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Preface
One-dimensional Dynamics is a rich and beautiful subject, and the most authori-
tative work entirely dedicated to it still is, unquestionably, the book written by de
Melo and van Strien [1993]. Thus the reader may ask: why bother writing another
book about this subject?

It is a fair question. The main reason is that much has happened since 1993:
more than half of the present book’s contents deals with recent developments in
the area. Moreover, rather than aiming at being comprehensive, our book delves
deeper into a specific topic in One-dimensional Dynamics, namely, the dynamics
of invertible circle maps. Let us say a few words explaining how this topic fits
into the general framework of the modern theory of Dynamical Systems.

One of the major general goals in the area of Dynamical Systems is to solve
the smooth classification problem: given two smooth dynamical systems which
are topologically equivalent, when are they smoothly equivalent? In somewhat
vague terms, this problem is tantamount to understanding the fine-scale geometric
properties of such systems.

In such general setting, and particularly in higher dimensions, the above classi-
fication problem seems rather daunting (perhaps even hopeless). Hence one should
first attempt to understand low-dimensional systems. At least at an intuitive level,
the problem should be much simpler for one-dimensional systems; after all, in di-
mension one the linear order structure and “lack of ambient space” should impose
severe restrictions on the possible geometries of such systems, thereby facilitating
their smooth classification. However, even here the problem turns out to be rather
subtle. A basic distinction that must be made in the one-dimensional context is
between invertible dynamics – to wit, homeomorphisms of the circle – and non-
invertible dynamics, such as the dynamics of unimodal or multimodal maps of the
interval (or the circle).

In this book – written for a series of lectures delivered by both authors at the
33rd Brazilian Mathematics Colloquium – we deal with invertible dynamical sys-
tems on the circle, concentrating on two major classes: global diffeomorphisms



and smooth homeomorphisms with critical points. In the case of smooth diffeo-
morphisms of the circle, deep results have been obtained from the mid to late sev-
enties onwards, starting with M. Herman’s thesis and culminating with the work
of J.-C. Yoccoz, with important contributions by Y. Katznelson and D. Ornstein,
among others. After describing those results, we will focus on the case of smooth
homeomorphisms with critical points, a topic to which both authors have dedicated
several years of research. In this context, the notions of renormalization, rigidity
and universality play a decisive role, and have been widely studied in the last thirty
years.

The material in this book is divided into four parts. In the first part we study
rigid rotations and then circle homeomorphisms, introducing the notion of rotation
number, a dynamical invariant introduced by Poincaré at the end of the nineteenth
century. We also describe some connections between dynamical properties of the
rotation number with the theory of continued fractions. In the second part we study
circle diffeomorphisms, presenting some classical results due to Denjoy and dis-
cussing some of the main ideas in the Arnold–Herman–Yoccoz theory. We present
the subject by developing it from its basic principles in a self-contained way. In
particular, together, these two initial parts can be used in a first graduate-level
course on one-dimensional dynamics. The book contains around 140 exercises,
varying widely in their level of difficulty; these should help the students enhance
their understanding of the subject.

The third part of this book introduces multicritical circle maps, which are
smooth homeomorphisms of the circle with a finite number of critical points, an
important and active topic in the area of one-dimensional dynamics. The fourth
and last part of this book is devoted to renormalization theory, focusing on the anal-
ysis of the fine geometric structure of orbits of multicritical circle maps, as well as
on certain complex-analytic aspects of the subject. We will describe in these final
chapters several important results by K. Khanin, M. Martens, C. McMullen, W.
de Melo, D. Sullivan, A. Teplinsky and M. Yampolsky among others. We would
like to remark that, since these ideas are quite deep, the narrative in this final part
is by necessity very sketchy.

Throughout the book, we provide, for the most part, complete proofs of sev-
eral fundamental results in circle dynamics, such as the Poincaré classification,
Denjoy’s classical results and constructions, Arnold’s conjugacy theorem for ana-
lytic circle diffeomorphisms with Diophantine rotation number (we also describe
his counterexamples to linearizability), a conjugacy theorem for finitely smooth
diffeomorphisms with Diophantine rotation number, Yoccoz’s theorem on mini-
mality of multicritical circle maps, the real bounds, quasisymmetric rigidity, the



fact that exponential convergence of renormalization implies smooth rigidity, Lip-
schitz continuity of the renormalization operator (for maps with a single critical
point) and the complex bounds. We also survey, skipping many details, the proof
of the exponential convergence of renormalization for critical circle maps, both in
the analytic and the smooth case. The book closes with a list of open questions
and three appendices: the first describing some aspects of the ergodic theory of
continued fractions, the second presenting a proof of a linearization theorem for
finitely smooth diffeomorphisms with Diophantine rotation number, and the third
discussing ergodic properties of a certain skew product over the Gauss map.

The present book is primarily aimed at graduate students and young researchers
working in Dynamical Systems, but we hope it will have something to offer to
other mathematicians interested in the subject. As prerequisites, it assumes that
the reader is familiar with the contents of a standard graduate course in Real Anal-
ysis (including Metric Spaces, Measure Theory and basic Functional Analysis) in
addition to some notions of Ergodic Theory and Dynamical Systems. In chapters
4, 11, 13 and 14, basic knowledge of Complex Analysis is needed as well.

Due to limitations of time and space, many interesting topics of circle dynam-
ics have been left out of this book. These include interval exchange transforma-
tions, maps with break points, maps with flat spots, mode locking universality, dy-
namics of endomorphisms (including the notion of rotation set), thermodynamic
formalism, random dynamical systems and groups acting on the circle, among
others.

In recent years, we have benefited from conversations with many friends and
colleagues, among them Peter Hazard, Mikhail Lyubich, Marco Martens, Bruno
Nussenzveig, Sebastian van Strien, Dennis Sullivan, Charles Tresser, Björn Winck-
ler, Misha Yampolsky and most notably Welington de Melo. Several parts of this
book have been inspired by these interactions.

We are also grateful to two anonymous referees whose keen comments and
suggestions have led to a substantial improvement of our book over the original
colloquium lecture notes.

Finally, we would like to thank the organizers of the 33rd Brazilian Mathe-
matics Colloquium for the opportunity to present the course on which this book
is based. Special thanks go to Paulo Ney de Souza for his extremely professional
editorial help. Readers are encouraged to send comments and suggestions as well
as corrections to our email addresses.

Edson de Faria (edson@ime.usp.br)
Pablo Guarino (pablo_guarino@id.uff.br)

edson@ime.usp.br
pablo_guarino@id.uff.br
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Part I

Basic Theory

1



1 Rotations

This opening chapter is devoted to the simplest dynamical systems on the circle
that are not entirely trivial: the rigid rotations. Under a rigid rotation, all orbits
look exactly the same. There are only two possible behaviours for such orbits.
Either they are all dense on the circle, or else they are all periodic with the same
period. This dichotomy can be read off from the angle by which points on the
circle are rotated. The ratio of this angle to a full turn is called the rotation number.
If the rotation number of a rigid rotation is rational, then all orbits are periodic.
If the rotation number is irrational, then all orbits are dense. Moreover, the way
the points of an orbit deploy themselves on the circle can be read off from the
continued fraction development of the rotation number. Due to this connection
with continued fractions, it is fair to say that the dynamical study of rotations was
started by the ancient Greeks.

1.1 Topology and combinatorics of rotations
The dynamical systems we wish to study have as their phase space the unit circle,
denoted S1 in this book, which can be defined in at least two ways. One way
is to regard it as the affine one-dimensional manifold R=Z, also called the one-
dimensional torus. Another way is to regard it as the boundary of the unit disk in
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the complex plane, namely @D D fz 2 C W jzj D 1g. These two representations
of the unit circle are equivalent, the equivalence being induced by the exponential
covering map exp W R ! @D given by exp.t/ D e2�it . Both representations
make it clear that S1 is also a topological group, the group operation being addition
modulo 1 in the first representation and complex multiplication in the second. The
reader should keep in mind the equivalence between these two representations. In
most of what we do in this book, we use the additive representation, but will switch
to the multiplicative representation whenever convenient.

1.1.1 A dichotomy

Given a real number ˛, let us denote by R˛ W S1 ! S1 the counterclockwise ro-
tation of the unit circle by an angle equal to 2�˛. This map is given by R˛.x/ D
x C ˛ .mod 1/ in additive notation, or equivalently by R˛.z/ D e2�i˛z in mul-
tiplicative notation. We are interested here in the orbit structure of rotations, both
from the topological and metric viewpoints. When we speak of S1 as a metric
space, we always take the distance between two points x; y to be the one induced
from the real line by the exponential covering map, i.e., d.x; y/ D minfju � vj W
exp.u/ D x ; exp.v/ D yg. The group of orientation-preserving isometries of S1

under this metric is precisely the group or rotations.
From the topological viewpoint, the dynamical behavior of rotations is very

simple. There is a dichotomy, according to whether ˛ is rational or irrational.

(1) If ˛ is rational, say ˛ D p=q in irreducible form, then every x 2 S1 is a
periodic point with period q. In other words, we have

Rq˛.x/ D x C q˛ D x C p D x .mod 1/ ;

for all x 2 S1.

(2) If ˛ is irrational, then every orbit OC.x/ D fRn˛.x/ W n ⩾ 0g is dense
in S1. This follows from Lemma 1.1, stated and proved below (see also
Proposition 1.1).

The result alluded to above is a classical one, discovered by Dirichlet in 1842.
Its proof uses the well-known pigeonhole principle. 1 We need some notation.
Given any real number x, we denote by bxc the greatest integer less or equal to x,
and by fxg the fractional part of x, i.e. fxg D x � bxc.

1Also known as the box counting principle, it simply states that if N C 1 objects are placed in
N boxes, then at least one box will contain at least two objects.
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Lemma 1.1. If ˛ is an irrational number, then

(i) For each positive integer Q there exist an integer p and a positive integer
q with q ⩽ Q such that

jq˛ � pj < 1

Q
: (1.1)

(ii) There exist infinitely many rational numbers p=q such that
ˇ̌
ˇ̌˛ � p

q

ˇ̌
ˇ̌ < 1

q2
: (1.2)

Proof. Partition the interval Œ0; 1/ intoQ sub-intervals of equal length, namely

�j;Q D
�
j � 1
Q

;
j

Q

�
; j D 1; 2; : : : ;Q :

These are our boxes. Then consider theQC 1 numbers

0; f˛g ; f2˛g ; : : : ; fQ˛g 2 Œ0; 1/ :

These are all distinct, because ˛ is irrational. By the pigeonhole principle, there
exist j 2 f1; 2; : : : ;Qg and n1; n2 2 f0; 1; : : : ;Qg distinct such that both fn1˛g 2
�j;Q and fn2˛g 2 �j;Q hold. Writing m1 D bn1˛c and m2 D bn2˛c, we see
that

j.n1 � n2/˛ � .m1 �m2/j D jfn1˛g � fn2˛gj ⩽
ˇ̌
�j;Q

ˇ̌
D 1

Q
:

Hence, taking p D m1 � m2 and q D n1 � n2, we deduce (1.1). Equality in
(1.1) cannot happen, because ˛ is irrational. This proves (i), and (ii) is a direct
consequence of (i).

For our next lemma, we shall use the following simple property of fractional
parts: if x; y are real numbers with fxg C fyg < 1, then fx C yg D fxg C fyg.

Lemma 1.2. If ˛ is irrational, then the sequence ˛n D fn˛g, n 2 N, is dense in
Œ0; 1�.
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Proof. Given " > 0, letN be a positive integer such that 1=N < ". By Lemma 1.1,
there exists a positive integer n with 1 ⩽ n ⩽ N such that ˛n < 1=N . Since
˛n > 0 is irrational, there exists a (unique) k 2 N such that k˛n < 1 < .kC1/˛n.
Therefore the points j˛n with j D 1; 2; : : : ; k are "-dense in Œ0; 1�. But by the
simple property given before the statement of this lemma, we have

j˛n D j fn˛g D fjn˛g D ˛jn ; j D 1; 2; : : : ; k :

In other words, we have proved that the set f˛n; ˛2n; : : : ; ˛kng is "-dense in Œ0; 1�.
Since " is arbitrary, it follows that .˛n/ is dense in Œ0; 1�.

As a corollary, we have the following result.

Proposition 1.1. If ˛ is irrational, then for all x 2 S1 the positive orbit OC.x/ D
fRn˛.x/ W n 2 Ng of x under the rotation R˛ is dense in S1.

Proof. Note that

Rn˛.x/ D Rn˛.Rx.0// D Rx.R
n
˛.0// :

SinceRx is an isometry of the unit circle, it follows that the sequence .Rn˛.x//n⩾0
is dense if and only if the sequence .Rn˛.0//n⩾0 is dense. But Rn˛.0/ D fn˛g, and
this last sequence is dense by Lemma 1.2.

This proposition justifies the dichotomy we stated at the beginning of this sec-
tion.

1.1.2 Sequence of closest returns

Let R˛ W S1 ! S1 be the rotation of angle 2�˛ on the unit circle, where ˛ is
irrational. We define a sequence of positive integers .qn/ recursively as follows.
Let q0 D 1, and for each n > 0, let

qn D min
n
i > qn�1 W d.x;Ri .x// < d.x;Rqn�1.x//

o
:

Here, x is any point on the circle. It does not matter which x we choose in this
definition, because R˛ is an isometry. The positive integer qn is called the n-th
closest return time of the orbit of (any) x. The meaning is clear: each iterate
R
qn
˛ .x/ is closest to x than any previous iterate Ri˛.x/, 1 ⩽ i < qn.
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It so happens that consecutive closest returns to x occur in opposite sides of
x. Being “on opposite sides of x” might seem somewhat ambiguous (we are on
a circle, after all!), but the ambiguity disappears if we remove Rq0

˛ .x/ D R˛.x/

from S1: it is then legitimate to speak of opposite sides of x in the arc S1nfR˛.x/g.
The precise statement is as follows.

In.x/

In.x/

Rk˛.In.x//

Rk˛.In.x//

x

x

R
qn
˛ .x/

R
qn
˛ .x/

Rk˛.x/

Rk˛.x/

R
kCqn
˛ .x/

R
kCqn
˛ .x/

Figure 1.1: Two possibilities.

Lemma 1.3. Let Jn.x/ � S1 be the interval of endpoints Rqn�1
˛ .x/ and Rqn

˛ .x/

that contains x, and letJ 0
n.x/ � Jn.x/ be the interval of endpoints x andRqn�1

˛ .x/.
Then RqnC1

˛ .x/ 2 J 0
n.x/.

This lemma, in turn, is a consequence of the following result.

Lemma 1.4. Let In.x/ � Jn.x/ be the interval with endpoints x and Rqn
˛ .x/.

Then the intervals Rj˛.In.x//, with j 2 f 0; 1; 2; : : : ; qnC1 � 1 g, are pairwise
disjoint.

Proof. Let 0 ⩽ i < j ⩽ qnC1 � 1 be such that Ri˛.In.x// \ R
j
˛.In.x// ¤ Ø.

Then k D j � i satisfies In.x/ \ Rk˛.In.x// ¤ Ø, and obviously 0 < k < qnC1.
Recall that R˛ is an isometry, so jRk˛.In.x//j D jIn.x/j. Since R˛ is orientation-
preserving, we see that either x 2 Rk˛.In.x// or Rk˛.x/ 2 In.x/ (see Figure 1.1).
In either case, we have

d.x;Rk˛.x// ⩽ jIn.x/j D d.x;R
qnC1
˛ .x// :
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But this can only happen if k ⩾ qnC1, which is certainly not the case.

Remark 1.1. The intervals In.x/ defined above are called the closest return inter-
vals associated to the point x. We sometimes omit the point x and write In instead
of In.x/.

1.2 Rotations and continued fractions
In this section we look at rotations from an arithmetic viewpoint. Given R˛ W
S1 ! S1, we introduce the continued fraction development of ˛ and show that
the denominators of the sequence of best rational approximations to ˛ (obtained
by truncating the continued fraction expansion of ˛) are precisely the closest return
times for R˛ introduced in Section 1.1.

1.2.1 Basic theory of continued fractions

Let us consider the groupG of 2�2 real matrices with determinant˙1. This group
acts on the extended real line bR D R[f1g (the one-point compactification of R)
as the group M .R/ of real fractional linear (or Möbius) transformations. More
precisely, to each matrix

A D
�
a b

c d

�
2 G

we associate a Möbius transformation TA given by

TA.�/ D
a� C b
c� C d :

Matrix multiplication inG corresponds to composition of maps in M .R/, in other
words, if A;B 2 G then TAB D TA ı TB . Thus we have a homomorphism
G ! M .R/, and it is easy to check that such homomorphism is surjective and
that its kernel is f˙I g. In particular, M .R/ D G=f˙I g 2

We consider certain special elements of G. Given x 2 R, let

�x D
�
x 1

1 0

�
:

2Through this identification, M .R/ contains a copy of PSL.2;R/ D SL.2;R/=f˙I g (the pro-
jective special linear group) as a subgroup of index 2.
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The associated Möbius transformation T�x
is given by

T�x
.�/ D x C 1

�
:

Now, given any sequence x0; x1; : : : ; xn; : : : of real numbers, we associate to it
the sequence of matrices An given by

An D �x0
�x1
� � � �xn

D
�
x0 1

1 0

��
x1 1

1 0

�
� � �
�
xn 1

1 0

�
:

The sequence of corresponding Möbius transformations TAn
is therefore given by

TAn
.�/ D T�x0

ı T�x1
ı � � � ı T�xn

.�/

D x0 C
1

x1 C
1

x2 C
1

� � � C 1

xn C
1

�

: (1.3)

The entries of the matrices An can be determined by recurrence. Writing

An D
�
pn pn�1
qn qn�1

�

and taking into account that AnC1 D An�xnC1
, we see that

pnC1 D xnC1pn C pn�1 (1.4)
qnC1 D xnC1qn C qn�1 : (1.5)

We also have p0 D x0; p1 D x0x1 C 1 and q0 D 1; q1 D x1. It readily follows
from these facts that pn and qn are given by polynomials of degree nC 1 and n,
respectively, in the variables x0; x1; : : : ; xn. Moreover, since

detAn D
nY

jD0
det �xj

D .�1/nC1 ;

we see that
pnqn�1 � pn�1qn D .�1/nC1 ; 8 n ⩾ 1 : (1.6)
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Let us now specialize our discussion to the case when each xn is an integer,
say xn D an 2 Z. We assume also that all an’s are positive, with the possible
exception of a0. For later reference, let us repeat here the defining recurrence
relations for the pn’s and qn’s in this case:

pnC1 D anC1pn C pn�1 (1.7)
qnC1 D anC1qn C qn�1 : (1.8)

Since q0 D 1 and q1 D a1 ⩾ 1 and an ⩾ 1 for all n ⩾ 1, we deduce from (1.7)
that qnC1 ⩾ qn C qn�1. This tells us that the sequence .qn/ grows at least as fast
as the Fibonacci sequence: by an easy inductive argument, it follows from this last
inequality that

qn ⩾
1p
5

 
1C
p
5

2

!n
:

Presently, what is more important for our purposes is that qn !1 exponentially
fast as n!1. Dividing both sides of (1.6) by qn�1qn, we have

pn

qn
� pn�1
qn�1

D .�1/nC1

qn�1qn
(1.9)

This shows that the sequence of rational numbers pn=qn is a Cauchy sequence
(recall here that qn !1 exponentially fast), and therefore the limit

˛ D lim
n!1

pn

qn
(1.10)

exists. This number must be irrational (why?). We stress that the rational num-
bers pn=qn are already in irreducible form, for (1.6) implies that gcd.pn; qn/ D 1.
These rational approximations to ˛ are called the convergents of ˛, while the co-
efficients an are called the partial quotients of ˛.

Next, we note that (1.9) implies, by a simple telescoping trick, the relation

pn

qn
D a0 C

n�1X

jD0

.�1/jC1

qj qjC1
: (1.11)

Letting n!1 here yields ˛ as the sum of an infinite convergent series, namely

˛ D a0 C
1X

jD0

.�1/jC1

qj qjC1
: (1.12)
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These facts tell us that the convergents pn=qn alternate around ˛ (their limit). In
fact, again using that .qn/ is an increasing sequence, we have
p0

q0
<
p2

q2
< � � � < p2n

q2n
< � � � < ˛ < � � � < p2nC1

q2nC1
< � � � < p3

q3
<
p1

q1
: (1.13)

Furthermore, if we subtract (1.11) from (1.12), we get

˛ � pn
qn
D

1X

jDn

.�1/jC1

qj qjC1
;

and from this it follows thatˇ̌
ˇ̌˛ � pn

qn

ˇ̌
ˇ̌ < 1

qnqnC1
<

1

q2n
;

for all n ⩾ 0.
Summarizing, we have proved one half of the following result.

Theorem 1.1. Given a sequence of integers a0; a1; : : : ; an; : : : with an ⩾ 1 for all
n ⩾ 1, there exists a unique irrational number ˛ with the following properties.

(i) Writing, for each n ⩾ 0

pn

qn
D a0 C

1

a1 C
1

a2 C
1

� � � C 1

an

as an irreducible fraction, we have
ˇ̌
ˇ̌˛ � pn

qn

ˇ̌
ˇ̌ < 1

qnqnC1
for all n ⩾ 0 :

(ii) The convergents pn=qn alternate around ˛, and their limit is ˛.

Conversely, given an irrational number ˛, there exists a unique sequence of inte-
gers a0; a1; : : : ; an; : : : with an ⩾ 1 for all n ⩾ 1 such that

˛ D lim
n!1

a0 C
1

a1 C
1

a2 C
1

� � � C 1

an

: (1.14)
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Proof. By now, only the converse statement at the end requires proof. Given the
number ˛, define a0 D b˛c and let ˛0 D ˛. Next, define

˛1 D
1

˛0 � a0
and a1 D b˛1c :

Note that ˛1 is a well-defined, positive irrational number, and that a1 is a posi-
tive integer. Now proceed inductively in this fashion: having defined the positive
irrational number ˛n and the positive integer an, let

˛nC1 D
1

˛n � an
and anC1 D b˛nC1c :

This produces the desired sequence of integers. We leave to the reader the task of
proving that, indeed, (1.14) is satisfied.

We close this section with the following remark. Let G W Œ0; 1� ! Œ0; 1� be
defined by G.0/ D 0 and

G.˛/ D
�
1

˛

�
; for all ˛ ¤ 0 :

This is the so-called Gauss map, which is extremely useful in the study of contin-
ued fractions. Also, let a1 W Œ0; 1�! ZC be given by

a1.˛/ D
�
1

˛

�

This is, of course, the first (non-zero) partial quotient of ˛ 2 .0; 1�. Then, if an.˛/
denotes the n-th partial quotient of ˛, we have

anC1 D a1 ıGn.˛/ ; for all n ⩾ 0 : (1.15)

Thus, there is an intimate relationship between the continued-fraction development
of a real number in Œ0; 1� and the dynamics of the Gauss map. In particular, many
interesting statistical properties of the partial quotients can be derived from the
ergodic theory of the Gauss map. This will be fully explained in Appendix A.
Remark 1.2. We warn the reader that, for notational convenience, later in this book
we will write a0 for the first partial quotient of a number ˛ 2 .0; 1�, instead of a1.
Thus, the indices in the sequence of partial quotients will all be shifted by 1.
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1.2.2 Best approximations
The convergents of an irrational number ˛ are the best rational approximations to
˛, in a sense that is made precise in the following result.

Theorem 1.2. If pn=qn denotes the n-th convergent of the irrational number ˛,
for n D 0; 1; : : :, then

(i) For all n ⩾ 0, we have

1

qn.qn C qnC1/
<

ˇ̌
ˇ̌˛ � pn

qn

ˇ̌
ˇ̌ < 1

qnqnC1
: (1.16)

(ii) We have

jq0˛ � p0j > jq1˛ � p1j > � � � > jqn˛ � pnj > � � � :

(iii) If p; q are non-zero integers such that

jq˛ � pj < jqn˛ � pnj : (1.17)

for some n ⩾ 0, then q ⩾ qnC1.

Proof. The right-most inequality in (1.16) was proved in Theorem 1.1. Since the
convergent pnC2=qnC2 lies between ˛ and the convergent pn=qn, we have

ˇ̌
ˇ̌˛ � pn

qn

ˇ̌
ˇ̌ >

ˇ̌
ˇ̌pnC2
qnC2

� pn
qn

ˇ̌
ˇ̌ : (1.18)

The recurrence relations defining pn; qn easily imply the identity

pnC2qn � pnqnC2 D .�1/nanC2 :

Using this identity in (1.18), and taking into account that anC2 ⩾ 1, we get
ˇ̌
ˇ̌˛ � pn

qn

ˇ̌
ˇ̌ > anC2

qnqnC2
D anC2

qn.anC2qnC1 C qn/
⩾

1

qn.qnC1 C qn/
;

and this establishes the left-most inequality in (1.16). Hence, (i) is established.
In order to prove (ii), we multiply the inequalities in (1.16) by qn, obtaining

1

qn C qnC1
< jqn˛ � pnj <

1

qnC1
:
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These inequalities are valid for all n ⩾ 0. But if n ⩾ 1 then qnC1 ⩾ qn C qn�1,
and therefore

jqn˛ � pnj <
1

qn C qn�1
< jqn�1˛ � pn�1j :

This proves (ii).
Finally, we prove (iii). Let us suppose that (1.17) holds, but 0 < q < qnC1.

Note that since the matrix �
pn pnC1
qn qnC1

�

has determinant equal to˙1, there exists a unique pair of integers �; � such that

p D �pn C �pnC1 and q D �qn C �qnC1 : (1.19)

We claim that � and � are both non-zero. For if � D 0 then q D �qnC1 and �
is necessarily non-zero, implying q ⩾ qnC1, contrary to assumption. Likewise, if
� D 0, then p D �pn, q D �qn with � ¤ 0, and so

jq˛ � pj D j�j � jqn˛ � pnj ⩾ jqn˛ � pnj ;

again contrary to assumption. Thus, � ¤ 0 ¤ �. Next, we claim that� and � have
opposite signs. Indeed, if they had the same sign, then from the second equality
in (1.19) we would have q D jqj ⩾ qnC1, again contrary to assumption. Now,
we note that the numbers qn˛ � pn and qnC1˛ � pnC1 have opposite signs (see
(1.13)). Therefore the numbers

�.qn˛ � pn/ and �.qnC1˛ � pnC1/

have the same sign. Therefore we have

jq˛ � pj D j�.qn˛ � pn/C �.qnC1˛ � pnC1/j
D j�j � jqn˛ � pnj C j�j � jqnC1˛ � pnC1j
> j�j � jqn˛ � pnj ⩾ jqn˛ � pnj :

This is again a contradiction. This proves that q must be greater than or equal to
qnC1, and we are done.
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We close this section with a word on notation. Given any real number x, it
is customary to denote by kxk the distance from x to the nearest integer, that is,
kxk D minfjx �mj W m 2 Zg. It is easy to see, from the above discussion, that

kqn˛k D jqn˛ � pnj for all n ⩾ 0 .

Hence, Theorem 1.2 (ii) tells us that

kq0˛k > kq1˛k > � � � > kqn˛k > � � �

1.3 Weyl’s equidistribution theorem

The points of a single orbit of an irrational rotation are not just dense in S1, they are
also uniformly distributed in some sense. This fact, although intuitively obvious,
requires clarification and proof. This is our purpose in this section.

1.3.1 Equidistribution
Let us start with a definition.

Definition 1.1. A sequence of real numbers x0; x1; : : : ; xn; : : : is said to be equidis-
tributed modulo one3 if for every interval � � Œ0; 1� we have

lim
N!1

1

N
# f0 ⩽ n ⩽ N � 1 W fxng 2 �g D j�j (1.20)

where, as before, fxg D x � bxc denotes the fractional part of x, and j�j denotes
the Euclidean length of the interval �.

Alternatively, (1.20) can be written as

lim
N!1

1

N

N�1X

nD0
1�.fxng/ D

Z 1

0

1�.x/ dx ; (1.21)

where 1� is the characteristic (or indicator) function of the interval �.
In a classic paper published in 1914, H. Weyl proved the following criterion

for equidistribution.
3Or, equivalently, uniformly distributed modulo one.
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Theorem 1.3 (Weyl’s Criterion). For a sequence of real numbers .xn/n⩾0, the
following are equivalent.

(a) The sequence .xn/ is equidistributed modulo one;

(b) For every continuous function ' W R! C, periodic of period one, we have

lim
N!1

1

N

N�1X

nD0
'.xn/ D

Z 1

0

'.x/ dx I

(c) For each m 2 Z�, we have

lim
N!1

1

N

N�1X

nD0
e2�imxn D 0 :

Proof. To see that (a) implies (b), note first of all that it suffices to prove (b) for
real valued functions (periodic of period one). Given such a ', approximate it
uniformly on the unit interval by means of a sequence of step functions. Since
each step function is a linear combination of characteristic functions of intervals,
equality (1.21) holds for step functions as well. From the equality in (b) follows,
first for the step functions themselves, and then for' by the uniform approximation.
Now, (b) clearly implies (c), for we can simply take '.x/ D expf2�imxg. To
prove that (c) implies (b), consider the algebra A of so-called Laurent polynomials

P.x/ D
X̀

mD�k
cme

2�imx

where k; ` are non-negative integers and cm 2 C for all m. It is clear that A

contains the constant functions, separates points of Œ0; 1� and is invariant under
complex conjugation. Therefore, by the Stone–Weierstrass theorem, A is dense
in C 0

C
.Œ0; 1�/. Thus, given ' as in (b) and � > 0, there exists P� 2 A such that

supx2Œ0;1� j'.x/ � P�.x/j ⩽ �. This implies at once that

ˇ̌
ˇ̌
Z 1

0

'.x/ dx �
Z 1

0

P�.x/ dx

ˇ̌
ˇ̌ ⩽ � ; (1.22)
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and also, for all N ⩾ 1, that
ˇ̌
ˇ̌
ˇ
1

N

N�1X

nD0
'.xn/ �

1

N

N�1X

nD0
P�.xn/

ˇ̌
ˇ̌
ˇ ⩽ � : (1.23)

If c0 denotes the constant term ofP�, then applying (c) we deduce that, asN !1,

1

N

N�1X

nD0
P�.xn/ �! c0 D

Z 1

0

P�.x/ dx :

Combining this fact with (1.22) and (1.23), we get

lim
N!1

ˇ̌
ˇ̌
ˇ
1

N

N�1X

nD0
'.xn/ �

Z 1

0

'.x/ dx

ˇ̌
ˇ̌
ˇ ⩽ 2� :

But since � is arbitrary, (b) follows. Finally, to prove that (b) implies (a), let � �
.0; 1/ be an interval, and let � > 0. Take two functions ' and  , both continuous
and periodic of period one, with '.x/ ⩽ 1�.x/ ⩽  .x/ for all 0 ⩽ x ⩽ 1, such
that Z 1

0

 .x/ dx �
Z 1

0

'.x/ dx ⩽
�

3
:

Note that the integral of 1� over the unit interval is squeezed between these two.
Moreover, for all N ⩾ 1 we have

1

N

N�1X

nD0
'.xn/ ⩽

1

N

N�1X

nD0
1�.fxng/ ⩽

1

N

N�1X

nD0
 .xn/ :

But, by (b), for all sufficiently large N we have
ˇ̌
ˇ̌
ˇ
1

N

N�1X

nD0
'.xn/ �

Z 1

0

'.x/ dx

ˇ̌
ˇ̌
ˇ ⩽

�

3
;

as well as ˇ̌
ˇ̌
ˇ
1

N

N�1X

nD0
 .xn/ �

Z 1

0

 .x/ dx

ˇ̌
ˇ̌
ˇ ⩽

�

3
;

Combining these facts we deduce (a), and this completes the proof.
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Corollary 1.1. Every orbit of an irrational rotation R� W x 7! x C � .mod 1/ is
equidistributed modulo one.

Proof. Since Rn
�
.x/ D fx C n�g for all n, we must prove that the sequence xn D

xCn� is equidistributed modulo one. This we do using part (c) of Weyl’s criterion;
given m 2 Z�, we see that

1

N

N�1X

nD0
e2�im.xCn�/ D e2�imx

N

N�1X

nD0

�
e2�im�

�n
D e2�imx

N

1 � e2�imN�
1 � e2�im�

Therefore

lim
N!1

1

N

ˇ̌
ˇ̌
ˇ
N�1X

nD0
e2�im.xCn�/

ˇ̌
ˇ̌
ˇ D lim

N!1
1

N

ˇ̌
ˇ̌
ˇ
1 � e2�imN�
1 � e2�im�

ˇ̌
ˇ̌
ˇ D 0 ;

and we indeed deduce from (c) that the orbit is equidistributed modulo one as
asserted.

1.3.2 A simple application
Following Arnold and Avez [1968], let us illustrate the usefulness of Weyl’s cri-
terion by solving a simple problem in Number Theory. Write down the list of all
powers of 2 in base 10, in ascending order:

1; 2; 4; 8; 16; 32; 64; 128; 256; 512; 1024; 2048; : : :

Consider the sequence consisting of the left-most digits of the above numbers,
namely

1; 2; 4; 8; 1; 3; 6; 1; 2; 5; 1; 2; : : : (1.24)

Then ask a couple of natural questions:

(i) Does the number 7 appear in the above list of first digits?4

(ii) If so, with what frequency?
4In the old days when Arnold and Avez discussed the problem, pocket calculators were not

available. Today anybody with one at hand and a bit of patience can check by brute force that
the answer to the first question is yes. Indeed, the first occurrence of 7 as first digit happens in
246 D 70368744177664.
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Let us see how Weyl’s criterion – or rather, Corollary 1.1 – can aid us in pro-
viding answers to these questions. First, we need to express the first digit dn of 2n
written in base 10 as a function of n. If we take the logarithm in base 10 of each
term in our sequence of powers of two, we get the sequence

xn D n log10 2 :

The simple but crucial observation here is the following:

dn D k 2 f1; : : : ; 9g () fxng D fn log10 2g 2 Œlog10 k; log10 .k C 1// :

But � D log10 2 is irrational (why?). Hence, by Corollary 1.1, the sequence .xn/
is equidistributed modulo one. In particular, we have

lim
N!1

1

N
#f0 ⩽ n < N W dn D kg D log10

�
1C 1

k

�
> 0 :

In other words, all digits from 1 to 9 appear with positive (asymptotic) frequency
in the sequence (1.24). The (asymptotic) frequency for the specific case of 7 is

log10
8

7
D 0:05799 : : :

This, of course, answers questions (i) and (ii) posed above: the digit 7 does appear
in (1.24), with an asymptotic frequency of about 5:8%.

1.4 Ergodicity of irrational rotations
Throughout this book, we denote by m the normalized Lebesgue measure on the
unit circle. More precisely, if A � S1 is an interval, then m.A/ is just the
Lebesgue measure of ��1.A/ \ Œ0; 1/ in the real line, where � W R ! S1 is the
standard covering map. Since it lifts to a translation, any rotation preserves the
Lebesgue measure on S1. We finish Chapter 1 by proving ergodicity of irrational
rotations.

Lemma 1.5. The Lebesgue measure is ergodic under any irrational rotation.

Recall that if .X;�/ is a measure space and � W X ! X is a measurable
map that preserves �, we say that � is ergodic under � if, for every measurable
set A � X which is invariant under � (meaning ��1.A/ D A), we have either
�.A/ D 0 or �.X n A/ D 0.
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Note that Lemma 1.5 above is certainly not true for rational rotations (why?).
As it turns out, Lemma 1.5 follows from what we have done in Section 1.3.1. In-
deed, if the sequence fxngn2N in Theorem 1.3 is given by an orbit, i.e., xn D
x0 C n˛ .mod 1/ for some initial condition x0 2 R, then part (b) of Weyl’s crite-
rion is saying that the Birkhoff averages of any continuous function ' W R ! C,
periodic of period one, along the given orbit fxng converges to

R 1
0 '.x/ dx. This

establishes the ergodicity of the Lebesgue measure underR˛. However, the proof
given below (which uses the notion of Lebesgue density point) is easier to adapt
to more general situations (see for instance Theorem 3.10 in Chapter 3, see also
Section 8.4).

Proof of Lemma 1.5. Let ˛ 2 Œ0; 1�nQ and letR˛ be the rotation of angle ˛ in S1.
Let us assume, by contradiction, that there exist two disjoint R˛-invariant Borel
sets A and B in the circle, both having positive Lebesgue measure. Let x0 2 S1

be a density point of A. Recall that this means that

lim
"!0

(
m

�
.x0 � "; x0 C "/ \ A

�

2"

)
D 1 :

Since A is R˛-invariant and R˛ is an isometry, we have that

m

��
Rn˛.x0/ � ";Rn˛.x0/C "

�
\ A

�
D m

�
Rn˛.x0 � "; x0 C "/ \ A

�

D m

�
Rn˛
�
.x0 � "; x0 C "/ \ A

��

D m

�
.x0 � "; x0 C "/ \ A

�
:

Therefore, Rn˛.x0/ is a density point of A for all n 2 N. In the same way, let
y0 2 S1 be a density point of B . For any given ı 2 .3=4; 1/, let " > 0 be
sufficiently small so that

m

�
.x0 � "; x0 C "/ \ A

�
> 2"ı and m

�
.y0 � "; y0 C "/ \ B

�
> 2"ı:

By Proposition 1.1, the positive orbit
˚
Rn˛.x0/

	
n2N

is dense in the circle. More-
over, as we just observed, all its points are density points of A. This allows us to
assume that x0 2 .y0 � "; y0 C "/. Finally, since A and B are disjoint to each
other, we obtain

2"ı < m

�
.y0 � "; y0 C "/ \ B

�

⩽ m

�
.y0 � "; y0 C "/ [ .x0 � "; x0 C "/

�
�m

�
.x0 � "; x0 C "/ \ A

�

< 3" � 2"ı :
This implies that ı < 3=4, a contradiction.
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Remark 1.3. Yet another proof of Lemma 1.5 can be given by means of Fourier
series. The equivalence between what we will prove below and ergodicity is a
criterion proved in almost every book on Ergodic Theory; see for instance Walters
[1982, p. 28]. Just as before, let ˛ 2 Œ0; 1� n Q and let R˛ be the rotation of
angle ˛ in S1. We claim that if ' W S1 ! C belongs to the Hilbert space L2.S1/
of square-integrable functions (with respect to Lebesgue, i.e.,

R
j'j2 dm is finite)

and satisfies ' ıR˛.x/ D '.x/ at Lebesgue almost every point, then ' is constant
almost everywhere. To prove this, we proceed as follows. It is well known that
every such ' has a unique orthogonal expansion in L2.S1/ of the form

' D
X

n2Z

an.'/ en

where the functions en.x/ D e2�inx , n 2 Z, form an orthonormal basis for
L2.S1/, and the bi-infinite sequence fan.'/gn2Z of complex numbers, the so-
called Fourier coefficients of ', is given by

an.'/ D
Z

S1

'.x/ e�2�inx dx ; 8n 2 Z :

But the function ' ıR˛ is also in L2.S1/, and a simple calculation shows that its
Fourier coefficients are given by

an.' ıR˛/ D
Z

S1

'.x C ˛/e�2�inx dx

D
Z

S1

'.x/e�2�in.x�˛/ dx D an.'/e2�in˛ ; 8n 2 Z :

Now suppose that ' is R˛-invariant, in the sense that ' ı R˛ D ' at Lebesgue
almost every point. By uniqueness of the Fourier coefficients, we must have
an.'/ e

2�in˛ D an.'/ for all n 2 Z. Since ˛ is an irrational number, e2�in˛ ¤ 1
for all n ¤ 0. This implies that an.'/ D 0 for all n ¤ 0. In other words,
'.x/ D a0.'/ for Lebesgue almost every x 2 S1. Thus, we have proved that
if ' 2 L2.S1/ satisfies ' ıR˛ D ' almost everywhere, then it is constant almost
everywhere. This implies the ergodicity of the Lebesgue measure under R˛.

In Exercise 1.13 below we outline a proof of the fact that the Lebesgue mea-
sure is the unique invariant measure of an irrational rotation. Dynamical systems
preserving only one probability measure are called uniquely ergodic. As we will
see in Section 2.3, any circle homeomorphism without periodic points is uniquely
ergodic.
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Exercises
Exercise 1.1.

(i) Let G be an additive sub-group of the real numbers. Show that G is either
discrete or dense in R (Hint: Discuss on ˛ D inffg 2 G W g > 0 g).

(ii) Let � 2 Œ0; 1�, and note that the set G� D fn� C m W n;m 2 Zg is a
sub-group of R. Show that G� is discrete if, and only if, � 2 Q.

(iii) Let R� W S1 ! S1 be the rigid rotation of angle � 2 Œ0; 1�, and note that

OR�

�
�.x/

�
D �.x CG�/

for any x 2 R, where � W R! @D is the usual covering map �.t/ D e2�it .
With this and the previous items, describe the dynamics of any rotation, as
in Section 1.1.1.

Exercise 1.2. Let 0 ⩽ ˛; ˇ < 1 be real numbers, and suppose that there is a
continuous monotone map h W S1 ! S1 such that h ı R˛ D Rˇ ı h. Show that
˛ D ˇ.
Exercise 1.3. If qn, n ⩾ 0 are the denominators of the convergents of an irrational
number ˛, prove that this sequence always grows at least as fast as the Fibonacci
numbers. Deduce that

qn ⩾
1p
5

 
1C
p
5

2

!n
; for all n ⩾ 0 :

Exercise 1.4. For any n 2 N, note that
�p
n2 C 1�n

��p
n2 C 1Cn

�
D 1 implies

p
n2 C 1 � n D 1

2nC
�p
n2 C 1 � n

� ;

and conclude that the continued fraction expansion of
p
n2 C 1 � n D

p
n2 C 1 .mod 1/

is given by Œ2n; 2n; 2n; : : : �.
Exercise 1.5. Prove the identity (1.15).
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Exercise 1.6. Given an irrational number ˛, let an, n ⩾ 0, be the partial quotients
of its continued-fraction development, and let qn, n ⩾ 0, be the denominators of
the corresponding convergents.

(i) Show that
qn

qn�1
D Œan; an�1; : : : ; a1� ; for all n ⩾ 1 :

(ii) Show that, for all n ⩾ 2, we have

kqn�1˛k D ankqn˛k C kqnC1˛k ;

and deduce that
an D

�kqn�1˛k
kqn˛k

�
:

Exercise 1.7. Let the sequence .xn/n⩾0 be equidistributed modulo one, and let
.˛n/n⩾0 be a sequence that converges to zero in the Cesàro sense, i.e.

lim
n!1

1

n
.˛0 C ˛1 C � � � C ˛n�1/ D 0 :

Prove that the sequence .xn C ˛n/n⩾0 is also equidistributed modulo one.
Exercise 1.8. Let � be a positive irrational number, and let .xn/n⩾0 be the sequence
given by x0 D 0, x1 D � , and xn D .nC .logn/�1/� for all n ⩾ 2. Show that
.xn/ is equidistributed modulo one.
Exercise 1.9. Show that the sequence

xn D
( 
1C
p
5

2

!n)

is not equidistributed modulo one.
Exercise 1.10. Suppose f W RC ! R is a differentiable function such f 0.x/! 0

as x !1. Show that

1

N

N�1X

nD0
e2�if .n/ � 1

N

Z N

0

e2�if .t/ dt ! 0

as N !1.
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Exercise 1.11. Let f be as in the previous exercise, and suppose in addition that

lim
x!1

xf 0.x/ D A 2 Œ�1;C1� :

(i) If A is finite, show that the sequence xn D f .n/ is not equidistributed
modulo one.

(ii) If A D ˙1 and f 0 is monotone, show that xn D f .n/ is equidistributed
modulo one.

Exercise 1.12. Using the criterion provided by the previous exercise, show that

(i) The sequence xn D n� is equidistributed modulo one provided 0 < � < 1.

(ii) The sequence xn D logn is not equidistributed modulo one.

Exercise 1.13. Let ˛ 2 Œ0; 1�nQ and letR˛ be the rotation of angle ˛ in S1. Given
a continuous function ' W S1 ! R, consider the sequence f'n W S1 ! Rgn2N of
its Birkhoff averages, i.e., 'n.x/ D n�1Pn�1

jD0 '
�
R
j
˛.x/

�
for all x 2 S1.

(i) Endowing the space C 0.S1/ with the uniform convergence topology, show
that the sequence f'ng is pre-compact (Hint: Apply the Arzelà–Ascoli The-
orem).

(ii) Show that f'ng converges (uniformly) to the constant
R
' dm (Hint: Com-

bine Lemma 1.5 with Birkhoff’s Ergodic Theorem, and then apply the pre-
vious item).

(iii) Deduce that R˛ is uniquely ergodic (Hint: Using again Birkhoff’s Ergodic
Theorem, show that if � is an R˛-invariant probability measure, thenR
' d� D

R
' dm for any ' 2 C 0.S1/).

Exercise 1.14. A vector ˛ D .˛1; : : : ; ˛n/ 2 Rn is said to be rationally inde-
pendent if whenever a linear combination

PjDn
jD1 kj˛j with integer coefficients

k1; : : : ; kn belongs to Z, then k1 D k2 D � � � D kn D 0 (in other words, the nC1
numbers ˛1; : : : ; ˛n; 1 are rationally independent). Now let Tn D Rn=Zn D
S1 � S1 � � � � � S1 be the n-dimensional torus. The purpose of this exercise is to
guide the reader to a proof that the Lebesgue measure on Tn is ergodic under the
rotation R˛ W Tn ! Tn given by

R˛.x1; : : : ; xn/ D .x1 C ˛1; : : : ; xn C ˛n/ .mod 1/;
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provided the vector ˛ is rationally independent. To do this, we will proceed as
in Remark 1.3 and prove that if ' W Tn ! C belongs to L2.Tn/ and satisfies
' ı R˛ D ' at Lebesgue almost every point of Tn, then it is constant almost
everywhere.

(i) Just as in Remark 1.3, write

'.x1; : : : ; xn/ �
X

.k1;:::;kn/2Zn

ak1;:::;kn
e2�i

Pj Dn

j D1
kjxj

for the Fourier series representation of ', where the numbers ak1;:::;kn
are

the Fourier coefficients5 of '.

(ii) Show that
ak1;:::;kn

�
1 � e2�i

Pj Dn

j D1
kj˛j

�
D 0

for all .k1; : : : ; kn/ 2 Zn.

(iii) Show that '.x1; : : : ; xn/ D a0;:::;0 for Lebesgue almost every .x1; : : : ; xn/.

(iv) Conclude that the Lebesgue measure on Tn is ergodic under R˛.

Exercise 1.15. Arguing as in Exercise 1.13, prove thatR˛ W Tn ! Tn is uniquely
ergodic, provided ˛ is rationally independent.
Exercise 1.16. Let ˛ 2 Œ0; 1� nQ, and let R˛ be the rotation of angle ˛ in S1. As
we have seen in Exercise 1.13, the Lebesgue measure m is the unique probability
measure invariant under R˛. By the Riesz Representation Theorem, this amounts
to saying that any continuous linear functional T defined in C 0.S1/, which is
invariant6 underR˛, is a scalar multiple of Lebesgue measure. In this exercise we
will extend this result, by showing that any continuous linear functional defined in
C1.S1/, invariant underR˛, also has to be a scalar multiple of Lebesgue measure.
With this goal, let ' 2 C1.S1/ be such that

R
' dm D 0.

(i) Just as in Remark 1.3, write

' D
X

n2Z

an.'/ en ;

where en.x/ D e2�inx , n 2 Z, and the an’s are the Fourier coefficients of
'. Note that a0.'/ D

R
' dm D 0.

5Given by ak1;:::;kn
D
R

Tn '.x1; : : : ; xn/e
�2�i.k1x1C���Cknxn/ dx1 � � � dxn.

6In the sense that hT; u ıR˛ i D hT; u i for any u 2 C 0.S1/.
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(ii) Show that there exists a sequence fungn⩾1 � C1.S1/ such that the se-
quence fun ıR˛ �ung converges to ' in the C1 topology (Hint: For each
n ⩾ 1, let An D Œ�n; n�\Z n f0g D f�n; : : : ;�1; 1; : : : ; ng. Consider the
sequence of trigonometric polynomials given by

un D
X

j2An

aj .'/

e2�ij˛ � 1 ej ;

and note that un ıR˛ � un D
P
j2An

aj .'/ ej for all n ⩾ 1).

(iii) Now let T be a distribution on S1, i.e., T is a continuous linear functional de-
fined inC1.S1/. Assume that T is invariant underR˛, i.e., hT; u ıR˛ i D
hT; u i for any u 2 C1.S1/. Show that if ' 2 C1.S1/ is such thatR
' dm D 0, then hT; ' i D 0.

