

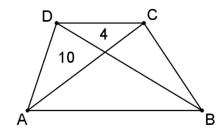
Problemas com áreas

Eduardo Wagner - FGV - Escola de Matemática Aplicada

No Ensino Médio podemos trabalhar com áreas de forma a estimular o raciocínio e evitando a memorização de fórmulas ou processos. Podemos calcular coisas que possuem aparência difícil (mas na realidade não são) utilizando as áreas como ferramenta e, nesta aula, vamos mostrar alguns exemplos.

Problema Inicial

A figura ao lado mostra um trapézio de bases AB e CD. Os números que aparecem dentro dos triângulos representam suas áreas.



Qual é a área do trapézio?

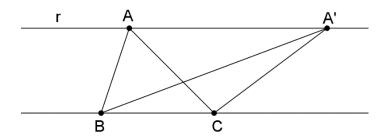
O problema parece difícil pela absoluta falta de dados concretos o que impede, naturalmente, a aplicação de qualquer fórmula. Como você verá a seguir, o problema é facílimo para quem conhece duas propriedades elementares das áreas de triângulos.

Em todo o texto a área do triângulo de vértices $X,Y\in Z$ será representada por (XYZ). Para polígonos, a notação será a mesma.

Duas propriedades

1) Dois triângulos de mesma base e mesma altura possuem mesma área.

Na figura abaixo, se a reta r é paralela à reta BC então (ABC) = (A'BC), pois os dos triângulos possuem mesma base e mesma altura.



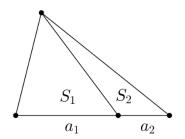
2) Se dois triângulos possuem mesma altura então a razão entre suas áreas é igual à razão entre suas bases.

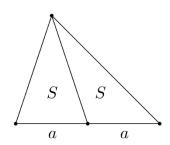
Na figura ao lado, se S_1 e S_2 são as áreas dos triângulos de bases respectivamente iguais a a_1 e a_2 temos, então

$$\frac{S_1}{S_2} = \frac{a_1}{a_2}$$

ou, ainda,

$$\frac{S_1}{a_1} = \frac{S_2}{a_2} = \frac{S_1 + S_2}{a_1 + a_2}$$





É importante ainda observar o fato, agora elementar, que uma mediana de um triângulo divide o triângulo em dois outros de mesma área.

Com essas propriedades podemos resolver o problema inicial.

Sendo P o ponto de interseção das diagonais vemos que os triângulos DAB e CAB possuem mesma área, pois têm mesma base e mesma altura. Como eles possuem a parte PAB em comum, concluímos que

$$(PBC) = (PAD) = 10$$

Em seguida, utilizando a propriedade 2 temos que:

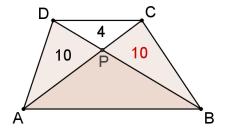
$$\frac{(DAP)}{(DPC)} = \frac{AP}{PC} = \frac{(BAP)}{(BPC)}$$

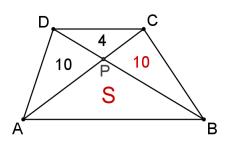
ou seja,

$$\frac{10}{4} = \frac{S}{10}$$

e, portanto, S = 25.

A área do trapézio é 4 + 10 + 10 + 25 = 49.



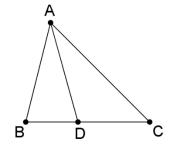


Problema 2

Demonstre o teorema da bissetriz interna.

Esse teorema diz que, no triângulo ABC, se D é o ponto onde a bissetriz do ângulo A corta o lado BC então

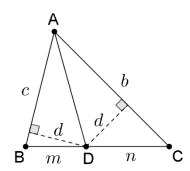
$$\frac{DB}{DC} = \frac{AB}{AC}$$



Solução

Vamos simplificar a notação usando os símbolos da figura abaixo. Sabemos que todo ponto da bissetriz de um ângulo equidista dos lados do ângulo. Assim, o ponto D possui distâncias iguais aos lados $AB \ e \ AC$.

Pela propriedade 2 temos:



$$\frac{(ADB)}{(ADC)} = \frac{DB}{DC}$$

$$\frac{cd/2}{bd/2} = \frac{m}{n}$$

$$\frac{m}{n} = \frac{c}{b}$$

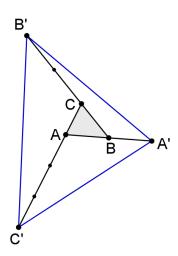
como queríamos demonstrar.

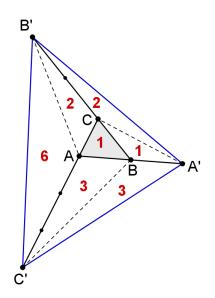
Problema 3

O triângulo ABC tem área 1.

- Prolongue AB de um comprimento BA' = AB.
- Prolongue BC de um comprimento CB'=2BC.
- Prolongue CA de um comprimento AC' = 3CA.

Qual é a área do triângulo A'B'C'?





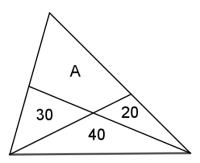
Solução

Traçando AB', BC' e CA' temos a situação da figura ao lado. A partir de (ABC)=1, usando a segunda propriedade anotamos a área de cada triângulo no seu interior.

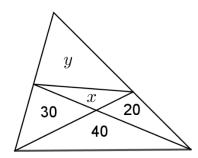
$$(A'B'C') = 18$$

Problema 4 (Vestibular FGV-RJ)

A figura mostra um triângulo subdividido em quatro regiões, cujas áreas estão indicadas nas mesmas.



Determine o valor de A.



Solução

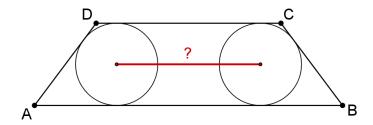
$$\frac{x}{20} = \frac{30}{40} \to x = 15$$

$$\frac{y + x + 20}{30 + 40} = \frac{y}{x + 30} \to y = 63$$

$$A = x + y = 15 + 63 = 78$$

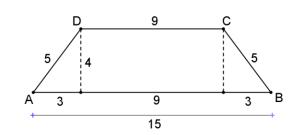
Problema 5

A figura mostra um trapézio ABCD. Sabe-se que AB=15, CD=9, e AD=BC=5.

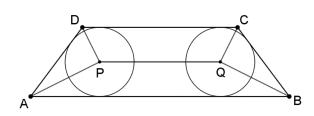


Qual é a distância entre os centros das duas circunferências da figura?

Solução



Examinando o trapézio, temos a situação da figura ao lado.
Concluímos que a altura do trapézio é igual a 4 e, consequentemente, o raio da circunferência é igual a 2.



Passamos, então a examinar a próxima figura. Se P e Q são os centros das duas circunferência, vamos dividir o trapézio em quatro partes: dois trapézios com base comum PQ = x com alturas iguais ao raio das circunferências e, nas laterais, dois triângulos congruentes de bases

AD e BC com alturas também iguais ao. raio das circunferências

A soma das áreas das quatro partes é igual à área do trapézio, ou seja,

$$(ABQP) + (CDPQ) + (APD) + (BCQ) = (ABCD)$$
$$\frac{(15+x)\cdot 2}{2} + \frac{(9+x)\cdot 2}{2} + \frac{5\cdot 2}{2} + \frac{5\cdot 2}{2} = \frac{(15+9)\cdot 2}{2}$$

Cálculos simples conduzem a x = 7.