complexity
	Common constructions
	Exercises

	Paths
	Weighted Paths and Reachable Sets
	Notions of Distances
	Computing Distances
	Two useful constructions
	Single Source Earliest Arrival Paths
	Single Target Earliest Arrival Paths, assuming unitary weights
	Single Source: Fastest and Shortest Time

	Computing Diameter
	On the complexity of computing diameters

	Exercises

	Connectivity
	Basic definitions and results
	Vertex disjointness
	Menger's Theorem and vertex disjointness
	Complexity of vertex disjoint problems

	Temporal Vertex disjoint walks
	Temporal Vertex disjoint paths
	Menger for t-vertex disjoint paths
	Complexity of t-vertex disjoint paths problems

	Exercises

	Bibliography
	Index