(iv) Conclude that anyR˛-invariant distributionT is a scalar multiple of Lebesgue
measure. [Hint: By (iii),

˝
T; ' �

R
' dm

˛
D 0 for any given' 2 C1.S1/.]

Invariant distributions for general circle diffeomorphisms will be discussed in
Section 3.4.3, see also Section 8.4.



2 Homeomorphisms
of the Circle

We will study the orbit structure of orientation-preserving homeomorphisms of
the unit circle. As is customary, we will identify the boundary of the unit disk
@D D fz 2 C W jzj D 1g with the one-dimensional torus S1 D R=Z.

Every orientation-preserving homeomorphism f W S1 ! S1 lifts to an in-
creasing homeomorphism F W R ! R such that F.x C 1/ D F.x/ C 1 for all
x 2 R, i.e., such that

R
F����! R

�

??y
??y�

S1 ����!
f

S1

is a commutative diagram, where � W t 7! e2�it is the exponential covering map.
The lift F is not unique, but any two choices differ by an integer; if we require
that, say, F.0/ 2 Œ0; 1/, then F is uniquely determined. Note that we can write
F.x/ D x C '.x/ for all x, where ' W R ! R is a continuous periodic function
with period one.

The natural order structure of R (or S1) makes it “easy” to understand and
classify f ’s as above up to topological equivalence, as we shall see.
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2.1 Translation and rotation numbers
Rotation numbers were first introduced by Poincaré. We will give here three equiv-
alent definitions of rotation numbers and, via lifts, of translation numbers as well.

2.1.1 The classical definition

Following Herman [1979], let us denote by Diff0C.S1/ the class of orientation-
preserving homeomorphisms of the circle, and by D0.S1/ the class of all lifts of
such homeomorphisms to the real line.

We define the translation number of F 2 D0.S1/ to be the limit

�.F / D lim
n!1

F n.x/ � x
n

: (2.1)

Thus, �.F /measures the limiting average amount by which F translates points on
the real line. For this definition to make sense, we need of course the following
basic result.

Proposition 2.1. For every F 2 D0.S1/, the limit in (2.1) exists and is indepen-
dent of x. Moreover, the convergence is uniform in x.

The proof will come in a moment. For now, note that if we are given two lifts
F1 and F2 of the same f 2 Diff0C.S1/, then �.F1/ � �.F2/ is an integer. This
motivates Poincaré’s definition, namely the following.

Definition 2.1. The rotation number of f 2 Diff0C.S1/, denoted �.f /, is the
residue class modulo one of �.F /, where F is any lift of f .

In other words, �.f /measures the limiting average amount by which f rotates
points on the circle.

Let us now prove Poincaré’s fundamental result concerning rotation (and trans-
lation) numbers, namely Proposition 2.1 above. Consider the periodic function
'F .x/ D F.x/ � x. The basic fact to observe is that

sup
x2R

'F .x/ < inf
x2R

'F .x/C 1 ; (2.2)

and that this is true for every F 2 D0.S1/. In particular, (2.2) holds if we replace
F by any iterate F n. Therefore it is clear that in order to prove that the limit (2.1)
exists for all x, it suffices to prove that

lim
n!1

1

n
sup 'F n.x/ (2.3)
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exists, and this will be the common limit for all x. There is no loss of generality
in assuming from the beginning that F.0/ ⩾ 0, so that ˛n D supx2R 'F n.x/ ⩾ 0

for all n ⩾ 0. Hence the existence of the limit in (2.3) is reduced to the following
simple but extremely useful lemma.

Lemma 2.1. Let .˛n/n⩾0 be a sequence of non-negative numbers. If .˛n/ is sub-
additive, i.e. if ˛mCn ⩽ ˛m C ˛n for all m; n ⩾ 0, then the sequence ˛n=n
converges to a limit.

Proof. Given n > 0 fixed and m > n arbitrary, we can write m D knC r , where
0 ⩽ r < n. Hence, by sub-additivity, ˛m ⩽ k˛n C ˛r . This gives us

˛m

m
⩽

˛n

nC r
k

C ˛r

m
⩽
˛n

n
C ˛r

m
;

and since ˛r ranges over a finite set of values, we get lim supm!1.˛m=m/ ⩽
˛n=n for all n > 0, or yet

lim sup
m!1

˛m

m
⩽ lim inf

n!1
˛n

n
;

and so the limit exists.

This completes the proof of Proposition 2.1.

2.1.2 The order definition

An alternative way to define the rotation number of f 2 Diff0C.S1/ is to use the
relative order of points of orbits of f along the circle. As before, let F 2 D0.S1/
be a lift of f . Consider the sets

QC.F / D
�
p

q
2 Q W F q.x/ < p C x; for all x 2 R

�

Q�.F / D
�
p

q
2 Q W F q.x/ > p C x; for all x 2 R

�

These sets determine a Dedekind cut of the rational numbers; this is left as an
exercise to the reader. Hence we can define the translation number of F as the
real number ˛ determined by this Dedekind cut. To see that ˛ agrees with the
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number given by the first definition, consider two sequences of rational numbers
pn=qn 2 Q�.F / and Pn=Qn 2 QC.F /, both converging to ˛; in particular,

pn

qn
< ˛ <

Pn

Qn
:

By induction, we have for all x 2 R

x CQnpn < F qnQn.x/ < x C qnPn :
Dividing these inequalities by qnQn yields

pn

qn
<
F qnQn.x/ � x

qnQn
<

Pn

Qn
:

Letting n!1 and applying Proposition 2.1, we see that indeed ˛ D �.F /.

2.1.3 The measure-theoretic definition

Yet another way to define the rotation number of f 2 Diff0C.S1/ is to consider,
for any given lift F 2 D0.S1/ of f , the real function  F W S1 ! R whose lift
under � is F � Id, that is: F.x/ D x C  F .e2�ix/ for all x 2 R . We claim that
for any given f -invariant Borel probability measure � we have

�.f / D
Z

S1

 F d� .mod 1/ : (2.4)

Indeed, the point here is that the real function g F given by

g F D lim
n!C1

1

n

n�1X

jD0
 F ı f j

is well defined on the whole circle and it is constant, equal to �.F / (note that
this implies at once the identity (2.4), since

R
S1  F d� D

R
S1
g F d� by the f -

invariance of �). To see that g F is well defined and constant, let x 2 S1 and let
x0 2 R be such that �.x0/ D x. Then

n�1X

jD0
 F

�
f j .x/

�
D
n�1X

jD0
 F

�
�.F j .x0//

�
D
n�1X

jD0

�
F � Id

��
F j .x0/

�

D
n�1X

jD0

�
F jC1.x0/ � F j .x0/

�
D F n.x0/ � x0 :
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By Proposition 2.1, we haveg F .x/ D �.F /, as desired. The equivalent definition
of the rotation number of a circle homeomorphism given by (2.4) will not be further
mentioned in this book, but it is important in its own right.

2.1.4 Properties of the rotation number
Let us now take stock of some useful properties of the rotation number. The first
one establishes the fact that the rotation number is a topological invariant: two
topologically conjugate (or even semi-conjugate) circle homeomorphisms have
the same rotation number. In other words, the equivalence classes of Diff0C.S1/
under topological conjugacies are contained in the level sets of �.

Lemma 2.2. Let f; g 2 Diff0C.S1/ and let h W S1 ! S1 be a continuous, degree
one monotone map such that h ı f D g ı h. Then �.f / D �.g/.

Proof. Let F;G 2 D0.S1/ and H W R ! R be lifts of f , g and h respectively,
so that H ı F D G ı H in the real line. Given y 2 R let x 2 R be such that
H.x/ D y. By induction, one easily obtain that Gn.y/ D H

�
F n.x/

�
for all

n 2 N. Then we write

Gn.y/

n
D

�
H � Id

��
F n.x/

�

n
C F n.x/

n
for all n 2 N .

SinceH is a lift of h, the differenceH � Id is bounded in the whole real line, and
then Proposition 2.1 implies Lemma 2.2.

The next result states that the rotation number behaves additively over any
family of commuting homeomorphisms.

Proposition 2.2. If f; g W S1 ! S1 are homeomorphisms such that f ıg D gıf ,
then

�.f ı g/ D �.f /C �.g/ .mod 1/ :

Proof. Let F;G W R! R be lifts of f and g, respectively, with the property that
F ıG D G ıF (the existence of lifts with this property is left as an exercise). Let
us fix x 2 R. From the definition of translation number, we see that

�.F ıG/ D lim
n!1

1

n

�
.F ıG/n.x/ � x

�

D lim
n!1

�
1

n

�
F n.Gnx/ �Gnx

�
� 1
n

�
Gnx � x

��
: (2.5)
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Note that we have used that .F ı G/n D F n ı Gn, which is true because F and
G commute.

Now recall that the periodic function �n D F n�I satisfies sup�n�inf�n < 1
for each n ⩾ 0. In particular, we have �1 < �n.G

n.x// � �n.x/ < 1, and
therefore

�1
n
<

1

n

�
F n.Gnx/ �Gnx

�
� 1
n

�
F nx � x

�
<

1

n
;

for all n ⩾ 1. Taking this information back to (2.5), we get �.F ı G/ D �.F /C
�.G/. Reducing modulo 1, we deduce that �.f ıg/ D �.f /C�.g/ as desired.

We remark that Proposition 2.2 implies the useful formula

�.f n/ D n �.f / .mod 1/;

for any circle homeomorphism f .
The third property we wish to establish tells us that the topological invariant

�.f / varies continuously with f , in a sense to be made precise below.
Let us introduce a topology on the set of liftsD0.S1/. Given F;G 2 D0.S1/,

let
d 0.F;G/ D sup

x2R

jF.x/ �G.x/j :

This defines a metric in D0.S1/, as the reader can easily check (exercise). The
topology in D0.S1/, thus, is the topology induced by this metric. We may also
consider the space P of continuous functions  W R ! R which are periodic of
period 1, endowed with the metric given by the same expression as above. The
topology given by this metric has the following property: For each x 2 R, the
evaluation mapbx WP ! R given bybx. / D  .x/ is continuous.

Likewise, we may consider in Diff0.S1/ the metric given by

d 00.f; g/ D sup
x2S1

kf .x/ � g.x/k :

The reader is invited to check that this is indeed a metric, and that the natural map
.D0.S1/; d 0/! .Diff0.S1/; d 00/, associating to each lift the corresponding circle
homeomorphism, is continuous.

Proposition 2.3. The translation number function � W D0.S1/! R is continuous.
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Proof. For each fixed n > 0, the map ˇn W D0.S1/!P given by

F 7! 1

n

�
F n � I

�

is continuous. Fix x 2 R. As the reader can check (see Exercise 2.4), we have
ˇ̌
ˇ̌1
n

�
F n.x/ � x

�
� �.F /

ˇ̌
ˇ̌ ⩽

1

n
: (2.6)

Since
bx ı ˇn.F / D

1

n

�
F n.x/ � x

�
;

it follows that the sequence of continuous functions fbx ıˇng converges uniformly
to � . Therefore � is continuous.

Corollary 2.1. The rotation number map � W Diff0C.S1/! S1 is continuous.

Proof. This follows at once from Proposition 2.3 and reduction modulo 1.

2.2 Topological dynamics of homeomorphisms
As already mentioned, the study of the dynamics of circle mappings began at the
end of the 19th century, with the pioneering work of Henri Poincaré. In this section
we discuss the differences in dynamical behavior between homeomorphisms with
rational and irrational rotation number, as noted by Poincaré himself.

Let us briefly recall some simple notions from topological dynamics. If T W
X ! X is a homeomorphism of a compact metric space, the !-limit set of a
point x 2 X under T , denoted !T .x/, is the set of all accumulation points of the
forward orbit of x. In other words, y 2 !T .x/ if and only if there is a sequence
ni !1 such that T ni .x/! y. Similarly, we define the ˛-limit set of x under T ,
denoted ˛T .x/, to be the set of all accumulation points of the backward orbit of x.
Thus, y 2 ˛T .x/ if and only if there is a sequence ni ! �1 such that T ni .x/!
y. Both ˛T .x/ and !T .x/ are closed, non-empty, and totally invariant (in the
sense that T .˛T .x// D ˛T .x/, and similarly for !T .x/). A compact invariant
set � is said to be minimal under T if !T .x/ D � for any given x 2 �. The
non-wandering set of T , denoted ˝.T /, is the set of all x 2 X such that for all
neighborhoods U 3 x we have T n.U / \ U ¤ Ø for arbitrarily large n 2 N. The
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non-wandering set is also totally invariant. As the following sections show, and in
marked contrast with other one-dimensional dynamical systems, these sets have a
very simple description in the case of homeomorphisms of the circle.

2.2.1 Rational rotation number
We now take up the task of showing that, for a circle homeomorphism, having
rational rotation number is equivalent to possessing periodic orbits.

Proposition 2.4. For any f 2 Diff0C.S1/ we have that �.f / 2 Q if, and only
if, f admits at least one periodic orbit. In this case, if �.f / D p=q, all periodic
orbits of f have period q.

Proof. Let F 2 D0.S1/ be a lift of f . If f has a periodic point �.x/ (say of
period q), then there exists p 2 Z such that F q.x/ D x C p: This implies that
F nq.x/ D x C np, and then

lim
n!1

F nq.x/

nq
D lim
n!1

x C np
nq

D p

q
:

Therefore, �.f / D p=q .mod 1/. On the other hand, by Proposition 2.2, we know
that �.f m/ D m�.f / .mod 1/ for any m 2 N. In particular, if �.f / D p=q, we
have �.f q/ D 0. This shows that it is enough to prove that if �.f / D 0, then f
has at least one fixed point. To see this, let F 2 D0.S1/ be the lift of f given by
�.F / D 0. If F has no fixed points (and since F � Id is periodic), there exists
ı such that

ˇ̌
F.x/ � x

ˇ̌
⩾ ı for all x 2 R. Say that F.x/ > x for all x 2 R

(the case F.x/ < x can be treated in exactly the same way). Then F.0/ > ı,
F 2.0/ > F.0/C ı > 2ı, : : : , F n.0/ > nı, : : : and so forth. But then ı < F n.0/

n
,

which goes to zero. This contradiction shows that F (and then f ) has at least one
fixed point.

Finally, suppose that �.f / D p=q, and let us prove that all periodic orbits of
f have period q. Let F be the lift of f such that �.F / D p=q, and let �.x/ be a
periodic point for f . Then there exist integers r; s such that F r.x/ D xC s. Now,

�.f / D p

q
D lim
k!1

F kr .x/

kr
D s

r
;

and then s D mp and r D mq for some m. If F q.x/ � p > x, then

F 2q.x/ � 2p D F q.F q.x/ � p/ � p ⩾ F q.x/ � p > x:
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Proceeding inductively in this fashion, we deduce that F jq.x/ � jp > x for all
j ⩾ 1. In particular, this gives us x < Fmq.x/ � mp D F r.x/ � s, which is
impossible. In the same way, assuming F q.x/ � p < x leads to a contradiction.
Therefore �.x/ is periodic for f if, and only if, F q.x/ D xCp. In particular, all
periodic orbits of f have period q.

Let us present another proof of the fact that if �.f / D p=q, then all periodic
orbits of f have period q. Let �.x/ be a periodic point of period q. Then the set
S1 n Of

�
�.x/

�
is made up by q pairwise disjoint intervals I1; : : : ; Iq which are

permuted by f . Moreover, f j .Ii / D Ii if, and only if, j D q. In particular,
f qjI1

is an orientation-preserving self-homeomorphism of the interval I1, and
then its dynamics are quite simple: any point is asymptotic, both forwards and
backwards, to a fixed point. Now if �.y/ is a periodic point for f different from
�.x/, then Of

�
�.y/

�
\ I1 ¤ ;. Say that �.y/ 2 I1. Then f q

�
�.y/

�
D �.y/,

that is, �.y/ is periodic with period q. Note that this argument also implies the
following fact.

Lemma 2.3. Let f 2 Diff0C.S1/ with rational rotation number. For any given
x 2 S1, the set ˛f .x/ is a periodic orbit of f , and the same for !f .x/.

2.2.2 Irrational rotation number

Proposition 2.5. Let f W S1 ! S1 be a homeomorphism without periodic points.
Then ˝.f / is a non-empty, compact perfect set, and in fact ˛f .x/ D !f .x/ D
˝.f / for all x 2 S1. Moreover, if ˝.f / is not the whole circle, then it is also
totally disconnected, i.e., a Cantor set.

Proof. Let x and y be any two points of S1. If y 2 !f .x/, then by total in-
variance we have !f .y/ � !f .x/. If y … !f .x/, then let J be the connected
component of S1 n !f .x/ that contains y. Then J is a wandering interval, i.e.
its images are pairwise disjoint, because f has no periodic points. In particular,P
n2Z jf n.J /j ⩽ 1 D length of S1, which implies jf n.J /j ! 0 as jnj ! 1.

Therefore, if a denotes any of the endpoints of J , we have dist.f n.a/; f n.y//!
0 as jnj ! 1. Thus, if f ni .y/ converges to some point z 2 S1, so does f ni .a/.
Since a 2 !f .x/, this shows that !f .y/ � !f .x/ in this case also. Interchang-
ing x and y we see that in fact !f .x/ D !f .y/, so the !-limit set of any point
of S1 under f is the same. Now we claim that ˝.f / agrees with !f .x/, for any
x 2 S1. Indeed, if y 2 ˝.f /, then y 2 !f .y/ D !f .x/, so ˝.f / � !f .x/.
Conversely, if a point y belongs to !f .x/, then it belongs to its own !-limit set,
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and therefore it belongs to ˝.f /. One shows similarly that ˛f .x/ D ˝.f / for
all x. Also, an isolated point of˝.f / would necessarily have to be periodic, con-
trary to assumption, so˝.f / is indeed a perfect set. To prove the last assertion, if
˝.f / ¤ S1, then its boundary @˝.f / is non-empty, closed and totally invariant.
Hence, if z 2 @˝.f /, we have @˝.f / � !f .z/ D ˝.f /, so ˝.f / D @˝.f /,
and this is only possible if ˝.f / is totally disconnected.

A natural question at this point is: Which Cantor sets can be realized as˝.f /
for some circle homeomorphism f without periodic orbits? The answer is given
by the following result.

Theorem 2.1. Let K � S1 be a Cantor set, and let ˛ be an irrational number.
Then there exists a homeomorphism f W S1 ! S1 such that �.f / D ˛ and
˝.f / D K.

Proof. We give a sketch of the proof and leave the details as an exercise. Take any
point x0 2 S1 and let xn D Rn˛.x0/, n 2 Z, be its orbit under the rotationR˛. Let
G denote the countable set consisting of all connected components of S1 nK (the
gaps of the Cantor set K). Then, using a simple inductive procedure, one shows
that there exists a bijection � W fxn W n 2 Zg ! G which is order-preserving in the
sense that (in the counter-clockwise orientation of S1) whenever xk lies between
xm and xn, the gap �.xk/ lies between the gaps �.xm/ and �.xn/. Accordingly,
write In D �.xn/, so that G D fIn W n 2 Zg. Next, define f W S1 nK ! S1 nK
by letting f jIn

be an affine, orientation-preserving bijection onto InC1, for all
n 2 Z. At the same time, let h W S1 nK ! fxn W n 2 Zg be given by h.x/ D xn
whenever x 2 In. Then h is order-preserving, and by construction we have hıf D
R˛ ıh in S1nK. Hence f is also order-preserving. Since its image is dense on the
circle, f extends to a continuous monotone map of the entire circle, which we still
denote by f . Then f must be injective. Otherwise f would be constant on some
interval J , but this is not possible because J must intersect some In. This shows
that f is a homeomorphism. The map h also extends to a continuous monotone
map h W S1 ! S1, and by continuity the equation h ı f D R˛ ı h now holds
everywhere, i.e., h is a semi-conjugacy between f and the rotation R˛. Hence,
by Lemma 2.2, we have �.f / D ˛. Finally, since by construction we also have
f .K/ D K, it follows that ˝.f / D K, as desired.

Theorem 2.2. Let f W S1 ! S1 be a homeomorphism of the circle with irrational
rotation number ˛. Then f is semi-conjugate to the rotation by ˛, i.e., there exists
a continuous, degree one monotone map h W S1 ! S1 such that h ı f D R˛ ı h.
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Proof. Let F be a lift of f to the real line. DefineH W R! R by

H.x/ D sup fm˛ C n W Fm.0/C n < xg :
Since fm˛ C n W m; n 2 Zg is dense in R, H is continuous and monotone. It
clearly satisfies H.x C 1/ D H.x/C 1 for all x, so it is the lift of a continuous,
degree one monotone map h W S1 ! S1. Now, we have

H ı F.x/ D sup fm˛ C n W Fm.0/C n < F.x/g
D sup

˚
m˛ C n W Fm�1.0/C n < x

	

D ˛ CH.x/ :
Hence we have the commutative diagram

R
F����! R

H

??y
??yH

R ����!
T˛

R

where T˛ is the translation by ˛. Descending to the quotient space S1 yields

S1
f����! S1

h

??y
??yh

S1 ����!
R˛

S1

Therefore f is semi-conjugate to the rotation by ˛, as was to be proved.

Proposition 2.6. Let f W S1 ! S1 be a homeomorphism without periodic points.
If there is a sequence ni ! 1 such that ff ni g is equicontinuous on the circle,
then f is topologically conjugate to a rotation.

Proof. Let J be a connected component of the complement of the non-wandering
set ˝.f /. Then the intervals f n.J /, n 2 Z, are pairwise disjoint. In particular,
jf �ni .J /j ! 0 as i ! 1. Since ff ni g is equicontinuous, for each � > 0

there exists ı > 0 such that each interval of length ⩽ ı is mapped by each f ni

onto an interval of length ⩽ �. In particular, since f ni maps f �ni .J / onto J
for all i , it follows that jJ j ⩽ �. But � is arbitrary, so jJ j D 0. This shows that
˝.f / D S1, and therefore, by Theorem 2.2, f is topologically conjugate to an
irrational rotation.
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2.3 Invariant measures and semi-conjugacies
From the measure-theoretic point of view, there is a dichotomy between home-
omorphisms of the circle with rational and irrational rotation numbers. This di-
chotomy is presented in Table 2.1. In this section we supply the missing proofs of
the statements that are implicit in that table.

�.f / D p

q
2 Q �.f / D ˛ 2 R nQ .mod 1/

There is a periodic orbit There are no periodic orbits
of period q

Many invariant measures Unique invariant Borel
in general probability measure �

� is ergodic

� ergodic, invariant � D supp.�/ is compact, perfect,
probability measure invariant and f j� is minimal

H) supp.�/ D periodic orbit

Table 2.1: Rational vs irrational rotation numbers.

It is useful at this point to introduce the following auxiliary notion. If h W
S1 ! S1 is a monotone map, we say that J � S1 is a plateau for h if J is an
open interval, hjJ is constant and J is maximal with respect to these properties.
We have the following two easy lemmas.

Lemma 2.4. Let f 2 Diff0C.S1/ have no periodic points and let h be a continuous
monotone map of S1 such that h ı f D R˛ ı h (where ˛ is irrational). Then, if J
is a plateau of h, we have

(a) The intervals f n.J /, n 2 Z, are pairwise disjoint;

(b) �.J / D 0 for every f -invariant probability measure �.



38 2. Homeomorphisms of the Circle

Proof. Let hmap J to a point p 2 S1. Ifm and n are integers such that f m.J /\
f n.J / ¤ Ø then, since f is a homeomorphism, we have J \ f m�n.J / ¤ Ø. If
x D f m�n.y/ is a point in this last intersection, then on the one hand we have
h.x/ D p (because x 2 J ), and on the other hand hıf m�n.y/ D Rm�n

˛ .h.y// D
Rm�n
˛ .p/ (because y 2 J ). Therefore Rm�n

˛ .p/ D p, and this can only happen
if m D n, for R˛ is an irrational rotation. This proves (a). But now we know
that

P
n2Z �.f

n.J // ⩽ 1, and since the measure is invariant, we also know that
�.f n.J // D �.J / for all n. This forces �.J / D 0, and part (b) is proved.

Lemma 2.5. If f and h are as in Lemma 2.4, and if �1 and �2 are invariant
probability measures for f , then h��1 D h��2 if and only if �1 D �2.

Proof. Let P � S1 be the union of all closed intervals of the form J , where J is
a plateau of h. If A � S1 is any Borel set, we have

A � h�1.h.A// � A [ P

By Lemma 2.4 (b) we have�i .P / D 0 for i D 1; 2. Therefore, writingA0 D h.A/,
we see that

h��i .A0/ D �i .h
�1.h.A/// D �i .A/ ;

for i D 1; 2 If h��1 D h��2, this forces �1.A/ D �2.A/, so �1 D �2. The
converse is obvious.

With the help of this last lemma we can now prove the following important
result.

Theorem 2.3. Every homeomorphism of the circle without periodic points is uni-
quely ergodic.

Proof. Let f 2 Diff0C.S1/ be without periodic points and let ˛ D �.f /. Let
h W S1 ! S1 be the semi-conjugacy of f to R˛ given by Theorem 2.2. If � is
a probability measure on S1 such that f�� D �, then � D h�� is an invariant
measure for R˛. Moreover, if � is ergodic for f then � is ergodic for R˛. Hence,
by Lemma 2.5, it suffices to show that R˛ is uniquely ergodic (which has been
proved by the reader in Exercise 1.13. However, we provide a proof here just for
the sake of completeness).

Now, we know that R˛ leaves Lebesgue measure m invariant, and that m

is ergodic for R˛ (recall Lemma 1.5). Suppose then that � is another invariant
measure for R˛, and that � is ergodic for R˛. Let A � S1 be any Borel set, and
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let 1A denote its characteristic function. Then by Birkhoff’s ergodic theorem we
have

1

n

n�1X

jD0
1A ıRj˛.x/

n!1����!
Z

S1

1A d� D �.A/

for �-almost every x 2 S1, whereas by Weyl’s equidistribution theorem we also
have

1

n

n�1X

jD0
1A ıRj˛.x/ D

1

n
card

n
0 ⩽ j < n W Rj˛.x/ 2 A

o
n!1����! m.A/

for every x 2 S1. Therefore �.A/ D m.A/ for all Borel sets A, and so m �
�.

A proof of Theorem 2.3 without using Birkhoff’s ergodic theorem and Weyl’s
equidistribution theorem can be found in the recent survey de Faria and Guarino
[2022a, Prop. 2.7]. Here is a simple consequence of Theorem 2.3. Let us agree to
say that a circle homeomorphism f is non-singular with respect to Lebesgue mea-
sure m, or simply measurably non-singular, if the push-forward measure f� m is
equivalent to m, in the sense that they have the same sets of zero measure. In other
words, f is non-singular if m.f �1.B// D 0 () m.B/ D 0 whenever B is a
Borel set. For example, every diffeomorphism of the circle is non-singular.

Corollary 2.2. If f W S1 ! S1 is a measurably non-singular homeomorphism of
the circle without periodic points, then its unique invariant probability measure is
either absolutely continuous or purely singular with respect to Lebesgue measure.

Proof. Let � be the unique Borel probability measure invariant under f . By the
Lebesgue–Radon–Nikodým theorem, we can write � D �1 C �2, where �1 and
�2 are positive Borel measures with �1 � m and �2 ? m. Hence f�� D
f��1 C f��2, and since f�� D �, we have

�.B/ D �.f �1.B// D �1.f �1.B//C �2.f �1.B// (2.7)

for every Borel measurable set B . There are now two cases to consider:

(i) If m.B/ D 0, then �1.B/ D 0 (because �1 � m). Since f is measurably
non-singular, we also have m.f �1.B// D 0, and therefore�1.f �1.B// D
0 (again because �1 � m). Thus, �1.B/ D �1.f �1.B// in this case.
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(ii) If m.B/ > 0, then �2.B/ D 0 (because �2 ? m); in particular �.B/ D
�1.B/. Since we also have m.f �1.B// D 0 (again because f is measur-
ably non-singular), it follows that �2.f �1.B// D 0. From this and (2.7)
we deduce that �1.B/ D �1.f �1.B// in this case as well.

This shows that f��1 D �1. Therefore either �1 � 0 or the normalized measure
� D �1=�1.S

1/ is an invariant probability under f . In the first case, we have
� D �2, and so � ? m; in the second case, by unique ergodicity we must have
� D �, and so �� �1 � m.

Exercises

Exercise 2.1. Let f W S1 ! S1 be an orientation reversing homeomorphism.

(i) Show that f has exactly two fixed points.

(ii) Show that, for any given x 2 S1, the !-limit set !f .x/ is either a fixed
point or a periodic orbit of period 2.

Exercise 2.2. Given f 2 Diff0C.S1/, the centralizer of f in Diff0C.S1/ is the
group (under composition) given byZ0.f / D fh 2 Diff0C.S1/ W h ıf D f ıhg.

(i) Show that if f is a rigid rotation, then Z0.f / is just the group of rotations
(and then Z0.f / is topologically a circle).

(ii) Show that if f is a minimal circle homeomorphism, then Z0.f / is also
homeomorphic to a circle.

Exercise 2.3. Let f 2 Diff0C.S1/ with irrational rotation number �. Show that
any semi-conjugacy between f and R� is unique up to post-composition with
rotations.
Exercise 2.4. Prove the inequality (2.6).
Exercise 2.5. Fill in the details of the proof of Theorem 2.1.
Exercise 2.6. Let f W S1 ! S1 be a circle homeomorphism with irrational rota-
tion number, and let � be the unique invariant probability measure for f . Let x 2
S1, and let .mi / and .ni / be two sequences of integers such thatmi � ni !C1
as i !1. Writing

�i D
1

mi � ni

miX

jDni C1
ıf j .x/ ;
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where ıa denotes the Dirac point mass (probability measure) at a 2 S1, prove
that the sequence of measures �i converges to � in the weak*-topology. (See
Katznelson [1977, p. 5].)
Exercise 2.7. Let 1 < p < q be two integers and denote by �q the intervalh
1
q
; 1
i

with the endpoints 1
q

and 1 identified. Consider the piecewise affine map
Tp;q W �q ! �q given by

Tp;q.x/ D

8
ˆ̂̂
<
ˆ̂̂
:

px ; if
1

q
⩽ x <

1

p
;

p

q
x ; if

1

p
⩽ x ⩽ 1 :

The map Tp;q is built out of two linear maps of the real line: one expanding (mul-
tiplication by p > 1), the other contracting (multiplication by p=q < 1); see
Figure 2.1. Through the identification of the endpoints of �q , the map Tp;q is a
piecewise affine homeomorphism of the circle.

(i) Show that Tp;q is topologically conjugate to the rotation R˛ W S1 ! S1,
with ˛ D logq p.

(ii) Show that the conjugating map is differentiable except at one point.

(iii) Show that Tp;q leaves invariant the absolutely continuous measure � given
by

�.A/ D
Z

A

dx

x log q
:

(iv) Show that if gcd.p; q/ D 1 then Tp;q is minimal, and therefore uniquely
ergodic.

(v) Let 1 < p1; p2 < q be integers; show that Tp1;q and Tp2;q commute. [Hint:
use (i) and (iii)]

[References: de Faria and Tresser [2014] and Liousse [2004]]

Exercise 2.8. Construct a piecewise affine homeomorphism f W S1 ! S1 with the
following properties: (a) f has irrational rotation number; (b) f leaves invariant
the set of rational angles, i.e., f .Q=Z/ D Q=Z. The first example of this type
was constructed by Boshernitzan [1993]. [See also de Faria and Tresser [2014]]
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p/q

1

0 1/q 1/p 1

Figure 2.1: A piecewise linear circle map built out of two linear maps, one ex-
panding with slope p, the other contracting with slope p

q
.

Exercise 2.9. Consider F W R! R given by

F.x/ D x C 1

100
sin2.�x/ ;

and note that F is the lift of a real-analytic diffeomorphism f W S1 ! S1. Show
that �.f / D 0 and that f is uniquely ergodic.

Exercise 2.10. Let f 2 Diff0C.S1/ with irrational rotation number �. As we saw
in Section 2.3, f is uniquely ergodic and its unique invariant measure � is given
by �.A/ D m

�
h.A/

�
for any Borel set A � S1, where h is any semi-conjugacy

between f and the rigid rotation R�, and m denotes the normalized Lebesgue
measure in S1 (recall that, by Exercise 2.3, the semi-conjugacy h is unique up to
post-composition with rotations, so the measure � is well-defined). Conversely,
given the unique f -invariant measure �, fix some x 2 S1 and consider h W S1 !
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S1 defined by

h.y/ D exp
�
2�i

Z y

x

d�

�
;

where, by convention, we measure the arc .x; y/ starting from x in the counter-
clockwise sense. Show that h is the unique semi-conjugacy between f and R�
which identifies the point x with the point 1.
Exercise 2.11. A self-homeomorphism f W X ! X of a compact metric space
.X; d/ is said to be expansive if there exists a constant ı > 0 such that for every
pair of points x and y in X we have that

d
�
f n.x/; f n.y/

�
< ı 8 n 2 Z ) x D y :

Show that there are no expansive homeomorphisms on the circle.
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3 Diffeomorphisms:
Denjoy Theory

The topological theory of diffeomorphisms of the circle was started by A. Denjoy,
almost fifty years after H. Poincaré introduced the concept of rotation number. In
a seminal paper published in 1932, Denjoy [1932] proved that every sufficiently
smooth circle diffeomorphism f without periodic points is topologically equiv-
alent to an irrational rotation. Here, the expression “sufficiently smooth” means
that f is C 1 and logDf is a function of bounded variation. In that same work,
he also showed that such result is essentially optimal by constructing C 1 diffeo-
morphisms of the circle without periodic points that leave invariant a Cantor set in
S1 – which therefore cannot be conjugate to a rotation – and have the additional
property that logDf is Hölder continuous. An example of this type, without this
extra property, had been constructed 16 years earlier by Bohl [1916].

In this chapter we shall prove Denjoy’s theorem and construct his examples,
the latter with some improvements due to later authors, such as Katznelson [1977]
and Herman [1979]. In the chapter’s last section, we shall examine circle diffeo-
morphisms from the ergodic-theoretic viewpoint.
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3.1 The naive distortion lemma

We will prove first a weaker version of Denjoy’s theorem, in which we assume that
the circle diffeomorphism isC 2. This we will do primarily for pedagogical reasons.
The weaker version provides us with a good opportunity to introduce a very simple,
yet extremely useful tool in one-dimensional dynamics: the nonlinearity of a map.

Definition 3.1. The nonlinearity of a C 2 diffeomorphism f is

N f D D logDf D D2f

Df
:

Note that the nonlinearity of f vanishes identically if and only if f is linear
(or rather, affine). Thus, as the name suggests, the nonlinearity measures how far
a map is from being linear. The nonlinearity satisfies a chain rule: if f and g are
C 2 diffeomorphisms and f ı g is well-defined, then

N .f ı g/ D N f .g/Dg CN g :

One can see from this chain rule that, under C 2 changes of coordinates, the non-
linearity transforms like a 1-form.

In many situations, the nonlinearity can be used to control the geometric dis-
tortion of a long composition of maps. Suppose we have a sequence of inter-
vals I0; I1; : : : ; In; : : : on the real line or on the circle, and diffeomorphisms fn W
In�1 ! In, n D 1; 2; : : : Let us also assume that

(i) Each fn is an increasing C 2 diffeomorphism;

(ii) There exists a constant B > 0 such that supx2In
jN fi .x/j ⩽ B for all

n D 1; 2; : : :

Let us write Fn D fn ı fn�1 ı � � � ı f1, for all n. Then we have the following
result, known as the naive distortion lemma.

Theorem 3.1. Under the hypotheses (i) and (ii) above, if x; y 2 I0 are any two
points then for all n ⩾ 1 we have

exp

(
�B

n�1X

iD0
jIi j

)
⩽

F 0
n.x/

F 0
n.y/

⩽ exp

(
B

n�1X

iD0
jIi j

)
: (3.1)
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Proof. The proof uses the chain rule for the nonlinearity together with the change
of variables formula. For all t 2 I0 we have

NFn.t/ D
nX

iD1
N fi .fi�1 ı � � � ı f1.t//D ffi�1 ı � � � ı f1g .t/ ;

by the chain rule. Integrating over the interval J0 with endpoints x and y contained
in I0, and writing Ji D fi ı fi�1 ı � � � ı f1.J0/, we see that

Z

J0

NFn.t/ dt D
nX

iD1

Z

J0

N fi .Fi�1.t//DFi�1.t/ dt D
nX

iD1

Z

Ji�1

N fi .t/ dt

using over each summand the change of variables t 7! Fi�1.t/. Since jN fi .t/j ⩽
B and Ji�1 � Ii�1, we get

ˇ̌
ˇ̌
Z

J0

NFn.t/ dt

ˇ̌
ˇ̌ ⩽ B

n�1X

iD0
jJi j ⩽ B

n�1X

iD0
jIi j (3.2)

But the integral in the left-hand side of (3.2) is equal to˙ log .F 0
n.x/=F

0
n.y//, and

exponentiating the resulting inequality yields (3.1), as was to be proved.

A typical application of the distortion lemma occurs in cases where the fi ’s
are restrictions of a single map f and the intervals Ii in its domain are pairwise
disjoint (or quasidisjoint). In such cases, the estimate offered by the distortion
lemma is uniform in n, and can be combined with the mean-value theorem to
force contradictions, e.g. in ruling out the existence of wandering intervals for f .
This is precisely what happens in the proof of the C 2 version of Denjoy’s theorem,
presented below.

3.2 Denjoy’s theorem

The theorem of Denjoy is such an important result that, in this book, we prove it
in three different ways. Two of these are given in this section. The third proof will
be given in Chapter 6 (see Remark 6.2).
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3.2.1 The C 2 version
As promised earlier, we will prove first a weak version of Denjoy’s theorem. In
this version we assume that the given diffeomorphism is C 2 smooth.

Theorem 3.2 (Weak Denjoy). If f W S1 ! S1 is a C 2 diffeomorphism whose ro-
tation number ˛ is irrational, then f is topologically conjugate to the rotationR˛.

Proof. Let .qn/n⩾0 be the sequence of closest return times of f (denominators
of the convergents of ˛). We already know that there exists a semi-conjugacy
between f and R˛, that is to say a continuous monotone map h W S1 ! S1 such
that h ı f D R˛ ı h. The pre-image h�1.p/ of a point p 2 S1 is either a point
or the closure of a plateau of h. If we can rule out plateaux, h will be one-to-one,
and therefore a homeomorphism – in other words, a conjugacy.

We argue by contradiction. Suppose h�1.p/ D J , where J is a plateau of
h. Then by Lemma 2.4 (a), J is a wandering interval for f , i.e. the intervals
Jm D f m.J /, m 2 Z, are pairwise disjoint. Fix a small neighborhood of p, and
take n so large that R�qn.p/ belongs to that neighborhood. Let I 0 be the closed
interval with endpoints p and R�qn.p/ contained in such neighborhood. Define
I D h�1.I 0/, and note that I is an interval because h is monotone. Note also that
I contains both J0 and J�qn

. From our study of the combinatorics of rotations,
we already know that the intervals Ri˛.I 0/, 0 ⩽ i ⩽ qn � 1 are pairwise disjoint.
Therefore the intervals Ii D f i .I /, 0 ⩽ i ⩽ qn � 1 are also pairwise disjoint. In
particular, we have

Pqn�1
iD0 jIi j ⩽ 1.

By the mean-value theorem, there exist x 2 J0 and y 2 J�qn
such that

Df qn.x/ D jJqn
j

jJ0j
and Df qn.y/ D jJ0j

jJ�qn
j : (3.3)

We are now in a position to apply the distortion lemma (Theorem 3.1) to the diffeo-
morphisms fi D f jIi�1

, 1 ⩽ i ⩽ qn, and the points x and y. From that theorem
and (3.3), we deduce that

e�B ⩽
jJqn
j � jJ�qn

j
jJ0j2

⩽ eB ; (3.4)

where B D sup jN f j < 1. These inequalities are valid for every sufficiently
large n, and the lower and upper bounds are independent of n. But since we haveP
m2Z jJmj ⩽ 1, it follows that limm!1 jJmj D limm!1 jJ�mj D 0, which

contradicts (3.4). Therefore h has no plateaux, and the proof is complete.
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3.2.2 The bounded variation version
As it turns out, in Denjoy’s theorem it is not necessary to assume that the diffeo-
morphism f is C 2. It suffices to assume that logDf is a function of bounded
variation on the circle. A function ' W S1 ! R is said to be of bounded variation
if its total variation is finite, that is to say

Var.'/ D sup
nX

iD1
j'.ai / � '.bi /j < 1 ;

where the supremum is taken over all finite collections of pairwise disjoint inter-
vals .ai ; bi / � S1, 1 ⩽ i ⩽ n. The space of all such functions is denoted by
BV.S1/1.

The fundamental tool for the bounded variation version of Denjoy’s theorem
is the following.

Theorem 3.3 (Denjoy–Koksma Inequality). Let f W S1 ! S1 be a homeomor-
phism with irrational rotation number ˛, and let � be the unique Borel probability
measure invariant under f . If the rational number p=q is such that

ˇ̌
ˇ̌˛ � p

q

ˇ̌
ˇ̌ < 1

q2
;

then for every function ' W S1 ! R of bounded variation we have

sup
x2S1

ˇ̌
ˇ̌
ˇ̌
q�1X

jD0
' ı f j .x/ � q

Z

S1

' d�

ˇ̌
ˇ̌
ˇ̌ ⩽ Var.'/ :

Proof. First we remark that the points �j D
n
j p
q

o
2 S1 for j D 0; 1; : : : ; q � 1

are precisely the q-roots of unity, and therefore they partition S1 into q arcs of
equal length 1=q. Since for each j D 1; 2; : : : ; q we have

ˇ̌
ˇ̌j˛ � j p

q

ˇ̌
ˇ̌ ⩽

j

q2
⩽

1

q
;

it follows that each such arc contains exactly one of the points Rj˛.0/ D fj˛g,
j D 1; : : : ; q. We label these arcs 1; : : : ; q so that Rj˛.0/ 2 j .

1It is easy to see that BV.S1/ is a vector space. It is in fact a Banach space under the norm
k'kBV D j'.0/j C Var.'/.
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Now let x 2 S1 and let h W S1 ! S1 be the primitive of � given by

h.t/ D
Z t

f �1.x/

d�.s/ :

This monotone map, which is normalized so that h.f �1.x// D 0, is a semi-
conjugacy between f and R˛. Let �j D h�1.j /. Then the intervals �j ,
j D 1; : : : ; q form a partition of S1, and f j�1.x/ 2 �j for all j . Note also
that �.�j / D 1=q for all j .

With these facts at hand, we are ready to prove the Denjoy–Koksma inequality.
Let ' 2 BV.S1/ be of bounded variation. Then we have
ˇ̌
ˇ̌
ˇ̌
q�1X

jD0
' ı f j .x/ � q

Z

S1

' d�

ˇ̌
ˇ̌
ˇ̌ D

ˇ̌
ˇ̌
ˇ̌
q�1X

jD0

 
' ı f j .x/ � q

Z

�j C1

' d�

!ˇ̌
ˇ̌
ˇ̌

D q

ˇ̌
ˇ̌
ˇ̌
q�1X

jD0

Z

�j C1

�
'.f j .x// � '.t/

�
d�.t/

ˇ̌
ˇ̌
ˇ̌

⩽ q

q�1X

jD0
Var.'I�jC1/ � �.�jC1/

D
q�1X

jD0
Var .'I�jC1/ ⩽ Var.'/ :

This concludes the proof, because x 2 S1 is arbitrary.

Theorem 3.4 (Denjoy’s Theorem). Let f W S1 ! S1 be a diffeomorphism whose
rotation number ˛ is irrational. If logDf is a function of bounded variation, then
f is topologically conjugate to the rotation R˛.

Proof. We apply the Denjoy–Koksma inequality to the function ' D logDf . Let
.qn/ be the sequence of closest returns of f . The chain rule tells us that

logDf qn.x/ D
qn�1X

jD0
logDf ı f j .x/ :

Hence, by Theorem 3.3, we have
ˇ̌
ˇ̌logDf qn.x/ � qn

Z

S1

logDf d�
ˇ̌
ˇ̌ ⩽ Var.logDf / : (3.5)
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Since f qn maps S1 diffeomorphically onto itself, there is a point x� such that
Df qn.x�/ D 1. Using this point in the above inequality, we see that

ˇ̌
ˇ̌
Z

S1

logDf d�
ˇ̌
ˇ̌ ⩽

Var.logDf /
qn

:

But as n!1, the right-hand side of this last inequality goes to zero, and therefore
Z

S1

logDf d� D 0 :

Taking this back to the inequality (3.5), we deduce that jlogDf qn.x/j ⩽ V , where
V D Var.logDf /. Exponentiating this inequality gives us

e�V ⩽ jDf qn.x/j ⩽ eV :

This implies that the sequence of iterates f qn is equicontinuous. By Proposi-
tion 2.6, f must therefore be topologically conjugate to the rotation R˛.

Remark 3.1. Yet another version of Denjoy’s theorem was proved by Hu and Sul-
livan [1997], for C 1 maps whose first derivative satisfies a Zygmund condition.
We say that a function ' W S1 ! R is Zygmund if for all x and h we have

'.x C h/C '.x � h/ � 2'.x/ D O.jhj/ :

The (linear) space of all Zygmund functions is denoted by Z. Although the Zyg-
mund and bounded variation classes have non-empty intersection, neither class is
contained in the other. Hu and Sullivan showed that if f 2 Diff1CZ.S1/, in other
words, if f is a C 1 diffeomorphism and logDf 2 Z, and Per.f / D Ø, then
f has no wandering intervals – and therefore it is conjugate to the corresponding
rotation. For more on the uses of the Zygmund class in one dimensional dynamics,
see de Melo and van Strien [1993, Ch. IV].

3.3 Denjoy’s examples

We have seen in Theorem 2.1 that any perfect, totally disconnected subset of S1 is
the exceptional minimal set of some homeomorphism of the circle, andwe can even
take the rotation number of such homeomorphism to be an arbitrary irrational. The
situation is considerably more rigid for diffeomorphisms, although still sufficiently
flexible to allow for a plethora of examples. We expand on this point a bit.
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To start with, Denjoy’s theorem rules out exceptional minimal sets for diffeo-
morphisms whose degree of smoothness is C 1CBV or higher2. Thus, if we are
looking for diffeomorphisms with exceptional minimal sets, we have to content
ourselves with lower smoothness. Let us agree once and for all on the following
definition.

Definition 3.2. A Denjoy example is a diffeomorphism of the circle having an
exceptional minimal set.

In this section, following Herman [1979] and Katznelson [1977], we will con-
struct for each given irrational rotation number, a Denjoy example with that rota-
tion number that is of class C 1C� for every 0 < � < 1. In fact, for fixed rotation
number there are even a countable infinity of topological conjugacy classes of such
Denjoy examples. The question of which Cantor sets on the circle are minimal sets
of C 1 Denjoy examples is a difficult one, and is still open. We will have more to
say about that later.

3.3.1 The basic construction
The intuitive idea behind the construction of Denjoy examples is to cut the unit
circle along one or more orbits of an irrational rotation and introduce a small in-
terval, or gap, at each cut. This surgery procedure yields a new, larger circle. In
this enlarged circle, the complement of the union of all gaps is a Cantor set (made
up of points of the old circle plus the endpoints of the gaps). We define a self-map
– a homeomorphism – of the enlarged circle by letting it agree with the irrational
rotation on the Cantor set, and by defining it on gaps so that each gap is taken home-
omorphically onto another gap, following their exact order on the circle coming
from the irrational rotation. The Cantor set becomes the exceptional minimal set
of this homeomorphism.

Since we want a diffeomorphism, not merely a homeomorphism, the sizes of
the gaps have to be carefully chosen. Moreover, if we follow the above proce-
dure to the script, we find that it always produces exceptional minimal sets having
positive Lebesgue measure – roughly speaking, equal to the size of the old circle
divided by the size of the enlarged circle. We would like to construct examples
having zero Lebesgue measure also. Hence, the above procedure will have to be
slightly modified.

Let us move to the detailed construction. To start it, we fix an irrational number
˛ with 0 < ˛ < 1. We want to produce a C 1 diffeomorphism f W S1 ! S1 with

2We denote by C 1CBV the class of all C 1 maps f such that logDf 2 BV.S1/.
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�.f / D ˛ having an exceptional minimal set K � S1. We proceed by steps, as
follows.

Step 1: Construction of K. We will construct a perfect nowhere dense set
bK � R such that K D �.bK/ � S1 is the desired minimal Cantor set. Let us
consider a bi-infinite sequence .�n/n2Z of positive real numbers such that

(D1) ` D
X

n2Z

�n ⩽ 1.

(D2) lim
jnj!1

�nC1
�n
D 1.

(D3) sup
n2Z

ˇ̌
ˇ̌�nC1
�n
� 1

ˇ̌
ˇ̌ D � < 1

2

For each n 2 Z, let ˛n D fn˛g 2 S1; this sequence is dense in S1, because ˛ is
irrational. Define also the sequences

8
ˆ̂̂
<̂
ˆ̂̂
:̂

an D .1 � `/˛n C
X

i W0⩽˛i<˛n

�i ;

bn D an C �n D .1 � `/˛n C
X

i W0⩽˛i⩽˛n

�i :

(3.6)

Now let In D .an; bn/ � R; note that In � Œ0; 1�, by (D1) above.

Lemma 3.1. The intervals In, n 2 Z, are pairwise disjoint, the set

K0 D .0; 1� n
[

n2Z

In

is perfect and nowhere dense, and its Lebesgue measure equals 1 � `.

Proof. Suppose m; n 2 Z are such that ˛m < ˛n. Then we have

an D .1 � `/˛n C
X

i W0⩽˛i⩽˛m

�i C
X

i W˛m<˛i<˛n

�i

D bm C .1 � `/.˛n � ˛m/ C
X

i W˛m<˛i<˛n

�i > bm : (3.7)
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This last inequality holds even if ` D 1, because .˛i / is dense in Œ0; 1�. Thus, we
have am < bm < an < bn, and therefore Im \ In D Ø. This shows at once
that the intervals In are pairwise disjoint and that the setK0 has no isolated points.
Moreover, since K0 is closed, it is Lebesgue measurable, and

m.K0/ D 1 �m.
[

n2Z

In/ D 1 � ` :

It remains to prove that K0 has empty interior. This is obvious if ` D 1, so we
assume that ` < 1. Note that (3.7) tells us that

ı D dist.In; Im/ D .1 � `/.˛n � ˛m/ C
X

i W˛m<˛i<˛n

�i

and also that
� D m.K0 \ Œbm; an�/ D .1 � `/.˛n � ˛m/

We claim that there exists a gap Ik contained in Œbm; an� that intersects the middle
third of Œbm; an�. This is clear if � < ı=3, so we assume that � ⩾ ı=3. Let
˛k 2 .˛m; ˛n/ be such that

ˇ̌
ˇ̌˛k �

˛m C ˛n
2

ˇ̌
ˇ̌ < 1

18
.˛n � ˛m/ :

Then we have

ak � bm D .1 � `/.˛k � ˛m/C
X

i W˛m<˛i<˛k

�i

>
4

9
.1 � `/.˛n � ˛m/ ⩾

ı

3
:

Similarly, an � bk > ı=3. These inequalities show that the gap Ik is contained in
the middle third of Œbm; an�, proving the claim. From the claim it follows that the
union of all gaps is dense in Œ0; 1�, and therefore K0 has empty interior.

We now define bK as the union of all integral translates of K0, in other words,

bK D
[

n2Z

.nCK0/ :

This set enjoys the same topological properties as we stated for K0: it is closed,
perfect, and nowhere dense.
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Step 2: Construction of the lift of f . Let us now construct an increasing dif-
feomorphism F W R! R with F.bK/ D bK, which will be the lift to the real line
of f , the Denjoy example we seek to construct. We write F D IdC�, where �
is periodic of period one. We will construct the derivative ' D D� first, and then
integrate.

We want to have f .Jn/ D JnC1 for all n, where Jn D �.In/ � S1. Hence
F must map each gap In onto (an integral translate of) of InC1, and therefore

Z

In

F 0.t/ dt D �nC1 D jInC1j :

This is the same as requiring that
Z bn

an

Œ1C '.t/� dt D �nC1 ;

or yet Z bn

an

'.t/ dt D �nC1 � �n : (3.8)

There are many ways to define ' inside In, vanishing at the endpoints, so that the
above equality holds. One way is to write

'.t/ D 1

2
cn .�n � j2t � an � bnj/

for all t 2 In. Here the constant cn is chosen so that (3.8) holds. A simple com-
putation yields

cn D
4

�n

�
�nC1
�n
� 1

�
:

In other words, define ' so that for each t 2 In we have

'.t/ D 2

�
�nC1
�n
� 1

��
1 � 1

�n
j2t � an � bnj

�
: (3.9)

Furthermore, let '.t/ D 0 for all t 2 K0. So far we have ' defined on the unit
interval only. It is clearly continuous in the union of all gaps In. Since by (3.9)
and (D2) we have

lim
jnj!1

sup
t2In

j'.t/j D lim
jnj!1

2

ˇ̌
ˇ̌�nC1
�n
� 1

ˇ̌
ˇ̌ D 0 ;
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it follows that ' is continuous at all points of K0 as well. Now extend ' outside
the unit interval by making it periodic of period one, so that '.t C k/ D '.t/, for
all k 2 Z and all 0 ⩽ t ⩽ 1. The extended function ' W R ! R is continuous
everywhere, and it vanishes at all points of bK.

Now let F W R! R be given by

F.t/ D a1 C t C
Z t

0

'.s/ ds : (3.10)

We summarize the essential facts about F in our next lemma.

Lemma 3.2. The map F is an increasing C 1 diffeomorphism of the real line, and
it has the following properties.

(a) For all t 2 R, F.t C 1/ D F.t/C 1;

(b) For every n 2 Z,

F.In/ D
(

InC1 ; if ˛n < 1 � ˛
1C InC1 ; if ˛n > 1 � ˛ I

(c) We have F.bK/ D bK;

(d) The translation number of F is equal to ˛.

Proof. Note thatF 0.t/ D 1C'.t/, which is continuous, soF isC 1. Moreover, by
(3.9) and (D3), we have '.t/ ⩾ �2� > �1, and this implies F 0.t/ ⩾ 1 � 2� > 0
for all t . Therefore F is an increasing diffeomorphism. Property (a) is immediate
from Z 1

0

'.t/ dt D 0 ;

which in turn follows from (3.8) and the fact that ' vanishes on K0. To prove
property (b), it suffices to show that

F.an/ D
(

anC1 ; if ˛n < 1 � ˛
1C anC1 ; if ˛n > 1 � ˛ :
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From (3.8) and (3.10), we have

F.an/ D a1 C an C
X

0⩽˛i<˛n

Z bi

ai

'.t/ dt

D a1 C an C
X

0⩽˛i<˛n

.�iC1 � �i / :

Using the expressions of a1 and an given in (3.6), this last equality becomes

F.an/ D .1 � `/.˛ C ˛n/C
X

0⩽˛j<˛

�j C
X

0⩽˛i<˛n

�iC1 : (3.11)

Assume first that ˛n < 1 � ˛. In this case, for all ˛i 2 Œ0; ˛n� we have ˛i C ˛ D
˛iC1. Using this fact in (3.11), we deduce that

F.an/ D .1 � `/˛nC1 C
X

0⩽˛j<˛

�j C
X

˛⩽˛iC1<˛nC1

�iC1 D anC1 :

Now assume instead that ˛n > 1 � ˛. In this case ˛nC1 D ˛n C ˛ � 1, and
therefore we can write

X

0⩽˛i<˛n

�iC1 D
X

0⩽˛i<1�˛
�iC1 C

X

1�˛⩽˛i<˛n

�iC1

D
X

˛⩽˛j<1

�j C
X

0⩽˛j<˛nC1

�j : (3.12)

Substituting (3.12) into (3.11), we get

F.an/ D .1 � `/.1C ˛nC1/C `C
X

0⩽˛j<˛nC1

�j D 1C anC1

This proves property (b). Thus F leaves invariant the union of all gaps In and its
translates, and since it is a homeomorphism, the complement bK is kept invariant
also, which proves (c).

Finally, to prove (d), letH W R! R be defined as follows. For each t 2 Œ0; 1�,
putH.t/ D supIn�Œ0;t� ˛n, and extendH to the whole real line writingH.tCk/ D
H.t/ C k for all k 2 Z. This function is clearly non-decreasing. Hence its only
possible discontinuities are jump discontinuities. To rule out jumps, it suffices to
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show that the image of H is dense in R. To do this, we first calculate H.t/ for
t 2 In, for each n 2 Z. Suppose ˛m < ˛n; then it follows easily that am < an,
and therefore bm < an as well. Therefore Im � Œ0; an� � Œ0; t �, and from this it
follows that H.t/ D ˛n (see Figure 3.1). But f˛n W n 2 Zg is dense in Œ0; 1�, so
H.Œ0; 1�/ is dense in Œ0; 1�. SinceH.t C k/ D H.t/C k for all k 2 Z, we deduce
thatH.R/ is dense in R. ThereforeH is indeed continuous.

It remains to check that the semi-conjugacy equation H ı F.t/ D T˛ ıH.t/
holds for all t 2 R. Once again, we only need to check this for t 2 Œ0; 1�. Let
t 2 In, and suppose first that ˛n < 1 � ˛. Since H.t/ D ˛n, we have in this
case T˛ ı H.t/ D ˛n C ˛ D ˛nC1. We also have F.t/ 2 InC1, and therefore
H ıF.t/ D ˛nC1. This shows that the semi-conjugacy equation holds in this case.
The case ˛n > 1 � ˛ is proved in the same way, mutatis mutandis. Summarizing,
we have proved that for all t 2 U D

S
n2Z In we haveH ıF.t/ D T˛ıH.t/. But

since U is dense in Œ0; 1� andH;F; T˛ are continuous, it follows thatH ıF.t/ D
T˛ ı H.t/ for all t 2 Œ0; 1�, which proves what we wanted. In particular, the
translation number of F is ˛, as asserted in (d).

We can now quotient everything down to the circle S1. Thus, F is the lift of a
C 1 diffeomorphism f W S1 ! S1, while H is the lift of a continuous monotone
map h W S1 ! S1, and we deduce that h ı f D R˛ ı h. Moreover, we have
˝.f / D K, a Cantor set – in other words, f is a Denjoy example.

Remark 3.2. A bi-infinite sequence � D .�n/n2Z of positive numbers satisfying
properties (D1)-(D3) stated above is called a Denjoy sequence. Given a Denjoy
sequence� and an irrational ˛ 2 .0; 1/, the Denjoy example constructed with this
data is denoted by f˛;�. In what follows, we will denote by W 0 � Diff0C.S1/
the class of all homeomorphisms of the circle without periodic points that possess
a wandering interval (in other words, f 2 W 0 if and only if Per.f / D Ø and
˝.f / ¤ S1). We will also write W 1 D W 0 \ Diff1C.S1/, and will denote by
D � W 1 the class of all Denjoy examples constructed by the procedure described
above (in other words, f 2 D if and only if f D f˛;� for some irrational ˛ 2
.0; 1/ and some Denjoy sequence �).

3.3.2 Moduli of continuity

Now we go a bit further and show that our Denjoy examples can be made almost
Lipschitz; more precisely, they can be made C 1C� for every 0 < � < 1, with no
restriction on the (irrational) rotation number.
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an bn anC1 bnC1

˛n ˛nC1

F

T˛

R

R

H H

In InC1

Figure 3.1: The semi-conjugacyH and its plateaux.

Theorem 3.5. For each 0 < ` ⩽ 1, each ˇ > 0 and each 0 < ˛ < 1 irrational,
there exists a C 1 diffeomorphism f W S1 ! S1 such that

(i) The rotation number of f is equal to ˛.

(ii) The non-wandering set ˝.f / � S1 is a Cantor set with Lebesgue measure
equal to 1 � `.

(iii) The function logDf has modulus of continuity wˇ .t/ D t
�
log 1

t

�1Cˇ .

This last property implies that logDf is ı-Hölder continuous for each 0 < ı < 1.

Proof. Given the construction performed above and Lemma 3.2, the proof boils
down to takingf D f˛;� for a smart choice of the Denjoy sequence� D .�n/n2Z.
We take

�n D
b

.jnj C 1/ Œlog .jnj C 2/�1Cˇ ; 8 n 2 Z ; (3.13)

where 0 < b < 1 is chosen so that
P
n2Z �n D `. This choice of the sequence

.�n/ guarantees that ˇ̌
ˇ̌�nC1
�n
� 1

ˇ̌
ˇ̌ D O

�
1

jnj C 1

�
(3.14)
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Let F W R ! R be given by Lemma 3.2 for this choice of .�n/ and the given
irrational ˛. Then we already know that F is the lift of a C 1 diffeomorphism
f W S1 ! S1 which is topologically semi-conjugate to the rotation R˛, and we
also know that ˝.f / is Cantor set with m.˝.f // D 1 � `. Thus, properties (i)
and (ii) are satisfied, and we only need to check property (iii).

Since DF D 1C ' stays bounded away from 0 and1, to verify the validity
of (iii) it suffices to show that ' itself has modulus of continuity wˇ . And since '
is Z-periodic, all we need to do is to check that

j'.x/ � '.y/j < C jx � yj
�

log
1

jx � yj

�1Cˇ
(3.15)

for x; y 2 Œ0; 1�. Recall the notation introduced earlier: K0 D bK \ Œ0; 1�, where
bK D ��1.˝.f // is the lift of the minimal set of f to the real line. There are
three cases to consider: (a) x; y 2 K0; (b) x 2 K0 and y 2 In for some n 2 Z;
and (c) x 2 Im and y 2 In for some m; n 2 Z. Case (a) is trivial because, by
construction, 'jK0

� 0. We prove the inequality (3.15) for case (b) and leave case
(c) to the reader.

Without loss of generality, we may assume that x < y, so that x ⩽ an < y

(where as before an is the left endpoint of In). We may also assume that jx�yj <
tˇ , where 0 < tˇ < 1 is the point where the concave functionwˇ jŒ0;1� assumes its
maximum. Since x 2 K0, we have '.x/ D 0 and therefore

j'.x/ � '.y/j D j'.y/j ⩽ Lnjy � anj ; (3.16)

where Ln is the Lipschitz constant of 'jIn
. But we know from (3.9) that

Ln D
4

�n

ˇ̌
ˇ̌�nC1
�n
� 1

ˇ̌
ˇ̌ : (3.17)

From (3.17), combined with (3.13) and (3.14), we deduce after some tedious com-
putations that

1

�n

ˇ̌
ˇ̌�nC1
�n
� 1

ˇ̌
ˇ̌ ⩽ C0 Œlog .jnj C 2/�1Cˇ ; (3.18)

where C0 > 0 is a constant. Moreover, since

b

jnj C 1 >
b

.jnj C 1/ Œlog .jnj C 2/�1Cˇ D jInj > jy � anj ;
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we have
log .jnj C 2/ < C1 log

�
1

jy � anj

�
; (3.19)

where C1 > 0 is a constant. Combining (3.19), (3.18) and (3.17) and putting the
resulting inequality for Ln back into (3.16), we arrive at

j'.x/ � '.y/j < C2jy � anj
�
log

�
1

jy � anj

��1Cˇ

< C2jx � yj
�
log

�
1

jx � yj

��1Cˇ
;

where in the last inequality we have used the fact that wˇ .t/ D t
�
log 1

t

�1Cˇ is
increasing for 0 < t < tˇ . This shows that (3.15) holds in case (b). The proof of
that inequality in case (c) is similar, and is left as an exercise.

3.3.3 Further results

The class of general Denjoy examples, i.e., non-minimal C 1 circle diffeomor-
phisms without periodic points, has been thoroughly investigated. There are var-
ious questions one can ask about these maps, some of which are still unsolved.
In this section we address some of these questions, limiting ourselves to simply
stating results that are currently known. No proofs will be given; instead, we will
refer the reader to the original sources.

Classification

The topological classification of Denjoy examples is not particularly difficult, and
has been accomplished by Markeley [1970]. Before stating the result, we make
some simple observations.

Given f 2 W 0, let h W S1 ! S1 be a monotone map that semi-conjugates f
to the rotation by ˛ D �.f /, i.e., h ı f D R˛ ı h. Then Ef;h D h.S1 n˝.f // is
a countable dense subset of the circle, and it is invariant under R˛. Thus, Ef;h is
the union of a collection of full orbits of the rotation R˛, and such collection can
be either finite or countably infinite. If � W S1 ! S1 is another semi-conjugacy
between f and R˛, it is easy to see that Ef;h and Ef;� differ by a rotation of the
circle (exercise). In particular, the cardinalities of the sets of orbits ofR˛ contained
in Ef;h and Ef;� are the same. Hence this common cardinality is a topological
invariant of f . The theorem proved by Markeley can be stated as follows.
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Theorem 3.6. Let f1; f2 2 W 0 with �.f1/ D �.f2/ D ˛, and let h1; h2 W
S1 ! S1 be monotone maps such that hi ı fi D R˛ ı hi , i D 1; 2. Then f1 is
topologically conjugate to f2 if an only if there exists a circle rotationR such that
Ef1;h1

D R.Ef2;h2
/.

Note in particular that if in the theorem above f1; f2 2 D, then Ef1;h1
and

Ef2;h2
both consist of a single orbit of R˛. Since any two orbits of R˛ differ by a

rotation, it follows that f1 and f2 are topologically conjugate. But one can say a
bit more.

Theorem 3.7. If f1; f2 2 D have the same rotation number, then they are topo-
logically conjugate. Moreover, if both˝.f1/ and˝.f2/ have Lebesgue measure
zero and h W S1 ! S1 is a homeomorphism conjugating f1 and f2, then both h
and h�1 are absolutely continuous.

For a discussion of this theorem (with an indication of proof), look up the
magnum opus of Herman [1979, p. 146].

By contrast, the classification of Denjoy examples up to C 1 conjugacy still
has not been completely worked out. The problem can be reformulated as follows.

Problem 3.1. If f; g W S1 ! S1 are C 1 circle diffeomorphisms which are topo-
logically conjugate to each other, find necessary and sufficient conditions for f
to be C 1 conjugate to g.

Which Cantor sets are Denjoy?

As we saw in Chapter 2, any Cantor set on the circle is the non-wandering set of
some homeomorphism of S1, and the (irrational) rotation number can be arbitrarily
prescribed. Once we ask for more smoothness, however, things become much
more complicated. It is still unknown which Cantor sets appear as minimal sets of
Denjoy examples. The partial results that are known are mostly negative results,
stating that certain families of Cantor sets do not appear as ˝.f / for any C 1
diffeomorphism f . For instance, regular Cantor sets such as the standard middle-
thirds Cantor set are not C 1 minimal. This was first proved by McDuff [1981]. In
order to state her result, we need the following definition.

Definition 3.3. LetK � S1 be a Cantor set, and let G .K/ be the set of all gaps of
K – the elements of G .K/ are the connected components of S1nK. The spectrum of
K, denoted �.K/, is the set of all lengths of gaps in G .K/ ordered as a decreasing
sequence. Thus, �.K/ D f`n W n ⩾ 1g, where (i) `nC1 < `n for all n ⩾ 1; (ii) for
each n ⩾ 1, there exists I 2 G .K/ (possibly non-unique) such that `n D jI j.
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Note that
P1
nD1 `n ⩽ 1.

Theorem 3.8. If f 2 W 1 and �.˝.f // D f`n W n 2 Ng is the spectrum of its

minimal set, then the sequence
`n

`nC1
is bounded and has 1 as a limit point.

An immediate consequence of this result is the fact stated before that the stan-
dard middle-thirds Cantor set is not C 1 minimal. Indeed, in this case the ratios
`n=`nC1 are constant and equal to 3.

Besides the original paper by McDuff, the reader interested in the full proof of
Theorem 3.8 should look up the nice exposition by Athanassopoulos [2015]. It is

worth remarking that the fact that the sequence of ratios
`n

`nC1
is bounded is easy

to prove. Given n 2 N, let I 2 G .˝.f // be such that `n D jI j. Then there exists
m ⩾ 1 such that `n ⩽ jf m.I /j and jf k.I /j ⩽ `nC1 for all k > m. Thus, if we
set J D f m.I /, we have

`n

`nC1
⩽
jJ j
jf .J /j :

But by the mean value theorem, this last ratio is bounded above by 1=b, where
b D minx2S1 jDf.x/j. Hence the real issue in proving Theorem 3.8 is to show
that 1 is a limit point of the sequence of ratios.

Given the above theorem, a natural question posed by McDuff [1981] is the
following.

Problem 3.2. If f 2 W 1 and �.˝.f // D f`n W n 2 Ng is the spectrum of its
minimal set, is it always true that

lim
n!1

`n

`nC1
D 1 ‹

Even after four decades since its formulation, this problem remains open.
McDuff’s Theorem 3.8 provides us with a necessary condition for a Cantor

subset of the circle to be C 1 minimal. This condition is used to rule out several
types of Cantor sets. But many other Cantor sets do satisfy the condition, so they
cannot be immediately ruled out. For generalizations of McDuff’s theorem and
further work, see Norton [2002], Portela [2007, 2009].

Hausdorff dimension

It turns out that the Hausdorff dimension of the minimal set of a Denjoy example
with zero Lebesgue measure depends on the Diophantine nature of its rotation
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number. An irrational real number ˛ is said to be of Diophantine class � > 0 if
the inequality ˇ̌

ˇ̌˛ � p
q

ˇ̌
ˇ̌ < 1

q1C�

has infinitely many rational solutions p=q for 0 ⩽ � < � and only finitely many
for � > � (the Diophantine condition will appear several times in the present book,
see Chapter 4 and Appendix A).

The following theorem was proved by Kra and Schmeling [2002].

Theorem 3.9. Let 0 < ı < 1 and let ˛ 2 .0; 1/ be an irrational number of
Diophantine class � > 0. If f W S1 ! S1 is a C 1Cı diffeomorphism with
rotation number ˛ and f has an exceptional minimal set ˝.f /, then

dimH .˝.f // ⩾
ı

�
:

The lower bound given in this theorem is sharp. Indeed, Kra and Schmeling
showed that the lower bound is achieved by a classical Denjoy example of the
form f D f˛;� 2 D, the bi-infinite Denjoy sequence � D .�n/n2Z being given
by

�n D
b

.jnj C 1/1=ı
;

where b is chosen so that
P
n2Z �n D 1. In the same article, Kra and Schmeling

also provide a lower bound for the box dimension of Denjoy minimal Cantor sets,
extending previous work by Norton [1999].

3.4 Ergodic properties
We have seen already, in Chapter 2 (Theorem 2.3), that every circle homeomor-
phism without periodic orbits is uniquely ergodic. In this section, we examine a
few additional ergodic properties of circle diffeomorphisms.

3.4.1 Ergodicity with respect to Lebesgue measure
It is possible to talk about ergodicity of a map with respect to a measure in phase
space even when the map is not measure preserving. If .X; �/ is a measure space
and � W X ! X is a (measurable) map, we say that � is ergodic with respect
to � if, for every measurable set A � X which is invariant under � (meaning
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��1.A/ D A), we have either �.A/ D 0 or �.X n A/ D 0. Note that, for this to
make sense, it is not necessary to assume that � is a finite measure.

Our goal here is to prove that C 1CBV circle diffeomorphisms without periodic
points are always ergodic with respect to Lebesgue measure. Let us state more
formally this result, and then prove it.

Theorem 3.10. If f W S1 ! S1 is a C 1 diffeomorphism without periodic points
and logDf 2 BV.S1/, then f is ergodic with respect to Lebesgue measure.

The proof will use the following lemmas.

Lemma 3.3. Given f as in Theorem 3.10, letM � T � S1 be two intervals, and
let n ⩾ 1. Suppose the intervals T; f .T /; f 2.T /; : : : ; f n.T / have multiplicity of
intersection k ⩾ 1, i.e., every point in S1 belongs to at most k of these intervals.
Then we have

jf n.M/j
jf n.T /j ⩽ ekV

jM j
jT j ; (3.20)

where V D Var.logDf /.

Proof. By the mean value theorem, there exist x0 2 M and y0 2 T such that
Df n.x0/ D jf n.M/j=jM j and Df n.y0/ D jf n.T /j=jT j. From this and the
chain rule, we get

jf n.M/j
jf n.T /j D

jM j
jT j

n�1Y

iD0

Df.xi /

Df .yi /
;

where xi D f i .x0/ and yi D f i .y0/, for each 0 ⩽ i ⩽ n � 1. Now write

n�1Y

iD0

Df.xi /

Df .yi /
D exp

(
n�1X

iD0
.logDf.xi / � logDf.yi //

)
: (3.21)

Since the n intervals with endpoints xi and yi are k-quasidisjoint, we have (see
Exercise 3.7):

n�1X

iD0
.logDf.xi / � logDf.yi // ⩽ k Var.logDf / :

Putting this back into (3.21), we deduce (3.20) as desired.
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Lemma 3.4. Let f be as in Theorem 3.10. Then for each " > 0 and each x 2
S1 there exist an interval � � S1 containing x and a positive integer N such
that j�j < � and the intervals �; f .�/; : : : ; f N .�/ cover the circle and are 3-
quasidisjoint.
Proof. By Denjoy’s theorem, f is topologically conjugate to an irrational rotation
R. Let h W S1 ! S1 be a homeomorphism such that h ı f D R ı h. Since h�1 is
uniformly continuous, given � > 0 there exists ı > 0 such that, for each interval
I � S1 with jI j < ı we have jh�1.I /j < �. Given x 2 S1, let z D h�1.x/,
and consider for each n ⩾ 0 the interval Jn � S1 with endpoints R�qn.z/ and
RqnC1.z/ that contains z – where fqngn⩾0 is the sequence of closest returns for R
(or f ). SinceRqk .z/! z as k !1, we can choose n large enough that jJnj < ı.
It is not difficult to see that the intervals Jn; R.Jn/; : : : ; RqnC1�1.Jn/ cover the
circle and are 3-quasidisjoint. The reader can either prove this as an exercise or
else look up the proof (of a slightly stronger fact) in Section 6.4. Hence we can
take � D h�1.Jn/ and N D qnC1 � 1.

Proof of Theorem 3.10. The proof uses a Lebesgue density argument (akin to the
one used in Lemma 1.5). Let A � S1 be a measurable set invariant under f , and
suppose that m.A/ > 0. Write B D S1 n A, and note that B is also invariant
under f . Let x 2 A be a Lebesgue density point for A. Given ı > 0, let � > 0 be
so small that for all 0 < � < 1

2
� we have

m.A \ .x � �; x C �//
2�

> .1 � ı/ ;

or, equivalently, m.B \ .x � �; x C �// < 2�ı. Let � � .x � 1
2
�; x C 1

2
�/ be as

in Lemma 3.4, and write � D .x � �1; x C �2/. Then we have
m.B\�/ D m.B\.x��1; x//Cm.B\.x; xC�2// < 2ı.�1C�2/ D 2ıj�j :
Now, using efficient covers of B \ � by intervals contained in � and applying
Lemma 3.3, it follows that

m.f i .B \�// < 2Cıjf i .�/j ; i D 0; 1; : : : ; N ;

where C D expf3Var.Df /g. But since B is f -invariant, we have f i .B \�/ D
B \ f i .�/ for each i , and since the intervals f i .�/ cover the circle, we deduce
that

m.B/ ⩽

NX

iD0
m.B \ f i .�// < 2Cı

NX

iD0
jf i .�/j < 6Cı :

But ı is arbitrary, so m.B/ D 0. This concludes the proof.
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3.4.2 Zero Lyapunov exponents
When studying ergodic properties of a differentiable dynamical system, an impor-
tant concept is that of Lyapunov exponent (sometimes also called characteristic
exponent). Rather than defining this concept in broad generality, we focus our
attention to one-dimensional maps. For a one-dimensional map f , the Lyapunov
exponent at a point x is a number that essentially measures the exponential growth
rate of the sequence jDf n.x/j. More precisely, we have the following formal def-
inition.

Definition 3.4. The Lyapunov exponent at x, denoted �f .x/, is given by

�f .x/ D lim
n!1

1

n
log jDf n.x/j ;

provided the limit exists. If the forward orbit of x hits a critical point of f , we set
�f .x/ D �1.

When the Lyapunov number �f .x/ is non-zero, this means that there is asymp-
totic hyperbolicity along the orbit of x: asymptotic contraction when �f .x/ is
negative, and asymptotic expansion when �f .x/ is positive. Examples of such
situations occur when f has an attracting or expanding periodic orbit, respectively
(see Exercise 3.6).

It is perhaps intuitively obvious that, in the absence of periodic points, a circle
diffeomorphism must have zero Lyapunov exponents everywhere, because there
should be no asymptotic contraction or expansion. This is indeed the case, as the
following theorem shows.

Theorem 3.11. If f is an orientation-preserving C 1 circle diffeomorphism with
irrational rotation number, then �f .x/ D 0 for all x 2 S1.

Proof. The function W S1 ! R defined by D logDf is a continuous function
and therefore, by the unique ergodicity of f , the sequence of continuous functions

1

n

n�1X

jD0
 ı f j

converges uniformly to a constant, and this constant must be
R

S1 logDf d�. By
the chain rule,

Pn�1
jD0  ı f j D logDf n and, therefore, the sequence of continu-

ous functions 1
n

logDf n converges to the constant ` D
R

S1 logDf d� uniformly
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in S1. If ` > 0, then there exists n0 ⩾ 1 such that, for all n ⩾ n0, we have
Df n.x/ > 1 for all x. But this is impossible, since f n is a diffeomorphism of S1

onto itself. The same argument rules out ` < 0. Therefore we must have ` D 0

3.4.3 Further ergodicity results
In recent years, the study of circle maps from the measurable or ergodic viewpoint
has been considerably expanded, even in the case of diffeomorphisms. At least two
new objects have emerged from this study: automorphic measures and invariant
distributions. We end this chapter with a brief discussion of both of them.

Automorphic measures

As we saw in Section 3.4.1, every sufficiently smooth circle diffeomorphism f W
S1 ! S1 without periodic points is ergodic with respect to Lebesgue measure. It
turns out that there are plenty of other (non-invariant) Borel probability measures
which are dynamically relevant and with respect to which f is also ergodic. An
important class of such measures is the class of so-called automorphic measures.

Definition 3.5. Given a C 1 homeomorphism f W S1 ! S1 and a real number
s, we say that a Borel probability measure � on S1 is an automorphic measure of
exponent s for f – or an s-automorphic measure for f – if for every continuous
function ' W S1 ! R we have

Z

S1

' d� D
Z

S1

' ı f .Df /s d� :

Alternatively3, a Borel probability measure � 2 P.S1/ is s-automorphic for
f iff its pullback f �� under f is equivalent to �, and the Radon–Nikodým deriva-
tive of f �� with respect to � is given by .Df /s . It will certainly be clear to the
reader that a 0-automorphic measure for f is simply an invariant (probability) mea-
sure for f – and therefore, when f has irrational rotation number, it coincides with
the unique invariant probability measure for f .

In the context of circle diffeomorphisms, the concept of automorphic mea-
sure was introduced by Douady and Yoccoz [1999]. However, this concept makes
perfect sense for C 1 self-maps of smooth compact manifolds of any dimension,
provided the one-dimensional derivativeDf.x/ is replaced by the Jacobian of the

3We denote by P.S1/ the space of Borel probability measures on the circle. Also, we say that
two such measures are equivalent if they are mutually absolutely continuous.
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map f at x, i.e., the absolute value of the determinant of the matrix Df.x/. For
complex one-dimensional systems this is exactly the same as the notion of confor-
mal measure introduced by Sullivan [1983]4

In their paper, Douady and Yoccoz [1999] proved the following result.

Theorem 3.12 (Douady–Yoccoz). Let f W S1 ! S1 be a C 1 circle diffeomor-
phism with irrational rotation number. Then for every s 2 R there exists an auto-
morphic measure of exponent s for f , denoted �s . Such measure is unique and
ergodic if f is C 1CBV.

In the exercises at the end of this chapter, the reader will be guided to a proof
of this theorem.
Remark 3.3. What are automorphic measures good for? In their paper, Douady
and Yoccoz were particularly concerned with building the tangent space to the
space of C 2 circle diffeomorphisms with a given irrational rotation number at a
given diffeomorphism f . They showed that this tangent space arises precisely as
the kernel of the automorphic measure ��1 for f (viewed, by Riesz duality, as
a linear functional on the space C 0.S1/ ). Another use of automorphic measures
was made by de Melo and Pugh [1994] in their study of the so-calledC 1 Brunovsky
hypothesis.

Invariant distributions

In this subsection, we assume that the reader is familiar with some basic facts about
distributions.

In order to motivate the discussion, let us consider first the general case of a
continuous self-map f of a compact Hausdorff space M . An invariant measure
for f can be seen, via the Riesz representation theorem, as a continuous linear
functional on C 0.M/ – i.e., an element of the dual space C 0.M/� – which is also
invariant under the so-called Koopman operator ' 7! ' ıf . IfM happens to be a
compact smooth manifold, it seems natural to consider also invariant linear func-
tionals on the space C k.M/ of C k functions, for each 1 ⩽ k ⩽1. However, in
order to define distributions of finite order below, we need an additional structure:
we assume thatM is endowed with a Riemannian metric.

Recall that the space D 0.M/ of (Schwartz) distributions on M is the dual of
the Fréchet space C1.M/. We consider in each space C k.M/ with finite k the

4Which in turn is inspired by a similar notion introduced by Patterson [1976] and Sullivan [1979]
himself in the context of Fuchsian and Kleinian groups.
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C k norm kukk D max0⩽j⩽k kDjukC0 induced by the Riemannian metric onM .

Definition 3.6 (Finite-order Distribution). We say T 2 D 0.M/ has order at most
k ⩾ 0 if there exists C > 0 such that j hT; ui j ⩽ Ckukk for all u 2 C1.M/. The
smallest such k is the order of T .

If T 2 D 0.M/ has order at most k, then it extends uniquely to an element of
D 0
k
.M/ D C k.M/� (because C1.M/ is dense in every C k.M/). Every element

of D 0
k
.M/ arises in this way. Hence we can think that each D 0

k
.M/ is (linearly)

embedded in D 0.M/. By a slight abuse of language we think of such embeddings
as inclusions, writing

D
0
0.M/ � D

0
1.M/ � � � � � D

0
k.M/ � � � � � D

0.M/

It is a well-known fact that on a compact manifold every distribution has finite
order. Hence we have D 0.M/ D

S
k⩾0D 0

k
.M/.

We are now ready to define the notion of invariant distribution. Let f WM !
M be a C r map, and let 0 ⩽ k ⩽ r .

Definition 3.7 (Invariant Distribution). We say T 2 D 0
k
.M/ is f -invariant if

hT; ui D hT; u ı f i for all u 2 C k.M/; i.e., if u ı f � u 2 kerT for all
u 2 C k.M/.

For each k ⩾ 0, let D 0
k
.f / D

˚
T 2 D 0

k
.M/ W T is f -invariant

	
. Then we

have, of course,

D
0
0 .f / � D

0
1 .f / � � � � � D

0
k .f / � � � � :

Also, let

B
�
f; C k.M/

�
D
n
' 2 C k.M/ W 9u 2 C k.M/ s.t. u ı f � u D '

o
:

This is a linear subspace of C k.M/, and its elements are called C k coboundaries
for f . The Hahn–Banach separation theorem implies that

clk B
�
f; C k.M/

�
D

\

T2D
0
k
.f /

kerT (3.22)

where clk denotes closure in theC k topology. This fact yields the following result.
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Proposition 3.1. Let f W M ! M be a C r endomorphism of a compact smooth
Riemannian manifold M , where 0 ⩽ r ⩽ 1, and let � be an f -invariant Borel
probability measure onM . Let 0 ⩽ k ⩽ r be an integer. Then

D
0
k .f / D R�

if, and only if, the following holds. For any ' 2 C k.M/ with
R
M ' d� D 0, there

is a sequence f'n D un ı f �ungn⩾1 � B
�
f; C k.M/

�
of C k-coboundaries for

f converging to ' in the C k topology.

We should remark at this point that an equation of the form u ı f � u D ' in
which ' is given and u is the unknown is called a cohomological equation. Equa-
tions of this type are rather ubiquitous in the study of dynamical systems. In the
present book, cohomological equations appear in a natural way in the solution to
the problem of linearization of circle diffeomorphisms. See the proof of Arnold’s
conjugacy theorem (Theorem 4.4) in Chapter 4, and also the proof of the Khanin–
Teplinsky theorem (Theorem 4.11) presented in Appendix B.

Note that we could form, for each 0 ⩽ k <1, the quotient of C k.M/ by the
closed subspace in (3.22). The resulting quotient (Banach) space is called the first
reduced cohomology group of f inC k , and sometimes denoted by zH 1.f; C k.M//5.
We will have no use for such cohomology groups in the present book, but the reader
should keep in mind that they are, in some sense, a measure of the obstruction to
the solvability of cohomological equations in each C k.M/.

The problem of finding and describing all invariant distributions in D 0
k
.f / for

a given map f can be rather daunting. Indeed, even D 0
0 .f / can be a large space,

because a given map f may have many distinct invariant measures (think of a
map with infinitely many periodic orbits, for example). The smaller the dimension
of D 0

k
.f / is, the more manageable the problem becomes. Thus, the best case

scenario is when D 0
k
.f / is one-dimensional. This leads naturally to the following

definition, which seems to have been first proposed by Katok (see for instance
Katok and Robinson Jr. [2001]).

Definition 3.8. Let f W M ! M be a C r endomorphism. We say that f is
distributionally uniquely ergodic if for each 0 ⩽ k ⩽ r the linear space D 0

k
.f / is

one-dimensional (hence spanned by the unique f -invariant probability measure).
5In contradistinction to the ‘ordinary’ cohomology group H1.f; C k.M// D

C k.M/=B
�
f; C k.M/

�
. The latter is not as nice: it is usually non-Hausdorff, because

B
�
f; C k.M/

�
is usually not closed in C k.M/.
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For example, every rigid rotation of the circle with irrational rotation num-
ber is distributionally uniquely ergodic: this fact was already established in Exer-
cise 1.16. Moreover, the property of distributional unique ergodicity is invariant
under smooth conjugacies; see Exercise 3.18.

In general, distributional unique ergodicity is strictly stronger than unique er-
godicity. For an example of a circle diffeomorphism which is uniquely ergodic
but not distributionally uniquely ergodic, see Exercise 3.20. However, the two
notions agree for minimal circle diffeomorphisms with very high smoothness, as
shown by the following theorem due to Avila and Kocsard [2011].

Theorem 3.13 (Avila–Kocsard). Every C1 diffeomorphism of the circle with ir-
rational rotation number is distributionally uniquely ergodic.

The analogous result for circle diffeomorphisms with low smoothness was
proved shortly afterwards by Navas and Triestino [2013].

Theorem 3.14 (Navas–Triestino). EveryC 1CBV diffeomorphism of the circle with
irrational rotation number is distributionally uniquely ergodic.

The criterion given by Proposition 3.1 is used in the proofs of both these theo-
rems.
Remark 3.4. We have introduced above two new objects: automorphic measures
and invariant distributions. Is there a relationship between these objects, at least
in the one-dimensional setting? The answer is yes: every 1-automorphic measure
for a map f gives rise to an f -invariant distribution of order at most 1 (see Exer-
cise 3.19).

Exercises

Exercise 3.1. Suppose ' W S1 ! R is a function that has modulus of continuity
w.t/ D t j log t j� for some � > 0. Show that ' is ı-Hölder continuous for every
0 < ı < 1.
Exercise 3.2. Let f W S1 ! S1 be a homeomorphism with irrational rotation
number ˛, and let ' W S1 ! R be a function of bounded variation. Suppose
p
q

is a good rational approximation to ˛, that is,
ˇ̌
ˇ˛ � p

q

ˇ̌
ˇ < 1

q2 . As we saw in
Section 3.2.2, the Denjoy–Koksma inequality states that, for every x 2 S1, the
Birkhoff sum �q.x; f / D

Pq�1
jD0 ' ı f j .x/ stays at a bounded distance away
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from q
R

S1 ' d�, where � is the unique invariant probability measure under f .
What can be said about the Birkhoff sums �n.x; f / for arbitrary values of n? Not
much in general, but something can be said if we impose certain restrictions on
the rotation number ˛. Let us assume that the partial quotients ak of the continued
fraction development of ˛ satisfy the condition ak < k1Cı for some fixed ı > 0,
for every sufficiently large k. We note en passant that the set of all numbers ˛
satisfying this condition has full Lebesgue measure in Œ0; 1� (this follows easily
from Lemma A.2 in Appendix A).

(i) Given n ⩾ 1, let kn be the unique non-negative integer such that qkn
⩽ n <

qknC1 (where, as usual, .qn/n⩾0 is the sequence of denominators of the best
rational approximations to ˛). Show that we can write

n D
knX

iD0
biqi ;

where 0 ⩽ bi ⩽ aiC1 for all 0 ⩽ i ⩽ kn, and bkn
⩾ 1.

(ii) Using (i) and the Denjoy–Koksma inequality, show that for all x 2 S1 we
have ˇ̌

ˇ̌
ˇ̌
n�1X

jD0
' ı f j .x/ � n

Z

S1

' d�

ˇ̌
ˇ̌
ˇ̌ < Var.'/

knX

iD0
aiC1 :

(iii) Deduce from (ii) that there exists a constant C > 0 such that

sup
xS1

ˇ̌
ˇ̌
ˇ̌
n�1X

jD0
' ı f j .x/ � n

Z

S1

' d�

ˇ̌
ˇ̌
ˇ̌ ⩽ C Var.'/ .logn/1Cı :

[Reference: Guillotin-Plantard and Schott [2006, pp. 236–237]]

Exercise 3.3. Prove that if f W S1 ! S1 is an orientation preserving C 1 diffeo-
morphism with irrational rotation number and� denotes its unique invariant Borel
probability measure, then

lim
n!1

�Z

S1

Df n d�

�1=n
D 1 :
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Exercise 3.4. Let f W S1 ! S1 be an orientation preserving C 1 diffeomor-
phism. Show that there exists a point x0 2 S1 such that the bi-infinite sequence
.Df n.x0//n2Z remains bounded.
Exercise 3.5. Show that Lyapunov exponents are C 1 conjugacy invariants. That
is, let f; g W S1 ! S1 be C 1 maps, and suppose there exists a C 1 diffeomorphism
h such that h ı f D g ı h. Prove that if x 2 S1 is such that �f .x/ exists, then so
does �g.h.x//, and these numbers are equal, i.e., �f .x/ D �g.h.x//.

Exercise 3.6. Let ` 2 R be an arbitrary number. For each rational number r 2
.0; 1/, find a smooth diffeomorphism f W S1 ! S1 whose rotation number is
equal to r and a point x0 2 S1 such that �f .x0/ D `.
Exercise 3.7. Let ' 2 BV.S1/ be a function of bounded variation. Given an
interval � � S1 with endpoints a and b, write v'.�/ D j'.a/ � '.b/j.

(i) If�;�1; : : : ; �m � S1 are intervals with� D
Sm
iD1�i and the�i ’s have

pairwise disjoint interiors, show that

v'.�/ ⩽

mX

iD1
v'.�i / :

(ii) Deduce from (i) that, if I1; I2; : : : ; IN � S1 is a collection of k-quasidisjoint
intervals (for some k ⩾ 1), then

NX

jD1
v'.Ij / ⩽ k Var.'/ :

This fact was implicitly used in the proof of Lemma 3.3.

Exercise 3.8. Let f W S1 ! S1 be a C 1 homeomorphism, let s 2 R, and let
� 2P.S1/ be an s-automorphic measure for f . Prove that for all ' 2 L1.�/ and
n ⩾ 1, we have .' ı f n/.Df n/s 2 L1.�/ and

Z

S1

' d� D
Z

S1

.' ı f n/.Df n/s d� :

[Hint: First prove the result for continuous functions using induction and the chain
rule. Then use approximation by continuous functions and Lebesgue’s dominated
convergence theorem.]
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Exercise 3.9. Let f W S1 ! S1 be a C 1 homeomorphism, let s 2 R, and let
As.f / � P.S1/ be the set of all s-automorphic measures for f . Show that
As.f / is convex.
Exercise 3.10. Existence of automorphic measures. Let f W S1 ! S1 be a C 1
diffeomorphism with irrational rotation number, and let s 2 R. LetVs WP.S1/!
P.S1/ be the operator implicitly defined – via the Riesz representation theorem
– by the formula

Z

S1

' d.Vs�/ D
1R

S1.Df /s d�

Z

S1

.' ı f /.Df /s d� ;8' 2 C 0.S1/ :

(i) Show that Vs is well-defined, and that it is continuous if we endow P.S1/

with the weak* topology.

(ii) Deduce from (i), as well as the convexity and compactness of P.S1/, that
Vs has a fixed point. [Hint: Use the Schauder–Tychonoff fixed point theo-
rem.]

(iii) Let � 2P.S1/ be a fixed point of Vs . Show that for each n ⩾ 1 we have
Z

S1

.Df /s d� D
�Z

S1

.Df n/s d�

�1=n
:

(iv) Combine (iii) with Theorem 3.11 to show that, in fact,
R

S1.Df /
s d� D 1.

(v) Deduce from (iv) that � is s-automorphic for f .

This establishes the existence part of Theorem 3.12.
Exercise 3.11. Show that Lebesgue (Haar) measure on S1 is automorphic of ex-
ponent s D 1 for every circle diffeomorphism.
Exercise 3.12. Let f W S1 ! S1 be a C 1 Denjoy example, and let I be one of its
gaps (i.e., a connected component of S1 n˝.f /). Let S W S1 ! RC [ f1g be
given by

S.x/ D
X

n2Z

Df n.x/ ;

and let E D fx 2 I W S.x/ <1g.

(i) Show that E is a (measurable) set of full Lebesgue measure in I .
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(ii) Fix a point x0 2 E and define � 2P.S1/ by

� D 1

S.x0/

X

n2Z

Df n.x0/ıf n.x0/ ;

where, as usual, ıx denotes the Dirac measure concentrated at x. Prove that
� is 1-automorphic for f .

(iii) Deduce from (ii) and Exercise 3.11 that the uniqueness part of Theorem 3.12
breaks down if we do not assume that logDf 2 BV.S1/.

Exercise 3.13. Automorphic measures are ergodic. Let f W S1 ! S1 be a C 1CBV

diffeomorphism with irrational rotation number ˛, and let � 2 P.S1/ be an s-
automorphic measure for f . The purpose of this exercise is to show that � is
ergodic for f . Given x 2 S1, for each n ⩾ 1 let Jn.x/ � S1 be the interval with
endpoints f qn.x/ and f �qn.x/ that contains x, where qn is the denominator of
the n-th convergent to ˛.

(i) Show that for each y 2 Jn.x/ the interval �x;y � Jn.x/ with endpoints x
and y is such that its images up to time qnC1 � 1, namely

�x;y ; f .�x;y/ ; f
2.�x;y/ ; : : : ; f

qnC1�1.�x;y/ ;

have pairwise disjoint interiors.

(ii) Deduce from (i) that for each k D 0; 1; : : : ; qnC1 � 1 we have

1

K
⩽
Df k.x/

Df k.y/
⩽ K ;

where K D expVar.logDf / <1.

(iii) Now let B � S1 be a measurable (Borel) set. Using (ii), show that for each
k D 0; 1; : : : ; qnC1 � 1 we have

�
�
B \ f k.Jn.x//

�
⩽ Ks.Df k.x//s� .B \ Jn.x// ;

as well as

�
�
f k.Jn.x//

�
⩾ K�s.Df k.x//s� .Jn.x// :
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(iv) Deduce from (iii) that

�.B/ ⩽

qnC1�1X

kD0
�
�
B \ f k.Jn.x//

�
⩽ 2K2s

� .B \ Jn.x//
� .Jn.x//

:

(v) Now suppose �.B/ < 1. Show that there exists a point x 2 S1 n B such
that

lim
n!1

� .B \ Jn.x//
� .Jn.x//

D 0 :

(vi) Combining (iv) and (v), conclude that � is indeed ergodic for f .

Exercise 3.14. Uniqueness of automorphic measures. Once again, let f W S1 !
S1 be a C 1CBV diffeomorphism with irrational rotation number, and let s 2 R

be given. Suppose �; � 2P.S1/ are both s-automorphic measures for f . Show
that � D � by arguing as follows.

(i) In the special case when � is absolutely continuous with respect to � and
 D d�=d� is the corresponding Radon–Nikodým derivative, show that  
is invariant in the sense that  ı f D  at �-a.e. point.

(ii) Deduce from (i) and Exercise 3.13 that  must be constant �-almost every-
where. The constant must be equal to 1, because both� and � are probability
measures. Hence � D � in the special case.

(iii) If neither of the two measures is absolutely continuous with respect to the
other, let � D 1

2
.� C �/. This measure is s-automorphic for f , by Exer-

cise 3.9. Check that � � � and � � � both hold, and conclude using (ii)
that � D � D �.

This establishes the uniqueness part of Theorem 3.12.
Exercise 3.15. Given a C 1CBV diffeomorphism f W S1 ! S1 with irrational
rotation number, denote by �s;f the unique s-automorphic measure for f , for
each s 2 R. Prove the following continuity statement: If sn ! s and fn ! f in
the C 1 topology, then �sn;fn

! �s;f in the weak* topology.

Exercise 3.16. Let f; g W S1 ! S1 be C 1CBV diffeomorphisms. Show that if they
commute, i.e., if f ı g D g ı f , then they share the same automorphic measures.
In other words, in the notation of the previous exercise, we have �s;f D �s;g for
each s 2 R.
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Exercise 3.17. Using the Hahn–Banach theorem, give a detailed proof of (3.22),
and explain how that equality implies Proposition 3.1.

Exercise 3.18. Let f; g WM !M beC1 self-maps of a compact smooth Rieman-
nian manifold M , and suppose there exists a C1 diffeomorphism h W M ! M

such that h ı f D g ı g. Show that f is distributionally uniquely ergodic if and
only if the same happens to g.
Exercise 3.19. Let f W S1 ! S1 be a C 1 map, and suppose that � is an automor-
phic measure of exponent 1 for f . Show that T� W C 1.S1/! R given by

hT� ; ui D
Z

S1

u0 d�

is an f -invariant distribution of order at most 1. What happens if � is Lebesgue
measure?
Exercise 3.20. Let f W S1 ! S1 be a C 1 Denjoy example.

(i) Combining Exercise 3.12 with Exercise 3.19, construct an f -invariant dis-
tribution of order 1.

(ii) Go a bit further than (i) and show that, for each k ⩾ 1, the space D 0
k
.f / is

infinite-dimensional.



4 Smooth
Conjugacies to

Rotations

We have seen in Chapter 3 that every sufficiently smooth diffeomorphism of the
circle without periodic points is topologically conjugate to a rigid rotation. In other
words, the topological orbit structure of such a diffeomorphism is indistinguish-
able from that of a rigid rotation. The relative order of points of a given orbit on
the circle is the same no matter which orbit we take; everything is determined by
a single invariant, the rotation number.

What can be said about the geometric orbit structure of such a diffeomorphism?
Is it the same, asymptotically at least, as that of the corresponding rotation? As
we shall see in this chapter, this is a subtle question, one whose answer depends
on the arithmetic nature of the rotation number.

We will not attempt at a formal definition of geometric orbit structure. Intu-
itively, the geometric structure of an orbit of a circle map can be defined as the set
of ratios of distances between the various points of that orbit. When we only care
about ratios of distances between points that are close to each other, at smaller and
smaller scales, we speak of the orbit’s asymptotic geometric structure.

When a C 1 diffeomorphism of the circle f is conjugate to a rotation, and the
conjugacy h is a C 1 diffeomorphism, then, because h is essentially affine at small
scales, the geometric structure of the orbits of f is asymptotically the same as the
geometric structure of the orbits of the rotation. Thus, we can rephrase the question
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posed above as follows: If a C 1 circle diffeomorphism is topologically conjugate
to an irrational rotation, when is the conjugacy a C 1 diffeomorphism?

More generally, when f is a C r diffeomorphism one may consider its C r -
smooth structure at small scales. Here, we can have r finite greater than or equal
to 1, r D 1, or even r D ! (i.e., f can be a real-analytic diffeomorphism).
Again, we refrain from giving a formal definition of smooth structure, but instead
formulate the general problem as follows: Find necessary and sufficient conditions
for a C r circle diffeomorphism f which is topologically conjugate to an irrational
rotation to be C s-conjugate to that rotation, where s ⩽ r is as large as possible.
This problem has been thoroughly investigated by Arnold (in the analytic case),
Herman, Yoccoz, among others, and our aim in this chapter is to describe some of
their results.

4.1 Herman’s invariants
In this section we will present a fundamental criterion for smoothness of conjuga-
cies that was introduced by Herman [1979, Ch. IV] in his thèse d’État. It is very
simply stated in terms of what we now call Herman’s conjugacy invariants.

Definition 4.1. If f 2 Diffr.S1/, where r is a positive integer, set Hr.f / D
supn2Z kDf nkC r�1 .

Here, given a C k function ' W S1 ! R, where k ⩾ 1, we write k'kCk DPk
jD0 kDj'k, where k � k denotes the usual sup-norm.
In this chapter, we will only make explicit use of Herman’s first invariant

H1.f /. We leave it as an exercise to the reader to prove that H1.f / is indeed a
C 1 conjugacy invariant, in the sense that H1.h ı f ı h�1/ < 1 if and only if
H1.f / < 1, whenever f; h 2 Diff1.S1/ (Exercise 4.1). The proof that Hr.f /

is a C r conjugacy invariant when r > 1 is also not difficult, but depends on the
so-called Faa-di Bruno formula for the higher derivatives of a composition of C r
maps. We once again refer the reader to Herman [ibid., Ch. IV] for details.

With such an invariant at hand, Herman’s criterion reads as follows.

Theorem 4.1 (Herman’s Criterion). If f W S1 ! S1 is a C r diffeomorphism and
Hr.f / is finite, then f is C r conjugate to a rigid rotation, and conversely.

We will prove Herman’s criterion only for r D 1, deriving it as a consequence
of the following general result in topological dynamics due to Gottschalk and Hed-
lund [1955].



4.1. Herman’s invariants 81

Theorem 4.2 (Gottschalk–Hedlund). LetX be a compact metric space, f W X !
X be a homeomorphism all of whose orbits are dense, and ' W X ! R be a
continuous function. Then the following assertions are equivalent.

(a) There exists  W X ! R continuous such that ' D  ı f �  ;

(b) There exists x0 2 X such that supn⩾1
ˇ̌
ˇ
Pn�1
jD0 ' ı f j .x0/

ˇ̌
ˇ is finite.

Proof. That (a) implies (b) is clear, because if ' D  ı f �  then

n�1X

jD0
' ı f j .x/ D  ı f n.x/ �  .x/ ;

and so taking any x 2 X as x0 will do.
To prove that (b) implies (a), consider the mapH W X �R! X �R given by

H.x; t/ D .f .x/; t C '.x//, an example of what is usually referred to as a skew
product. ThenH is continuous and invertible; in fact,

H�1.y; s/ D
�
f �1.y/ ; s � '.f �1.y//

�
;

so the inverse is also continuous. HenceH is a homeomorphism. Note that for all
n ⩾ 0 we have

Hn.x; t/ D
�
f n.x/; t C

n�1X

jD0
' ı f j .x/

�
: (4.1)

Now (b) implies that the positive orbit O
C
H .x0; 0/ D fHn.x0; 0/ W n ⩾ 0g is

bounded. Therefore the !-limit set˝ of O
C
H .x0; 0/ is a compact subset of X �R,

and obviouslyH -invariant.
Claim: The set ˝ is the graph of a continuous function  W X ! R.
To prove this claim, we must show that each vertical line fxg � R cuts ˝ at

exactly one point. First note that this happens for the vertical line fx0g � R, its
intersection with ˝ being the point .x0; 0/. Indeed, if .x0; t / 2 ˝ then there is a
sequence ni !1 such thatHni .x0; 0/! .x0; t /, and using (4.1) we see that this
implies that Hni .x0; t / ! .x0; 2t/. By induction we deduce that .x0; nt/ 2 ˝
for all n, but since ˝ is bounded this can only happen if t D 0. Now, if some
vertical line fxg �R cuts˝ at two points, say .x; t1/ and .x; t2/, then every other
vertical line must do so as well: for any y 2 X , since the orbit of x under f is
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dense in X , we find a sequencemi !1 such thatHmi .x; t1/! .y; t/ for some
t 2 R, and therefore Hmi .x; t2/ ! .y; t C .t2 � t1//. But this contradicts the
fact that fx0g �R intersects ˝ at .x0; 0/ only. This proves that ˝ is the graph of
a function  W X ! R, necessarily continuous because ˝ is closed in X �R.

Finally, since now we know that every point in˝ is of the form .x;  .x// for
some x 2 X , we see that

H.x; .x// D .f .x/ ;  .x/C '.x// D .f .x/ ;  ı f .x// ;

by the H -invariance of ˝, and therefore  .x/ C '.x/ D  ı f .x/, thereby
establishing the desired cocycle identity.

We are ready for the promised special case of Theorem 4.1.

Theorem 4.3 (Herman’s Criterion). A C 1 diffeomorphism f W S1 ! S1 is C 1-
conjugate to a rotation if and only if H1.f / <1.

Proof. First suppose that H1.f / < 1, i.e. supn k logDf nk < 1. Since by the
chain rule,

logDf n D
n�1X

jD0
logDf ı f j ;

condition (b) of the Gottschalk–Hedlund theorem holds for ' D logDf and x0
any point in X D S1. We deduce from that theorem that logDf D  �  ı f
for some continuous function  W S1 ! R. Adding a suitable constant to  if
necessary, we may assume that

Z

S1

expf .t/g dt D 1 : (4.2)

Now we define h W S1 ! S1 by

h.x/ D
Z x

x0

expf .t/g dt :

Here and throughout, it is implicit that all calculations are performed modulo 1.
The normalization (4.2) makes h a well-defined, degree one map. It is a C 1 dif-
feomorphism because  is continuous. Moreover, writing

˛ D
Z f .x0/

x0

expf .t/g dt ;
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we see that

h ı f .x/ D ˛ C
Z f .x/

f .x0/

expf .t/g dt :

Applying the change of variables t D f .s/, this becomes

h ı f .x/ D ˛ C
Z x

x0

expf ı f .s/gDf.s/ ds : (4.3)

Using the cocycle relation  D  ı f C logDf in (4.3), we get

h ı f .x/ D ˛ C
Z x

x0

expf ı f .s/C logDf.s/g ds

D ˛ C
Z x

x0

expf .s/g ds

D ˛ C h.x/

Therefore h ı f .x/ D R˛ ı h.x/. The converse is left as an easy exercise to the
reader.

For an interesting use of Herman’s criterion in the context of one-parameter
families of circle diffeomorphisms, see Section 4.3.2.

4.2 Small denominators: Arnold’s theorem
In this section we present a fundamental theorem due to Arnold [1961] stating that
every analytic circle diffeomorphism with “good” rotation number ˛ and which is
sufficiently close to the rotation R˛ is analytically conjugate to R˛.

Arnold’s analytic conjugacy theorem can be regarded as a toy model for what
is known as KAM theory1. This theory was developed as an attempt (largely suc-
cessful) at making rigorous certain perturbation arguments used by physicists in
their studies of nearly integrable Hamiltonian systems arising in Celestial Mechan-
ics. The major difficulty in dealing with the perturbative series expansions of the
solutions of the differential equations coming from these problems is that the coef-
ficients of these series often involve rational expressions with small denominators,
rendering the task of proving convergence extremely difficult.

1The acronym stands for Kolmogorov, Arnold and Moser.
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It is fair to say that the taming of small denominators started with Siegel [1942].
His paper deals with the problem of linearization of analytic functions near an
irrationally indifferent fixed (or periodic) point, say with multiplier � D e2�i˛

for some irrational ˛. Siegel wrote down the conjugacy equation (in which the
unknown is an analytic change of coordinates transforming the given map into
the linear map z 7! �z), expanded everything in power series, and compared
coefficients. This resulted in complicated recursive relations for the coefficients
of the desired conjugacy; in these relations, factors of the form �n � 1, n ¤ 0,
appeared in the denominators. In order to control such factors (so as to prove
convergence) Siegel had to assume that ˛ is a Diophantine number. The required
estimates are quite difficult to carry out, and Siegel’s paper, despite being short,
is a real tour-de-force. But in some sense it also shows that the method of direct
comparison of coefficients (followed by brute force estimates) for perturbative
series is not viable in the general KAM setting.

A different approach was proposed by Kolmogorov [1954] in his ICM address.
He laid down a strategy to deal with such problems that, roughly speaking, consists
of two steps:

(1) linearize the equations of motion and solve the linear problem, obtaining an
approximate solution to the original non-linear problem.

(2) Improve the approximate solution obtained in (1) by an iterative procedure
akin to Newton’s method.

It is in the first step that the small denominators mark their presence. The second
step is usually the more difficult one; here the hope is that the successive approxi-
mate solutions are such that the distance to the exact solution at the .nC1/-st step
is of the order of the square of the corresponding distance at the n-th step. It is
this quadratic decay that is meant by the expression “akin to Newton’ method”.

This strategy was first carried out by Arnold [1961] for analytic systems, and
later by Moser [1966] for C k-smooth systems. The first case analysed by Arnold
was the one we mentioned in the beginning of this section, namely the problem
of analytically conjugating an analytic circle diffeomorphism sufficiently close to
a “good” rotation to the rotation itself. Such diffeomorphisms arise as (global)
cross-sections for flows on the two-dimensional torus. This problem is the exact
analogue for maps of the circle of the linearization problem for local analytic dif-
feomorphisms studied by Siegel.

Before giving a precise statement of Arnold’s theorem, let us introduce some
notation and formulate a definition. For each r > 1, let Ar denote the annular
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region Ar D fz 2 C W r�1 < jzj < rg in the complex plane. Let us also consider
the horizontal strips S� D fz 2 C W jIm zj < �g, for each given � > 0. We
denote by exp W C ! C=Z � C� the exponential covering map exp.z/ D e2�iz .
Note that, in the notation just introduced, exp.S� / D Ae2�� .

Definition 4.2. We say that an irrational number ˛ is Diophantine of type .K; �/,
where K > 0 and � > 2 are given constants, if

ˇ̌
ˇ̌˛ � p

q

ˇ̌
ˇ̌ ⩾ K

q�
; for all

p

q
2 Q :

Remark 4.1. We note the obvious but useful fact that, if ˛ is Diophantine of type
.K; �/ and K 0 < K, then ˛ is Diophantine of type .K 0; �/. Thus, we can always
assume that K is as small as necessary.

We are ready for the statement of Arnold’s theorem.

Theorem 4.4 (Arnold). Let r > 1, K > 0 and � > 2 be given, and let ˛ 2 .0; 1/
be a Diophantine number of type .K; �/. There exists " D ".r; �;K/ > 0 with the
following property. Suppose f W S1 ! S1 is a diffeomorphism with �.f / D ˛

such that

(i) f has a univalent extension to the annulus Ar (which we still denote by f );

(ii) supz2Ar
jf .z/ �R˛.z/j < ".

Then there exists a univalent map h W Ap
r ! C with h.S1/ D S1 such that h

conjugates f to the rotation R˛, i.e., satisfies the conjugacy equation f ı h D
h ıR˛, in an annular region around S1.

In light of Kolmogorov’s strategy, the proof goes as follows.

(1) First linearize the conjugacy equation f ı h D h ı R˛ and, expanding
everything in Laurent series, get an approximate solution h1 W Ar1

! C

which is holomorphic univalent in a smaller annulus (1 < r1 < r) and
preserves the unit circle. To prove convergence of the series for h1 in the
smaller annulus, it is necessary to use that ˛ is Diophantine. Then define
f1 D h�1

1 ı f ı h1. This new map is holomorphic univalent in a smaller
domain than the original f ; we refer to this as a loss of analyticity. Note
that �.f1/ D �.f /.
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(2) Repeat step (1) with f1 replacing f , getting h2 W Ar2
! C holomorphic

univalent in a yet smaller annulus (1 < r2 < r1) and preserving the unit
circle. Then define f2 D h�1

2 ı f1 ı h2, and so on, inductively. As a
result, we obtain two sequences of univalent maps, namely hn W Arn

! C

and fn W Arn
! C (where 1 < rnC1 < rn < r for all n) such that

fnC1 D h�1
n ı fn ı hn for all n (all maps preserving the unit circle). Again,

note that �.fn/ D �.f /, and in fact

fn D .h1 ı h2 ı � � � ı hn/�1 ı f ı .h1 ı h2 ı � � � ı hn/ ; for all n :

Denoting by�n D kfn�R˛kC0.Arn /
the C 0-distance between fn and R˛

in the appropriate annular domain, the estimates will show that �nC1 D
O.�1C�

n / for all n ⩾ 1 and some � > 0. They will also show that rn >p
r > 1, and from this it will follow that h D limn!1 h1 ı h2 ı � � � ı hn

exists as a holomorphic univalent map with domain Ap
r and is the desired

analytic conjugacy.

What will make this inductive procedure work is that the faster-than-linear
decay in step (2) beats the loss of analyticity in step (1) at each stage.

Having presented the general idea, we now move to the rather painful details.

4.2.1 The linearized equation
It will be much more convenient to deal with the lifts of f;R˛ through the expo-
nential covering map. The lift of R˛ is, of course, the translation T˛ W z 7! z C ˛.
The lift of f is a holomorphic univalent map F W S� ! C defined on the strip
S� D fz W jIm.z/j < �g with e2�� D r , satisfying F.z C 1/ D F.z/C 1 for all
z 2 S� , and such that the diagram

S� F.S� / � C

Ar f .Ar/ � C�

✲F

❄
exp

❄
exp

✲
f

commutes; the restriction F jR is the lift of our circle map f jS1 . Of course, F is
determined only up to addition by an integer, but we choose it so that 0 < F.0/ <
1: this ensures that kF �T˛kC0.S� /

is of the same size as kf �R˛kC0.Ar /
. Thus,

if f is a small perturbation of the rotation R˛, then F is a small perturbation of
the translation T˛.
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Our ultimate goal is to find a holomorphic univalent mapH W S�=2 ! C, with
H.z C 1/ D H.z/C 1 for all z 2 S�=2 andH.R/ D R, satisfying the conjugacy
equation

F ıH.z/ D H ı T˛ ; for all z 2 S�=2 : (4.4)
In particular, it should be the case thatH.S�=2/ � S� .

Let us write F.z/ D z C ˛ C '.z/ and H.z/ D z C  .z/, where '; are
holomorphic and periodic of period one. Here ' is given, and  is the unknown.
If a solution to (4.4) exists, then we must have

 .z C ˛/ �  .z/ D '.z C  .z// :

This rather non-linear equation in the unknown  is, not surprisingly, too diffi-
cult to be solved directly. We try to do the next best thing, which is to find an
approximate solution by considering the linearized equation

 .z C ˛/ �  .z/ D '.z/ : (4.5)

However, a necessary condition for (4.5) to be solvable is that
R 1
0 '.x/ dx D 0,

which is not reasonable to expect. Hence we replace (4.5) by

 .z C ˛/ �  .z/ D '.z/ �b'.0/ ; (4.6)

where b'.0/ D
R 1
0 '.x/ dx. If we solve (4.6), then H D Id C  will not be an

exact solution to (4.4), but rather an approximate solution (we will deal with the
problem of determining the correct domain strip on which H (or  ) is defined in
due time).

Since we are dealing with periodic functions, it is natural to use Fourier series.
Let us write

'.z/ D
X

n2Z

b'.n/e2�inz ; (4.7)

where the Fourier coefficients b'.n/ are given by

b'.n/ D
Z 1

0

'.x/e�2�inx dx : (4.8)

Note that, since '.x/ is real when x is real, we have b'.�n/ D b'.n/ for all n 2 Z.
The series in (4.7) is absolutely convergent in the strip S� : see Exercise 4.2. Let
us also consider the formal expansion of the unknown  in Fourier series, namely

 .z/ D
X

n2Z

b .n/e2�inz ; (4.9)
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Putting (4.7) and (4.9) back in (4.6) and solving for the coefficients of  , we get
b .0/ D 0 and

b .n/ D b'.n/
e2�in˛ � 1 ; for all n 2 Z� : (4.10)

Here we see the small denominators making their presence felt. In order to esti-
mate the coefficients of  , we need the following two lemmas.

Lemma 4.1. If ˛ is Diophantine of type .K; �/ then
ˇ̌
ˇe2�in˛ � 1

ˇ̌
ˇ ⩾ 4K

jnj��1 ;

for all n 2 Z�.

Proof. See Exercise 4.3.

Remark 4.2. About notation: from now on we shall write k�k� instead of k�kC0.S� /

for the C 0 norm of functions defined on S� .

Lemma 4.2. Let � W S� ! C be holomorphic and periodic of period one, and let

b�.n/ D
Z 1

0

�.x/e�2�inx dx

be its n-th Fourier coefficient. Then
ˇ̌
ˇb�.n/

ˇ̌
ˇ ⩽ e�2�� jnjk�k� ; for all n 2 Z :

Proof. See Exercise 4.4.

With these two facts at hand, we now prove the following.

Lemma 4.3. For each 0 < ı < � the series

 .z/ D
X

n2Z�

b'.n/
e2�in˛ � 1 e

2�inz

converges absolutely and uniformly for jIm.z/j < � � ı, and  .R/ � R. More-
over, there exists C0 D C0.�;K/ > 0 such that (i) k k��ı ⩽ C0ı

��k'k� , and
(ii) k 0k��2ı ⩽ C0ı

���1k'k� .
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Proof. Let z 2 S��ı . Using Lemma 4.1 and applying Lemma 4.2 with � D ',
we have

j .z/j ⩽
X

n2Z�

jb'.n/j
je2�in˛ � 1j je

2�inzj

⩽
k'k�
4K

X

n2Z�

jnj��1e�2�� jnj e�2�n.Im.z// :

But, as the reader can easily check, e�2�n.Im.z// ⩽ e2�jnj.��ı/whenever jIm.z/j <
� � ı. Therefore

j .z/j ⩽ k'k�
4K

X

n2Z�

jnj��1e�2�jnjı :

This last series is convergent, as we see by the integral test:
X

n2Z�

jnj��1e�2�jnjı < 2

Z 1

0

x��1e�2�ıx dx

D 2

.2�ı/�

Z 1

0

t��1e�t dt D 2� .�/

.2�ı/�
;

where � denotes, as usual, the standard gamma function. This shows at once that
the series for  .z/ converges absolutely and that j .z/j ⩽ C0ı

��k'k� , where
C0 D � .�/

2K.2�/�
. Hence the convergence is also uniform on S��ı , and k k��ı ⩽

C0ı
��k'k� as stated in (i).
To prove (ii), note that if z 2 S��2ı then the closed disk D of center z and

radius ı is contained in S��ı . By Cauchy’s integral formula, we have

 0.z/ D 1

2�i

Z

@D

 .�/ d�

.� � z/2 :

Hence j 0.z/j ⩽ ı�1 sup�2@D j .�/j, and therefore, using (i), we get k 0k��2ı ⩽
ı�1k k��ı < C0ı���1k'k� .

Finally, note from (4.10) that the the Fourier coefficients of  satisfy the rela-
tion b .�n/ D b .n/ for all n 2 Z. This shows that  .z/ D  .z/ for all z, and
therefore  preserves the real axis. This finishes the proof.

Remark 4.3. Note that, by taking K to be sufficiently small, we can (and will)
always assume that C0 > 1 (cf. Remark 4.1).
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4.2.2 Non-linear estimates
Now that we have bounds on the solution to the linear equation (4.6), we proceed
to the analysis of the holomorphic map H D IdC  , which we will show to be
univalent on a neighborhood of the real axis. We will derive good estimates on
how closeH andH�1 are to the identity map.

Lemma 4.4. If 0 < ı < �=4 and k'k� < C�1
0 ı�C1, then: (i) H is univalent in

S��2ı ; (ii)H.S��2ı/ � S��ı ; (iii)H.S��2ı/ � S��3ı .

Proof. We already know that H D Id C  is holomorphic in the strip S��ı �
S��2ı , so we only need to show it is injective in the latter strip. Note that second
estimate in Lemma 4.3 and the hypothesis on ' imply that k 0k��2ı < 1. Let
z1; z2 be two distinct points in S��2ı . Then

jH.z1/ �H.z2/j ⩾
ˇ̌
jz1 � z2j � j .z1/ �  .z2/j

ˇ̌
:

But by the mean-value inequality,

j .z1/ �  .z2/j ⩽ k 0k��2ı jz1 � z2j < jz1 � z2j :

Therefore H.z1/ ¤ H.z2/, and so H is injective. This proves (i). Next, for each
z 2 S��2ı , the first estimate in Lemma 4.3 and the hypothesis on ' imply that

jImH.z/j ⩽ jIm zj C jIm .z/j < .� � 2ı/C ı D � � ı ;

so H.z/ 2 S��ı . This proves (ii). Finally, the proof of (iii) is more of the same,
since

jImH.z/j ⩾
ˇ̌
jIm zj � jIm .z/j

ˇ̌
⩾ .� � 2ı/ � ı D � � 3ı :

This lemma implies, in particular, thatH has an inverseH�1 W H.S��2ı/!
S��2ı which, of course, is also univalent. Let # W H.S��2ı/ ! C be the holo-
morphic function given by

H�1.z/ D z �  .z/C #.z/ :

Lemma 4.5. We have

k#k��4ı < C
2
0 ı

�2��1k'k2� :
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Proof. From the identity z D H�1 ı H.z/, valid for all z 2 S��2ı , we get the
equation

#.z C  .z// D  .z C  .z// �  .z/ : (4.11)

We would like to bound the right-hand side of (4.11) using the mean-value inequal-
ity, but to do that we need H.z/ D z C  .z/ to be a point inside S��2ı . Hence
we assume that z 2 S��3ı , and we get

j#.z C  .z//j ⩽ j 0k��2ı j .z/j
<
�
C0ı

��k'k�
� �
C0ı

���1k'k�
�
D C 20 ı�2��1k'k2� : (4.12)

But H.S��3ı/ � S��4ı (mimic the proof of assertion (iii) in Lemma 4.4). This
means that for each w 2 S��4ı there exists (a unique) z 2 S��3ı such that
w D z C  .z/. Using this fact in (4.12) we deduce that

k#k��4ı D sup
w2S��4ı

j#.w/j < C 20 ı�2��1k'k2� ;

as required.

Now that we have estimates onH andH�1 on strips around the real axis that
are narrower than the original strip domain ofF , we would like to know how close
G D H�1 ıF ıH is to the translation T˛. Our hope is thatG will be much closer
to T˛ than F . This will indeed be the case, provided we shrink even further the
strip domains on which these maps are defined.

Lemma 4.6. Let 0 < ı < minf1; �=6g and, as before, suppose that k'k� <

C�1
0 ı�C1. Then the composition G D H�1 ı F ıH is a well-defined univalent

map with domain S��6ı . Moreover, if � W S��6ı ! C is the holomorphic function
given by �.z/ D G.z/ � z � ˛, then

k�k��6ı < 8C
2
0 ı

�2��1k'k2� :

Proof. Writing down G.z/ explicitly in terms of '; and # , after some straight-
forward computations we deduce that �.z/ D G.z/ � z � ˛ can be written as a
sum of three terms, namely

�.z/ D A.z/C B.z/C C.z/ ;
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where
8
ˆ̂̂
<̂
ˆ̂̂
:̂

A.z/ D  .z/ �  .z C ˛/C '.z C  .z//

B.z/ D  .z C ˛/ �  .z C ˛ C  .z/C '.z C  .z///

C.z/ D #.z C ˛ C  .z/C '.z C  .z///

Note that, since  is a solution of the linearized equation (4.6), the first term A.z/

can be re-written as

A.z/ D '.z C  .z// � '.z/Cb'.0/ :

We are going to bound these three terms in reverse order.

(1) The term C.z/ is easy to estimate from Lemma 4.5. Indeed, if z 2 S��6ı ,
then z C ˛ C  .z/C '.z C  .z// 2 S��4ı , and therefore

jC.z/j < C 20 ı�2��1k'k2� : (4.13)

(2) In order to bound the termB.z/, we combine the mean-value inequality with
Lemma 4.3 and get

jB.z/j ⩽ k 0k��2ı j .z/C '.z C  .z//j
<
�
C0ı

���1k'k�
�
.k k��ı C k'k� /

< 2C 20 ı
�2��1k'k2� ; (4.14)

where in the last line we have used that C0ı�� > 1.

(3) Finally, let us find an upper-bound for jA.z/j. We have, of course,

jA.z/j ⩽ j'.z C  .z// � '.z/j C jb'.0/j :

The first absolute value on the right-hand side is estimated using the mean-
value inequality. We have

j'.z C  .z// � '.z/j ⩽ k'0k��2ı � k k��ı :

But k'0k��2ı ⩽ ı�1k'k� (this follows from Cauchy’s integral formula for
'0 just as in the proof of Lemma 4.3). Also, k k��ı < C0ı��k'k� (again
by Lemma 4.3). Therefore

j'.z C  .z// � '.z/j ⩽ C0ı
���1k'k2� : (4.15)
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It remains to bound jb'.0/j. To do this, we use the fact that, since G has
translation number ˛, there exists some x0 2 R such that �.x0/ D G.x0/�
x0�˛ D 0 (see Exercise 4.5). This means thatA.x0/CB.x0/CC.x0/ D 0,
that is

b'.0/ D �.'.x0 C  .x0// � '.x0// � B.x0/ � C.x0/ :

Using (4.13), (4.14) and (4.15), we get

jb'.0/j ⩽
�
3C 20 ı

�2��1 C C0ı���1� k'k2� < 4C 20 ı�2��1k'k2� :

From this and (4.15) we deduce that

jA.z/j < 5C 20 ı�2��1k'k2� : (4.16)

Putting together (4.13), (4.14) and (4.16), we finally get the inequality

j�.z/j < 8C 20 ı�2��1k'k2� :

Since this holds for every z 2 S��6ı , the lemma is proved.

4.2.3 Proof of Arnold’s theorem
We are now in a position to describe the inductive procedure leading to the proof
of Arnold’s local conjugacy theorem. The key to the induction is Lemma 4.6.

We are given � > 0 and want to consider univalent maps F W S� ! C of the
form F.z/ D z C ˛ C '.z/, where ˛ 2 .0; 1/ is a fixed Diophantine number of
type .K; �/, which are very close to the translation T˛, preserve the real axis and
have translation number equal to ˛.

We start by defining three sequences of positive numbers .ın/n⩾0, .�n/n⩾0
and ."n/n⩾0 as follows. First we set �0 D � and take ı0 D 1

2
minf1; �=6g. We

also let

"0 D
 

min

(
ı2�C1
0

8C 20
;

1

22�C1

)!4
:

The reason for such a strange choice will become apparent later. Then we define
recursively, for all n ⩾ 0,

ınC1 D
1

2
ın I �nC1 D �n � 6ın I "nC1 D "3=2n :
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Note that �n > 1
2
�0 for all n. It is also easy to check that "n < C�1

0 ı�C1
n for all

n.
Given these preliminaries, we proceed through the following steps.

(1) Basis of induction. Suppose that F0 W S�0
! C is given by F0.z/ D

z C ˛ C '0.z/ with '0 holomorphic, periodic of period one, and such that
k'0k�0

< "0. Let  0 W S�0�ı0
! C be the holomorphic solution to the

equation
 0.z C ˛/ �  0.z/ D '0.z/ �b'0.0/ ;

whose existence and uniqueness are guaranteed by Lemma 4.3. By that
same lemma, we have k 0k�0�ı0

< C0ı
��
0 k'0k�0

, as well as k 0
0k�0�2ı0

<

C0ı
���1
0 k'0k�0

Let H0 D IdC  0. By Lemma 4.4, this map is univalent
in S�0�2ı0

, and by Lemma 4.5 the function #0.z/ D H�1
0 .z/ � z C  0.z/

is holomorphic in S�0�4ı0
and satisfies k#0k�0�4ı0

< C 20 ı
�2��1
0 k'0k2�0

.

(2) Induction step. Now suppose we have already defined a univalent map Fn W
S�n
! C and a holomorphic mapHn W S�n�ın

! C having the following
properties:

(i) The map Fn preserves the real axis and FnjR has translation number
˛.

(ii) If 'n D Fn � T˛, then 'n is periodic of period one and k'nk�n
< "n.

(iii) The map Hn is univalent on S�n�2ın
, and we have Hn.S�n�2ın

/ �
S�n�ın

andHn.S�n�2ın
/ � S�n�3ın

.
(iv) If  n D Hn � Id, then  n is periodic of period one, and we have
k nk�n�ın

< C0ı
��
n k'nk�n

and k 0
nk�n�2ın

< C0ı
���1
n k'nk�n

.

Applying Lemmas 4.5 and 4.6 toH D Hn and F D Fn, we define FnC1 D
H�1
n ı Fn ı Hn on the strip S�n�6ın

D S�nC1
. Then FnC1 is univalent,

preserves the real axis, and has translation number equal to ˛. Moreover,
writing 'nC1 D FnC1 � T˛, it follows from Lemma 4.6 and (ii) that

k'nC1k�nC1
< 8C 20 ı

�2��1
n k'nk2�n

<
�
8C 20 ı

�2��1
n "1=2n

�
"3=2n : (4.17)

But "n D ".3=2/
n

0 , and our choice of "0 implies after some calculation that

8C 20 ı
�2��1
n "

1
2.

3
2/

n

0 < 1 :
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Putting this back into (4.17) we deduce that k'nC1k�nC1
< "

3=2
n D "nC1.

This shows that FnC1 satisfies the analogues of properties (i) and (ii) above.
Finally, let  nC1 be the solution to the equation

 nC1.z C ˛/ �  nC1.z/ D 'nC1.z/ �b'nC1.0/ ;

whose existence and uniqueness, once again, are guaranteed by Lemma 4.3
(with ' D 'nC1). That lemma also implies that the analogue of (iv) above
holds for  nC1, and from this and Lemma 4.4 it follows thatHnC1 D IdC
 nC1 satisfies the analogue of (iii) as well. This completes the induction.

(3) The conjugacy. Now that we have constructed the sequences .Fn/n⩾0 and
.Hn/n⩾0with the above properties, we know in particular that kFn�T˛k�n

<

"n and kHn � Idk�n�ın
< C0ı

��
n "n, for all n. We also know, applying

Lemma 4.5 with H D Hn, that kH�1
n � Idk�n�4ın

< 2C 20 ı
�2��1
n "n, for

all n. Moreover, the strip S�0=2 is contained in the domain of all of these
maps. It follows that, on this strip, we have Fn ! T˛, Hn ! Id and
H�1
n ! Id, and the convergence is uniform in each case. In addition, for

each z 2 S�0=2, we have

Fn.z/ D .H0 ıH1 ı � � �ıHn�1/�1 ıF0 ı .H0 ıH1 ı � � �ıHn�1/.z/ (4.18)

We claim that the sequence of univalent maps 	n D H0 ıH1 ı � � � ıHn�1 W
S�n
! C when restricted to the strip S�0=2 converges uniformly to a holo-

morphic mapH W S�0=2 ! C which is necessarily univalent. To prove this
claim, we first estimate k	nC1 � 	nk�0=2 for all n. Using the mean-value
inequality, we have

k	nC1 � 	nk�0=2 ⩽ k	nC1 � 	nk�n�ın
D k	n ıHn � 	nk�n�ın

⩽ k	 0
nk�n
kHn � Idk�n�ın

< C0ı
��
n "nk	 0

nk�n
:

(4.19)

Now, by then chain rule,

	 0
n D

n�1Y

jD0
H 0
j ıHjC1 ı � � � ıHn�1
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SinceH 0
j D 1C  0

j for each j , it follows that

k	 0
nk�n

⩽

n�1Y

jD0

�
1C k 0

j k�j �2ıj

�

<

n�1Y

jD0

�
1C C0ı���1

j "j

�
<

1Y

jD0

�
1C C0ı���1

j "j

�
:

But the latter product converges, because the series
P1
jD0 ı

���1
j "j con-

verges. This shows that there exists a constant B0 > 0 such that k	 0
nk�n

<

B0 for all n. Taking this back to (4.19), we see that k	nC1 � 	nk�0=2 ⩽
B1ı

��
n "n, where B1 D B0C0. Therefore, for all m > n ⩾ 0, we have

k	m � 	nk�0=2 ⩽ B1

m�1X

jDn
ı��
j "j

Since the series
P1
jD0 ı

��
j "j is also convergent, we deduce that .	n/n⩾0

is a uniform Cauchy sequence in S�0=2. ThereforeH D limn!1 	n exists
and is holomorphic (and univalent) in S�0=2. Going back to (4.18) and let-
ting n!1, we finally get the conjugacy equation T˛ D H�1 ıF0 ıH in
the strip S�0=2, which is what we wanted.

(4) Now that all the hard work has been done, to complete the proof of Theo-
rem 4.4, all one needs to do is to quotient everything down to C=Z using
the exponential covering map. This task is left to the reader as an exercise.

This concludes the proof of Arnold’s theorem.

4.3 Counterexamples to linearizability

In the same paper where he proved his analytic conjugacy theorem, Arnold [1961]
also gave examples of analytic circle diffeomorphisms without periodic points
which are notC 1 conjugate – in fact, not even absolutely continuously conjugate –
to an irrational rotation. Of course, the rotation number of such a diffeomorphism
must be an irrational that can be well approximated by rationals.
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4.3.1 One-parameter families
The examples we seek will be found in suitable one-parameter families of analytic
diffeomorphisms. We will in fact show that they are, in a suitable topological
sense, abundant.

Let f W S1 ! S1 be an analytic diffeomorphism, and consider the one-
parameter family f˛ D R˛ ı f , where ˛ 2 R=Z. We will refer to this fam-
ily as the standard family generated by f , or simply the standard family of f .
We know from Chapter 2 that the rotation number varies continuously and mono-
tonically with the parameter ˛, i.e., the function �f W R=Z ! R=Z given by
�f .˛/ D �.f˛/ is continuous and monotone non-decreasing2. We call this func-
tion the rotation number function associated with f .

We say that a surjective, monotone function  W R=Z ! R=Z is a devil
staircase if is continuous, and there exists a countable dense set C � Œ0; 1� such
that (i)  �1.c/ is a closed interval with non-empty interior, for each c 2 C ; and
(ii) K D .R=Z/ n

S
c2C int. �1.c// is a Cantor set.

Lemma 4.7. Let f W S1 ! S1 be an analytic diffeomorphism, and let f˛ D
R˛ ıf be its standard family. Suppose we have f n˛ ¤ Id for all ˛ 2 Œ0; 1� and all
n ⩾ 1. Then the rotation number function �f is a devil staircase.

Proof. We already know that �f is continuous and monotone, and it is also sur-
jective. Let C D Q=Z. For each rational r 2 C , the pre-image �r D ��1

f
.r/

is a non-empty closed interval. We claim that this interval has non-empty inte-
rior. To see this, write r D p=q in irreducible form, and let ˛ 2 �p=q . Let
F˛ W R! R be the lift of f˛ with 0 ⩽ F˛.0/ < 1. Consider the (periodic) func-
tion '˛.x/ D F q.x/ � x � p. Its graph Gr.'˛/ intersects the real axis, because
f˛ has a periodic orbit of period q. Note that '˛ cannot vanish identically, for if
it did, we would have f q˛ D Id, contrary to our hypothesis. Hence there are three
cases to consider:

(1) The graph Gr.'˛/ crosses the real axis. In this case, by continuity of the
map ˇ 7! 'ˇ , we see that there exists ı > 0 small such that , for each
ˇ 2 .˛ � ı; ˛ C ı/, the graph Gr.'ˇ / also crosses the real axis, so that
�.fˇ / D p=q. In other words, we have �p=q � .˛ � ı; ˛ C ı/.

(2) The graph Gr.'˛/ touches the real axis, but '˛.x/ ⩾ 0 for all x. Here, since
'˛.x0/ > 0 for some x0, it follows from the continuity of ˇ 7! 'ˇ that

2Here and throughout we think of R=Z as the interval Œ0; 1� with the endpoints identified, and
the induced order relation via this identification.
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there exist ı > 0 small such that, for each ˇ 2 .˛ � ı; ˛�, the graph Gr.'ˇ /
intersects the real axis, so that �.fˇ / D p=q. Hence �p=q � .˛ � ı; ˛� in
this case.

(3) The graph Gr.'˛/ touches the real axis, but this time '˛.x/ ⩽ 0 for all x.
This case is analogous to case (2). Proceeding as before, we deduce in this
case that there exists ı > 0 small such that �p=q � Œ˛; ˛ C ı/.

Whichever case occurs, we see that �p=q has non-empty interior, as claimed. Fi-
nally, if y 2 .R n Q/=Z is an irrational point, then ��1

f
.y/ reduces to a single

point. This follows from the fact that �f is strictly increasing at each point ˛ for
which �.f˛/ is irrational. This fact is left as an instructive exercise to the reader
(see Exercise 4.6). Putting all these facts together, we deduce that

Kf D .R=Z/ n
[

r2Q=Z

int.�r/ (4.20)

is compact, totally disconnected and without isolated points, i.e., a Cantor set.
Therefore �f is indeed a devil staircase.

Remark 4.4. The fact that the intervals �p=q have non-empty interior is known
as phase-locking or mode-locking phenomenon. Accordingly, these intervals are
called phase-locking or mode locking intervals.

The reader may wonder how easy it is to produce examples of (standard) one-
parameter families satisfying the hypothesis of Lemma 4.7. It turns out that if
f has a lift to the real line which is the restriction of a holomorphic map of the
entire complex plane, then the hypothesis in question is always satisfied – see
Exercise 4.7. This is what happens with one-parameter families extracted from
the so-called Arnold family, which depends on two parameters. The maps in the
Arnold family have as lifts the restrictions to the real line of the entire maps given
by

F˛;ˇ .z/ D z C ˛ C ˇ sin 2�z :

Here, we have 0 ⩽ ˛ < 1 and 0 < ˇ < 1=2� . These entire maps project
down to holomorphic self-maps of the cylinder C=Z ' C� – call them f˛;ˇ
– whose restrictions to the unit circle are analytic diffeomorphisms. Note that
f˛;ˇ D R˛ ı f0;ˇ . Thus, by fixing ˇ and varying ˛, we get a one-parameter
family satisfying the hypothesis of Lemma 4.7. In Table 4.1 the reader can see
the plots for two values of ˇ smaller than 1=2� . When ˇ D 1=2� we still have a



4.3. Counterexamples to linearizability 99

˛

0 1
4

1
2

3
4

1

�f .˛/

1
4

1
2

3
4

1

˛

0 1
4

1
2

3
4

1

�f .˛/

1
4

1
2

3
4

1

Table 4.1: Devil staircases in the Arnold family for ˇ D 0:125 (left) and for
ˇ D 0:158 (right). In each case, f D f0;ˇ .

family of circle homeomorphisms, but these are not diffeomorphisms: x D 1=2 is
now a critical point. Such maps are called critical circle maps, and will be the main
object of study in parts III and IV of this book. For ˇ > 1=2� the corresponding
maps in the Arnold family are no longer invertible; these maps will not be studied
in this book.

Remark 4.5. For each fixed value of ˇ in the range 0 < ˇ ⩽ 1=2� , we may
consider the Cantor set Kˇ � Œ0; 1� obtained as the closure of the complement of
the union of all phase-locking intervals in the one-parameter family ˛ 7! f˛;ˇ . As
shown by Herman [1979], Kˇ has positive Lebesgue measure when ˇ < 1=2� .
By contrast, when ˇ D 1=2� the corresponding Cantor set has zero Lebesgue
measure; this was first proved by Świątek [1988].

Remark 4.6. An interesting picture emerges if one looks at the Arnold family in
parameter space. For each rational p=q 2 Œ0; 1�, the set of all pairs of parameters
.˛; ˇ/ inside the rectangle Œ0; 1� � Œ0; 1

2�
� for which the map f˛;ˇ has rotation

number p=q is a connected set known as an Arnold tongue. See Figure 4.1 for a
computer-generated picture of some of these tongues (for selected values of the
rotation number p=q).
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˛

0 1
5

1
4

1
3

2
5

1
2

3
5

2
3

3
4

4
5

1

�ˇ

1
4

1
2

Figure 4.1: Arnold tongues in the family x 7! xC˛Cˇ sin .2�x/ for 0 ⩽ ˛ ⩽ 1

and 0 ⩽ ˇ ⩽ 1
2�

.

4.3.2 Residual sets of non-linearizable parameters

We now combine what we learned in Section 4.1 about Herman’s C 1 conjugacy
invariant with a simple Baire category argument to show the existence of mini-
mal analytic circle diffeomorphisms which are not C 1 conjugate to a rotation (of
course, they are always topologically conjugate to a rotation, by Denjoy’s theo-
rem).

Recall that a subset E of a complete metric space X is residual if it contains
a countable intersection of sets which are open and dense in X . Baire’s theorem
says that residual subsets of a complete metric spaceX are always dense inX . It is
easy to see that the intersection of any finite collection of residual sets is residual.

Let f W S1 ! S1 be an analytic circle diffeomorphism satisfying the hypoth-
esis of Lemma 4.7, let f˛ D R˛ ı f be the standard family it generates, and let
Kf be the Cantor set in (4.20).

Theorem 4.5. There exists a residual subset � � Kf such that, for every ˛ 2 �,
the analytic diffeomorphism f˛ is not C 1 conjugate to R�.f˛/.

Proof. Let Df � Kf denote the set of all endpoints of phase-locking intervals
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in the complement of Kf in R=Z. Then Df is a countable dense subset of the
Cantor set Kf . For each ˛ 2 Df the corresponding diffeomorphism f˛ has
rational rotation number, say �.f˛/ D p=q, but it cannot be C 1 conjugate to the
rotation Rp=q . If it were, then a fortiori we would have f q˛ D Id, contrary to
hypothesis. Hence, by Theorem 4.3, we must have H1.f˛/ D 1 for all ˛ 2 Df .
Here, as in Section 4.1, H1.f / D supn⩾1 kDf nk is Herman’s (first) invariant.

Now, for each positive integer k, let Vk D f˛ 2 Kf W H1.f˛/ > kg. Then
Vk is open, and we clearly haveDf � Vk , for all k ⩾ 1. In other words, each Vk
is an open and dense subset ofKf . SinceKf is a compact subset of the complete
metric space R=Z, it is itself complete, and therefore, by Baire’s theorem, V1 DT
k⩾1 Vk is residual in Kf . But every ˛ 2 V1 obviously satisfies H1.f˛/ D1,

so by Theorem 4.3 the corresponding diffeomorphism f˛ is not C 1-linearizable.
Hence we can take � D V1.

4.3.3 Singular measures and conjugacies
We now wish to go beyond Theorem 4.5 and show that there are plenty of analytic
diffeomorphisms that are minimal but not absolutely continuously conjugate to a
rotation. The examples can be constructed so as to be as close to a rigid rotation as
desired. Rather than a Baire category argument, we will employ an approximation
argument.

To achieve our goal, the following criterion will be crucial. In what follows,
we denote by m the Lebesgue measure on the circle.

Lemma 4.8. Let f W S1 ! S1 be a homeomorphism, and let� be an f -invariant
Borel probability measure. Suppose f has the following property: for each n ⩾ 1,
there exist a Borel set An � S1 and a positive integer kn such that (i) f kn.S1 n
An/ � An; and (ii) m.An/ < 2�n. Then � is not absolutely continuous with
respect to m.

Proof. Since � is invariant under f , we have

�.An/ ⩾ �
�
f kn.S1 n An/

�
D �.S1 n An/ D 1 � �.An/ ;

so �.An/ ⩾ 1
2

for all n. Consider the set

A1 D lim supAn D
1\

kD1

[

n⩾k

An :
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Since �
�S

n⩾k An
�
⩾ 1

2
for every k, we have �.A1/ ⩾ 1

2
as well. But at the

same time, for all k ⩾ 1 we have

m.A1/ ⩽ m

0
@[

n⩾k

An

1
A ⩽

1X

nDk

1

2n
D 1

2k�1 ;

and therefore m.A1/ D 0. This shows that � cannot be absolutely continuous
with respect to Lebesgue measure.

Adapting the terminology of Cornfeld, Fomin, and Sinaĭ [1982, p. 88], we
introduce the following definition.

Definition 4.3. Given a rational number p=q in irreducible form, we say that a
circle homeomorphism f is .p; q/-stable if f has a lift F to the real line such that
F q.x/ ⩾ x C p for all x 2 R and the equality F q.x0/ D x0 C p holds for some
x0.

Note that if f is .p; q/-stable3 then in particular f has a periodic orbit of
period q, and in fact �.f / D p=q. The following lemma states that, in any stan-
dard one-parameter family of diffeomorphisms, there are .p; q/-stable diffeomor-
phisms for all rationals p=q 2 Œ0; 1�.

Lemma 4.9. Let f W S1 ! S1 be a diffeomorphism, and suppose the standard
family f˛ D R˛ıf it generates is such that its rotation number function�f .˛/ D
�.f˛/ is a devil staircase. If �p=q D Œ˛p=q; ˇp=q� is the phase locking interval
corresponding to the rational p=q, then fˇp=q

is .p; q/-stable.

Proof. This is left as an exercise to the reader (Exercise 4.8).

Our next lemma states in essence that, arbitrarily near any analytic .p; q/-
stable diffeomorphism we can find another analytic .p; q/-stable diffeomorphism
having exactly one periodic orbit of period q. We formulate the result in terms
of lifts. We assume these lifts are defined on the horizontal strip S1 D fz W
jIm.z/j < 1g. Given two holomorphic maps F;G defined on this strip, we let
d.F;G/ D supz2S1

jF.z/ �G.z/j denote the C 0 distance between them.

3Note that the .p; q/-stability property can always be destroyed by a small perturbation. This
suggests that it would be more appropriate to use the moniker .p; q/-unstable when referring to
such maps. We will nevertheless conform to the terminology used in Cornfeld, Fomin, and Sinaĭ
[1982, p. 88].
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Lemma 4.10. Let F W S1 ! C be a univalent map with F.R/ D R such that
F jR is the lift of a .p; q/-stable diffeomorphism f W S1 ! S1. For each ı > 0

there exists a univalent map G W S1 ! C with the following properties:

(i) d.F;G/ < ı;

(ii) G.R/ D R;

(iii) GjR is the lift of a .p; q/-stable diffeomorphism g;

(iv) g has a unique periodic orbit of period q.

Proof. Let x0 2 R be such that F q.x0/ D x0 C p, and write xj D F j .x0/ for
each j 2 Z. Also, let zj D e2�ixj 2 S1 (so that zjCq D zj for all j ), and
note that fz0; z1; : : : ; zq�1g is a periodic orbit for f . Let � W C ! C be the
holomorphic function given by

�.z/ D
q�1Y

jD0
sin2 .�.z � xj // :

This function is periodic of period one. Note that �.x/ ⩾ 0 for all x 2 R, and
equality holds only for x 2 fx0; x1; : : : ; xq�1g C Z. Now, consider the holomor-
phic map G.z/ D F.z/ C ��.z/. Taking � > 0 sufficiently small, G becomes
univalent in S1, and d.F;G/ D � supz2S1

j�.z/j < ı. Moreover, its restriction
to the real line is the lift of an analytic circle diffeomorphism g. Note also that
Gj .x0/ D F j .x0/ for all j 2 Z. In particular, we have Gq.x0/ D x0 C p, and
our choice of � implies that Gq.x/ > x C p for all x … fx0; x1; : : : ; xq�1g C Z.
This shows that g is .p; q/-stable, and also that fz0; z1; : : : ; zq�1g is its only peri-
odic orbit (of period q).

Lemma 4.11. Let f W S1 ! S1 be a .p; q/-stable homeomorphism having a
unique periodic orbit of period q. Then for each " > 0 there exist an open set A"
containing that periodic orbit and a positive integer k" such that m.A"/ < " and
f k".S1 n A"/ � A".
Proof. Let O D fz0; z1; : : : ; zq�1g be the periodic orbit in question. For each
j D 0; 1; : : : ; q � 1, write zj D e2�ixj as before, and let J.zj ; "/ � S1 denote
the arc centered at zj with endpoints e2�i.xj � "

3q
/ and e2�i.xj C "

3q
/. Consider the

open set

A" D
q�1[

jD0
J.zj ; "/ � S1 ;
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whose Lebesgue measure is equal to 2
3
". As we saw in Lemma 2.3, the omega-

limit set of every point on the circle is equal to the periodic orbit O . This means
that the orbit of every z 2 S1 n A" enters A" after some time k.z/ and never
leaves it. Since S1 n A" is compact and f is continuous, it follows that k" D
supz2S1nA"

k.z/ <1, and the lemma is proved.

The next result yields the crucial inductive procedure for the construction of
the examples we promised above. For convenience of notation, let us denote by
U1 the class of all univalent maps F W S1 ! C defined over the strip S1 D fz 2
C W jIm zj < 1g such that F.z/ � z is periodic of period one and F.R/ D R, so
that F jR is the lift of an analytic diffeomorphism of the circle.

Proposition 4.1. Given p0=q0 2 .0; 1/ and ı0 > 0, there exist a sequence of
univalent maps .Fn/n⩾0 with Fn 2 U1 for all n ⩾ 0 and a sequence .ın/n⩾0
of positive numbers with ınC1 ⩽ ın=2 for all n ⩾ 0, such that the following
properties hold.

(1) The restriction of Fn to the real line is the lift of an analytic diffeomorphism
fn W S1 ! S1 with rational rotation number �.fn/ D pn=qn.

(2) We have f0 D Rp0=q0
, and for all n ⩾ 1, the diffeomorphism fn is .pn; qn/-

stable and has a unique periodic orbit (of period qn).

(3) We have d.Fn; FnC1/ < 1
2
ınC1.

(4) For each n ⩾ 1, there exist a positive integer kn and an open set An � S1

with m.An/ D 2�n such that, for all G 2 U1 with d.Fn; G/ ⩽ ınC1, we
have g.S1 nAn/ � An, where g W S1 ! S1 is the diffeomorphism with lift
GjR.

(5) We have, for all n ⩾ 0,
ˇ̌
ˇ̌pnC1
qnC1

� pn
qn

ˇ̌
ˇ̌ < 1

2n2max0⩽j⩽n qj 2
:

Proof. We start by taking F0 D Tp0=q0
, so that F0 is the lift of f0 D Rp0=q0

.
Now, suppose that ıj > 0 and Fj 2 U1 have already been constructed for all
j ⩽ n. In particular, FnjR is the lift of a .pn; qn/-stable circle diffeomorphism
fn, and fn has a unique periodic orbit On of period qn.

First, we define ınC1. Applying Lemma 4.11 to f D fn, we know that there
exists an open �n-neighborhood Vn of On, where �n D 1=.qn2nC2/, and a positive
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integer kn such that fn.S1nVn/ � Vn. Let �n > 0 be small enough that, ifG 2 U1

is such that d.Fn; G/ ⩽ �n, then d.F kn
n ; Gkn/ < �n. Then every such G will

have the property that gkn.S1 n Vn/ � V �
n , where g is the circle diffeomorphism

of which G is the lift and where V �
n is the open 2�n-neighborhood of On. Thus,

if we let An D V �
n , then gkn.S1 n An/ � An for all G with d.Fn; G/ < �n,

and moreover m.An/ D 4qn�n D 2�n. Having done this, we define ınC1 D
minf�n; 12ıng.

Next, we define FnC1. To do this, we first look at the standard one-parameter
family fn;˛ D R˛ ı fn. We know from Lemma 4.7 that the rotation number func-
tion�fn

W ˛ 7! �.fn;˛/ is a devil staircase. Choose a rational numberpnC1=qnC1
such that

�.fn/ D
pn

qn
<
pnC1
qnC1

< �.fn;ınC1=4/ ;

and choose it so close topn=qn that the inequality in (5) is satisfied. Then the phase-
locking interval �pnC1=qnC1

D ��1
fn
.pnC1=qnC1/ is contained in the interval

.0; 1
4
ınC1/. Let ˛n be the right endpoint of �pnC1=qnC1

. Then the map fn;˛n

is .pnC1; qnC1/-stable, and its lift Fn;˛n
2 U1 satisfies d.Fn; Fn;˛n

/ < 1
4
ınC1.

However, there is no guarantee that fn;˛n
has only one periodic cycle. To fix

this problem, we need to perturb fn;˛n
slightly. Here we apply Lemma 4.10 with

F D Fn;˛n
and ı D 1

4
ınC1. We get a new univalent map FnC1 2 U1 whose

restriction to the real line is the lift of a circle diffeomorphism fnC1 which is
.pnC1; qnC1/-stable, and has a unique periodic orbit of period qnC1. We now
have

d.Fn; FnC1/ ⩽ d.Fn; Fn;˛n
/C d.Fn;˛n

; FnC1/ <
1

2
ınC1 :

This completes the induction, and finishes the proof.

We are finally ready for the main result of this section.

Theorem 4.6. Given a circle rotation R˛ and " > 0, there exists an analytic
diffeomorphism f W S1 ! S1 without periodic points such that d.f;R˛/ < �

and whose unique invariant measure is not absolutely continuous with respect to
Lebesgue measure. In particular, no conjugacy between f and the corresponding
irrational rotation R�.f / can be absolutely continuous.

Proof. We can of course assume that ˛ is rational. Applying Proposition 4.1 to
F0 D R˛ and ı0 D ", we get a sequence of univalent maps Fn 2 U1 possessing
properties (1)-(5) in the statement of that proposition. In particular, from property
(3) and the way the sequence .ın/n⩾0 is constructed, we see that .Fn/n⩾0 is a
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uniform Cauchy sequence in the strip S1. Let F 2 U1 be its limit, and let f W
S1 ! S1 be the analytic diffeomorphism whose lift is F .

First we claim that � D �.f / is irrational. We know by continuity of the
rotation number that

� D lim
n!1

�.fn/ D lim
n!1

pn

qn
:

Hence we can write

pn

qn
� � D

1X

jDn

�
pj

qj
� pjC1
qjC1

�
;

and from the inequality in property (5) we get
ˇ̌
ˇ̌� � pn

qn

ˇ̌
ˇ̌ <

1X

jDn

1

2j 2max0⩽k⩽j qk2
<

1

2q2n

1X

jDn

1

j 2
<

�2

12q2n
<

1

q2n

Thus, we have infinitely many rational solutions to the inequality j� � .p=q/j <
q�2, and this means that � is irrational4.

Next, note that from property (3) that

d.F; Fn/ ⩽
1

2

1X

jDnC1
ıj ⩽ ınC1 :

In particular, d.F;R˛/ ⩽ ı1 < ". Then, by property (4), we see that f .S1 n
An/ � An, where An � S1 is an open set with m.An/ D 2�n. Since this holds
for all n ⩾ 1, we deduce from the criterion in Lemma 4.8 that the unique Borel
probability measure invariant under f is not absolutely continuous with respect to
Lebesgue measure. The last assertion in the statement follows immediately from
this. The proof is complete.

4.4 Further local theory: the Brjuno condition

As before, an irrational number � in .0; 1/ is said to be Diophantine of order ı ⩾ 0

if there exists a constant C > 0 such thatˇ̌
ˇ̌� � p

q

ˇ̌
ˇ̌ ⩾ C

q2Cı

4It is easy to see that the inequality in (5) implies that qnC1 > 2n2qn, so the sequence .qn/ is
strictly increasing.
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for any rational number p=q. As it is not difficult to prove (see Lemma A.4 in
Appendix A), for any given ı > 0 the set of Diophantine numbers of order ı has
full Lebesgue measure.

In Section 4.2 we have proved a local linearization result, namely Theorem 4.4,
which says that any real-analytic circle diffeomorphism with Diophantine rotation
number �, which is a small perturbation of the rigid rotation R�, is analytically
linearizable (i.e., it is conjugate to R� by a real-analytic diffeomorphism). On the
other hand, we have constructed in Theorem 4.6 examples of real-analytic diffeo-
morphisms with irrational rotation number (as close to a rigid rotation as desired)
for which any conjugacy with the corresponding rotation is not even absolutely
continuous.

Still dealing with analytic diffeomorphisms close to a rotation, we proceed to
state two fundamental results due to J.-C. Yoccoz [2002]. For any given b > 1,
we say that f 2 Diff!b .S

1/ if f is a real-analytic circle diffeomorphism, whose
holomorphic extension is defined in the annulus

Ab D
˚
z 2 C W b�1 < jzj < b

	
:

Definition 4.4. An irrational number � 2 .0; 1/ satisfies the Brjuno condition if

X

n2N

log qnC1
qn

<1 ;

where pn=qn are the convergents of �.

As it is not difficult to prove (see Exercise 4.12), any Diophantine number sat-
isfies the Brjuno condition. Therefore, the following result extends Theorem 4.4.

Theorem 4.7 (Yoccoz [ibid.]). For any Brjuno number � and any b > 1 there
exists " D ".�; b/ > 0 with the following property. If f 2 Diff!b .S

1/ has rotation
number � and satisfies

f � R�

C0.Ab/

< ", then any topological conjugacy
between f and R� belongs to Diff!b=2.S

1/.

Yoccoz also proved that the Brjuno condition in Theorem 4.7 is sharp in the
analytic class, as expressed by the following result.

Theorem 4.8 (Yoccoz [ibid.]). If � 2 .0; 1/ is an irrational number which is not
Brjuno, the following holds. For any given b > 1 and " > 0 there exists f 2
Diff!b .S

1/ with rotation number � and satisfying
f � R�


C0.Ab/

< ", which is
not analytically linearizable.
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4.5 Global theory: Herman–Yoccoz results and beyond
The linearization results of the previous sections are local, in the sense that they
hold for real-analytic dynamics whose holomorphic extensions are small pertur-
bations of a linear rotation. In this final section we survey, without proofs, some
of the most relevant global linearization results, starting with the seminal works
of Herman [1979] and Yoccoz [1984a].

Theorem 4.9 (Herman–Yoccoz). If f is a C r diffeomorphism of S1, with r ⩾ 3,
whose rotation number is Diophantine of order ı then, provided r > 2ıC 1, f is
C r�1�ı�"-conjugate to the corresponding rigid rotation, for every " > 0.

Note that no assumption on being close to a rotation is needed here. Herman
proved that such a global linearization result holds for Lebesgue almost every rota-
tion number, while Yoccoz proved that it holds in fact for any Diophantine number.
A proof of Theorem 4.9 can be found in de Melo and van Strien [1993, Section I.3].
Let us mention that Herman’s proof was simplified by Khanin and Sinai [1987] and
Stark [1988], through the use of renormalization methods.

Theorem 4.9 was subsequently sharpened by Katznelson and Ornstein [1989],
who proved the following result.

Theorem 4.10 (Katznelson–Ornstein). If f 2 Diffr.S1/ and its rotation number
� is Diophantine of order ı, then any topological conjugacy between f and the
rigid rotation of angle � is a C r�1�ı�" diffeomorphism for any " > 0, provided
r > ı C 2.

In this statement r > 2 belongs to R, and the condition f 2 Diffr.S1/ means
that f is a C brc diffeomorphism whose brc-th derivative satisfies a Hölder condi-
tion with exponent frg.

More recently, Khanin and Teplinsky [2009] were able to prove that, in the
particular case 2 < r < 3, rigidity holds without the need of any ". More precisely,
they proved the following result.

Theorem 4.11 (Khanin–Teplinsky). If f 2 Diff2C˛.S1/ and its rotation number
� is Diophantine of order ı, then any topological conjugacy between f and the
rigid rotation of angle � is a C 1C˛�ı diffeomorphism, provided 0 ⩽ ı < ˛ < 1.

A detailed proof of Theorem 4.11, following the original work of Khanin and
Teplinsky [ibid.], will be provided in Appendix B.

The previous statements are given for the lowest possible smoothness and are
sharp, as the examples constructed in Katznelson and Ornstein [1989, App. 3]
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show. The case of highest possible smoothness has been completely solved by
Herman and Yoccoz.

Theorem 4.12 (Herman–Yoccoz). Every C1 circle diffeomorphism with irra-
tional rotation number � 2 .0; 1/ is C1-conjugate to a rotation if, and only if,
� is Diophantine.

Theorem 4.13 (Herman–Yoccoz). Any real analytic circle diffeomorphism with
Diophantine rotation number is real analytically conjugate to the corresponding
rigid rotation.

Finally, we remark that in Yoccoz [2002, Section 2.5], Yoccoz introduced a
set H � .0; 1/ of irrational numbers, that contains all Diophantine numbers and
is contained in the Brjuno class, which is sufficient and, in some sense, necessary
to solve the global linearization problem in the real-analytic case. More precisely,
Yoccoz [ibid., Th. 1.4] proved the following result.

Theorem 4.14 (Yoccoz). Any real-analytic diffeomorphism with irrational rota-
tion number in H is real analytically conjugate to the corresponding rigid rota-
tion. Moreover, given � … H , there exists a real-analytic diffeomorphism with
rotation number � which is not analytically linearizable.

We refer the reader to the survey by Eliasson, Fayad, and Krikorian [2018] for
much more on Yoccoz’s seminal contributions to the theory of circle diffeomor-
phisms (see also Yoccoz [1984a, 1995a,b, 2002]).

Exercises

Exercise 4.1. If f W S1 ! S1 and h W S1 ! S1 are both C 1 diffeomorphisms,
prove that H1.h ı f ı h�1/ <1 if and only if H1.f / <1.
Exercise 4.2. Let ' W S� ! C be holomorphic and periodic of period one.

(i) Show that there exists a unique holomorphic function � W Ar ! C, where
r D e2�� , such that '.z/ D �.exp.z// for all z.

(ii) Deduce from (i) and the Laurent series for � that ' has a Fourier series
expansion

'.z/ D
X

n2Z

b'.n/e2�inz

which is absolutely convergent in the strip S� , and that its Fourier coeffi-
cients are precisely the Laurent coefficients of �.
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Exercise 4.3. Prove Lemma 4.1. [Hint: Note that for all n;m 2 Z we have
je2�i.n˛�m/ � 1j D 2j sin .�.n˛ �m//.]
Exercise 4.4. Prove Lemma 4.2. [Hint: Apply Cauchy’s theorem to the holomor-
phic function gn.z/ D �.z/e�2�inz in a suitable rectangle.]
Exercise 4.5. Let F W R ! R be a homeomorphism given by F.x/ D x C ˛ C
'.x/, and suppose that F has translation number ˛. Show that there exists x0 2 R

such that '.x0/ D 0.
Exercise 4.6. Let f W S1 ! S1 be a homeomorphism with irrational rotation
number. Show that for all ˛ > 0 small we have �.R˛ ı f / > �.f /.
Exercise 4.7. Let F W C ! C be an entire holomorphic map. Show that, if there
exists n ⩾ 1 such that F n D Id, then F is complex affine, i.e., it has the form
F.z/ D az C b.
Exercise 4.8. Prove Lemma 4.9.
Exercise 4.9. Recall from Dirichlet’s Lemma 1.1 that for any irrational number
� 2 .0; 1/ there exist infinitely many rational numbers p=q such that

ˇ̌
ˇ̌� � p

q

ˇ̌
ˇ̌ < 1

q2
: (4.21)

Conclude from (4.21) that there are no Diophantine numbers of order ı < 0.

Exercise 4.10. Show that an irrational number � is Diophantine of order ı if, and
only if, there exists a constant M > 0 such that qnC1 ⩽ M q1Cı

n for all n 2 N

(Hint: From (1.16) in Theorem 1.2 we have the estimates

1

2 qnC1
< jqn � � pnj <

1

qnC1
:

In particular, jqn ��pnj q1Cı
n < q1Cı

n =qnC1. If � is Diophantine of order ı, then
jqn � � pnj q1Cı

n ⩾ C and we are done taking M D 1=C . On the other hand,
consider q 2 Z with qn < q < qnC1. As also showed in Theorem 1.2 (see (1.17)),
jq��pj > jqn ��pnj for all p 2 Z. Since ı ⩾ 0, we have q1Cı > q1Cı

n and then
jq��pj q1Cı > jqn ��pnj q1Cı

n > q1Cı
n =2 qnC1. By assumption, this last ratio

is bounded from below by the positive constant 1=2M , and then � is Diophantine
of order ı).
Exercise 4.11. Conclude from the previous exercise that an irrational number � is
Diophantine of order 0 if, and only if, � is of bounded type: supfan.�/g is finite
(Hint: From the identity qnC1 D an qn C qn�1 we know that an D

�
qnC1=qn

˘
).
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Exercise 4.12. Show that any Diophantine number satisfies the Brjuno condition
given in Definition 4.4 (Hint: Use Exercise 4.10 and the fact that the sequence
fqng grows at least exponentially fast as n goes to infinity).

Exercise 4.13. Fix some constant � 2 .0; 1/ and consider an irrational number
� D Œa0; a1; : : : � such that

ea
�
n ⩽ anC1 ⩽ ean

for all n 2 N. Show that � is a Liouville number that satisfies the Brjuno condition
(in other words, the inclusion given by Exercise 4.12 is a proper inclusion).
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5 Cross-ratios and
Distortion Tools

This chapter is to be regarded as an intermezzo. We want to move on to the study
of homeomorphisms of the circle having one or more critical points.

The distortion techniques we used in our study of diffeomorphisms (bounded
variation, boundedness of nonlinearity, the naive distortion lemma) are not imme-
diately applicable to the study of maps having critical points. For instance, the
nonlinearity of a map clearly explodes at a critical point.

Amajor breakthrough in one-dimensional dynamics achieved in the early eight-
ies was the discovery that one could oftentimes understand the topology and/or
the geometry of a one-dimensional map through a careful analysis of the way such
map distorts cross-ratios. Several tools were introduced to control the distortion
of cross-ratios. In the present chapter we will introduce some of these tools, which
will then be used extensively in the next chapters.

5.1 Cross-ratios
There are several types of cross-ratios used in one-dimensional dynamics. We
describe here two of the most ubiquitous.

Let us denote by N either the unit circle S1 or the real line R. Given two
intervals M � T � N with M compactly contained in the interior of T , let
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us denote by L and R the two connected components of T nM . We define the
a-cross-ratio and the b cross-ratio of the pair .M; T /, respectively, as follows:

a.M; T / D jM jjT jjLjjRj I b.M; T / D jLjjRj
jL [M jjM [Rj :

One easily checks that b.M; T /�1 D 1Ca.M; T /. Both cross-ratios are preserved
by Möbius transformations; the latter is weakly contracted by maps with negative
Schwarzian derivative (see below), whereas the former is weakly expanded (see
Exercise 5.4)

Unlike, say, de Faria and de Melo [1999], where the a-cross-ratio was used
throughout, in the present text it will often be more convenient to use the b-cross-
ratio. The latter has the advantage that its logarithm is given by the Poincaré length
ofM inside T . More precisely,

log b.M; T / D �
Z

M

�T .x/ dx ;

where �T .x/ is the Poincaré density of T D Œ˛; ˇ�, given by

�T .x/ D
ˇ � ˛

.x � ˛/.ˇ � x/ :

From now on, since the b-cross-ratio will be the cross-ratio most used in this
book, we will simplify the notation a bit and write ŒM; T � instead of b.M; T /.

We end this section with the following useful observation. Suppose M D
.b; c/ and T D .a; d/ are such that M � T , and let � be the Möbius transforma-
tion determined by �.a/ D 0, �.c/ D 1 and �.d/ D1. Then

ŒM; T � D �.b/ D
�
d � c
c � a

��
b � a
d � b

�
:

5.2 The Schwarzian
The Schwarzian derivative is a somewhat mysterious object discovered at the end
of the nineteenth century by H. A. Schwarz, in the context of complex-analytic
function theory. Its use in one-dimensional dynamics was initiated by D. Singer
[1978].
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5.2.1 Definition
In Chapter 3 (see Definition 3.1) we introduced the concept of nonlinearity of a
C 2 one-dimensional map f , namely N f D D logDf D D2f=Df . When f
is C 3, we define its Schwarzian derivative to be

Sf D D.N f / � 1
2

�
N f

�2
:

A simple computation yields the alternative formula

Sf D D3f

Df
� 3
2

�
D2f

Df

�2
:

Just as logDf and the nonlinearity, the Schwarzian derivative is a dynamical
co-cycle, i.e., it satisfies a chain rule: if f; g are C 3 maps for which f ı g makes
sense, then

S.f ı g/ D Sg C Sf ı g ŒDg�2 : (5.1)

The chain rule (5.1) indicates that Sf behaves as a quadratic differential under
smooth changes of coordinates; indeed the expression g�.Sf / D Sf ı g ŒDg�2
appearing in the right-hand side of (5.1) is the pull-back of Sf by g as a quadratic
differential.

From (5.1) we easily deduce a chain rule for iterates, namely,

Sf n D
n�1X

jD0
Sf ı f j

h
Df j

i2
:

Now, since the Schwarzian derivative is a differential operator, it is important
to identify its kernel.

Proposition 5.1. The kernel of the Schwarzian derivative is the group of Möbius
transformations. In addition, if � is a Möbius transformation and f is a C 3 map,
then S.� ı f / D Sf .

Proof. The fact that the Schwarzian derivative vanishes at Möbius transformations
is a straightforward computation. On the other hand, given an increasing C 3 dif-
feomorphism �, consider the C 2 map g D .D�/�1=2. An easy computation
shows that S� D �2D2g=g. Hence � has zero Schwarzian derivative if and only
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ifD2g vanishes identically. In other words, g must be affine, say g.x/ D axC b.
But thenD�.x/ D .ax C b/�2, and integrating we get

�.x/ D � 1
a

1

ax C b C c ;

where c is a constant. This shows that � is a fractional linear (i.e., Möbius) transfor-
mation, and the first assertion is proved. To prove the second assertion, it suffices
to apply the chain rule for the Schwarzian, namely

S.� ı f / D Sf C S� ı f ŒDf �2 :

If � is Möbius, then S� � 0, and therefore S.� ı f / D Sf as asserted.

5.2.2 Koebe’s nonlinearity principle

As we will see shortly, when the Schwarzian derivative of a C 3 one-dimensional
map � has a definite sign, then � has a monotonic behaviour with respect to its
action on cross-ratios, and one can control its distortion in certain places. The first
result in this direction is known as Koebe’s nonlinearity principle. It states that if
the Schwarzian derivative of � is non-negative, then the nonlinearity of � on any
interval sitting in the domain of � with definite space on both sides is bounded by
a constant that depends only on said space.

Let us be more precise. First, let us define what we mean by space. Given two
intervalsM;T in the domain of �, withM compactly contained in the interior of
T , let L;R � T be the connected components of T nM . The space ofM inside
T is defined to be the number

� D min
� jLj
jM j ;

jRj
jM j

�
:

Now we can state Koebe’s nonlinearity principle as follows:

Proposition 5.2 (Koebe’s nonlinearity Principle). Let � W T ! �.T / be a C 3-
diffeomorphism. If S�.x/ ⩾ 0 for all x 2 T , then jN �.x/j ⩽ 2=� , where � is
the space ofM inside T .

Here, we will prove the following generalization of this principle, which first
appeared in de Faria and de Melo [1999, Lem. A.3].
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Proposition 5.3. Given constants B > 0 and � > 0, there exists K�;B > 0

such that the following holds. If � is a C 3-diffeomorphism mapping an interval
I � Œ��; 1 C �� into the reals, and if S�.t/ ⩾ �B for all t 2 I , then for all
t 2 Œ0; 1� we have ˇ̌

ˇ̌�
00.t/
�0.t/

ˇ̌
ˇ̌ ⩽ K�;B : (5.2)

Proof. Writing y D �00=�0, so that S� D y0 � 1
2
y2, we have the differential

inequality

y0 ⩾
1

2
y2 � B :

Let 0 ⩽ t0 ⩽ 1 be a point where jy.t/j attains its maximum in Œ0; 1� and suppose
that y0 D y.t0/ is such that jy0j >

p
2B D ˇ. If z.t/ is the solution of the

differential equation
z0 D 1

2
z2 � B

with initial condition z.t0/ D y0, then by a well-known comparison theorem1 we
must have y.t/ ⩾ z.t/ for all t ⩾ t0 and y.t/ ⩽ z.t/ for all t ⩽ t0. Now, if
y0 > ˇ then integration of the ODE yields the explicit formula

z.t/ D ˇ .y0 C ˇ/C .y0 � ˇ/e
ˇ.t�t0/

.y0 C ˇ/ � .y0 � ˇ/eˇ.t�t0/
:

Since this solution explodes at time

t1 D t0 C
1

ˇ
log

�
y0 C ˇ
y0 � ˇ

�
;

so does y.t/. Hence t1 … I , i.e., t1 � t0 > � , which gives us

�00.t0/
�0.t0/

D y0 < ˇ
eˇ� C 1
eˇ� � 1

:

If instead y0 < �ˇ, then we get

z.t/ D ˇ .ˇ C y0/ � .ˇ � y0/e
ˇ.t�t0/

.ˇ C y0/C .ˇ � y0/eˇ.t�t0/
;

1Look up Gronwall’s inequality in any good book on differential equations.
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and arguing as before for t ⩽ t0 gives us

�00.t0/
�0.t0/

D y0 > �ˇ
eˇ� C 1
eˇ� � 1

:

Therefore the lemma is proved if we take

K�;B D ˇ
eˇ� C 1
eˇ� � 1

:

Proof of Proposition 5.2. If S� ⩾ 0, then of course S� ⩾ �B for every B > 0.
Applying Proposition 5.3, we get the bound in (5.2) for each B > 0. But now it
suffices to note that K�;B ! 2=� as B ! 0. This finishes the proof. We have
recovered the classical Koebe principle.

5.2.3 The minimum principle
Another important consequence of assuming that the Schwarzian of a given map
has a definite sign is the following result, known as the Minimum Principle (cf.
de Melo and van Strien [1993, Section II.6, Lemma 6.1]).

Lemma 5.1 (Minimum Principle). Let � W T ! N be a C 3 diffeomorphism onto
its image, where T D Œa; b� � N is a closed interval, and suppose � has negative
Schwarzian at all points of T . Then, for any given x in the interior of T , we have

jD�.x/j > min fjD�.a/j ; jD�.b/jg : (5.3)

In other words, x 7! jD�.x/j does not have a local minimum inside T .

Proof. Note that, since D� never vanishes, the function '.x/ D jD�.x/j is in
fact smooth. Suppose this function has a point of local minimum x0 lying in the
interior of T . Then we must haveD2�.x0/ D 0, and this tells us that

0 > S�.x0/ D
D3�.x0/

Df .x0/

Hence D�.x0/ and D3�.x0/ have opposite signs, and so there are two possibili-
ties:
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(i) If D�.x0/ > 0, then D3�.x0/ < 0 and therefore x0 is a point of local
maximum for x 7! D�.x/; but since in this case we have '.x/ D D�.x/

for all x, it follows that x0 is a point of local maximum for �.

(ii) If D�.x0/ < 0, then D3�.x0/ > 0 and therefore x0 is a point of local
minimum for x 7! D�.x/; but since in this case '.x/ D �D�.x/ for all
x, it follows that x0 is a point of local maximum for '.

Therefore '.x/ D jD�.x/j has no local minimum inside T , and this in particular
implies (5.3).

5.3 Distortion and cross-ratio distortion

5.3.1 Koebe’s distortion principle
Let f W N ! N be a smooth map, and suppose we have an interval T � N whose
iterates up to a certain time k stay away from the critical points of f . The Koebe
distortion principle states that the distortion of f k restricted to a slightly smaller
interval M � T is bounded independently of k, where the bound depends solely
on f , the amount of space thatM has inside T , and the total sum of the lengths of
the images of T up to time k. This principle is one of the most important tools in
one-dimensional dynamics, and it will be used quite a few times in the chapters to
come. To state it in a precise way, let us agree to say that an interval T contains a
� -scaled neighborhood of M if the space of M inside T is at least � . Here is the
formal statement.

Lemma 5.2 (Koebe distortion principle). For each `; � > 0 and each map f W
N ! N there exists a constant K D K.`; �; f / > 1 with the following property.
If T � N is an interval such that f kjT is a diffeomorphism onto its image and if
it satisfies the summability condition

k�1X

jD0
jf j .T /j ⩽ ` ;

then for each intervalM � T for which f k.T / contains a � -scaled neighborhood
of f k.M/ one has

1

K
⩽
jDf k.x/j
jDf k.y/j

⩽ K

for all x; y 2M .
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The proof of this lemma can be found in de Melo and van Strien [1993, p. 295].

5.3.2 Distortion and the Schwarzian
The concept of cross-ratio distortion we are about to introduce has become funda-
mental in one-dimensional dynamics.

Let f W N ! N be a continuous map, and let U � N be an open set such
that f jU is a homeomorphism onto its image. IfM � T � U are intervals, with
M compactly contained in T (written M ⋐ T ), the cross-ratio distortion of the
map f on the pair of intervals .M; T / is defined to be the ratio

CrD.f IM;T / D Œf .M/; f .T /�

ŒM; T �
:

If f jT is the restriction of a projective (Möbius) transformation, then one can
easily see that CrD.f IM;T / D 1.

Let us examine a few important properties of cross-ratio distortion. The first
is that it satisfies a chain rule.

Lemma 5.3 (Chain Rule). Let f W N ! N and U � N be as before. Given two
intervalsM ⋐ T � U , and given n 2 N, we have

CrD.f nIM;T / D
n�1Y

iD0
CrD

�
f If i .M/; f i .T /

�
:

Proof. The proof is by direct computation using a simple telescoping trick – the
details are left as an exercise.

Also, when f jT is a diffeomorphism onto its image and logDf jT has bounded
variation in T , then an easy calculation using the mean value theorem shows that
CrD.f IM;T / ⩽ e2V , where V D Var.logDf jT /.

Now, if f jU is a diffeomorphism onto its image, we define ıf W U � U ! R

by

ıf .x; y/ D

8
ˆ̂<
ˆ̂:

log
f .x/ � f .y/

x � y ; if x ¤ y

logDf.x/ ; if x D y

If f is C 3 then ıf is C 2, and the following facts are straightforward (see also
Exercise 5.5).
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(i) For allM � T � U ,

logCrD.f IM;T / D
ZZ

M�T

@2ıf

@x@y
dxdy : (5.4)

(ii) For all x 2 U we have

lim
y!x

@2ıf

@x@y
.x; y/ D 1

6
Sf .x/ ;

where Sf is the Schwarzian derivative of f .

Remark 5.1. The mixed partial derivative appearing in (5.4) is, up to a multi-
plicative constant, what one calls the bi-Schwarzian of f . More precisely, the
bi-Schwarzian Bf is defined as

Bf .x; y/ D 6
@2ıf

@x@y
.x; y/ :

Clearly, Bf .x; y/ ! Sf .x/ as y ! x, hence the name. The bi-Schwarzian is a
cocycle, in the sense that it satisfies a chain rule: if f; g are C 3 maps for which
f ı g makes sense, then Bf ıg.x; y/ D g0.x/g0.y/Bf .g.x/; g.y//CBg.x; y/.
This is entirely consistent with the chain rule for the Schwarzian, to wit,

S.f ı g/ D Sf ı g � ŒDg�2 C Sg :

Unlike the Schwarzian, which is used extensively, the bi-Schwarzian will not be
used in the present book.

The cross-ratio is preserved by maps with zero Schwarzian derivative (since
these are Moebius transformations, as we have seen in Proposition 5.1). As it turns
out, it is weakly contracted by maps with negative Schwarzian derivative. This is
the content of our next lemma.

Lemma 5.4. If f is a C 3 diffeomorphism with Sf < 0, then for any two inter-
vals M � T contained in the domain of f we have CrD.f IM;T / < 1, that is,�
f .M/; f .T /

�
< ŒM; T �.

Proof. The proof is the one given in de Melo and van Strien [ibid., Section IV.1].
LetM D Œb; c� � T D Œa; d �. Let us callL andR the two connected components
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of T nM . Let � be the (unique) Möbius transformation such that �.f .a// D a;

�.f .b// D b and �.f .d// D d . Note that � ı f is a C 3 diffeomorphism with
negative Schwarzian derivative, since S.� ı f / D Sf < 0 by Proposition 5.1.

We claim that �.f .c// > c. Indeed, if this is not true, then by the Mean Value
Theorem there exist z0 2 Œa; b�, z1 2 Œb; c� and z2 2 Œc; d � such that

D.� ı f /.z0/ D
�.f .a// � �.f .b//

a � b D 1;

D.� ı f /.z1/ D
�.f .c// � �.f .b//

c � b ⩽ 1 and

D.� ı f /.z2/ D
�.f .d// � �.f .c//

d � c ⩾ 1:

If z1 2 .z0; z2/, the previous inequalities contradict the Minimum Principle for
diffeomorphisms with negative Schwarzian derivative.2 Therefore, �.f .c// > c

as claimed. With this at hand we get:

CrD.� ı f IM;T / D
�
�
�
f .M/

�
; �
�
f .T /

��

ŒM; T �
D
ˇ̌
M [ L

ˇ̌ ˇ̌
�
�
f .c/

�
� d

ˇ̌
ˇ̌
R
ˇ̌ ˇ̌
a � �

�
f .c/

�ˇ̌ < 1 :

Since � is a Möbius transformation, CrD.� ı f IM;T / D CrD.f IM;T / and
the lemma is proved.

5.3.3 Behavior near critical points

The circle maps we are interested in from now onwards possess critical points –
more specifically, non-flat critical points. Here is what we mean by non-flat.

Definition 5.1. We say that a critical point c of a C r one-dimensional map f is
non-flat of degree d > 1 if there exists a neighborhoodW of the critical point such
that f .x/ D f .c/C �.x/

ˇ̌
�.x/

ˇ̌d�1 for all x 2 W , where � W W ! �.W / is a
C r diffeomorphism such that �.c/ D 0. The number d is also called the criticality,
the type or the order of c.

2In the special case z1 D z0, we obtain z1 D z0 D b, and then D
�
� ı f

�
.b/ D 1 and

�.f .c// D c. This implies thatD
�
� ı f

�
.c/ < 1 (otherwise, the Minimum Principle would imply

thatD
�
� ıf

�
.x/ > 1 for all x 2 .b; c/, which is impossible since � ıf fixes both b and c). Again,

this contradicts the Minimum Principle since c 2 .b; z2/. The remaining case z1 D z2 is analogous.
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Example 1. Every critical point of a real-analytic map is non-flat, and its criticality
must be a positive integer.

The following proposition clarifies the geometric behavior of a map near a non-
flat critical point. It shows, among other things, that the Schwarzian derivative is
always negative around such a critical point.

Proposition 5.4. Given a C 3 map f with a non-flat critical point c of criticality
d > 1, there exists a neighborhood U � W of c such that

(i) f has negative Schwarzian derivative on U n fcg. More precisely, there
exists K D K.f / > 0 such that for all x 2 U n fcg we have

Sf .x/ < � K

.x � c/2 :

(ii) There exist constants 0 < ˛ < ˇ such that for all x 2 U

˛jx � cjd�1 < Df .x/ < ˇjx � cjd�1:

Moreover, ˛ and ˇ can be chosen so that ˇ < .3=2/˛.

(iii) Given a non-empty interval J � U and x 2 J we have

Df.x/ ⩽ 3d
jf .J /j
jJ j :

(iv) Given two non-empty intervalsM � T � U we have

CrD.f IM;T / ⩽ 9d2 :

Proof. From Definition 5.1, there exists a neighborhood of the critical point c such
that f .x/ D g

�
�.x/

�
C f .c/, where g is the map given by

g.x/ D

8
<
:
xd if x > 0

�.�x/d if x < 0 ;

and � is a C 3 diffeomorphism with �.c/ D 0. A simple computation shows that
for all x ¤ 0 we have

Sg.x/ D �.d
2 � 1/
2x2

: (5.5)

We proceed to the proof of all four assertions in the statement of our proposition.
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(i) The chain rule for the Schwarzian derivative givesSf D Sg.�/.D�/2CS�.
From (5.5), we get:

Sg.�.x//.D�.x//2 D �1
2
.d � 1/.d C 1/

�
D�.x/

�.x/

�2
⩽ � A

.�.x//2
;

where A D 1

2
.d2 � 1/minx

ˇ̌
D�.x/

ˇ̌
> 0. In particular:

Sf .x/ <
�AC S�.x/

�
�.x/

�2
�
�.x/

�2 :

On the other hand, since � is a diffeomorphism, jS�.x/j < M for some
M > 0. Then we can choose ı > 0 such that for all x 2 .c � ı; c C ı/ we
have j�.x/j <

q
A
M

, and this implies that Sf < 0 in .c � ı; c C ı/ n fcg.
Finally, since � is bi-Lipschitz we have j�.x/j � jx� cj and this proves (i).

(ii) This follows at once from Taylor’s formula, since:

lim
x!c

�
Df.x/

jx � cjd�1

�
D d.D�.c//d > 0 :

(iii) With (ii) at hand the proof of (iii) goes as follows. Let J D .a; b/ � U . By
symmetry it is enough to consider the following two cases:

(a) We have c ⩽ a < b. In this case, given any x 2 .a; b/, we see that

Df.x/jJ j
jf .J /j ⩽

ˇ.x � c/d�1.b � a/
˛
R b
a .t � c/d�1dt

⩽

�
ˇd

˛

�
.b � c/d�1.b � c � aC c/
.b � c/d � .a � c/d

D
�
ˇd

˛

� 
1C .a � c/d � .b � c/d�1.a � c/

.b � c/d � .a � c/d

!

⩽
ˇd

˛
< 3d=2 :
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(b) We have a < c < b. Without loss of generality, we may assume that
ja � cj < jc � bj. If x 2 J , then

Df.x/jJ j
jf .J /j ⩽

ˇjx � cjd�1jb � aj
R b
c Df.t/ dt

⩽
2ˇjb � cjd

R b
c ˛.t � c/d�1dt

D 2ˇd

˛
< 3d :

(iv) Finally, let us call L;R the two connected components of T nM . By the
Mean Value Theorem there exist z0 2 L and z1 2 R such that

CrD.f IM;T / D Df.z0/Df .z1/ jL [M j jM [Rjˇ̌
f .L [M/

ˇ̌ ˇ̌
f .M [R/

ˇ̌ :

Since z0 2 L [M and z1 2 R [M we deduce from (iii) that

CrD.f IM;T / ⩽ .3d/2:

Remark 5.2. Using property (ii) above, it is not difficult to see that, when f is
injective, there exists a constant  D .f / > 0 such that, for any two points in
the domain of f with jx � cj ⩽ jy � cj, we have

jf .x/ � f .c/j
jf .y/ � f .c/j ⩽ 

� jx � cj
jy � cj

�d
:

This remark will be used in the proof of Proposition 6.1.

5.4 The Cross-ratio Inequality
One of the main reasons why cross-ratio distortion is a useful tool in one-dimensio-
nal dynamics is the Cross-ratio Inequality. Various essentially equivalent formu-
lations of this tool were given during the eighties. The reader will find extensive
material on this topic in de Melo and van Strien [1993, Ch. IV].

Our purpose in this section is to prove the following version of the Cross-
ratio Inequality which, apart from notational differences, is essentially the one in
Świątek [1988]. First, let us introduce a useful terminology. As before, we denote
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byN either the unit circle or the real line. Given a family of intervals F inN and
a positive integer m, we say that F has multiplicity of intersection at most m if
each x 2 S1 belongs to at most m elements of F .

Theorem 5.1 (Cross-ratio Inequality). If f W S1 ! S1 is a C 3 strictly monotone
smooth map all of whose critical points are non-flat, there exists a constantC > 1,
depending only on f , such that the following holds. If Mi ⋐ Ti � S1, where i
runs through some finite set of indices I , are intervals on the circle such that the
family fTi W i 2 I g has multiplicity of intersection at most m, then

Y

i2I

CrD.f IMi ; Ti / ⩽ Cm : (5.6)

This theorem was first obtained by Yoccoz in a slightly different form involv-
ing a certain degenerate cross-ratio, see Yoccoz [1984b, Section 4]. The specific
version stated above can be found in Świątek [1988, Section 2]. We provide only
a sketch of the proof, and the reader is invited to fill in the details as an exercise.

Proof of Theorem 5.1. Let U D
S
Wi , where the Wi ’s are as in Definition 5.1,

and let V be an open set with U [ V D S1 whose closure does not contain any
critical point of f . We assume without loss of generality that the maximum length
of the Ti ’s is smaller than the Lebesgue number of the covering fU ;V g. Write
the product on the left-hand side of (5.6) as P1 � P2, where

P1 D
Y

Ti �V

CrD.f IMi ; Ti / ; P2 D
Y

Ti �U

CrD.f IMi ; Ti / :

Then on the one hand we claim that P1 ⩽ e2mV , where V D var.logDf jV /.
Indeed:

logP1 D
X

Ti �V

logCrD.f IMi ; Ti / (5.7)

D
X

Ti �V

logDf.wi / � logDf.xi /C logDf.yi / � logDf.zi / ⩽ 2mV ;

where the points wi , xi , yi and zi belong to Ti and are given by the Mean Value
Theorem. On the other hand, the factors making up P2 are of two types: those
such that f jTi

is a diffeomorphism onto its image, and those such that Ti con-
tains some critical point of f . By Proposition 5.4, all factors of the first type have
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negative Schwarzian and therefore, by Lemma 5.4, satisfy CrD.f IMi ; Ti / < 1.
Factors of the second type are easily controlled by the non-flatness condition:
CrD.f IMi ; Ti / ⩽ 9d2, where d > 1 is the order of the critical point that belongs
to Ti (again, see Proposition 5.4). Since there are at mostmN such factors (where
N is the number of critical points of f ), the result follows. For more details, see
Świątek [ibid., Section 2].

When used in combination with the chain rule (Lemma 5.3), Theorem 5.1 is a
great tool for estimating the cross-ratio distortion of large iterates of multicritical
circle maps (to be defined in the next chapter).

5.5 A cancellation lemma

In this final section of Chapter 5 we state and prove a technical result called the
cancellation lemma (see Lemma 5.7 below), which is due to Świątek [1992]. We
will not provide specific applications of Lemma 5.7 in this book, rather we refer to
the original paper by Świątek (but see some remarks after the proof of Lemma 5.7).
Its proof is a nice illustration of the power of some of the tools we have presented
in this chapter, such as the Schwarzian derivative and cross-ratio distortion.

Let X D Diff3C
�
Œ0; 1�

�
be the group (under composition) of orientation-pre-

serving C 3 diffeomorphisms of Œ0; 1� fixing the boundary, and let Y D Diff3C
�
R
�

be the group (under composition) of orientation-preserving C 3 diffeomorphisms
of the real line. There is a natural group isomorphism between X and Y . In-
deed, consider first the real-analytic diffeomorphism  W R ! .0; 1/ given by
 .x/ D 1=.1C e�x/ , whose inverse  �1 W .0; 1/ ! R is given by  �1.y/ D
log

�
y=.1 � y/

�
, and then consider the isomorphism 	 W X ! Y given by

	.f / D  �1 ı f ı  .

R
	.f /����! R

 

??y
??y 

.0; 1/ ����!
f

.0; 1/

The isomorphism 	 is natural from the hyperbolic geometry viewpoint: given
x < y in .0; 1/ write .0; 1/ D L [M [ R, where M D .x; y/ and L and R are
the connected components of .0; 1/ nM , and define a distance dhyp between x
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and y by

dhyp.x; y/ D � log ŒM; T � D � log
� jLj
jL [M j

jRj
jM [Rj

�
:

In other words,

dhyp.x; y/ D � log
�

x

1 � x
1 � y
y

�
:

It is easy to see that  is an isometry3 between the Euclidean distance in the real
line and the hyperbolic distance in .0; 1/. By Lemma 5.4, elements in X with
non-negative Schwarzian derivative weakly expand the cross-ratio ŒM; T �, and
then they weakly contract the hyperbolic distance. This gives us the following
fact.

Lemma 5.5. Let f 2 X with Sf ⩾ 0 . Then 0 < D
�
	.f /

�
.x/ ⩽ 1 for all

x 2 R.

The isomorphism 	 identifies the family fT�g�2R � Y of translations of the
real line, T�.x/ D x C � for any x 2 R, with the family fM�g�2R � X of
Möbius transformations

M�.x/ D
x

.1 � e��/ x C e�� for x 2 .0; 1/.

Indeed, note that
�
M� ı  

�
.x/ D  .x C �/ for any x 2 R and any � 2 R. In

particular, fM�g�2R is abelian under composition, and M�1
ıM�2

D M�1C�2

for all �1; �2 2 R, as well asM�1
�
DM�� for all � 2 R.

Let us point out another nice property of 	 .

Lemma5.6. For any f; g 2X we have
f �g


C0.Œ0;1�/

⩽
	.f /�	.g/


C0.R/

.

Note that Lemma 5.6 follows at once from the fact that

D .x/ D 1

.1C ex/.1C e�x/
2 .0; 1=4� for all x 2 R .

The following cancellation lemma is due to Świątek [1992], and is the main
result of Section 5.5.

3Actually, the diffeomorphism  extends to a biholomorphism between the R-symmetric strip˚
z 2 C W ��=2 < Im z < �=2

	
and the R-symmetric open disc with diameter .0; 1/. In particular,

the distance dhyp defined above coincides with the standard Poincaré distance on .0; 1/.
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Lemma 5.7. Let f�ng � R and let f�ng � X be such that S�n ⩾ 0 for all
n 2 N. Then we have

M�n
ı �n ı � � � ıM�1

ı �1 � �n ı � � � ı �1

C0.Œ0;1�/

⩽ 2 max
1⩽j⩽n

ˇ̌
ˇ̌
ˇ̌
jX

iD1
�i

ˇ̌
ˇ̌
ˇ̌

for all n 2 N.

Our proof of Lemma 5.7 follows the original paper by Świątek [ibid., Section 3,
pages 91–93].

Proof of Lemma 5.7. By Lemma 5.6, it is enough to prove that

	.M�n
ı �n ı � � � ıM�1

ı �1/ � 	.�n ı � � � ı �1/

C0.R/

⩽ 2 max
1⩽j⩽n

ˇ̌
ˇ̌
ˇ̌
jX

iD1
�i

ˇ̌
ˇ̌
ˇ̌ :

For each t 2 Œ0; 1� consider �tn 2 Y defined by

�tn D Tt �n
ı 	.�n/ ı Tt �n�1

ı 	.�n�1/ ı � � � ı Tt �2
ı 	.�2/ ı Tt �1

ı 	.�1/ :

In other words, for any x 2 R we have

�t1.x/ D 	.�1/.x/C t �1 and �tnC1.x/ D 	.�nC1/
�
�tn.x/

�
C t �nC1 :

Note that
�0n D 	.�n ı �n�1 ı � � � ı �2 ı �1/

and also that

�1n D 	.M�n
ı �n ıM�n�1

ı �n�1 ı � � � ıM�2
ı �2 ıM�1

ı �1/ :

In particular, for all x 2 R and n 2 N we have
ˇ̌�
	.M�n

ı �n ı � � � ıM�1
ı �1/ � 	.�n ı � � � ı �1/

�
.x/
ˇ̌

D
ˇ̌�
�1n � �0n

�
.x/
ˇ̌
⩽ max

t2Œ0;1�

ˇ̌
ˇ̌@ �

t
n

@ t
.x/

ˇ̌
ˇ̌ :

To bound these derivatives, note that

@ �t1
@ t

.x/ D �1 and
@ �tnC1
@ t

.x/ D D	.�nC1/
�
�tn.x/

� @ �tn
@ t

.x/C �nC1 ;
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from which it follows that

@ �tnC1
@ t

.x/ D �nC1 C
nX

jD1
�j

nY

iDj
D	.�iC1/

�
�ti .x/

�

for all x 2 R, t 2 Œ0; 1� and n ⩾ 1. Now, for each x 2 R, t 2 Œ0; 1� and n 2 N,
define ˇ1; ˇ2; : : : ; ˇnC1 2 .0; 1� by setting ˇnC1 D 1 and

ˇj D
nY

iDj
D	.�iC1/

�
�ti .x/

�
; 8 1 ⩽ j ⩽ n :

With this notation we have

@ �tnC1
@ t

.x/ D
nC1X

jD1
�j ˇj :

Therefore, we need to prove that
ˇ̌
ˇ
Pn
jD1 �j ˇj

ˇ̌
ˇ is bounded by 2M , where

M D max

8
<
:

ˇ̌
ˇ̌
ˇ̌
jX

iD1
�i

ˇ̌
ˇ̌
ˇ̌ W 1 ⩽ j ⩽ n

9
=
; :

To do that, let us write

nX

jD1
�j ˇj D ˇn

nX

iD1
�i �

n�1X

jD1

2
4�ˇjC1 � ˇj

� jX

iD1
�i

3
5 :

Since ˇn 2 .0; 1�, we have jˇn
Pn
iD1 �i j D ˇn

ˇ̌Pn
iD1 �i

ˇ̌
⩽
ˇ̌Pn

iD1 �i
ˇ̌
⩽ M .

Moreover, since S�n ⩾ 0 for all n 2 N, we know from Lemma 5.5 that the
sequence fˇ1; ˇ2; : : : ; ˇn; ˇnC1g � .0; 1� is non-decreasing:

ˇj .x; t; n/ D D	.�jC1/
�
�tj .x/

�
ˇjC1.x; t; n/ ⩽ ˇjC1.x; t; n/ :
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Therefore,
ˇ̌
ˇ̌
ˇ̌
n�1X

jD1

2
4�ˇjC1 � ˇj

� jX

iD1
�i

3
5
ˇ̌
ˇ̌
ˇ̌ ⩽

n�1X

jD1

ˇ̌
ˇ̌
ˇ̌
�
ˇjC1 � ˇj

� jX

iD1
�i

ˇ̌
ˇ̌
ˇ̌

D
n�1X

jD1

�
ˇjC1 � ˇj

�
ˇ̌
ˇ̌
ˇ̌
jX

iD1
�i

ˇ̌
ˇ̌
ˇ̌

⩽M

n�1X

jD1

�
ˇjC1 � ˇj

�
DM .ˇn � ˇ1/ ⩽M:

Remark 5.3. The monotonicity of fˇng is crucial in the proof. Indeed, consider
�n D .�1/n=pn and ˇn D 1 C �n. Then fˇng ! 1 and

P
�n is finite, butP

�n ˇn is unbounded. This is the reason why the non-negative Schwarzian con-
dition is needed in Lemma 5.7.

LetA D C 0
�
Œ0; 1�

�
be the space of continuous functions from Œ0; 1� to the real

line, and recall that A is a Banach space when endowed with the sup norm. We
can consider a homeomorphism from X onto A, called the nonlinearity function
(see also Section 12.4), defined by

N f D D2f

Df
D D logDf :

We then define the weight !.f / of any given f 2X as

!.f / D
Z 1

0

N f D log
Df.1/

Df .0/
;

which is a homomorphism from X onto (the additive group) R, i.e.,

!.f1 ı f2 ı � � � ı fn/ D
nX

iD1
!.fi /

for ff1; f2; : : : ; fng �X . The weight of an element of X carries its signed total
distortion. The main point of the cancellation lemma (Lemma 5.7) is that it pro-
vides a bound in terms of the sum of the weights of the Möbius transformations
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involved (note that !.M�/ D �2 � for any � 2 R), thus allowing cancellations.
For instance, similar to what we did in the proof of the Cross-ratio Inequality
above, we may consider a long composition of backwards iterates of a certain
map f (under the same hypothesis of Theorem 5.1). Iterates around the critical
point (those related to the product P2) will have non-negative Schwarzian deriva-
tive, while iterates disjoint from the critical neighborhoods (related to the product
P1) might be close to Möbius transformations (identifying the same intervals, and
having the same weight). If the weights of these iterates almost cancel (even if the
sum of their absolute values is not small), the cancellation lemma says that we still
get an efficient approximation of the whole composition if we replace the Möbius
transformations involved just by affine maps (identifying the same intervals). This
is a rather technical but useful result, and we refer the reader to the original paper
by Świątek [1992] for the implementation of these ideas.

Exercises

Exercise 5.1. Let f be a C 3 map into the reals defined in a neighborhood of 0,
which we assume is a regular point for f .

(i) Prove that there exists a unique fractional linear transformation  such that

lim
x!0

 ı f .x/ � x
x3

exists and is finite.

(ii) Show that the limit in (i) is in fact equal to 1
6
Sf .0/.

(iii) For each h > 0, write Mh D Œh; 2h� and Th D Œ0; 3h�, and let Af .h/ be
given by

Af .h/ D
a.f .Mh/; f .Th//

a.Mh; Th/
:

Show that
Sf .0/ D � 3

2
lim
h!0

Af .h/ � h
h2

:

(iv) Find a similar formula to the one in (iii) in terms of distortion of the b-cross-
ratio rather than that of the a-cross-ratio.
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Exercise 5.2 (Constant negative Schwarzian). Given a positive constant ˛, con-
sider f˛ W R! R defined as

f˛.x/ D
tanh

�p
˛=2 x

�

tanh
�p

˛=2
� D 1

tanh
�p

˛=2
� e

p
2˛ x � 1

e
p
2˛ x C 1

:

Show that f˛ is a real-analytic diffeomorphism onto its image, fixing �1, 0 and 1,
and such that Sf˛ D �˛ on the whole real line.
Exercise 5.3. Let f W S1 ! S1 be a C 3 circle diffeomorphism with irrational
rotation number, and let �2 be its (unique) 2-automorphic measure (recall Sec-
tion 3.4.3). Show that the sequence

�
1

n

Z

S1

Sf n d�2

�

n2N

is constant, equal to
R

S1 Sf d�2 .
Exercise 5.4. Prove that cross-ratios are preserved by fractional linear (i.e., Möbius)
transformations.
Exercise 5.5. Let f be a C 3 diffeomorphism between intervals, and recall from
Section 5.3.2 that the bi-Schwarzian Bf has been defined as

Bf .x; y/ D 6
@2ıf

@x@y
.x; y/:

Show that Bf .x; y/! Sf .x/ as y ! x (Hint: A straightforward computation
gives

@2ıf

@x@y
.x; y/ D f 0.x/ f 0.y/

�
f .x/ � f .y/

�2 �
1

.x � y/2 :

Write f .y/ and f 0.y/ as Taylor expansions around x, and take limit).
Exercise 5.6. Prove the chain rule for the bi-Schwarzian.
Exercise 5.7. Let n ⩾ 1 and let f be a polynomial of degree n C 1 with real
coefficients. Suppose that all zeros ofDf are real, so thatDf.x/ D c

Qn
iD1.x �

˛i /, where c; ˛1; : : : ; ˛n 2 R.

(i) Show that

Sf .x/ D 2
X

1⩽i<j⩽n

1

.x � ˛i /.x � ˛j /
� 3
2

"
nX

iD1

1

x � ˛i

#2
:
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(ii) Deduce from (i) that Sf < 0.

Exercise 5.8. Consider the sequence ffngn⩾1 � X D Diff3C
�
Œ0; 1�

�
of Möbius

transformations given by

fn.x/ D
x

.1 � e1=n/ x C e1=n
:

(i) Note that ffng converges to the identity in X .

(ii) Show that the sequence
˚
N
nD1 fn

	
N⩾1

has no limit in X .



6 Topological
Classification
and the Real

Bounds

In this chapter we go beyond the theory of circle diffeomorphisms and begin the
study of topological and geometric properties of smooth circle homeomorphisms
having critical points. These dynamical systems are called multicritical circle
maps (see Definition 6.1 below), and will be the main object of study in the re-
mainder of this book.

After introducing some classical examples, we will prove that multicritical cir-
cle maps with irrational rotation number are topologically conjugate to a rotation
(Theorem 6.2). This theorem is due to J.-C. Yoccoz [1984b], and is an extension
of Denjoy’s Theorem from Chapter 3. The proof of this result, to be given in Sec-
tion 6.2, relies on the distortion tools presented in Chapter 5.

In Section 6.3 we state and prove one of the most fundamental results in this
book: the real a-priori bounds (Theorem 6.3), first proved in the eighties by Her-
man [1988] and Świątek [1988]. We would like to remark that the Cross-ratio
Inequality, namely Theorem 5.1, will play a major role in our proof of the real
bounds. Theorem 6.3 (see also Theorem 6.4) is a cornerstone in the geometrical
study of multicritical circle maps, and it will be invoked throughout the book.

We will close Chapter 6 with some of the first consequences of the real bounds,
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such as the C 1-bounds and the negative Schwarzian property (see Section 6.4 and
Section 6.5).

6.1 Definition and examples of multicritical circle maps
Let us start by defining the maps which will be the main object of study in the
present chapter and beyond. The reader should make sure to recall the notion of
non-flat critical point introduced in Chapter 5 (Definition 5.1).

Definition 6.1. A multicritical circle map is an orientation preserving C 3 circle
homeomorphism having N ⩾ 1 critical points, all of which are non-flat.

Being a homeomorphism, a multicritical circle map f has a well defined ro-
tation number � 2 .0; 1/. We will assume that � is irrational, in which case it
follows from Theorem 2.3 that there exists a unique f -invariant Borel probability
measure �.

Definition 6.2. We define the signature of f to be the .2N C 2/-tuple

.� IN I d0; d1; : : : ; dN�1I ı0; ı1; : : : ; ıN�1/;

where di is the criticality of the critical point ci for 0 ⩽ i ⩽ N � 1, and ıi D
�Œci ; ciC1/ (with the convention that cN D c0).

In this section we provide some interesting families of real-analytic critical
circle maps.

6.1.1 Blaschke products

Conforming with standard notation, we denote by bC D C [ f1g the Riemann
sphere. Consider the two-parameter family fa;! W bC ! bC of Blaschke products
in the Riemann sphere bC given by:

fa;!.z/ D e2�i! z2
� z � a
1 � az

�
for a ⩾ 3 and ! 2 Œ0; 1/. (6.1)

As it happens with any Blaschke product, every map in this family commutes
with the geometric involution around the unit circle ˚.z/ D 1= Nz (note that ˚ is
the identity in the unit circle), and therefore it leaves invariant the unit circle (in
fact, every rational map leaving invariant the unit circle is a Blaschke product).
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Moreover, its restriction to S1 is a real-analytic homeomorphism (the fact that
fa;! has topological degree one, when restricted to the unit circle, follows from
the Argument Principle since it has two zeros and one pole in the unit disk). When
a > 3, each fa;! has four critical points in the Riemann sphere, which are all
different and non-degenerate (quadratic), given by 0,1,

wa D
a2 C 3
4a

C
p
.aC 3/.aC 1/.a � 1/.a � 3/

4a
> 1 and (6.2)

1=wa D
a2 C 3
4a

�
p
.aC 3/.aC 1/.a � 1/.a � 3/

4a
2 .0; 1/ : (6.3)

In particular, the restriction of fa;! to the unit circle is a real-analytic diffeomor-
phism for any a > 3. When a! 3, both critical pointswa > 1 and 1=wa 2 .0; 1/
collapse to the point w D 1, as we can see from (6.2) and (6.3). In other words,
when a! 3, the family fa;! converges to the boundary of the space of circle dif-
feomorphisms: for any ! 2 Œ0; 1/, the restriction of f3;! to S1 is a real-analytic
multicritical circle map with a single critical point at 1, which is of cubic type, and
with critical value e2�i! .

Now let p; q 2 C with jpj > 1, jqj > 1, let ! 2 Œ0; 1/ and consider gp;q;! W
bC ! bC given by

gp;q;!.z/ D e2�i!z3
�
z � p
1 � pz

��
z � q
1 � qz

�
: (6.4)

Just as before, every map in this family leaves invariant the unit circle. The fol-
lowing fact was proved by Zakeri [1999, Section 7].

Theorem 6.1. For any given � 2 .0; 1/nQ and ı 2 .0; 1/ there exists a unique
gp;q;! of the form (6.4) such that gp;q;! jS1 is a bi-critical circle map with signa-
ture .� I 2I 3; 3I ı; 1 � ı/.

Remark 6.1. It would be interesting to extend Zakeri’s construction in order to ob-
tain representative families of Blaschke products that restrict to multicritical circle
maps withN ⩾ 3 critical points. Such construction should be useful to understand
rigidity and renormalization problems for multicritical circle maps with any given
number of critical points (to be discussed in the fourth and last part of this book).
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Figure 6.1: Topological behaviour of the Blaschke product f3;! (6.1) around the
unit circle, for ! approximately equal to 1=8. At the left of Figure 6.1 we see the
preimage under f3;! of the annulus around the unit circle drawn at the right (in
both planes, the unit circle is dashed). The complement of the annulusA[B in the
complex plane has two connected components,C andD. The preimage ofC is the
union C 0 [C 00, where the notation C 0 means that f3;! W C 0 ! C has topological
degree 1 (equivalently f3;! W C 00 ! C has topological degree 2). In the same
way, the preimage ofD is the unionD0[D00, the preimage of B is B 0

1[B 0
2[B 0

3
and the preimage of A is A000.

6.1.2 The Arnold family
Consider the two-parameter family Fa;b W C ! C of entire maps in the complex
plane given by

Fa;b.z/ D z C a �
b

2�
sin.2�z/ for a 2 Œ0; 1/ and b ⩾ 0.

Since each Fa;b commutes with unitary horizontal translation, it is the lift of
a holomorphic map of the punctured plane fa;b W C n f0g ! C n f0g under the
universal cover z 7! e2�iz . Since Fa;b preserves the real axis, fa;b preserves the
unit circle. This classical two-parameter family of real-analytic circle maps was
introduced by Arnold [1961], and it is known as the Arnold family.

For b D 0, the family fa;b W S1 ! S1 is just the family of rigid rotations
z 7! e2�iaz. As it is easy to check, for b 2 .0; 1/ the Arnold family is still
contained in the space of real-analytic circle diffeomorphisms. For b D 1, how-
ever, the Arnold family belongs to the boundary of the space of circle diffeomor-
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1

Figure 6.2: The rotation number, as it varies in the one parameter family fa;1 W
x 7! x C a � 1

2�
sin 2�x, produces a devil staircase.

phisms: each Fa;1 projects to an orientation preserving real-analytic circle home-
omorphism fa;1, which has a critical point (of cubic type) at the point z D 1. The
rotation number of fa;1 varies with the parameter a in a continuous, monotone,
non-decreasing way, and as we saw in Chapter 4 the resulting graph is a devil stair-
case; see Figure 6.2. Each interval

˚
a 2 Œ0; 1/ W �.fa;1/ D �

	
degenerates to a

point whenever � is irrational and moreover, the set
˚
a 2 Œ0; 1/ W �.fa;1/ 2 RnQ

	

has zero Lebesgue measure (Świątek [1988]). For integers 0 ⩽ p < q, the set˚
a 2 Œ0; 1/ W �.fa;1/ D p=q

	
is a non-degenerate closed interval (a phase-locking

interval, in the language of Chapter 4). Its interior is made up of parameters whose
corresponding critical circle maps have two periodic orbits (both of period q), one
attracting and one repelling, which collapse to a single parabolic orbit when the
parameter reaches the boundary of this interval, see Epstein, Keen, and Tresser
[1995].

Finally, we remark that for b > 1 the maps fa;b W S1 ! S1 are no longer in-
vertible (they possess two quadratic critical points). The dynamics of these maps
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is much richer than the case of homeomorphisms: the rotation number becomes
a rotation interval, and typical dynamics here have positive topological entropy,
infinitely many periodic orbits (coexisting with dense orbits) and, under certain
conditions on the combinatorics, they preserve an absolutely continuous proba-
bility measure (see Boyland [1986], Chenciner, Gambaudo, and Tresser [1984],
Crovisier, Guarino, and Palmisano [2019], and Misiurewicz [1986] and references
therein).

The examples presented in both Sections 6.1.1 and 6.1.2 show how multi-
critical circle maps arise as bifurcations from circle diffeomorphisms to endo-
morphisms, and in particular, from zero to positive topological entropy (com-
pare with infinitely renormalizable unimodal maps, de Melo and van Strien [1993,
Ch. VI]). This is one of the main reasons why multicritical circle maps attracted
the attention of physicists and mathematicians interested in the boundary of chaos,
see Dixon, Gherghetta, and Kenny [1996], Feigenbaum, Kadanoff, and Shenker
[1982], Kadanoff and Shenker [1982], Lanford [1987, 1988], MacKay [1983, 1993],
Ostlund et al. [1983], Rand [1987, 1988, 1992], and Shenker [1982].

6.2 Topological classification

Being a homeomorphism, a multicritical circle map f has a well defined rotation
number. Just as before, we will focus on the case when f has no periodic orbits.
In the early eighties, Yoccoz [1984b] proved that f has no wandering intervals.
More precisely, we have the following fundamental result.

Theorem 6.2 (Yoccoz). Let f be a multicritical circle map with irrational rotation
number �. Then f is topologically conjugate to the rigid rotation R�, i.e., there
exists a homeomorphism h W S1 ! S1 such that h ı f D R� ı h:

It is not possible to remove the non-flatness condition on the critical points
(recall Definitions 5.1 and 6.1). Indeed, Hall [1981] was able to construct C1

homeomorphisms of the circle with no periodic points and no dense orbits.
As we have already observed in Chapter 5, in the presence of critical points,

the standard distortion tools used for diffeomorphisms no longer apply, at least not
directly, since logDf is unbounded (see Figure 6.3). We will need instead the
tools introduced in Chapter 5, especially the Cross-ratio Inequality (Theorem 5.1).
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ci
S1

cj ck

logDf

Figure 6.3: The cocycle logDf is unbounded for a multicritical circle map f .

6.2.1 Dynamically symmetric intervals
The proof of Theorem 6.2 that we wish to present differs considerably from Yoc-
coz’s original proof in Yoccoz [1984b] (which uses a certain degenerate cross-ratio
instead of the one we use here).

The key to our proof is a comparability result for general dynamically symmet-
ric intervals, that is, any pair of intervals with an endpoint in common x 2 S1, the
other endpoints being f qn.x/ and f �qn.x/, for some n > 0. This comparability
result – Lemma 6.3 below – is also a crucial step in the proof of the real bounds
to be presented in Section 6.3.

In order to accomplish our goal, we need the following two lemmas. The first
lemma is proved by what is called the seven-point argument in Estevez and de
Faria [2018]. The reader may find the name a bit puzzling, since only five points
appear in the statement, but in fact seven points are used in the proof.

Lemma 6.1. There exists a constant C1 > 1 depending only on f satisfying the
following. For each n ⩾ 0 there exist z1; z2; z3; z4 and z5 points in S1 with
zjC1 D f qn.zj / such that

C�1
1 ⩽

jzi�1 � zi j
jziC1 � zi j

⩽ C1; for i D 2; 3; 4: (6.5)
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Proof. Let z 2 S1 be a point such that, for all x 2 S1,

jf qn.z/ � zj ⩽ jf qn.x/ � xj:

Then consider the seven points

z0 D f �4qn.z/ ; z1 D f �3qn.z/ ; z2 D f �2qn.z/ ; z3 D f �qn.z/ ;

z4 D z ; z5 D f qn.z/ ; z6 D f 2qn.z/ :

Note that, by our choice of z,

jz4 � z5j ⩽ jzi � ziC1j ; for all 0 ⩽ i ⩽ 5 : (6.6)

These seven points are cyclically ordered as given (either in clockwise or counter-
clockwise order in the circle), provided n is sufficiently large. Let J � S1 be the
closed interval with endpoints z0 and z6 that contains z D z4. For each 0 ⩽ i ⩽ 3,
let Ti D Œzi ; ziC3� � J and Mi D ŒziC1; ziC2� � Ti . Then the homeomorphism
f qn maps Ti onto TiC1 andMi ontoMiC1, for 0 ⩽ i ⩽ 2. Moreover, the collec-
tion of intervals fTi ; f .Ti / ; : : : ; f qn.Ti /g has intersection multiplicity equal to
3.

(i) Let us first prove (6.5) for i D 4. Applying the Cross-ratio Inequality to
f qn and the pair .M2; T2/, we have

CrD.f qn IM2; T2/ D
ŒM3; T3�

ŒM2; T2�
D jz3 � z4jjz5 � z6jjz2 � z4jjz4 � z6jjz2 � z3jjz4 � z5j

⩽ B ;

where B > 1 is a constant that depends only on f . But then, using (6.6),
we see that

jz3 � z4j
jz4 � z5j

⩽ B
jz4 � z6j
jz5 � z6j

D B
� jz4 � z5j
jz5 � z6j

C 1
�
⩽ 2B:

Therefore, defining B1 D 2B and again using (6.6), we get

B�1
1 ⩽

jz3 � z4j
jz4 � z5j

⩽ B1 : (6.7)

(ii) Let us now prove (6.5) for i D 3. Applying the Cross-ratio Inequality to
f qn and the pair .M1; T1/, we have
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CrD.f qn IM1; T1/ D
ŒM2; T2�

ŒM1; T1�
D jz2 � z3jjz4 � z5jjz1 � z3jjz3 � z5jjz1 � z2jjz3 � z4j

⩽ B ;

or equivalently, using (6.6) and the upper bound in (6.7),

jz2 � z3j
jz3 � z4j

⩽ B
jz3 � z5j
jz4 � z5j

⩽ B

� jz3 � z4j
jz4 � z5j

C 1
�
⩽ B.B1 C 1/:

On the other hand, using (6.6) once again,

jz3 � z4j
jz2 � z3j

⩽
jz3 � z4j
jz4 � z5j

⩽ B1:

Taking B2 D B.B1 C 1/ and putting the last two inequalities together, we
get

B�1
2 ⩽

jz2 � z3j
jz3 � z4j

⩽ B2 : (6.8)

(iii) Finally, let us prove (6.5) for i D 2. As before, applying the Cross-ratio
Inequality to f qn and the pair .M0; T0/, we have

CrD.f qn IM0; T0/ D
ŒM1; T1�

ŒM0; T0�
D jz1 � z2jjz3 � z4jjz0 � z2jjz2 � z3jjz0 � z1jjz2 � z3j

⩽ B ;

From this, using (6.6) and (6.8), we get on the one hand

jz1 � z2j
jz2 � z3j

⩽ B
jz2 � z4j
jz3 � z4j

⩽ B

� jz2 � z3j
jz3 � z4j

C 1
�
⩽ B.B2 C 1/: (6.9)

On the other hand, the inequalities (6.7) and (6.8) tell us that

jz2 � z3j
jz1 � z2j

⩽ B2
jz3 � z4j
jz1 � z2j

⩽ B2B1
jz4 � z5j
jz1 � z2j

⩽ B2B1 : (6.10)

Defining B3 D maxfB.B2 C 1/; B2B1g D B1B2, and using inequalities
(6.9) and (6.10), we obtain

B�1
3 ⩽

jz1 � z2j
jz2 � z3j

⩽ B3 :
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Summarizing, we have proved (6.5) with C1 D maxfB1; B2; B3g D B3 > 1, a
constant that indeed depends only on f .

Lemma 6.2. There exists a constant C2 > 1 depending only on f satisfying
the following. Let z1; z2; z3; z4 and z5 be the points given by Lemma 6.1. If
w0; w1; w2; w3 and w4 are points on the circle such that wjC1 D f qn.wj / and
such that w1 lies in the interval with endpoints z1 and z2 that does not contain z3,
then
jw1 � w2j
jw0 � w1j

⩽ C2 and C�1
2 ⩽

jwi�1 � wi j
jwi � wiC1j

⩽ C2 ; for i D 2; 3 : (6.11)

Proof. To prove the first inequality, we consider the interval T with endpoints w0
and w3 containing z1; w1; z2; w2; z3, and the subinterval M D Œw1; w2� � T .
Note that fT; f .T /; : : : ; f qn.T /g has intersection multiplicity equal to 3. Hence,
applying the Cross-ratio Inequality to f qn and the pair .M; T /, we get

Œf qn.M/; f qn.T /� ⩽ BŒM; T �

or equivalently

jw1 � w2jjw3 � w4j
jw1 � w3jjw2 � w4j

⩽ B
jw0 � w1jjw2 � w3j
jw0 � w2jjw1 � w3j

: (6.12)

Since the points w0; z1; w1; : : : ; z4; w4; z5 are cyclically ordered as given, we
have the inequalities jz1 � z2j ⩽ jw0 � w2j, jw2 � w3j ⩽ jz2 � z4j, and
jw2 � w4j ⩽ jz2 � z5j. Moreover, we have jz4 � z5j ⩽ jw3 � w4j, by our
choice of z D z4 in Lemma 6.1. These facts, when put back into (6.12), yield

jw1 � w2j
jw0 � w1j

⩽ B
jz2 � z4jjz2 � z5j
jz1 � z2jjz4 � z5j

⩽ B.C1 C C 21 /.1C C1 C C 21 / ;

where we have used the inequalities of Lemma 6.1.
To prove the upper bound in the last two inequalities in (6.11), we simply note

that jwi � wiC1j ⩾ jz4 � z5j and that jwi�1 � wi j ⩽ jzi�1 � ziC1j. Using the
inequalities (6.5), we deduce that

jwi�1 � wi j
jwi � wiC1j

⩽
jzi�1 � zi j
jz4 � z5j

C jzi � ziC1jjz4 � z5j
⩽ 2C 31

The lower bound for the same inequalities in (6.11) is proven in exactly the same
way (the value obtained is .2C 31 /

�1). Thus, (6.11) is established, provided we take
C2 D maxf2C 31 ; B.C1 C C 21 /.1C C1 C C 21 /g.
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We are now in a position to show that dynamically symmetric intervals are
always comparable. In the lemma below, we make use of the following simple
remark. Given � 2 S1, let Jn.�/ � S1 be the interval with endpoints f �qn.�/

and f qn.�/ that contains � . Then
SqnC1

iD0 f �i .Jn.�// D S1.

Lemma 6.3. There exists a constant C3 > 1 depending only on f such that, for
all n ⩾ 0 and all x 2 S1, we have

C�1
3 jx � f �qn.x/j ⩽ jf qn.x/ � xj ⩽ C3jx � f �qn.x/j: (6.13)

Proof. Note that it suffices to prove the second of the two inequalities in (6.13) for
all x (to get the first inequality from the second, just replace x by f �qn.x/).

Thus, let x 2 S1 and let 0 ⩽ i ⩽ qnC1 such that f i .x/ lies on the interval J
with endpoints z1 and z3 that contains z2, where z1; z2; : : : ; z5 are the points given
by Lemma 6.1. Such an i exists because of the simple remark preceding the present
lemma, applied to � D z2 (so that Jn.z2/ D J ). Then either f i .x/ 2 Œz1; z2� � J ,
or f i .x/ 2 .z2; z3� � J . We prove the lemma assuming the former case (the proof
in the latter case being similar).

Let us consider the points w0 D f i�qn.x/; w1 D f i .x/; w2 D f iCqn.x/

and w3 D f iC2qn.x/. Then we are in the situation of Lemma 6.2. Consider the
interval T with endpoints f �qn.x/ and f 2qn.x/ that contains x, and let M D
Œx; f qn.x/� � T . Note that

ŒM; T � D jx � f
�qn.x/jjf qn.x/ � f 2qn.x/j

jf qn.x/ � f �qn.x/jjx � f 2qn.x/j ⩽
jx � f �qn.x/j
jf qn.x/ � xj : (6.14)

From the inequalities (6.11) in Lemma 6.2, we also have

Œf i .M/; f i .T /� D jw0 � w1jjw2 � w3jjw0 � w2jjw1 � w3j
⩾

1

.1C C2/2
: (6.15)

Since fT; f .T /; : : : ; f i .T /g has intersection multiplicity at most equal to 3, the
Cross-ratio Inequality tells us that Œf i .M/; f i .T /� ⩽ BŒM; T �, where the con-
stant B is the same as in the previous lemmas. Combining this fact with (6.14)
and (6.15), we deduce that

jf qn.x/ � xj ⩽ B.1C C2/2jx � f �qn.x/j:

This proves (6.13), provided we take C3 D B.1C C2/2.
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6.2.2 Proof of Yoccoz’s theorem

Yoccoz’s Theorem 6.2 is now a straightforward consequence of Lemma 6.3.

Proof of Theorem 6.2. Suppose, by contradiction, that there exists a wandering in-
terval J D .a; b/, which we can assume to be maximal. For each n 2 N, let
�n � S1 be the open interval with endpoints f �qn.a/; f qn.a/ that contains a.
Since J is a wandering interval, its iterates are pairwise disjoint, so f ˙qn.a/ … J ,
and from this it follows that �n must contain J for all n 2 N. Hence the se-
quence fj�njgn2N is bounded away from zero. However, since J is maximal, the
point a is recurrent, and therefore there exists a subsequence ni ! 1 such that
f qni .a/! a as i !1. But then, by Lemma 6.3, we have also f �qni .a/! a

as i ! 1, and this tells us that j�ni
j ! 0 as i ! 1. This contradiction shows

that no such wandering interval J exists, and the proof is complete.

Remark 6.2. The argument above gives a new proof of Denjoy’s Theorem 3.4,
since the Cross-ratio Inequality (Theorem 5.1) certainly holds whenever f is a
C 1 diffeomorphism and logDf has bounded variation (note that the Schwarzian
derivative is not needed in this case: estimate (5.7) holds on the whole circle).

6.3 Real a priori bounds

Now that we understand the topology of a multicritical circle map f , we move to
the more delicate task of understanding its geometry.

Our ultimate goal is to understand the geometry of f at fine scales, in other
words the asymptotic scaling structure of f . A general, informal principle in one-
dimensional dynamics is that, in order to understand the geometry of a map at
fine scales, it suffices to understand the asymptotic geometry of the orbits of the
critical points of the map. The first step towards this goal is to get some bounds on
finite pieces of the orbit of a given critical point c 2 S1, say up to a closest return
time: c; f .c/; : : : ; f qn�1.c/. The bounds we look for are bounds on the ratios of
distances between (some of) these points, with constants that are independent of
n. In fact, we will see that these constants are even asymptotically independent of
f itself.

The above description is admittedly rather vague, since we have not explained
what we mean by expressions such as “geometry at fine scales” or “asymptotic
scaling structure”, but precise statements (and proofs) will be given below.
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6.3.1 Dynamical partitions
Let f be a homeomorphism without periodic points, i.e., with irrational rotation
number � 2 .0; 1/, and let fqngn⩾0 be the corresponding sequence of return times
(the denominators of the best rational approximations to �; see Chapter 1).

Let us fix some base point x 2 S1. For each non-negative integer n, let In.x/
be the closed interval with endpoints x and f qn.x/ that contains f qnC2.x/. Con-
sider the following collection of closed intervals:

Pn.x/ D
n
f i .In.x// W 0 ⩽ i ⩽ qnC1 � 1

o
[
n
f j .InC1.x// W 0 ⩽ j ⩽ qn � 1

o

The following fact is fundamental.
Lemma 6.4. For each n ⩾ 0, the collection Pn.x/ is a partition of the circle
modulo endpoints.
Proof. Since the families Pn.x/ are dynamically defined, we may assume by
Yoccoz’s Theorem 6.2 that f is the rigid rotation of the unit circle of angle �.
Let fpn=qng be the sequence of best rational approximations to �. As we saw in
Chapter 1, eq. (1.6), for all n 2 N we have

qnpnC1 � qnC1pn D .�1/n : (6.16)

The arithmetical properties of the continued fraction expansion of � described in
Chapter 1 imply that, for any point x 2 S1, the iterates ff qn.x/gn2N are the
closest returns of the orbit of x under the rigid rotation f , in the following sense:

d
�
x; f qn.x/

�
< d

�
x; f j .x/

�
for any j 2 f1; : : : ; qn � 1g

where d denote the standard distance in S1. In particular, all members of the
family ˚

In.x/; f .In.x//; : : : ; f
qnC1�1.In.x//

	

are pairwise disjoint, and all members in the family
˚
InC1.x/; f .InC1.x//; : : : ; f qn�1.InC1.x//

	

are pairwise disjoint too. Moreover, we claim that any two members in the union
of these families (which is precisely Pn) are disjoint. Indeed, suppose, by contra-
diction, that there exist i < qnC1 and j < qn such that f i .In/\ f j .InC1/ ¤ Ø.
Without loss of generality, we may assume that i < j D i C l , for some l < qn,
and that the qn-th iterate of every point z 2 S1 is on the right-hand side of z,
and consequently the qnC1-th iterate is on the left-hand side of z. We have three
possible cases to consider:
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• If f i .In.x// � f j .InC1.x//, then f j .InC1.x// intersects f i .InC1.x//
and this is impossible as explained above.

• If f j .InC1.x// � f i .In.x//, then the point f j .x/ D f iCl.x/ is closer
to f i .x/ than f iCqn.x/, which is impossible since l < qn.

• If both differences between f j .InC1.x// and f i .In.x// are non-empty and
connected, then we have two sub-cases:

either f j .x/ 2 f i .In.x// or f jCqnC1.x/ 2 f i .In.x// :
In the first case, f j .x/ D f iCl.x/ is closer to f i .x/ than f iCqn.x/,
and since l < qn this is a contradiction. In the second case, the point
f iCqn.x/ D f j .f qnCi�j .x// is closer to f j .x/ than f jCqnC1.x/, which
again is impossible since qn C i � j < qnC1.

Therefore, any two members of Pn.x/ are disjoint, as claimed.
Finally, since we are assuming that f is the rigid rotation of angle � in the

(normalized) unit circle, the lengths of the intervals In.x/ and InC1.x/ are jqn��
pnj D qnj��pn=qnj and qnC1jpnC1=qnC1��j respectively. Therefore, the total
length of the union of the members of Pn.x/ is equal to

ˇ̌
ˇ̌qnqnC1

�
pnC1
qnC1

� pn
qn

�ˇ̌
ˇ̌ D jqnpnC1 � pnqnC1j:

By (6.16), this absolute value is equal to 1, that is, the union of the members of
Pn is a compact set of full Lebesgue measure, and therefore it covers the whole
circle.

We call Pn.x/ the n-th dynamical partition associated with x. The intervals
of the form f i .In.x// are called long, whereas those of the form f j .InC1.x//
are called short. The initial partition P0.x/ is given by

P0.x/ D
n�
f i .x/; f iC1.x/

�
W i 2 f0; : : : ; a0 � 1g

o
[
˚�
f a0.x/; x

�	
;

where a0 is the integer part of 1=�.
Example 1. Figure 6.4 shows the dynamical partition P1.x/ associated to a circle
homeomorphism with rotation number �.f / D

p
2� 1 D Œ2; 2; 2; : : :�, for which

q1 D 2 and q2 D 5. Explicitly, writing I1 D I1.x/ and I2 D I2.x/, we have

P1.x/ D
˚
I1; f .I1/; f

2.I1/; f
3.I1/; f

4.I1/
	
[ fI2; f .I2/g :
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x

f .x/

f 2.x/

f 3.x/

f 4.x/

f 5.x/

f 6.x/

I2

f .I2/

I1

f .I1/

f 2.I1/

f 3.I1/

f 4.I1/

Figure 6.4: Dynamical partition P1.x/ of a circle homeomorphism with rotation
number �.f / D

p
2 � 1 D Œ2; 2; 2; : : :�.

Remark 6.3. We end this section with the simple but very important observation
that the dynamical partitions Pn.x/ of a given point x are nested. Indeed, it fol-
lows directly from the definition that every short atom of Pn.x/ becomes a long
atom of PnC1.x/, whereas each long atom of Pn.x/ is partitioned into a disjoint
union of short atoms of PnC1.x/.

6.3.2 The real bounds

We are now in a position to state and prove the following absolutely fundamen-
tal result in the theory of critical circle maps, known in the literature as the real
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a priori bounds theorem, or simply the real bounds theorem. This theorem, in
slightly different formulation, was first proved in the eighties by Herman [1988]
and Świątek [1988]. Our exposition here follows very closely the one in Estevez
and de Faria [2018, § 3]. See also Petersen [2000] for a different treatment.
Theorem 6.3 (Real A-priori Bounds). Let f be a multicritical circle map. There
exists a constant C > 1 depending only of f such that the following holds for
every critical point c of f . For all n ⩾ 0 and for each pair of adjacent atoms
I; J 2Pn.c/ we have

C�1jJ j ⩽ jI j ⩽ C jJ j:
Intuitively, this theorem is saying that, in every dynamical partition Pn.c/,

any two consecutive atoms are comparable. See Section 6.3.3 below, where the
notion of comparability will be made more precise.

Note that for a rigid rotation (and any point x 2 S1) we have jIn.x/j D
anC1 jInC1.x/j C jInC2.x/j. If anC1 is very large, then jIn.x/j is much larger
than jInC1.x/j. Thus, even for rigid rotations, real bounds do not hold in general.

The main tools to be used in the proof of Theorem 6.3 are the Cross-ratio In-
equality (Theorem 5.1) and Lemma 6.3. All constants appearing in the proof, in-
cluding constant C3 of Lemma 6.3, can be traced back to the constant appearing
in the Cross-ratio Inequality. We will denote these constants C4; C5; : : : in succes-
sion, keeping track of how each constant being introduced depends on the previous
ones.

Comparability of closest returns and beyond

The major step in the proof of Theorem 6.3 states that the atoms of the partition
Pn.c/ that are closest to the critical point c, including the closest return inter-
vals In.c/ and InC1.c/, are pairwise comparable. This is the contents of Proposi-
tion 6.1 below. In order to simplify the notation a bit, from now until the end of
this section we write In D In.c/ and InC1 D InC1.c/, as well as I in D f i .In/

for all i and I jnC1 D f j .InC1/ for all j .

Proposition 6.1. The six intervals in Figure 6.5 are pairwise comparable. More
precisely, there exists a constant C4 > 1 depending only on f such that, for all
n ⩾ 1 and for all I; J 2 fIn; InC1; I

qn
n ; I

qnC1
n ; I

qn

nC1; I
qnC1�qn
n g, we have

C�1
4 ⩽

jI j
jJ j ⩽ C4 : (6.17)
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I
qnC1�qn
n InC1 In I

qn
n

I
qnC1
n

I
qn

nC1

c0

Figure 6.5: The six intervals of Proposition 6.1.

Proof. We break up the proof into several steps, as follows.

(i) The intervals In and I qn
n are comparable. Indeed, these two intervals are dy-

namically symmetric with respect to their common endpoint f qn.c/. Hence,
by Lemma 6.3 we have

C�1
3 jInj ⩽ jI qn

n j ⩽ C3jInj (6.18)

(ii) The intervals I qnC1
n and I qnC1�qn

n are comparable. Indeed, these two in-
tervals are dynamically symmetric with respect to their common endpoint
f qnC1.c/. Hence, again by Lemma 6.3 we have

C�1
3 jI

qnC1
n j ⩽ jI qnC1�qn

n j ⩽ C3jI qnC1
n j: (6.19)

(iii) The intervals I qnC1�qn
n and In are comparable. Consider the interval I�qn

n ,
with endpoints c and f �qn.c/. Since such interval is dynamically symmet-
ric to the interval In, we have by the Lemma 6.3

C�1
3 jI�qn

n j ⩽ jInj ⩽ C3jI�qn
n j: (6.20)

From the right-hand side of (6.20), the inclusion I�qn
n � I qnC1�qn

n [I qnC1
n

and the left-hand side of (6.19), we deduce that

jInj ⩽ C3.C3 C 1/jI qnC1�qn
n j: (6.21)

Now, we have I qnC1
n � InC1[In, and also jInC1j ⩽ C3jI�qnC1

nC1 j, because
the intervals InC1 and and I�qnC1

nC1 are dynamically symmetric. Moreover,
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we have the inclusion I�qnC1

nC1 � In. Combining these facts with the right-
hand side of (6.19), we get

jI qnC1�qn
n j ⩽ C3.C3 C 1/jInj :

From this and (6.21), we arrive at

C�1
3 .C3 C 1/�1jInj ⩽ jI qnC1�qn

n j ⩽ C3.C3 C 1/jInj: (6.22)

(iv) The intervals In and InC1 are comparable. It is here that we use the power-
law at the critical point c in an essential way. First note that I�qnC1

nC1 � In
and that the intervals I�qnC1

nC1 and InC1 are dynamically symmetric with
respect to their common endpoint c. Hence, using Lemma 6.3 we get

jInC1j ⩽ C3jInj :

The real issue here, thus, is to prove an inequality in the opposite direc-
tion. Let us consider the interval T D InC1 [ In [ I qn

n and its image
f .T / under f , which contains the critical value f .c/; note that the fam-
ily fT; f .T /; : : : ; f qnC1�1.T /g has intersection multiplicity equal to 3. We
look at the cross-ratio distortion of f qnC1�1 on the pair .I 1n ; f .T //. By the
Cross-ratio Inequality, we have

CrD.f qnC1�1I I 1n ; f .T // D
ŒI
qnC1
n ; f qnC1.T /�

ŒI 1n ; f .T /�
⩽ B : (6.23)

But

ŒI
qnC1
n ; f qnC1.T /� D

jI qnC1

nC1 j
jI qnC1

nC1 j C jI
qnC1
n j

� jI qnC1Cqn
n j

jI qnC1
n j C jI qnC1Cqn

n j
: (6.24)

Since the intervals I qnC1Cqn
n and I qnC1

n are dynamically symmetric with
respect to their common endpoint, we see from Lemma 6.3 that the sec-
ond fraction on the right-hand side of (6.24) is bounded from below by
C�1
3 =.1 C C3/. The intervals I qnC1

nC1 and InC1 are also dynamically sym-
metric with respect to their common endpoint, so again by Lemma 6.3 we
have C�1

3 jInC1j ⩽ jI qnC1

nC1 j ⩽ C3jInC1j; in addition, I qnC1

nC1 � InC1 [ In,
so that jI qnC1

nC1 j ⩽ jInC1j C jInj. Putting all these facts back into (6.24), we
deduce that

ŒI
qnC1
n ; f qnC1.T /� ⩾ �1

jInC1j
jInj

; (6.25)
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where �1 D C�2
3 .1 C C3/�1.1 C C3 C C 23 C C 33 /�1. This bounds the

numerator of (6.23) from below, so we proceed to bound the denominator
from above. We have

ŒI 1n ; f .T /� D
jI 1nC1j

jI 1nC1j C jI 1n j
� jI 1Cqn

n j
jI 1n j C jI

1Cqn
n j

: (6.26)

Since the intervals I 1n and I 1Cqn
n are also dynamically symmetric with re-

spect to their common endpoint, applying Lemma 6.3 yet again yields

ŒI 1n ; f .T /� ⩽
C3

1C C3
jI 1nC1j
jI 1n j

: (6.27)

Here, using the power-law at the critical point (at last!) we see that

jI 1nC1j
jI 1n j

⩽ 0

� jInC1j
jInj

�s0
;

where 0 D 0.f / > 0 is a constant as in Remark 5.2, and s0 > 1 is the
criticality of the critical point c. Carrying this information back to (6.27)
gives us

ŒI 1n ; f .T /� ⩽ �2

� jInC1j
jInj

�s0
; (6.28)

where �2 D 0C3=.1 C C3/. Combining (6.25) and (6.28) we get the in-
equality

jInC1j
jInj

⩾

�
�1

B�2

� 1
s0�1

D �3 :

Summarizing, we have proved that

�3jInj ⩽ jInC1j ⩽ C3jInj : (6.29)

(v) The intervals In and I qn

nC1 are comparable. Note that I qn

nC1 � In, so jI
qn

nC1j ⩽
jInj. We must prove an inequality in the opposite direction. For this pur-
pose, let us consider the interval T � D I

qn

nC1 [ I
qn
n [ I 2qn

n . We shall look
at the cross-ratio distortion of the pair .I qn

n ; T �/ under the map f qnC1�qn .
Clearly, the family fT �; f .T �/; : : : ; f qnC1�qn.T �/g has intersection mul-
tiplicity equal to at most 3. By the Cross-ratio Inequality, we have

CrD.f qnC1�qn I I qn
n ; T �/ D ŒI

qnC1
n ; f qnC1�qn.T �/�

ŒI
qn
n ; T ��

⩽ B (6.30)
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Now, the intervals I qnC1

nC1 and InC1 are dynamically symmetric with respect
to their common endpointf qnC1.c/. Also, the intervalsf qnC1�qn.I

2qn
n / D

I
qnC1Cqn
n and I qnC1

n are dynamically symmetric with respect to their com-
mon endpoint f qnC1Cqn.c/. Moreover, we have I qnC1

n � In[InC1. Com-
bining these facts with (6.29) and Lemma 6.3, we deduce after some com-
putations that

ŒI
qnC1
n ; f qnC1�qn.T �/� D

jI qnC1

nC1 j
jI qnC1

nC1 j C jI
qnC1
n j

jI qnC1Cqn
n j

jI qnC1
n j C jI qnC1Cqn

n j

⩾
C�2
3 �3

.1C C3/.1C C3 C C 23 /
: (6.31)

We proceed to bound the denominator in (6.30) from above in similar fash-
ion. Since the intervals I qn

n and I 2qn
n are dynamically symmetric with re-

spect to their common endpoint f qn.c/, applying Lemma 6.3 one final time
yields

ŒI qn
n ; T �� D

jI qn

nC1j
jI qn

nC1j C jI
qn
n j

jI 2qn
n j

jI qn
n j C jI 2qn

n j
⩽
jI qn

nC1j
jI qn
n j

C3

1C C�1
3

⩽
C 23

1C C�1
3

jI qn

nC1j
jInj

: (6.32)

Putting (6.31) and (6.32) back into (6.30), we deduce at last that

�4jInj ⩽ jI qn

nC1j ⩽ jInj ; (6.33)

where

�4 D
.1C C�1

3 /C�4
3 �3

B.1C C3/.1C C3 C C 23 /

The above estimates – more precisely the inequalities (6.18), (6.19), (6.22), (6.29)
and (6.33) – provide bounds for 5 of the 15 comparability ratios involved in (6.17).
Each of the remaining 10 comparability ratios is obtained by suitable telescoping
products of at most 4 of these 5 ratios. Thus, define K to be the largest of all
constants greater than 1 appearing as bounds in the above estimates, namelyK D
maxfC3.C3 C 1/; ��1

3 ; ��1
4 g. With this choice, all 15 inequalities involved in

(6.17) are established provided we take C4 D K4.
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Proof of Theorem 6.3

Finally, to obtain Theorem 6.3, we use the Cross-ratio Inequality to propagate the
information in Proposition 6.1 to any pair of adjacent intervals in the dynamical
partition Pn.c/. Fix an atom M 2 Pn.c/, and let L;R 2 Pn.c/ be its two
immediate neighbors; write T D L [M [ R. It suffices to show that the cross-
ratio ŒM; T � is bounded from below by a constant depending only on the constant
C4 of Proposition 6.1. There are two cases to consider, depending on whether
M is a short or a long atom of the dynamical partition Pn.c/. If M is a short
atom, say M D I

j
nC1 with j < qn, then L and R are both long atoms. In fact,

the combinatorics tells us that one of them, say R, is the interval I jn , whereas the
other, L, is the interval I jCqnC1�qn

n . But then the homeomorphism f qn�j maps
M ontoM � D I qn

nC1 and T onto T � D I qnC1
n [ I qn

nC1 [ I
qn
n . By Proposition 6.1,

the cross-ratio ŒM �; T �� is bounded from below (by a constant depending only
on C4). Since the intervals T; f .T /; : : : ; f qn�j .T / D T � have multiplicity of
intersection at most 3, it follows from the Cross-ratio Inequality that

CrD.f qn�j IM;T / D ŒM �; T ��
ŒM; T �

⩽ B :

Therefore ŒM; T � is also bounded from below (by a constant depending only on
C4). The same argument applies, mutatis mutandis, whenM is a long atom. This
finishes the proof.

6.3.3 On the notion of comparability
The proof of the real bounds was given in such a way as to allow us to keep track
of the constants involved in all the estimates – in other words, so that one could
actually write down the constant C in Theorem 6.3 explicitly, if necessary. For
most of what we do from now on, however, it will not be necessary to keep track
of such constants. Instead, we will adopt the same notion and notation of compa-
rability introduced in de Faria and de Melo [1999]. To wit, given two positive real
numbers ˛ and ˇ, we will say that ˛ is comparable to ˇ modulo f (or simply that
˛ and ˇ are comparable) if there exists a constant K > 1 depending only on the
real bounds constantC D C.f / such thatK�1ˇ ⩽ ˛ ⩽ Kˇ. This relation will be
denoted ˛ � ˇ. As observed in de Faria and de Melo [ibid., p. 350], comparability
modulo f is reflexive and symmetric but not transitive: if we are given a compa-
rability chain ˛1 � ˛2 � � � � � ˛k , we can only say that ˛1 � ˛k if the length
k of the chain is bounded by a constant that depends only on f . In everything we
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do in this chapter, the lengths of all comparability chains are in fact universally
bounded.

6.4 First consequences
The real bounds given in Theorem 6.3 have many important consequences. In this
section we present two of the most basic such consequences.

6.4.1 C 1 bounds
The first corollary to Theorem 6.3 is the fact that the first returns of a multicritical
circle map (to any one of its critical points) are uniformly bounded in the C 1
topology. This is a consequence of the following lemma.

Lemma 6.5. Given a multicritical circle map f there existsK D K.f / > 1 such
that, for each c 2 Crit.f /, n 2 N, x 2 In.c/ and j 2 f0; 1; : : : ; qnC1g, we have

Df j .x/ ⩽ K
jf j .In.c//j
jIn.c/j

: (6.34)

The detailed proof will be given below. Let us first show how this lemma
implies the C 1 bounds we mentioned above.

Corollary 6.1. The sequence
˚
f qnC1 jIn.c/

	
is bounded in the C 1 metric.

This statement is perhaps a bit too informal. To be really precise, what we
mean to say is that, if �n W R ! S1 D R=Z is the unique affine map with
�n.0/ D c and�n.Œ0; 1�/ D In.c/, then the sequence of normalized maps��1

n ı
f qnC1 ı�njŒ0;1� is bounded in the C 1 topology.

Proof of Corollary 6.1. By combinatorics, InC1.c/ � f qnC1.In.c// � In.c/ [
InC1.c/. Then:

jInC1.c/j
jIn.c/j

⩽

ˇ̌
f qnC1.In.c//

ˇ̌

jIn.c/j
⩽ 1C jInC1.c/j

jIn.c/j
:

By the real bounds (Theorem 6.3) we have jInC1.c/j � jIn.c/j, and from this
it follows that

ˇ̌
f qnC1.In.c//

ˇ̌
� jIn.c/j. Therefore Corollary 6.1 follows from

Lemma 6.5.
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The remainder of this section is devoted to proving Lemma 6.5. For ease of
notation, in the proof we adopt the same convention we used in the proof of Theo-
rem 6.3: we drop the dependency on c and write In D In.c/, etc.

Proof of Lemma 6.5. For each n 2 N consider Ln D InC1, Rn D f qn.In/ and
Tn D I�

n D Ln [ In [Rn. We have three preliminary facts:

Fact 6.1. The family fTn; f .Tn/; : : : ; f qnC1�1.Tn/g has intersection multiplicity
bounded by 3.

Fact 6.1 follows from the following general fact: given z 2 S1 and n 2 N let
I D

�
z;R

3qn
� .z/

�
, where R� is the rigid rotation of angle 2�� in the unit circle.

Then the multiplicity of intersection of the family
˚
I;R�.I /; : : : ; R

qnC1�1
� .I /

	
is

3 for any n 2 N.

Fact 6.2. There exists a constant � > 0 (depending only on the real bounds of f )
such that

jLjnj > � jI jn j and jRjnj > � jI jn j
for each j 2 f0; : : : ; qnC1g and for all n 2 N.

Proof of Fact 6.2. For j D 0, observe that the intervals Ln, In and Rn are ad-
jacent and belong to the dynamical partition Pn, then by the real bounds they
are comparable by a constant that only depends on f . Let us prove now that for
j D qnC1 the three intervals Ljn, I

j
n and Rjn are comparable too.

On the one hand, the intervals InC1 and I qnC1

nC1 are adjacent and belong to
PnC1, hence they are comparable (again by the real bounds). Moreover InC1 �
I
qnC1
n � InC1[In. By the real bounds jInj � jInC1j and then jI qnC1

n j � jI qnC1

nC1 j,
that is:

jLqnC1
n j � jI qnC1

n j : (6.35)

On the other hand, the intervals In and I qn
n are adjacent and belong to Pn, hence

they are comparable. Moreover:

I
qn

nC1 � I
qnCqnC1
n � In [ I qn

n :

From Figure 6.5 we know that jI qn

nC1j � jInj and then jI qnCqnC1
n j � jInj. But

InC1 � I qnC1
n � In [ InC1 and then by the real bounds:

jRqnC1
n j D jI qnCqnC1

n j � jInj � jI qnC1
n j : (6.36)
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Therefore, for j D qnC1, the three intervalsLjn, I
j
n andRjn are comparable. Now,

let 1 ⩽ j ⩽ qnC1 � 1. Consider the intervals jLjnj; jI jn j; jRjnj and their images
by the map f qnC1�j . By the Cross-ratio Inequality (combined with Fact 6.1) we
have that there exists a constant K0 D K0.f / > 1 such that

jLqnC1
n jjRqnC1

n jjLjn [ I jn jjI jn [Rjnj
jLjnjjRjnjjLqnC1

n [ I qnC1
n jjI qnC1

n [RqnC1
n j

⩽ K0 :

Using (6.35) and (6.36) in the last inequality, we get
 
1C jI

j
n j
jLjnj

! 
1C jI

j
n j
jRjnj

!
⩽ K ;

and we are done.

Remark 6.4. We can always assume, whenever necessary, that n0 D n0.f / given
by Lemma 6.5 is such that for all n ⩾ n0 and j 2 f0; : : : ; qnC1g we have
Card.f j .Tn/ \ Crit.f // ⩽ 1, where Card denotes the cardinality of a finite
set, and Crit.f / is the set of critical points of f (this is because, by minimality,ˇ̌
f j .Tn/

ˇ̌
goes to zero as n goes to infinity).

Definition 6.3 (Critical times). We say that j 2 f1; : : : ; qnC1g is a critical time if
f j .Tn/ \ Crit.f / ¤ Ø.

Remark 6.5. Note that Card.fcritical timesg/ ⩽ 3N .

Fact 6.3. Let 1 ⩽ j1 < j2 ⩽ qnC1 be two consecutive critical times. Then for all
x 2 f j1C1.In/ we have:

Df j2�j1�1.x/ � jf j2.In/j
jf j1C1.In/j

;

with universal constants (depending only on the real bounds).

Proof of Fact 6.3. Note that f j2�j1�1 W f j1C1.Tn/ ! f j2.Tn/ is a diffeomor-
phism. Fact 6.1 implies that

Pj2�j1�1
iD0 jf i .f j1C1.Tn//j < 3, and by Fact 6.2 the

interval f j2�j1�1.f j1C1.Tn// contains a ��scaled neighborhood of the interval
f j2�j1�1.f j1C1.In//. By Koebe Distortion Principle (Lemma 5.2) there exists
a constant K0 D K0.f / > 1 such that for all x; y 2 f j1C1.In/ we have that

1

K0
⩽
Df j2�j1�1.x/
Df j2�j1�1.y/

⩽ K0 :
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Let y 2 I j1C1
n be given by the Mean Value Theorem such that

Df j2�j1�1.y/ D jf j2.In/j
jf j1C1.In/j

:

Then for all x 2 f j1C1.In/,

1

K0

jf j2.In/j
jf j1C1.In/j

⩽ Df j2�j1�1.x/ ⩽ K0
jf j2.In/j
jf j1C1.In/j

:

We finish the proof of Lemma 6.5 by combining Fact 6.3 and item (iii) in
Proposition 5.4 with the help of the chain rule:

Df j .x/ ⩽ .3d/3NK3N0
jf j .In/j
jInj

for any x 2 In and j 2 f1; : : : ; qnC1g ,

where N D Card
�
Crit.f /

�
is the number of critical points of f , d is the maxi-

mum of its criticalities and K0 D K0.f / is given by Fact 6.3.

6.4.2 Sums of polar ratios
Here is a purely geometric property of dynamical partitions that also follows from
the real bounds. It is very useful in situations that require bounding the Schwarzian
derivative of first returns – for example in the study of Lyapunov exponents of
multicritical circle maps, see Chapter 8.

Let f be a multicritical circle map, and let c be one of its critical points. Let
I 2 Pn.c/ be an atom of the n-th dynamical partition of f associated to c. If I
does not contain c, i.e., if I ¤ In.c/; InC1.c/, we define the polar ratio of I with
respect to c to be the ratio jI j=dist.c; I /, where dist.�; �/ denotes the usual distance
in the circle.

The result we have in mind states that the sum of all polar ratios for atoms at
level n grows at most linearly with n. It holds under the general assumptions of
Theorem 6.3, for maps with an arbitrary number of critical points. For each n ⩾ 1

let:
Sn.c/ D

X

I2Pn.c/nfIn.c/;InC1.c/g

jI j
d.c; I /

;

where d.c; I / denotes the Euclidean distance between an interval I � S1 and the
critical point c.
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Lemma 6.6. For each critical point c of f , the sequence
�
Sn.c/

n

�

n⩾1

is bounded.

Proof. As before, for simplicity of notation we write Pk , Ik instead of Pk.c/,
Ik.c/ respectively, for each k 2 N. Note that the transition from Pn to PnC1
can be described in the following way: the interval In D Œc; f qn.c/� is subdivided
by the points f jqnC1Cqn.c/ with 1 ⩽ j ⩽ anC1 into anC1C 1 subintervals. This
sub-partition is spread by the iterates of f to yield sub-partitions of each long
atom f j .In/ D f j .Œc; f qn.c/�/ with 0 ⩽ j < qnC1. The other elements of the
partition Pn, namely the intervals f j .InC1/with 0 ⩽ j < qn, remain unchanged.
Now, on one hand, for any I 2Pn n fIn; InC1g we have:

X

I�J2PnC1

jJ j
d.c; J /

⩽
1

d.c; I /

X

I�J2PnC1

jJ j D jI j
d.c; I /

:

On the other hand:

X

PnC13J�InnInC2

jJ j
d.c; J /

⩽
1

jInC2j
X

PnC13J�InnInC2

jJ j D jIn n InC2j
jInC2j

:

This gives us:

0 ⩽ SnC1 � Sn ⩽
jIn n InC2j
jInC2j

for all n ⩾ 1.

But, by the real bounds, we have

jIn n InC2j
jInC2j

⩽
jInj
InC2j

⩽ C 2 ;

for all n ⩾ 1, where C D C.f / is the constant in Theorem 6.3. Telescoping, we
deduce that Sn ⩽ S0 C C 2n, as desired.

Remark 6.6. More generally, we may consider sums of powers of polar ratios; see
Exercise 6.4. Such sums appear in several places in the study of renormalization
of one-dimensional maps, e.g., in de Faria and de Melo [1999]. Similar sums (with
weights) are used in the study of unimodal maps: see de Faria, de Melo, and Pinto
[2006], and also Clark, de Faria, and van Strien [2022].
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6.5 A negative Schwarzian property
The study of the fine geometry of a smooth one-dimensional map is usually facil-
itated if the Schwarzian derivative of said map happens to be negative (see Chap-
ter 5). Such negative Schwarzian property is therefore certainly desirable.

A general (C 3-smooth) multicritical circle map does not have, in general, neg-
ative Schwarzian, but in some sense this property emerges as we iterate the map.
This is expressed in more precise terms through the following result.

Proposition 6.2. Given a multicritical circle map f there exists a constant n0 D
n0.f / 2 N such that, for all n > n0 and each c 2 Crit.f / the following facts
hold.

(i) For all j 2 f1; : : : ; qnC1g and each x 2 In.c/ regular point of f j , we have
Sf j .x/ < 0.

(ii) For all j 2 f1; : : : ; qng and each x 2 InC1.c/ regular point of f j , we have
Sf j .x/ < 0.

Remark 6.7. Later in this book (see Chapter 10) we will introduce the notion of
renormalization of a multicritical circle map (around one of its critical points).
Roughly speaking, given a map f and a point x in its domain, a renormalization
of f around x is simply a first return map to a neighborhood of x (linearly rescaled
to unit size, say). In this language, Proposition 6.2 is saying in particular that ev-
ery sufficiently deep renormalization of a multicritical circle map has the negative
Schwarzian property.
Remark 6.8. The fact that Sf qnC1.x/ < 0 is most likely true for any regular point
x of f qnC1 , not necessarily contained in In.c/ (and the same with the second
assertion in Proposition 6.2). For bounded combinatorics, a proof of this fact can
be found in Section 8.2.3.

Proof of Proposition 6.2. In the proof we adapt the exposition in de Faria and de
Melo [1999, pp. 380–381]. We give the proof only for the case x 2 In regular
point of f j for some j 2 f1; : : : ; qnC1g (the other case being entirely analogous).

From item (i) in Proposition 5.4, we know that for each critical point ci there
exist a neighborhood Ui � S1 of ci and a positive constant Ki such that for all
x 2 Ui n fcig we have

Sf .x/ < � Ki

.x � ci /2
< 0 : (6.37)
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Let us call U D
SiDN�1
iD0 Ui , and let V � S1 be an open set that contains

none of the critical points of f and such that U [ V D S1. Since f is C 3,
M D supy2V

ˇ̌
Sf .y/

ˇ̌
is finite. Let ın D max0⩽j<qnC1

jI jn j. We know that
ın ! 0 as n!1, because f is topologically conjugate to a rotation. We choose
n0 D n0.f / so large that ın is smaller than the Lebesgue number of the covering
fU ;V g of the circle for all n ⩾ n0. Using the chain rule for the Schwarzian
derivative, we have for all n ⩾ n0 and all x 2 In.c/ regular point of f j

Sf j .x/ D
j�1X

kD0
Sf .f k.x//

h
Df k.x/

i2
: (6.38)

We can decompose this sum as ˙ .n/1 .x/C˙ .n/2 .x/ where

˙
.n/
1 .x/ D

X

kWIk
n �U

Sf .f k.x//
h
Df k.x/

i2
; (6.39)

and ˙ .n/2 .x/ is the sum over the remaining terms.

Now we proceed through the following steps:

(i) Since In � U , the sum in the right-hand side of (6.39) includes the term
with k D 0, namely Sf .x/. Since all the other terms in (6.39) are negative
as well, and since jx � cj ⩽ jInj, we deduce from (6.37) that

˙
.n/
1 .x/ < � K1

jInj2
: (6.40)

(ii) Observe that,

ˇ̌
ˇ˙ .n/2 .x/

ˇ̌
ˇ ⩽

X

Ik
n �V

jSf .f k.x//j
h
Df k.x/

i2
: (6.41)

By choosing n0 large enough, we know from Equation (6.34) that there
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exists K D K.f / > 1 such that
ˇ̌
ˇ˙ .n/2 .x/

ˇ̌
ˇ ⩽

X

Ik
n �V

jSf .f k.x//jK2 jI
k
n j2
jInj2

⩽M
K2

jInj2
X

Ik
n �V

jI kn j2 (6.42)

⩽M
K2

jInj2
max

0⩽k⩽j�1
jI kn j

X

Ik
n �V

jI kn j

⩽M
K2

jInj2
ın:

Choosing n0 so large that K2Mın < K1 for all n ⩾ n0, we deduce from (6.40)
and (6.42) that, indeed, Sf j .x/ < 0 for all j 2 f1; : : : ; qnC1g and for n ⩾ n0.

6.6 Beau bounds
As we have already observed, the comparability constant C we obtained in Theo-
rem 6.3 depends on the map f . In this section we will show that, asymptotically,
we can replace C D C.f / by a universal constant. Uniform bounds of this type
are called beau by Sullivan [1992]. The precise result is the following.

Theorem 6.4 (Beau Bounds). Given N ⩾ 1 in N and d > 1 there exists a uni-
versal constant C D C.N; d/ > 1 with the following property. For any given
multicritical circle map f with irrational rotation number, and with at most N
critical points whose criticalities are bounded by d , there exists n0 D n0.f / 2 N

such that for each critical point c of f , for all n ⩾ n0, and for every pair I; J of
adjacent atoms of Pn.c/ we have

C�1 jI j ⩽ jJ j ⩽ C jI j :

The proof of this theorem is the same as the proof of Theorem 6.3, but we
must replace Theorem 5.1 with the following result (originally given in Estevez,
de Faria, and Guarino [2018, Th. B]).

Theorem 6.5. Given N ⩾ 1 in N and d > 1 there exists a constant B D
B.N; d/ > 1 with the following property. Given a multicritical circle map f ,
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with at most N critical points whose criticalities are bounded by d , there exists
n0 D n0.f / such that for all n ⩾ n0, � 2Pn.c/ and k 2 N such that f i .�/ is
contained in an element of Pn.c/ for all 1 ⩽ i ⩽ k, we have that

CrD.f kI�;��/ ⩽ B ;

where �� denotes the union of � with its left and right neighbours in Pn.c/.

The following decomposition will be crucial in the proof of Theorem 6.5 given
below (recall that, for a given J 2 Pn, we denote by J � the union of J with
its left and right neighbours in Pn). For each critical point ci we consider its
neighborhood Ui given by Proposition 5.4. Moreover, let n1 2 N be given by
Proposition 6.2.

Lemma 6.7. Given " > 0 there exists n2 2 N, n2 D n2."; f / > n1, with the
following property: given n ⩾ n2, � 2 Pn and k 2 N such that f j .�/ is
contained in an element of Pn for all 1 ⩽ j ⩽ k, we can write

f kj�� D �k ı �k�1 ı � � � ı �1 ;

where:

1. For at most 3N C 1 values of i 2 f1; : : : ; kg, �i is a diffeomorphism with
distortion bounded by 1C ".

2. For at most 3N values of i 2 f1; : : : ; kg, �i is the restriction of f to some
interval contained in Ui .

3. For the remainder values of i , �i is either the identity or a diffeomorphism
with negative Schwarzian derivative.

The above statement and its proof below are borrowed from Estevez, de Faria,
and Guarino [2018, pp. 853–855], which in turn is an adaptation of the argument
given in de Faria and de Melo [1999, pp. 352–353].

Proof of Lemma 6.7. Let C0 D C0.f / ⩾ 1 be given by the Koebe distortion
principle (Lemma 5.2). Let C > 1 and � 2 .0; 1/ given by Theorem 6.3. Let
ı 2 .0; 1/ be such that .1C ı/2 exp.C0 ı/ < 1C ", and let n2 2 N be such that

n2 > n1 C
4 log.ı�3=2=C /

log�
:
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Note that 0 < .�1=4/n2�n1 < ı�3=2=C . Given n ⩾ n2 consider

m D m.n/ D
�
nC n1
2

�
;

the integer part of 1
2
.n C n1/. Let � and k as in the statement, and consider

Jm 2 Pm such that � � Jm, and consider also Jn1
2 Pn1

with Jm � Jn1
.

Taking n sufficiently large, we may assume that �� � Jm.
Let s ⩾ 0 be the smallest natural number such that f s.Jn1

/ contains a critical
point of f .

Claim 6.6.1. The distortion of f s on �� is bounded by 1C ".

Proof of Claim 6.6.1. The proof uses the Koebe Distortion Principle (Lemma 5.2).
Replacing n1 by n1C 1 if necessary, we may assume that f j .Jn1

/ 2Pn1
for all

j 2 f0; : : : ; s � 1g. By the real bounds, the space � of �� inside J �
m is bounded

from below by

� ⩾
1

C

jJmj
j��j ⩾

1

C

�
1

�

�b.n�m/=2c
>
�

C

�
1

�

�.n�m/=2
:

Since m ⩽ nCn1

2
, we have n �m ⩾ n � nCn1

2
D n�n1

2
, and then

1

�
⩽
C

�
�.n�m/=2 ⩽

C

�
.�1=4/n�n1 <

p
�ı < ı : (6.43)

Now we estimate the sum ` of the lengths of the iterates of J �
m between 1 and

s � 1. Since nCn1

2
< m C 1, we have m � n1 > n�n1

2
� 1, and then for all

j 2 f0; : : : ; s � 1g:
ˇ̌
f j .J �

m/
ˇ̌
⩽ �b.m�n1/=2cˇ̌f j .J �

n1
/
ˇ̌
⩽

⩽ .�1=4/n�n1

�
1

�

�3=2 ˇ̌
f j .J �

n1
/
ˇ̌
⩽
ı

C

ˇ̌
f j .J �

n1
/
ˇ̌
:

Therefore:

` D
s�1X

jD0
jf j .J �

m/j <
3ı

C
< ı ; (6.44)
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since
Ps�1
jD0 jf j .J �

n1
/j < 3 by combinatorics (and assuming C > 3). From

inequalities (6.43), (6.44) and Koebe distortion principle (Lemma 5.2) we get that
the distortion on �� is bounded from above by

.1C ı/2 exp.C0 ı/ < 1C " :

To prove Lemma 6.7 we decompose the orbit of �� under f according to the
following algorithm. For each i 2 f0; 1; : : : ; k�1gwe have two cases to consider:

1. If f i .Jn1
/ does not contain any critical point of f , we define the correspond-

ing � to be f s , where s ⩾ 1 is the smallest natural such that f iCs.Jn1
/

contains a critical point of f . Arguing as in Claim 6.6.1 above, we see that
this case belongs to the first type of components in the statement.

2. If f i .Jn1
/ contains a critical point c of f we may assume, by taking n2

large enough, that f i .��/ � In1
.c/ [ In1C1.c/. We have two sub-cases

to consider:

(i) If f i .��/ does not contain c (and therefore no other critical point)
let s ⩾ 1 be the smallest natural such that f iCs.��/ contains a crit-
ical point of f , and we define the corresponding � to be f s . By
Proposition 6.2 (and the fact that composition of diffeomorphisms with
negative Schwarzian derivative is a diffeomorphism with negative
Schwarzian derivative too) this case belongs to the third type of com-
ponents in the statement.

(ii) If the critical point belongs to f i .��/ we define the corresponding �
to be just a single iterate of f (and this sub-case belongs to the second
type of components in the statement).

Note finally that, by combinatorics, the first case happens at most 3NC1 times,
while the second case occurs at most 3N times.

With Lemma 6.7 at hand, we are ready to prove our main results.

Proof of Theorem 6.5. Theorem 6.5 follows at once from the decomposition ob-
tained in Lemma 6.7, by combining Lemma 5.4 and item (iv) of Proposition 5.4.
The constant B depends only on the number and order of the critical points of f ,
but not on f itself. It is in fact enough to considerB D .1C1=2/2.3NC1/.9d2/3N .
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Proof of Theorem 6.4. As we have already explained, the proof of Theorem 6.4 is
the same as the proof of the real bounds (Theorem 6.3), the only difference being
that the Cross-ratio Inequality is replaced by Theorem 6.5.

Exercises
Exercise 6.1. Give another proof of Lemma 6.4 as follows.

(i) Show that

P0.x/ D
n�
f i .x/; f iC1.x/

�
W i 2 f0; : : : ; a0 � 1g

o
[
˚�
f a0.x/; x

�	

is a partition of the circle (modulo endpoints), where a0 is the integer part
of 1=�.

(ii) Using Remark 6.3, show that if Pn.x/ is a partition of the circle, then
PnC1.x/ is a partition as well.

Exercise 6.2. Let f W S1 ! S1 be a circle homeomorphism with irrational rota-
tion number �, and with unique invariant measure �. Show that for any x 2 S1

and any n 2 N we have

�.In/ D
nY

jD0
Gj .�/ D �G.�/G2.�/ � � � Gn.�/; (6.45)

where In is the interval with endpoints x and f qn.x/ containing f qnC2.x/, andG
denotes the Gauss map from Chapter 1 (see also Appendix A). (Hint: see de Faria
and Guarino [2022b, Lem. 2.3]).
Exercise 6.3. The following consequence of the real bounds is extracted from de
Faria and de Melo [2000, Lem. 2.2]. Let f be a unicritical circle map with arbitrary
rotation number and critical point c, let n ⩾ 1, and let J�i D f qnC1�i .In.c// for
0 ⩽ i < qnC1. Given m < n, let i1 < i2 < � � � < i` be the moments in
the backward orbit fJ�ig before the the first return to ImC1.c/ such that J�ik �
Im.c/.

(i) Show that ` D amC1, and that

J�ik � f qmC.amC1�kC1/qmC1.ImC1.c// :
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(ii) Show that, given an integer M ⩾ 1, there exists CM > 0 such that for
all sufficiently large n we have C�1

M jInj ⩽ jJ�ik j ⩽ CM jInj, provided
1 ⩽ k ⩽M or amC1 �M C 1 ⩽ k ⩽ amC1.

[Hint: The largest j < qnC1 such that f j .In.c// � ImC1.c/ is easily computed
as j D qnC1 � qmC2. Since qmC2 D qm C amC1qmC1, there are exactly amC1
subsequent moments j < i < qnC1 such that f i .In.c// � Im.c/. The rest
follows from the real bounds (Theorem 6.3) and the Koebe distortion principle
(Lemma 5.2).]
Exercise 6.4. Let f be a multicritical circle map, let c 2 Crit.f /, and fix p > 1.
For each n ⩾ 1, let

S .p/n .c/ D
X

I2Pn.c/nfIn.c/;InC1.c/g

� jI j
d.c; I /

�p
:

Show that the sequence
n
S
.p/
n .c/

o
n⩾1

is bounded. [Hint: Imitate the proof of
Lemma 6.6.]
Exercise 6.5. Let f be aC 3 critical circle map with irrational rotation number and
a unique critical point c 2 S1. Show that there exists a constantK1 > 1 such that
the following facts hold for each n ⩾ n0:

(i) For all x; y 2 f .InC1.c//, we have

1

K1
⩽

ˇ̌
Df qn�1.x/

ˇ̌
ˇ̌
Df qn�1.y/

ˇ̌ ⩽ K1 :

(ii) For all x; y 2 f .In.c//, we have

1

K1
⩽

ˇ̌
Df qnC1�1.x/

ˇ̌
ˇ̌
Df qnC1�1.y/

ˇ̌ ⩽ K1 :

Do these statements remain true if f has two or more critical points? Explain.
Exercise 6.6. Let f be as in Exercise 6.5. Prove that there exists C > 1 such that

1

C
⩽ Df qnC1.x/ ⩽ C :

for all x 2 In.c/ n InC2.c/ and all n 2 N.
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Exercise 6.7. In Ergodic Theory, a famous lemma due to Kakutani and Rokhlin1

states that, if .X;B; �/ is a non-atomic probability measure space andT W X ! X

is an ergodic measure-preserving invertible transformation, then for each n 2 N

and each " > 0 there exists B 2 B such that B; TB; : : : ; T n�1B are pairwise
disjoint and �.B [ TB [ � � � [ T n�1B/ > 1� ". Using the dynamical partitions
Pn.x/ of Section 6.3.1 and Yoccoz’s Theorem 6.2, prove the Kakutani–Rokhlin
lemma in the special case when X is the unit circle, B is its Borel � -algebra, T
is a multicritical circle map f with Per.f / D Ø, and � is the unique f -invariant
Borel probability measure.

1Later generalized by Halmos [1956, p. 71].



7 Quasisymmetric
Rigidity

In addition to the real bounds, another important preliminary step towards estab-
lishing the smooth rigidity of multicritical circle maps (to be examined in Sec-
tion 10.1) is to answer the question: When are two topologically conjugate mul-
ticritical circle maps quasisymmetrically conjugate? This question pertains to the
general study of quasisymmetric rigidity of one-dimensional systems. Our purpose
in this chapter is twofold:

(a) To derive useful geometric criteria that allow us to decide whether a given
homeomorphism is quasisymmetric, or perhaps even smooth; and

(b) To use one such criterion to prove a quasisymmetric rigidity theorem for
multicritical circle maps.

The main theorem in this chapter is Theorem 7.2, which provides an answer to the
question raised above and yields the quasisymmetric rigidity alluded to in item (b).
It states that if we are given two (minimal) multicritical circle maps with the same
number of critical points, say f and g, and we know that there is a topological
conjugacy h between them that maps each critical point of f to a critical point of
g, then h must be a quasisymmetric homeomorphism.

In Chapter 9 we will go a bit further and examine the geometric structure of
individual orbits – more specifically, we will examine with a reasonable amount
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of detail the problem of classifying the orbits of such a map up to quasisymmetric
equivalence.

7.1 Quasisymmetry and fine grids
The concept of quasisymmetry stems from the theory of quasiconformal map-
pings. Quasisymmetric homeomorphisms arise as boundary values of quasiconfor-
mal homeomorphisms of the unit disk or the upper half-plane (see Ahlfors [2006,
Ch. 4]). Roughly speaking, an orientation-preserving self-homeomorphism of the
unit circle or the real line is quasisymmetric if it maps every triple of equally spaced
points onto a triple of almost equally spaced points. Here is the formal definition.

Definition 7.1. An orientation-preserving homeomorphism of S1 D R=Z, say
h W S1 ! S1, is said to be quasisymmetric if there exists a constant K ⩾ 1 such
that

1

K
⩽

h.x C t / � h.x/
h.x/ � h.x � t/ ⩽ K ; for all x 2 S1 and all t > 0 : (7.1)

IfK is such that h satisfies (7.1) for thisK, then we say that h isK-quasisymmetric.
The smallest K with this property is called the quasisymmetric distortion of h.

The kind of regularity possessed by a quasisymmetric homeomorphism is very
weak. Indeed, most quasisymmetric homeomorphisms are purely singular with re-
spect to Lebesgue measure. They are, however, always Hölder continuous. More-
over, the composition of quasisymmetric homeomorphisms is quasisymmetric,
and the inverse of a quasisymmetric homeomorphism is also quasisymmetric. These
properties are not obvious from the definition given above, but they are easily
proved once it is established that quasisymmetric homeomorphisms are precisely
the boundary values of quasiconformal self-homeomorphisms of the disk (once
again, see Ahlfors [ibid., Ch. 4]; see also Exercise 7.1).

There is a relationship between quasisymmetry and distortion of cross-ratios,
but a full discussion of it would constitute a lengthy digression. There are in fact
only a couple of places in the present book where a particular instance of this
relationship is required. What we need is a simple consequence of the following
result, which we state without proof (cf. de Faria and de Melo [2008, p. 130]).
Here, we will be using the b-cross-ratio, i.e., ŒM; T � D b.M; T /, but both the
proposition below and its corollary can be easily recast in terms of the a-cross-
ratio.
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Proposition 7.1. If � W S1 ! S1 is quasisymmetric, then there exists a non-
decreasing function � W Œ0;1/ ! Œ0;1/ with �.t/ ! 0 as t ! 0 such that
Œ�.M/; �.T /� ⩽ �.ŒM; T �/ for every pair of intervals M;T � S1 with M com-
pactly contained in the interior of T .

A proof of this result may be found in Astala, Iwaniec, and Martin [2009].
In order to state the corollary in simple terms, it is best to introduce a definition.
We say that a homeomorphism � W S1 ! S1 has weakly bounded cross-ratio
distortion if for every pair of constants 0 < ˛ < ˇ < 1 there exists B˛;ˇ > 0 such
that CrD.�;M; T / ⩽ B˛;ˇ for every pair of intervals M;T (with M compactly
contained in the interior of T ) such that ˛ ⩽ ŒM; T � ⩽ ˇ.

Corollary 7.1. Every quasisymmetric homeomorphism of the circle has weakly
bounded cross-ratio distortion.

Proof. Follows easily from Proposition 7.1; the details are left as an exercise.

This corollary will be used in its contrapositive, as a criterion for non-quasi-
symmetry (see Chapter 9).

7.1.1 A criterion for quasisymmetry
Let us now describe a criterion for quasisymmetry that is particularly useful in the
study of circle maps. In order to formulate it, we first need to introduce the concept
of a fine grid. Here is the definition, reproduced almost verbatim from Estevez and
de Faria [2018, Def. 5.1].

Definition 7.2. A fine grid is a nested sequence fQngn⩾0 of finite interval parti-
tions of the circle (modulo endpoints) having the following properties.

(a) Each QnC1 is a strict refinement of Qn.

(b) There exists an integer a ⩾ 2 such that each atom � 2 Qn is the disjoint
union of at most a atoms of QnC1.

(c) There exists � > 1 such that ��1j�j ⩽ j�0j ⩽ � j�j for each pair of
adjacent atoms �;�0 2 Qn.

The numbers a; � are called fine grid constants.
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Remark 7.1. Given a fine grid as above, it is not difficult to check that there exist
0 < �0 < �1 < 1 depending only on the fine grid constants a; � such that,
whenever � 2 Qn, �� 2 Qn�1 and � � ��, we have

�0j��j ⩽ j�j ⩽ �1j��j : (7.2)

In fact, one can take �0 D .a�a�1/�1 and �1 D .1C��1/�1. The details are left
as an exercise for the reader. In particular, there exists a constant C0 > 1 such that

C�1
0 �n0 ⩽ j�j ⩽ C0�

n
1

for all n and each � 2 Qn. When called upon, the constants �0; �1 will also be
referred to as fine grid constants.

The notion of fine grid was first introduced in de Faria and de Melo [1999, §4].
Its usefulness lies in the fact that one can sometimes tell how regular a homeo-
morphism is by looking at the effect it has on a suitable fine grid. This will be
illustrated by two results we proceed to present, namely Propositions 7.2 and 7.3,
the first of which is the criterion for quasisymmetry that we promised above.

First we need the following lemma.

Lemma 7.1. Given a fine grid fQngn⩾0 with fine grid constants a; � as above, let
I � S1 be an interval with non-empty interior, and let n D n.I / be the smallest
natural number such that I � � for some atom � 2 Qn. Then there exists an
interval U � I with the following properties:

(i) U is the union of at most 2a atoms of Qn;

(ii) jU j ⩽ ��1
0 .1C �/jI j, where �0 is the constant in (7.2).

Proof. Suppose I intersects 3 distinct consecutive atoms ofQn�1, say�1; �2; �3,
with �2 lying between �1 and �3. Then we necessarily have �2 � I ; but this
contradicts the definition of n D n.I /. Hence I is contained in the union U of
at most two atoms of Qn�1. Since each atom of Qn�1 is the union of at most
a atoms of Qn, part (i) follows. To prove (ii), given that I � � 2 Qn, let ��

be the unique atom of Qn�1 that contains �. By part (i), U contains �� and at
most one other atom ��� 2 Qn�1 adjacent to ��. Therefore, using property (c)
in Definition 7.2 and (7.2), we have

jU j ⩽ j��j C j���j ⩽ .1C �/j��j ⩽ ��1
0 .1C �/j�j ⩽ ��1

0 .1C �/jI j :

This establishes (ii) and finishes the proof.
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Proposition 7.2. Let fQngn⩾0 be a fine grid in S1 whose fine grid constants are
a; � , and let h W S1 ! S1 be an orientation-preserving homeomorphism such that

ˇ̌
ˇ̌ jh.�

0/j
jh.�00/j �

j�0j
j�00j

ˇ̌
ˇ̌ ⩽ � ; (7.3)

for each pair of adjacent atoms �0; �00 2 Qn, for all n ⩾ 0, where � is a positive
constant. Then there exists K D K.a; �; �/ > 1 such that h is K-quasisymmetric.

Proof. We will verify the quasisymmetry condition

1

K
⩽
h.x C t / � h.x/
h.x/ � h.x � t/ ⩽ K

for all x 2 S1 D R=Z and all t > 0, with K > 1 a constant to be determined in
the course of the argument. Let I D Œx� t; xC t � be the interval on the circle that
contains x, and write I D I� [ IC, where I� D Œx � t; x� and Œx; x C t �. By
Lemma 7.1, there exist n D n.I / and an interval U � I such that U is the union
of at most 2a atoms of Qn and jU j ⩽ �1jI j, where �1 D ��1

0 .1C �/. Let p be
the smallest positive integer such that �p1 �1 <

1
4
. Write U as the union of atoms

of QnCp, say
U D J1 [ J2 [ � � � [ Js ;

where the Ji 2 QnCp, 1 ⩽ i ⩽ s are assumed to be in counterclockwise order on
the circle. Note that we must have s ⩽ 2apC1. By (7.2) and induction, we have
jJi j ⩽ �

p
1 jJ �

i j, where J �
i � U is the unique atom of Qn that contains Ji . Hence

we get

jJi j ⩽ �
p
1 jJ �

i j ⩽ �
p
1 jU j ⩽ �

p
1 �1jI j <

1

4
jI j :

But this means that at least one of the Ji ’s, say Ji0 , is contained in I�. Thus, we
have on the one hand Ji0 � I� and on the other hand IC � Ji0C1[Ji0C2[� � �[Js .
Moreover, by the hypothesis (7.3), for all 1 ⩽ i ⩽ s � 1 we have

jh.JiC1/j
jh.Ji /j

⩽ �C jJiC1jjJi j
⩽ �C � ;

from which it follows by telescoping that

jh.JiC�/j
jh.Ji /j

⩽ .�C �/� for all � D 1; 2; : : : ; s � i :
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Therefore

h.x C t/ � h.x/
h.x/ � h.x � t / D

jh.IC/j
jh.I�/j ⩽

Ps
iDi0C1 jh.Ji /j
jh.Ji0/j

⩽

s�i0X

�D1
.�C �/� ⩽

2apC1X

�D1
.�C �/� :

This proves that h is K-quasisymmetric with K D
P2apC1

�D1 .�C �/� , a constant
that indeed depends only on the constants a; �; �.

Now, let us agree to say that an orientation-preserving homeomorphism h W
S1 ! S1 is a fine grid isomorphism if it maps fine grids to fine grids. Then the cri-
terion for quasisymmetry given by Proposition 7.2 has the following consequence.

Corollary 7.2. Let h W S1 ! S1 be an orientation-preserving homeomorphism.
Then the following are equivalent.

(i) h is quasisymmetric;

(ii) h maps some fine grid onto another fine grid;

(iii) h is a fine grid isomorphism.

Proof. The proof is left as an exercise to the reader.

As we shall see in the sequence (Section 7.2 below), the characterization of
quasisymmetry provided by Corollary 7.2 is extremely helpful in the study of crit-
ical circle maps.

7.1.2 A criterion for smoothness

Our next goal is to present a criterion for C 1C˛ smoothness involving fine grids.
This criterion will be extremely important later, in our study of renormalization
convergence and smooth rigidity (see Chapter 10).

Proposition 7.3. Let h W S1 ! S1 be a homeomorphism and let fQngn⩾0 be a
fine grid. If there exist constants C > 0 and 0 < � < 1 such that

ˇ̌
ˇ̌ jI j
jJ j �

jh.I /j
jh.J /j

ˇ̌
ˇ̌ ⩽ C�n ;
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for each pair of adjacent atoms I; J 2 Qn, for all n ⩾ 0, then h is a C 1C˛-
diffeomorphism for some for some ˛ > 0.

The proof uses the following calculus lemma concerning lateral derivatives. If
� is a real-valued function in an interval or oriented arc on the circle, we define
the right derivative of � at x to be

DC�.x/ D lim
t&0

�.x C t/ � �.t/
t

;

provided the limit exists. WhenDC�.x/ exists for every x, we say that � is right-
differentiable.

Lemma 7.2. Let �n W Œ0; 1�! R be a sequence of continuous, right differentiable
functions such that the sequence of right derivatives DC�n converges uniformly
to an ˛-Hölder continuous function ' W Œ0; 1�! R, and such that each DC�n is
Riemann-integrable. If �n converges uniformly to �, then � isC 1C˛ andD� D '.

Proof. Exercise.

Proof of Proposition 7.3. Let �n be the piecewise affine C 0-approximations to
h determined by the vertices of Qn. Then �n is differentiable on the right, and
DC�n is a step function, so in particular it is Riemann integrable. First we show
that

˚
DC�n

	
n⩾0

is a uniform Cauchy sequence, and then that the limit is Hölder
continuous. Take an atom I of Qn, and consider the decomposition

I D J1 [ J2 [ � � � [ Jp ;

with Jk 2 QnC1 consecutive and pairwise disjoint and p ⩽ a. Then DC�n is
constant on I andDC�nC1 is constant on each Jk , say

8
ˆ̂̂
<̂
ˆ̂̂
:̂

DC�n.t/ D s D
j�n.I /j
jI j .8t 2 I / ;

DC�nC1.t/ D sk D
j�nC1.Jk/j
jJkj

.8t 2 Jk/ :

From this, and the fact that j�n.I /j D
Pp

kD1 j�nC1.Jk/j , we get

sjI j D
pX

kD1
skjJkj ;
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and in particular s0 D min sk ⩽ s ⩽ max sk D s00. Also, s0=s00 ⩽ s=sk ⩽ s00=s0

for all k. Since by assumption j1 � .skC1=sk/j ⩽ C�nC1, an easy telescoping
trick gives us

s00

s0 ⩽ .1C C�nC1/a ⩽ 1C C�nC1 :

A similar lower bound holds for s0=s00. Therefore we have

1 � C�n ⩽
s

sk
⩽ 1C C�n ; (7.4)

for all k D 1; 2; : : : p. This shows that the sequence
˚
DC�n

	
n⩾0

is uniformly
bounded, and moreover that for all m ⩾ n ⩾ 0 and all t 2 S1, we have

ˇ̌
DC�m.t/ �DC�n.t/

ˇ̌
⩽ C

m�1X

jDn
�j <

C

1 � � �
n : (7.5)

Hence
˚
DC�n

	
n⩾0

is a uniform Cauchy sequence as claimed. Let ' D limDC�n
be its uniform limit, and let ˛ > 0 be such that �˛0 D �, where �0 is the fine grid
constant appearing in Remark 7.1. We prove ' is ˛-Hölder as follows. It suffices
to consider points x; y 2 S1 whose distance is smaller than infI2Q0

jI j. Take the
smallest n such that x and y belong to distinct elements of Qn. Then either n D 0
or x and y lie in a common element of Qn�1. Either way we have by (7.4)

ˇ̌
DC�n.x/ �DC�n.y/

ˇ̌
⩽ C�n : (7.6)

Combining (7.5) and (7.6), we deduce that

j'.x/ � '.y/j ⩽
ˇ̌
'.x/�DC�n.x/

ˇ̌
C
ˇ̌
DC�n.x/�DC�n.y/

ˇ̌

C
ˇ̌
DC�n.y/�'.y/

ˇ̌

⩽
C

1 � ��
n C C�n C C

1 � ��
n ⩽ C�n˛0

⩽ C jx � yj˛ ;

and so ' is ˛-Hölder as claimed. But then, since the sequence f�ngn⩾0 converges
uniformly to h, we deduce from Lemma 7.2 that Dh D ', whence h is indeed
C 1C˛. This completes the proof.
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Remark 7.2. The reader who happens to be familiar with probability theory will
have no difficulty in translating the above result to the language of conditional ex-
pectations. Indeed, viewing eachDC�n 2 L1 as a random variable, the sequence
fDC�ngn⩾0 satisfies DC�nC1 D E

�
DC�n jBn

�
, where Bn is the � -algebra1

generated by Qn, and therefore constitutes a martingale. Thus, the existence of a
pointwise a.e limit', merely as an integrable function, is a special case of J. Doob’s
martingale convergence theorem, see Billingsley [1986, p. 490].

7.2 Quasisymmetric conjugacies
What we have done so far already allow us to give a short proof of the follow-
ing theorem, originally due to Herman [1988]. In this section, since we will con-
sider dynamical partitions associated to different maps, we shall use the notation
Pn.x; f /, In.x; f /, instead of Pn.x/, In.x/, etc. to emphasize the dependency
on f .

Theorem 7.1. A multicritical circle map without periodic points is quasisymmet-
rically conjugate to a rigid rotation if and only if its rotation number is of bounded
type.

Proof. Let us first assume that f W S1 ! S1 is a multicritical circle map whose
rotation number � D Œa0; a1; a2; : : :� is an irrational of bounded type, say an ⩽ A

for all n. Let c 2 S1 be a critical point of f . We claim that the dynamical partitions
P2n.c; f /, n ⩾ 0 constitute a fine grid. Indeed, every atom of P2n.c; f / is
partitioned into at least 2 and at most .a2nC1C 1/.a2nC2C 1/ ⩽ .AC 1/2 atoms
of P2nC2.c; f /, and these are all comparable by Theorem 6.3. Hence conditions
(a), (b) and (c) of Definition 7.2 are met, and the claim is proved. Let h W S1 ! S1

be a topological conjugacy between f and the rigid rotation R� (say h ı f D
R� ı h), which exists by Yoccoz’s Theorem 6.2. Then one can easily check that
the dynamical partitions P2n.h.c/; R�/, n ⩾ 0, also constitute a fine grid (for
R�). But then h satisfies property (ii) of Corollary 7.2, and therefore it must be
quasisymmetric.

For the converse, suppose h W S1 ! S1 is a homeomorphism satisfying h ı
f D R� ı h, and suppose the rotation number of f is not of bounded type. Then
there exists a subsequence .ni / with ani C1 !1 as i !1. Again we take c to
be a critical point of f , and let x D h.c/. By the real bounds, the scaling ratios

1In fact, Bn is a finite algebra: each one of its elements is a finite union of atoms of Qn.
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jIni C1.c; f /j=jIni
.c; f /j for f remain bounded, whereas for the rigid rotation

we have
jh.Ini C1.c; f //j
jh.Ini

.c; f //j D
jIni C1.x;R�/j
jIni

.x;R�/j
> ani C1 ! 1 as i !1 ;

and therefore h cannot be quasisymmetric.

Remark 7.3. In the above proof, the only reason we did not use the full collection
of dynamical partitions as our fine grid is that PnC1.c; f / is not a strict refinement
of Pn.c; f / (the short atoms of Pn.c; f / are not decomposed at all in the next
step; they become long atoms of PnC1.c; f /). This is why we skipped every
other level.
Remark 7.4. An interesting application of Theorem 7.1 to holomorphic dynamics
goes as follows. In the complex quadratic family P� W z 7! e2�i�z C z2, one
knows that for each Diophantine � the fixed point at the origin is linearizable, so
it belongs to the Fatou set of P� . The component of the Fatou set containing 0 is
a Siegel disk; call it ˝� . In Douady [1987], Douady proved that if � is a number
of bounded type, then @˝� is a quasicircle that contains the critical point of P� .
The rough idea is to start with a Blaschke product B from the family introduced
in Section 6.1.1 (see eq. (6.1)) whose restriction to S1 is a critical circle map f
with rotation number � . Then, using Theorem 7.1, one applies quasiconformal
surgery to B , cutting out the unit disk and glueing it back in using as sewing map
the quasisymmetric conjugacy h between f and the rigid rotation with the same
rotation number. Redefining the map in the interior of the unit disk to be that same
rotation, and applying the measurable Riemann mapping theorem, the unit circle
is mapped onto a quasicircle, and the post-surgery map becomes P� , thereby prov-
ing Douady’s theorem. This result was later generalized by Petersen and Zakeri
[2004]. Their theorem allows the rotation number � to belong to a certain class
of unbounded type numbers, and the proof is accomplished through the use of
trans-quasiconformal surgery.

More important for our purposes is the following immediate consequence of
Theorem 7.1.

Corollary 7.3. Any two multicritical circle maps f and g with the same irrational
rotation number of bounded type are quasisymmetrically conjugate, and in fact ev-
ery topological conjugacy between f and g is a quasisymmetric homeomorphism.

Note that in Corollary 7.3 the number of critical points of f and the number
of critical points of g need not be the same! But the bounded type hypothesis on



180 7. Quasisymmetric Rigidity

the rotation number is essential. In full generality, the above statement is most
definitely false for unbounded combinatorics; see Chapter 9.

What can be said, then, for arbitrary irrational rotation numbers? If f and
g have the same number of critical points and there is a conjugacy between f
and g that maps each critical point of f to a critical point of g, the first part of
the statement of Corollary 7.3 continues to hold. This will be the main result in
Section 7.4.

7.3 Almost parabolic maps
When studying the geometry of dynamical partitions of a multicritical circle map
whose rotation number is of unbounded type, one has to deal with the fact that,
at certain levels, some short atoms can be much smaller than long atoms. For
instance, let f be a unicritical circle map with critical point c, and consider the
first return map to a small neighborhood of c, say In.c/ [ InC1.c/. If the partial
quotient2 anC1 is very large, then the restriction of f qnC1 to In.c/ is very nearly
a parabolic map at the center of a saddle-node bifurcation. The consecutive in-
tervals3 �i D f iqnC1Cqn.InC1.c// � In.c/ with 0 ⩽ i ⩽ anC1 � 1 work as
fundamental domains for the dynamics of f qnC1 jIn.c/. By the real bounds, the
two outermost of these intervals, �0 and �anC1�1, are comparable to In.c/, but
the ones in the middle, i.e., the�i ’s with i close to anC1=2, are much smaller. The
map f qnC1 jIn.c/ is an example of what one calls an almost parabolic map.

Such maps can be described abstractly as follows (see de Faria and de Melo
[1999, p. 354] or Estevez and de Faria [2018, Def. 4.1]).

Definition 7.3. An almost parabolic map is a C 3 diffeomorphism

� W �1 [�2 [ � � � [�` ! �2 [�3 [ � � � [�`C1 ;

where �1; �2; : : : ; �`C1 are consecutive intervals on the circle (or on the line),
with the following properties.

(i) One has �.�k/ D �kC1 for all 1 ⩽ k ⩽ `;

(ii) The Schwarzian derivative of � is everywhere negative.

2See Remark 1.2.
3By the expression consecutive intervals we mean a pair of intervals that share a common end-

point and have no other points in common.
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The positive integer ` is called the length of �, and the positive real number

� D min

(
j�1j

j [`
kD1 �kj

;
j�`j

j [`
kD1 �kj

)

is called the width of �.

Remark 7.5. Note the negative Schwarzian hypothesis (ii). As we saw in Sec-
tion 6.5, Proposition 6.2, for sufficiently large n we have Sf qnC1.x/ < 0 for
every regular point x 2 In.c/. Thus, in the unicritical case at least, the restriction
f qnC1 j�0[�1[���[�anC1�1

is an almost parabolic map with length ` D anC1 � 1,
provided n is sufficiently large.

7.3.1 Yoccoz’s inequality

The basic geometric control of an almost parabolic map is provided by the follow-
ing fundamental inequality due to Yoccoz.

Lemma 7.3 (Yoccoz). Let � W
S`
kD1�k !

S`C1
kD2�k be an almost parabolic

map with length ` and width � . There exists a constant C� > 1 (depending on �
but not on `) such that, for all k D 1; 2; : : : ; `, we have

C�1
� jI j

Œminfk; `C 1 � kg�2 ⩽ j�kj ⩽
C� jI j

Œminfk; `C 1 � kg�2 ; (7.7)

where I D
S`
kD1�k is the domain of �.

Yoccoz never published a proof of this result, but he was kind enough to ex-
plain the idea to the authors of de Faria and de Melo [1999], and as a result the
first complete proof appeared as an appendix to that paper.

The main geometric idea behind the proof is to use the negative Schwarzian
property of f to squeeze the graph of f between the graphs of two Möbius trans-
formations. The required estimate for f will then follow from the corresponding
estimate for Möbius transformations. Hence the first thing we do is to state and
prove the estimate for Möbius transformations.

Consider the fractional linear transformation T .x/ D x=.1 C x/, and given
" > 0, let T".x/ D T .x/�". We are interested in certain quantitative aspects of the
orbit xn D T n" .x0/ for x0 D 1. Observe that this sequence is strictly decreasing.
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Lemma 7.4. LetN > 0 be such that xNC1 ⩽ 0 < xN . Then we haveN � 1=p"
and moreover xn � xnC1 � 1=n2 for n D 0; 1; : : : ; N .

Proof. Writing ın D T n.x0/ � T n" .x0/, we have

ın D "C
ın�1�

1C 1
n

� �
1C 1

n
� ın�1

� (7.8)

for all n D 1; 2; : : : ; N C 1. We claim that
n"

6
⩽ ın ⩽ n" : (7.9)

The last inequality is clear. To prove the first, we note from (7.8) that

ın ⩾ "C
�

n

nC 1

�2
ın�1 :

By induction, this gives us

ın ⩾
"

.nC 1/2
�
12 C 22 C � � � C n2

�
D "

.nC 1/2
n.nC 1/.2nC 1/

6
⩾

n"

6
;

which proves the claim. Now, from the fact that xNC1 ⩽ 0 < xN we have the
inequalities

ıN <
1

N C 1 ; ıNC1 ⩾
1

N C 2 :

Then, using (7.9), we get

1

.N C 1/.N C 2/ ⩽ " <
6

N.N C 1/ ; (7.10)

which proves the first assertion.
Next, note that since ŒxNC1; xN � �

�
T".0/; T

�1
" .0/

�
D Œ�"; "=.1 � "/�, we

have
" < xN � xNC1 < 3" (7.11)

Hence, by (7.10), we get xN � xNC1 � 1=N 2 and the second assertion is proved
when n D N . To prove it in general using this information, observe that

xn � xnC1 D
xn�1 � xn

.1C xn�1/.1C xn/
D xn�1 � xn

.1C 1
n
� ın�1/.1C 1

nC1 � ın/
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implies
xn � xnC1 ⩾

n

nC 2 .xn�1 � xn/ :

By induction, this gives on one hand

xn � xnC1 ⩾
2

.nC 1/.nC 2/ .x0 � x1/ ⩾
1

.nC 1/.nC 2/ ;

and on the other hand, using (7.10) and (7.11),

xn � xnC1 ⩽ .xN � xNC1/
N�nY

jD1

�
nC j C 2
nC j

�
<

54

.nC 1/.nC 2/ :

This proves the second assertion in all cases.

Now recall that � W �1[�2[� � �[�` ! R satisfies �.�j / D �jC1 for all j .
Without loss of generality, we can assume that �.x/ < x for all x. Thus, if we call
x0 the right endpoint of �1 and write xj D �j .x0/, we have �j D Œxj ; xj�1�
for all j . Since � is a negative-Schwarzian diffeomorphism, there exists a unique
z in the domain of � such that " D j�.z/ � zj ⩽ j�.x/ � xj for all x. Since the
statement we want to prove is invariant under affine changes of coordinates, we
may assume also that z D 0 and x0 D 1. In this setting, we want to prove that
j�j j � 1=j 2 for all j such that �j � Œ0; 1�. Note that �0.0/ D 1.

Next, letA be the Möbius transformation on the line such thatA.x0/ D �.x0/
andA.0/ D �.0/ andA0.0/ D �0.0/ D 1. This determinesA uniquely, and in fact

A.x/ D x

1C �x � " ;

for some � > 0. Since S� < 0, we see that A.x/ ⩽ �.x/ for all x 2 Œ0; 1�.
Likewise, let B be the Möbius transformation such that B.x`/ D �.x`/,

B.0/ D �.0/ and B 0.0/ D �0.0/ D 1. This determines B uniquely, and in fact

B.x/ D x

1C �x � " ;

for some � > 0. This time, since x` < 0 and S� < 0, we have �.x/ ⩽ B.x/

for all x 2 Œ0; 1�. In particular, � > �. It is easy to see that �=� ⩽ c� , where c�
depends only on the constant � in the statement.
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Lemma 7.5. Let x 2 Œ0; 1� and k > 0 be such that A.x/ < Bk.x/. Then k ⩽
1C �=�.

Proof. By induction we have

Bk.x/ ⩽
x

1C .k � 1/�x � " :

Therefore A.x/ < Bk.x/ implies .k � 1/�x < �x.

Now, let us write ˛n D An.x0/ andˇn D Bn.x0/. By Lemma 7.5, the number
of ˇj ’s inside each interval of the form Œ˛nC1; ˛n� is bounded independently of
n. Moreover, since ˛n < xn < ˇn for all n, the number of xj ’s inside each
Œ˛nC1; ˛n� is also bounded independently of n. To prove that j�j j � 1=j 2, we
proceed as follows. Let m > 0 be such that ˇmC1 ⩽ xj ⩽ ˇm ⩽ xj�1. Then
Lemma 7.5 says that m ⩽ Cj , and we have also

jˇmC1 � ˇmj < jB.xj�1/ � xj�1j < jxj � xj�1j :

Since by Lemma 7.4 we have

jˇmC1 � ˇmj �
1

m2
⩾

1

Cj 2
;

it follows that j�j j D jxj � xj�1j ⩾ 1=Cj 2.
To prove an inequality in the opposite direction, let p be the largest integer

such that ˛p > xj�1. Then, again by Lemma 7.5, we have j ⩽ Cp. Since
A.x/ < �.x/ < x for all x, we also have �j � Œ˛pC2; ˛p�. Using Lemma 7.4
once more, we deduce that

j�j j ⩽
C

p2
⩽

C

j 2
:

This completes the proof of Yoccoz’s Lemma.
Remark 7.6. Let us define the order of a fundamental domain �k as above to be
ord.��/ D minfk; `C 1 � kg. Then the conclusion of Lemma 7.3 reads: for all
k D 1; 2; : : : ; `, we have j�kj � .ord.�k//�2jI j with comparability constant de-
pending only on � . This can be expressed in simple words as follows: the relative
size of a fundamental domain in an almost parabolic map is inversely proportional
to the square of its order.
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7.3.2 Balanced decompositions

The following lemma exhibits a special way of grouping together the fundamental
domains of an almost parabolic map.

Lemma 7.6. Let � be an almost parabolic map with domain I D
S`
�D1�� , and

let d 2 N be largest such that 2dC1 ⩽ `=2. There exists a descending chain of
(closed) intervals (see Figure 7.1)

I DM0 �M1 � � � � �MdC1

for which, lettingLi ; Ri denote the (left and right) connected components ofMi n
MiC1 for all 0 ⩽ i ⩽ d , the following properties hold.

(i) Each of the intervals Li ; Ri is the union of exactly 2i consecutive atoms
(fundamental domains) of I .

(ii) We have

I D
d[

iD0
Li [ MdC1 [

d[

iD0
Ri : (7.12)

(iii) For each 0 ⩽ i ⩽ d we have jLi j � jMiC1j � jRi j, with comparability
constants depending only on the width � of �.

Proof. We define, for each 0 ⩽ i ⩽ d ,

Li D
2iC1�1[

�D2i

�� I Ri D
`C1�2i[

�D`C2�2iC1

�� :

Also, for each 0 ⩽ i ⩽ d C 1, we let

Mi D
`C1�2i[

�D2i

��

Then we immediately have (i) and (ii). Hence all we have to do is prove (iii). Let
us fix 0 ⩽ i ⩽ d . In all that follows, the implicit comparability constants are



186 7. Quasisymmetric Rigidity

L0

L1

R0

R1

M1

M2

Md

MdC1

Figure 7.1: Balanced decomposition of the domain of an almost parabolic map.

either universal or depend on the constant C� of Yoccoz’s Lemma 7.3. Applying
that lemma, we see that

jLi j D
2iC1�1X

�D2i

j�� j �

0
@
2iC1�1X

�D2i

1

�2

1
A jI j � 2�i jI j : (7.13)

Similarly, we have
jRi j � 2�i jI j : (7.14)

Moreover, we can write

jMiC1j D
2iC2�1X

�D2iC1

j�� j � 2

0
B@

X

2iC1⩽�⩽ `
2

1

�2

1
CA jI j D 2AjI j ; (7.15)

where the number A satisfies

2iC2�1X

�D2iC1

1

�2
⩽ A ⩽

1X

�D2iC1

1

�2
: (7.16)
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Both sums appearing in (7.16) are comparable to 2�i�1 (use the integral test).
Hence (7.15) and (7.16) put together yield

jMiC1j � 2�i jI j : (7.17)

Combining (7.13), (7.14) and (7.17), we see that (iii) holds as well, and the proof
is complete.

Remark 7.7. Given an interval I partitioned into atoms �� , 1 ⩽ � ⩽ `, as above,
a decomposition of the form (7.12) satisfying properties (i), (ii), (iii) of Lemma 7.6
is called a balanced decomposition of I (relative to its given partition into atoms).
Thus, Lemma 7.6 can be re-stated as saying that the domain of an almost parabolic
map always admits a balanced decomposition. In such balanced decomposition,
the intervals Mi , 0 ⩽ i ⩽ d C 1, are said to be central, whereas the intervals
Li ; Ri , 0 ⩽ i ⩽ d , are said to be lateral. The positive integer d is the depth of
the decomposition.

Remark 7.8. The following fact, more general than what was used in the proof of
Lemma 7.6, holds for the fundamental domains �� (1 ⩽ � ⩽ `) of any almost
parabolic map �: For all 1 ⩽ k < l < m ⩽ `, one has

j�lC1j C j�lC2j C � � � C j�mj
j�kC1j C j�kC2j C � � � C j�l j

� k.m � l/
m.l � k/ ;

with comparability constant depending only on the width � of � 4 Again, this
follows from Yoccoz’s Lemma 7.3. This fact will be useful in the proof of Propo-
sition 7.6.

Remark 7.9. Let I; I� be two closed intervals with I� contained in the interior of
I . Let I� be partitioned into a finite number ` of atoms, consecutively labelled
�� , 1 ⩽ � ⩽ ` as before, and suppose such atoms satisfy the inequalities (7.7)
(for some choice of the constant C� ) – so that we have a balanced decomposition
of I� (as in Lemma 7.6). Then, adding both lateral components of I n I� to
the collection of ��’s and re-labelling these ` C 2 atoms from first to last, one
sees that the inequalities (7.7) hold for the new collection also (with a different
comparability constant, in general) Thus, we get a balanced decomposition of I as
well. This remark will be used in the proof of Corollary 7.4.

4In fact, the comparability constant can be taken to be equal to (a universal constant times) C 2� ,
where C� is the constant in Lemma 7.3.
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Remark 7.10. Note that the comparability bounds given in Lemma 7.6 (iii) depend
only on the width � of �, via the constant C� in Lemma 7.3. If � is small, then
C� is potentially very bad. However, in the present text we only apply Lemma 7.6
to the cases when � D f qnC1 for some n and the domain of � is what we call a
bridge at level n (roughly speaking, a bridge is the interval between two consecu-
tive critical points of a return map f qnC1 jIn.c/ – see Section 7.4.2 for the precise
definition). In these cases, � is uniformly bounded from below by a constant that
depends only on the real bounds.

7.4 Quasisymmetric rigidity

In this section we will prove the first major theorem of this chapter, establishing
that (minimal, C 3) multicritical circle maps are quasisymmetrically rigid.This was
informally stated in the introduction to the present chapter. More precisely, we will
prove the following theorem, which first appeared in Estevez and de Faria [2018].

Theorem 7.2. Let f; g W S1 ! S1 be two C 3 multicritical circle maps with the
same irrational rotation number and the same number of (non-flat) critical points,
and let h W S1 ! S1 be a homeomorphism conjugating f to g, i.e., such that
h ıf D g ıh. If h maps each critical point of f to a corresponding critical point
of g, then h is quasisymmetric.

In the special case of maps with a single critical point, this theorem was first
proved by Yoccoz (unpublished, but see de Faria and de Melo [1999, Cor. 4.6]).
Here, the presence of at least one critical point is absolutely crucial: the statement
is false for diffeomorphisms. Indeed, there exist diffeomorphisms of the circle,
even analytic ones, that are topologically conjugate to an irrational rotation and yet
no conjugacy between them is quasisymmetric – as the reader will be able to check,
this is precisely what happens with the Arnold examples given by Theorem 4.6 (see
also de Melo and van Strien [1993, p. 75]).

The basic idea behind the proof of Theorem 7.2 is to build for each multicriti-
cal circle map f an associated fine grid in a canonical way, and then apply Corol-
lary 7.2. By canonical here we mean that the partitions making up this fine grid
must be defined in a dynamically invariant way, i.e., in purely combinatorial terms.
An obvious first attempt is to use the dynamical partitions Pn.c; f /, where c is a
critical point of f , all of whose vertices lie in the forward orbit of c. But even if
we skip levels (to circumvent the fact that PnC1.c; f / is not a strict refinement
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of Pn.c; f /) and look at a subsequence of this sequence of partitions, we are in
trouble because, whenever a partial quotient anC1 is very large, there are atoms of
PnC1.c; f / which are much smaller than the atoms of Pn.c; f / in which they
are contained. We need to group some of these small atoms together, but to do
that we first need to understand their geometry.

7.4.1 More on the geometry of dynamical partitions
Let us present some further geometric consequences of the real bounds that will
be crucial in the proof of Theorem 7.2. The results below refer to the dynamical
partitions Pn.ck/ (0 ⩽ k ⩽ N � 1, n 2 N) of a multicritical circle map f for
which the real bounds of Theorem 6.3 are satisfied. Recall that the atoms of each
partition Pn.ck/ are of two types: the long atoms, i.e. those of the form I in.ck/,
0 ⩽ i < qnC1, and the short atoms, i.e. those of the form I

j
nC1.ck/, 0 ⩽ j < qn.

In what follows, we use the notion (and notation) of comparability introduced in
Section 6.3.3.

Intersecting atoms are comparable

The first result states that any two intersecting atoms belonging to dynamical par-
titions of two distinct critical points at the same level n are comparable.

Lemma 7.7. Let c; c0 be any two critical points of our map f . If� 2Pn.c/ and
�0 2Pn.c

0/ are two atoms such that �\�0 ¤ Ø, then j�j � j�0j, i.e. they are
comparable.

Proof. Let C D C.f / > 1 be the constant given by the real bounds (Theo-
rem 6.3). There are three cases to consider, according to the types of atoms we
have: long/long, long/short, and short/short. More precisely, we have the follow-
ing three cases.

(i) We have � D I in.c/ and �0 D I
j
n .c

0/, where 0 ⩽ i; j < qnC1. Here
we may assume that f j .c0/ 2 � D Œf i .c/; f iCqn.c/�. Then f iCqn.c/ 2
�0 D Œf j .c0/; f jCqn.c0/�, andwe have the situation shown in Figure 7.2(a).
Using the monotonicity of f qn , we see that �0 � � [ f qn.�/. Apply-
ing Lemma 6.3 to x D f iCqn.c/, we see that � D Œf �qn.x/; x� and
f qn.�/ D Œx; f qn.x/� satisfy jf qn.�/j ⩽ C j�j, and from this it follows
that j�0j ⩽ .1 C C/j�j. Conversely, we also have � � f �qn.�0/ [ �0.
Again applying Lemma 6.3, this time to x D f j .c0/, we deduce just as
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before that jf �qn.�0/j ⩽ C j�0j, and therefore j�j ⩽ .1C C/j�0j. Hence
� and �0 are comparable in this case.

(ii) We have � D I in.c/ and �0 D I
j
nC1.c

0/, where 0 ⩽ i < qnC1 and 0 ⩽

j < qn. Here, we look at the interval I iCqn

nC1 .c/ � �. This interval shares
an endpoint with � (namely f iCqn.c/) and it is also an atom of PnC1.c/.
In particular, jI iCqn

nC1 .c/j � j�j, by the real bounds. There are now two sub-
cases. If�0\I iCqn

nC1 .c/ ¤ Ø, then, since�0 also belongs to PnC1.c0/, case
(i) above tells us that j�0j � jI iCqn

nC1 .c/j, and therefore �0 is comparable to
� in this sub-case. On the other hand, if�0 \ I iCqn

nC1 .c/ D Ø, then we must
have f j .c0/ 2 � (see Figure 7.2(b)). In this sub-case, we consider the
interval I jn .c0/ 2 Pn.c

0/, which also has f j .c0/ as an endpoint. Then we
have�\I jn .c0/ ¤ Ø, and again by case (i) we have j�j � jI jn .c0/j. But by
the real bounds we have jI jn .c0/j � jI jnC1.c

0/j D j�0j, so�0 is comparable
to � also in this sub-case.

(iii) We have� D I inC1.c/ and�0 D I jnC1.c
0/, where 0 ⩽ i; j < qn. This case

is entirely analogous to case (i).

Remark 7.11. The above lemma still holds if one of the critical points, say c0, is
replaced by an arbitrary regular point x0 2 S1, see de Faria and Guarino [2021,
Lem. A.4] for the details.

Critical atoms are large

Let us now consider the first return map to the interval In.c0/ [ InC1.c0/, or
equivalently the pair of maps f qn jInC1.c0/ ; f

qnC1 jIn.c0/. Besides c0 (which is
critical for both maps in the pair), this return map has at most N � 1 other critical
points: some in In.c0/, and some in InC1.c0/. Our next auxiliary result states
that the intervals of the dynamical partition at the next level (PnC1.c0/) which
contain these critical points of the return map at level n must be comparable with
their parent atom (In.c0/ or InC1.c0/).

Lemma7.8. Let 0 ⩽ k < anC1 be such that the intervalf qnCkqnC1.InC1.c0// �
In.c0/ contains a critical point of f qnC1 . Then

ˇ̌
ˇf qnCkqnC1.InC1.c0//

ˇ̌
ˇ � jIn.c0/j : (7.18)
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� D I in.c/

� D I in.c/

f qn.�/

f �qn.�0/ �0 D I jn .c0/

I
iCqn

nC1 .c/

�0DI jnC1.c
0/ I

j
n .c

0/

.a/

.b/

Figure 7.2: The cases long/long and long/short of Lemma 7.7.

Proof. If k D 0 there is nothing to prove, since we already know from the real
bounds that jf qn.InC1.c0//j � jIn.c0/j. Hence we assume that 1 ⩽ k ⩽ anC1�
1. Let us write � D f qnCkqnC1.InC1.c0// in this proof. Let 0 < j ⩽ qnC1 be
such that f j .�/ 3 c1, where c1 ¤ c0 is another critical point of f . Note that
I
j
n .c0/ D f j .In.c0// � f j .�/. We claim that jf j .�/j � jf j .In.c0//j. This

is a consequence of the following two facts.

(i) We have jI jn .c0/j � jInC1.c1/j. Indeed, these two intervals have non-
empty intersection (they both contain c1), and since I jn .c0/ 2 Pn.c0/ and
InC1.c1/ 2Pn.c1/, their comparability follows from Lemma 7.7.

(ii) We have jInC1.c1/j � jf j .�/j. To see why, first note that

j C qn C kqnC1 ⩽ qn C .k C 1/qnC1 ⩽ qn C anC1qnC1 D qnC2 ;

from which it follows that

f j .�/ D I jCqnCkqnC1

nC1 .c0/ 2PnC1.c0/ :

Since InC1.c1/ 2PnC1.c1/, and f j .�/\InC1.c1/ � fc1g ¤ Ø, we may
again apply Lemma 7.7 to deduce that InC1.c1/ and f j .�/ are comparable.
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We now proceed as follows. Consider the (closure of the) gap between� and
I
qn

nC1 inside In.c0/, namely the interval J D
Sk�1
iD1 I

qnCiqnC1

nC1 .c0/. Note that if
k D 1 then J D Ø; in this case� and I qn

nC1 are two adjacent atoms of PnC1.c0/,
hence they are comparable by the real bounds (Theorem 6.3) and there is nothing
to prove. Therefore we assume that k ⩾ 2, so that J ¤ Ø. We already know
from the above claim that jf j .�/j � jI jn .c0/j, and the real bounds also tell us
that jI jn .c0/j � jI jCqn

nC1 .c0/j. Moreover, we have I jCqnCqnC1

nC1 .c0/ � f j .J / �
I
j
n .c0/. Since jI jCqnCqnC1

nC1 .c0/j � jI jCqn

nC1 .c0/j, because these two intervals
are consecutive atoms of PnC1.c0/, it follows that jf j .J /j � jI jCqn

nC1 .c0/j. In
other words, the consecutive intervals f j .�/, f j .J / and I jCqn

nC1 .c0/ are pairwise
comparable. In particular, the b-cross-ratio determined by these three intervals is
bounded from above and from below, i.e. there exists a constantK > 1 depending
only on the constant C of the real bounds such that

K�1 ⩽ Œf j .J /; f j .T /� ⩽ K : (7.19)

Here we have written T D � [ J [ I qn

nC1.c0/. Note that T; f .T /; : : : ; f j .T /
are pairwise disjoint. Therefore, by the Cross-ratio Inequality applied to the home-
omorphism f j (and m D 1), we have CrD.f j IJ; T / ⩽ C , or equivalently
Œf j .J /; f j .T /� ⩽ CŒJ; T �. Using the lower estimate in (7.19), we see that
ŒJ; T � ⩾ C�1K�1, that is,

j�j jI qn

nC1.c0/j
j� [ J j jJ [ I qn

nC1.c0/j
⩾ .CK/�1 : (7.20)

But, since J � I qnCqnC1

nC1 .c0/, and since I qnCqnC1

nC1 .c0/ and I qn

nC1.c0/ are adjacent
atoms of PnC1.c0/, we have by the real bounds

j� [ J j > jJ j ⩾ jI qnCqnC1

nC1 .c0/j ⩾ C�1jI qn

nC1.c0/j :

Moreover, jI qn

nC1.c0/j ⩾ C�1jIn.c0/j, again by the real bounds. Putting these
facts back into (7.20), we deduce that

j�j ⩾ C�2K�1jJ [ I qn

nC1.c0/j > C�3K�1jIn.c0/j :
This shows that � and In.c0/ are comparable. Hence (7.18) is established, and
the proof of Lemma 7.8 is complete.

Remark 7.12. Similarly to what we observed in Remark 7.11, the statement of
Lemma 7.8 is still true if we replace the critical point c0 by an arbitrary regular
point on the circle (see Exercise 7.9).
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7.4.2 Building a suitable fine grid
Recall that our aim is to build, for each multicritical circle map f , a fine grid
G .f / D fQn.f /gn⩾0 which is adapted to f in the sense that all of its vertices are
dynamically labeled (in a canonical way that depends solely on the combinatorics
of �.f /). The vertices are taken from the forward orbit of one of the critical points
of f , say c0 2 Crit.f /. For each n ⩾ 0, the atoms of Qn.f / will be built as
unions of atoms belonging to the dynamical partitions Pm.f / with m ⩾ n. The
construction is subtle, and involves first building certain auxiliary partitions, using
what we already know about the geometry of dynamical partitions and Yoccoz’s
inequality, and then applying a recursive scheme.

Auxiliary partitions

Thefirst step is to construct a suitable refinement of the dynamical partitionPn.c0/

(for each n ⩾ 1). This auxiliary partition, which we denote by P�
n .c0/, is finer

than Pn.c0/ but coarser than PnC1.c0/. Such auxiliary partition will be needed
in the construction of the fine grid presented in Proposition 7.6.

From now on we write, for 0 ⩽ k < anC1, �k D f qnCkqnC1.InC1.c0//.
Note that each �k is an atom of the dynamical partition PnC1.c0/, and that

anC1�1[

kD0
�k D In.c0/ n InC2.c0/ :

We consider the times 0 ⩽ k1 < k2 < � � � < kr < anC1 having the property that
�ki

contains a critical point of f qnC1 . These are called the critical times at level
n. For convenience of notation, we also define k0 D 0. Note that f qnC1 has at
most N critical points in In.c0/, where N is the total number of critical points of
f . Since each such critical point belongs to at most two of the �k’s, we see that
r ⩽ 2N . Thus, although the non-negative integer r may depend on n (the level
of renormalization), it nevertheless ranges over only finitely many values. The
critical times ki also depend on n. The intervals �ki

for 0 ⩽ i ⩽ r will be called
critical spots.

For each i D 0; 1; : : : ; r�1, letGi � In.c0/nInC2.c0/ be the gap between the
two consecutive critical spots �ki

and �kiC1
inside In.c0/, namely the interval

Gi D
kiC1�1[

kDki C1
�k :
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We also define, for i D r ,

Gr D
anC1�1[

kDkr C1
�k :

We call Gi the i -th bridge of In.c0/. See Figure 7.3. We remark that it may well
be the case that Gi D Ø for some (or all!) values of i .

c0

InC2.c0/

In.c0/

f qn.c0/�0�ki
�kiC1�kr

� � � � � �
GiGr

Figure 7.3: Primary bridges and critical spots.

Lemma 7.9. Each non-empty bridge Gi is comparable to In.c0/.

Proof. If Gi ¤ Ø, then Gi contains at the very least the atom �ki C1, adjacent to
�ki

, and so we have jGi j ⩾ j�ki C1j � j�ki
j, by the real bounds. By Lemma 7.8,

we have j�ki
j � jIn.c0/j. Since we also have Gi � In.c0/, it follows that

jGi j � jIn.c0/j.

Thus, we have the following decomposition of In.c0/ n InC2.c0/ as union of
at most 2r C 2 ⩽ 4N C 2 intervals:

In.c0/ n InC2.c0/ D
r[

iD0
�ki
[

r[

iD0
Gi : (7.21)

In view of Lemmas 7.8 and 7.9, as well as the real bounds, each interval in the
above decomposition is comparable to In.c0/. In particular, they are all pairwise
comparable.
Remark 7.13. Note that the image of each critical spot �ki

under f qnC1 is also
comparable to In.c0/: this is simply because f qnC1.�ki

/ D �ki C1 is adjacent
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to �ki
in PnC1.c0/. Likewise, the image of each bridge Gi under f qnC1 is also

comparable to In.c0/, because either i < r and f qnC1.Gi / contains the critical
spot �kiC1

, or i D r , in which case f qnC1.Gr/ contains InC2.c0/.
Let us now map the decomposition (7.21) forward by f to get corresponding

decompositions of all long atoms I jn .c0/ 2 Pn.c0/, for j D 1; 2; : : : ; qnC1 � 1.
We get in this fashion a new partition P�

n .c0/ of the circle (modulo endpoints).
More precisely, let

P
�
n .c0/ D

n
f j .�ki

/ W 0 ⩽ i ⩽ r I 0 ⩽ j ⩽ qnC1 � 1
o

(7.22)

[
n
f j .Gi / W 0 ⩽ i ⩽ r I 0 ⩽ j ⩽ qnC1 � 1

o

[
n
f j .InC2/ W 0 ⩽ j ⩽ qnC1 � 1

o

[
n
f `.InC1/ W 0 ⩽ ` ⩽ qn � 1

o
:

This partition refines Pn.c0/, although not strictly because each short atom of
Pn.c0/ is left untouched by the above procedure.
Remark 7.14. Generalizing the nomenclature introduced earlier, all atoms of
P�
n .c0/ of the form f j .�ki

/ are called critical spots, and all those of the form
f j .Gi / are called bridges. We sometimes refer to bridges and critical spots con-
tained in In.c/ (i.e., those with j D 0) as primary, and to the remaining ones as
secondary.

Proposition 7.4. Any two consecutive atoms of P�
n .c0/ are comparable.

Proof. By the real bounds (Theorem 6.3), the partition Pn.c0/ has the stated com-
parability property. Hence it suffices to check that all bridges and critical spots
of P�

n .c0/ inside each long atom I
j
n .c0/ 2 Pn.c0/ are comparable to I jn .c0/.

We already know this for j D 0 (see Lemma 7.9 and the paragraph following
its proof). For the other values of j , map I jn .c0/ forward by f qnC1�j onto
I
qnC1
n .c0/ � In.c0/ [ InC1.c0/ and apply the Cross-ratio Inequality, combined

with Remark 7.13.

Balanced decompositions of bridges

We distinguish two types of atoms belonging to the partition P�
n .c0/:
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(a) Regular atoms: These consist of all short atoms of Pn.c0/, all of which
belong to P�

n .c0/, all intervals of the form f j .InC2/ (with 0 ⩽ j ⩽
qnC1 � 1), all critical spots f j .�ki

/ (with 0 ⩽ i ⩽ r , 0 ⩽ j ⩽ qnC1 � 1),
together with all those bridges Gi;j D f j .Gi / that have less than 1; 000
atoms of PnC1.c0/ in it (i.e., those with kiC1 � ki ⩽ 1; 000).

(b) Saddle-node atoms: These are the remaining bridges; to wit, those Gi;j
whose decomposition as a union of atoms of PnC1.c0/ has at least 1; 000
such atoms in it (i.e., those with kiC1 � ki > 1; 000).

Proceeding by analogy with a procedure first described in de Faria and de Melo
[1999, §4.3], we will show, with the help of Yoccoz’s Lemma 7.3, how to get a
balanced decomposition of a saddle-node bridge.

The following lemma is the key to showing that, on every primary saddle-node
bridge, say Gi � In.c0/ given by

Gi D
kiC1�1[

kDki C1
�k ;

the return map f qnC1 acts as an almost parabolic map.

Lemma 7.10. There exists a positive integer n0 D n0.f / such that the following
holds for all n ⩾ n0. For each non-empty primary bridge Gi � In.c0/, the
restriction f qnC1 jGi

has negative Schwarzian derivative everywhere, i.e., for all
x 2 Gi we have Sf qnC1.x/ < 0.

Proof. This is an immediate consequence of Proposition 6.2 (see Section 6.5).

From Lemma 7.10, we deduce the following result concerning the bridgesGi ,
0 ⩽ i ⩽ r , contained in the closest return interval In.c0/ (see Figure 7.4).

Proposition 7.5. For all n ⩾ n0, where n0 is as in Lemma 7.10, and each i D
0; 1; 2; : : : ; r for which the bridge Gi � In.c0/ is non-empty, the restriction

f qnC1 jGi
W Gi ! f qnC1.Gi /

is an almost parabolic map with length `i D kiC1 � ki � 1 and width �i ⩾ � ,
where � D �.C / > 0 depends only on the constant C in the real bounds.
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�kiC1
�ki

f qnC1

f qnC1 f qnC1

� � �

Figure 7.4: Two consecutive critical spots and the bridge joining them: the dy-
namical picture.

Proof. By construction, the map � D f qnC1 jGi
has no critical points, hence it

is a diffeomorphism onto its image. Since Gi D
SkiC1�1
kDki C1�k and �.�k/ D

f qnC1.�k/ D �kC1 for all k, it follows that the length of � is as stated. Moreover,
by Lemma 7.10, we have S� D Sf qnC1 < 0 throughout. Finally, since the
intervals �ki C1 and �kiC1�1 are both comparable to Gi (by the real bounds and
Lemma 7.9), the last statement concerning the width of � follows as well.

Combining Proposition 7.5 with Lemma 7.6 and the Koebe distortion principle,
we deduce that every saddle-node bridge admits a balanced decomposition. More
precisely, we have the following result.
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Corollary 7.4. For all n 2 N, each non-empty bridgeGi;j D f j .Gi / 2P�
n .c0/

admits a balanced decomposition (with uniform comparability constants depend-
ing only on the real bounds for f ).

Proof. We may of course assume that n ⩾ n0, where n0 is as in Lemma 7.10.
For primary bridges, namely Gi;0 D Gi � In.c0/ (i.e., those with j D 0), the
assertion follows from Proposition 7.5 and Lemma 7.6. For secondary bridges,
namely Gi;j D f j .Gi /, 1 ⩽ j ⩽ qnC1 � 1, use the fact that f j W int.Gi / !
int.Gi;j / is a diffeomorphism and apply Koebe’s distortion principle (the image
under f j of the balanced decomposition of Gi yields a balanced decomposition
of Gi;j , as desired).

The recursive scheme

Now we define an auxiliary collection of intervals P��
n .c0/, for each n ⩾ 1. The

intervals belonging to P��
n .c0/ are all atoms of P�

n .c0/ which are not saddle-
node, together with the atoms of the balanced partitions of all saddle-node atoms
of P�

n .c0/. We warn the reader that, unlike P�
n .c0/, the collection P��

n .c0/ is
not a partition of S1 (modulo endpoints), since it contains, for instance, all central
intervals of any given saddle-node atom of P�

n .c0/, and these are in fact nested.
The partition Qn.f / that we want is constructed using elements from P��

m .c0/

and P�
m.c0/ for various values of m ⩽ n. The construction follows a recursive

scheme that we proceed to describe.

Proposition 7.6. There exists a fine grid fQn.f /g in S1 with the following prop-
erties.

(a) Every atom of Qn.f / is the union of at most a D 4N C 3 atoms5 of
QnC1.f /.

(b) Every atom � 2 Qn.f / is a union of atoms of P�
m.c0/ for some m ⩽ n,

and there are three possibilities:

(b1) � is a single atom of P�
m.c0/;

(b2) � is a central interval of P��
m .c0/;

(b3) � is the union of at least two atoms of P�
mC1.c0/ contained in a single

atom of P��
m .c0/.

5As we saw in Section 7.4.2, each long interval I in.c0/ 2 Pn.c0/ is decomposed as the union
of 2r C 3 ⩽ 4N C 3 atoms of P�

n .c0/.
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Proof. The proof is by induction on n. The first partition Q1.f / consists of all
atoms of P�

1 .c0/ which are not saddle-node atoms together with the intervals L0,
M1 and R0 of each saddle-node interval I 2P�

1 .c0/ (I D L0 [M1 [R0). It is
clear that each atom of Q1.f / falls within one of the categories (b1)-(b3) above.

Assuming Qn.f / defined, define QnC1.f / as follows. Take an atom I 2
Qn.f / and consider the four cases below.

(1) If I is a single atom of P�
m.c0/ then one of two things can happen:

(i) I is a saddle-node atom: In this case write I D L0 [M1 [ R0 as
above and takeL0,R0 andM1 as atoms of QnC1. Note that the lateral
intervals L0 and R0 are atoms of type (b1), while the central interval
M1 is of type (b2).

(ii) I is not a saddle-node atom: Here, there are two sub-cases to consider.
The first possibility is that I is a single (regular) atom of Pm.c0/, in
which case we break it into the union of at most a atoms of P�

mC1.c0/
and take them as atoms of QnC1.f /, all of which are of type (b1). The
second possibility is that I is a (short) bridge, in which case we break
it up into its ⩽ 1; 000 constituent atoms of PmC1.c0/ and take them
as atoms of QnC1.f /, again all of type (b1).

(2) If I is a central interval of P�
m.c0/ which is not the final interval, consider

the next central interval of .c0/ inside I , sayM , and the two corresponding
lateral intervals L and R such that I D L [M [ R, and declare L, R and
M members of QnC1.f /. Note that L and R are of type (b3), while M is
of type (b2).

(3) If I is a union of p ⩾ 2 consecutive atoms J1; : : : ; Jp of PmC1.c0/ inside
a single atom of P�

m.c0/ (this happens when I is contained in a lateral
interval of the balanced decomposition of a long bridge), divide it up into
two approximately equal parts. More precisely, write p D 2q C r , where
r D 0 or 1, and consider I D L [R where

L D
q[

jD1
Jj ; R D

p[

jDqC1
Jj :

We obtain in this fashion two new atoms of QnC1.f / (namely L and R)
which are either single atoms of PmC1.c0/, and therefore of type (b1), or
once again intervals of type (b3).
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This completes the induction. That fQn.f /gn⩾1 constitutes a fine grid follows
easily from the real bounds, Lemma 7.6, Remark 7.8 and Corollary 7.4. Indeed, it
suffices to verify that condition (c) of Definition 7.2 is satisfied (for some constant
� > 1 depending only on the real bounds). Given two adjacent atoms�;�0 2 Qn,
there are two cases to consider.

(a) There exist m;m0 ⩽ n such that � is a single atom of Pm.c0/ and �0 is a
single atom of Pm0.c0/. In this case, either m D m0, or m and m0 differ by
1 (this is easily proved by induction on n from the construction of Qn given
above). But then we have j�j � j�0j by the real bounds (Theorem 6.3).

(b) For somem ⩽ n, at least one of the two atoms, say�, is the union of p ⩾ 2

atoms of PmC1.c0/ inside a single atom of P�
m.c0/, which is necessarily

a bridge. This implies that both � and �0 are contained in the same bridge
G 2P�

m.c0/. Looking at the balanced decomposition ofG (given by Corol-
lary 7.4), we see that there are two possibilities. The first possibility is that
both� and�0 are contained in the same lateral interval (Li ; Ri ) or the same
central interval (Mi ) of said balanced decomposition. In this case, � and
�0 are both unions of the same number of fundamental domains of G, and
we have j�j � j�0j by Lemma 7.6 and Remark 7.8. The second possibility
is that � and �0 are contained in adjacent intervals of the balanced decom-
position of G. In this case, one of the two atoms, � or �0, is the union of
at most twice as many fundamental domains of G as the other, and we have
j�j � j�0j, again by Lemma 7.6 and Remark 7.8.

This establishes the desired comparability of adjacent atoms of Qn.f / in all cases,
with uniform constants depending only on the real bounds, and the proof is com-
plete.

7.4.3 The punchline

The proof of Theorem 7.2 is now within reach.

Proof of Theorem 7.2. By hypothesis, the conjugacy h sets a bijective correspon-
dence between the critical points of f and the critical points of g. Let c be a critical
point of f , and let h.c/ be the corresponding critical point of g. Then hmaps each
partition Pn.c; f / onto the corresponding partition Pn.h.c/; g/, sending critical
spots to critical spots and bridges to bridges. Therefore if Gf D fQn.c; f /g and
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Gg D fQn.h.c/; g/g are the fine grids for f and g, respectively, given by Proposi-
tion 7.6, it follows that hmaps Gf bijectively onto Gg . But then, by Corollary 7.2,
h is quasisymmetric. This finishes the proof.

Exercises

Exercise 7.1. Let  W S1 ! S1 be a quasisymmetric homeomorphism. Given
an interval T � S1, let mT ⩾ 1 be the infimum over all C > 1 such that
C�1j .I /j ⩽ j .J /j ⩽ C j .I /j for all pairs of adjacent intervals I; J � T

of equal length.

(i) If I � T � S1 are intervals sharing an endpoint and satisfying � D
jI j=jT j ⩽ 1=2, show that

�ˇT .�/ ⩽
j .I /j
j .T /j ⩽ �T .�/ ;

where

ˇT .�/ D
�
1C 1

k � 1

�
log2.1CmT / ; T .�/ D

�
1 � 1

k

�
log2.1Cm�1

T / ;

and where k ⩾ 2 is the unique integer such that 2�k < � ⩽ 2�.k�1/. [Hint.
For each n ⩾ 1, let Tn � T be the subinterval sharing an endpoint with
both I and T and having length 2�njT j. First estimate j .TnC1j=j .Tn/j
and then use a telescoping decomposition.]

(ii) Deduce from (i) that every quasisymmetric homeomorphism is bi-Hölder
continuous.

[Reference: de Faria [1996].]
Exercise 7.2. Prove Corollary 7.1.
Exercise 7.3. Prove the assertions made in Remark 7.1.
Exercise 7.4. Prove Corollary 7.2.
Exercise 7.5. Prove Lemma 7.2.
Exercise 7.6. Let f be a multicritical circle map with irrational rotation number
� D �.f / of bounded type, and let h W S1 ! S1 be a quasisymmetric homeo-
morphism conjugating f to the rotation R� (such an h exists by Herman’s Theo-
rem 7.1). Show that h is purely singular with respect to Lebesgue measure, i.e.,
Dh.x/ D 0 for Lebesgue almost every x 2 S1.
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Exercise 7.7. Prove the assertion made following the statement of Theorem 7.2,
namely, that the Arnold analytic diffeomorphisms given in Theorem 4.6 cannot be
quasisymmetrically conjugate to a rotation.
Exercise 7.8. Given a quasisymmetric homeomorphism � W S1 ! S1, consider
its scalewise logarithmic quasisymmetric distortion �� W RC ! RC defined by

��.t/ D sup
x2R ; j� j⩽t

log
�.x C �/ � �.x/
�.x/ � �.x � �/ :

Note that ��.t/ is a non-decreasing function of t . The purpose of this exercise is
to guide the reader to a proof of the following theorem due to L. Carleson [1967].

Theorem. If
Z 1

0

Œ��.t/�
2

t
dt <1, then � is absolutely continuous, and in fact its

derivativeD� belongs to L2.S1/.
Let .�n/n⩾0 be the sequence of dyadic C 0 approximations6 to �, and for each

n ⩾ 0 let
Kn D sup

1⩽k⩽2n�1

�n..k C 1/2�n/ � �n.k2�n/
�n.k2�n/ � �n..k � 1/2�n/

:

For each n ⩾ 0, let 'n D D�n. Note that, since �n is piecewise affine, 'n is a
step function, and we have

�n.x/ D �n.0/C
Z x

0

'n.t/ dt : (7.23)

(i) Show that logKn ⩽ ��.2
�n/, and deduce from this that

1X

nD0
.Kn � 1/2 <1 :

(ii) Show that for each m > n > 0 we have

k'm � 'nk2 D k'mk2 � k'nk2 :

(iii) Using (i) and (ii), show that .'n/n⩾0 is a Cauchy sequence inL2.S1/; hence
it is also a Cauchy sequence in L1.S1/ (why?).

6As usual in this book, we think of the circle R=Z as Œ0; 1� with the endpoints 0 and 1 identified.
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(iv) Combining (iii) with (7.23) and the fact that .�n/ converges uniformly to �,
deduce that � is absolutely continuous, and that D� D ' (Lebesgue a.e.),
where ' D lim'n 2 L2.S1/.

[Reference: See the expository note de Faria [n.d.]]
Remark. In the language of probability theory, what we have in Exercise 7.8 is an
instance of an L2 martingale convergence theorem.
Exercise 7.9. Let f W S1 ! S1 be a multicritical circle map with irrational rota-
tion number, and let x 2 S1. If 0 ⩽ i < anC1 is such that� D f qnCiqnC1.In.x//

is a critical spot at level n, show that j�j � jIn.x/j. Do this by working through
the following steps:

(i) Let � 2 � be a critical point of f qnC1 , say � D f �j .c/ for some c 2
Crit.f / and some 0 ⩽ j < qnC1. Show that the interval L � In.x/ with
endpoints � and f qnC1.�/ is comparable to �.

(ii) Show that the intervalM with endpoints � and f qn.�/ that does not contain
x is comparable to In.x/.

(iii) Let R be the interval with endpoints f qn.�/ and f 2qn.�/ that does not con-
tain x, and let T D L[M [R. Show that the cross-ratio Œf j .M/ ; f j .T /�

is bounded from below.

(iv) Using (iii) and the Cross-ratio Inequality, show that jLj � jM j, and deduce
from this that j�j � jIn.x/j, as desired.



8 Ergodic Aspects

In this chapter we examine multicritical circle maps from the point of view of mea-
surable dynamics. We have seen in Theorem 2.3 that every homeomorphism of the
circle without periodic points is uniquely ergodic. In particular, every multicriti-
cal circle map f with irrational rotation number is uniquely ergodic. If � denotes
the unique Borel probability measure invariant under f , then we also know from
Corollary 2.2 that � is either absolutely continuous or purely singular with respect
to Lebesgue measure. Can we resolve this dichotomy?

The answer is yes. As we will see in Section 8.2, Khanin [1991] proved that
the measure � is always purely singular with respect to Lebesgue measure. After
establishing this fact, we will prove in Section 8.3 that the Lyapunov exponent of
f under � is equal to zero (compare with Theorem 3.11 in Section 3.4.2). We will
close this chapter with the statements of some results on the Hausdorff dimension
of the invariant measure � (see Section 8.5).

8.1 The integrability of logDf

As before, let f be aC 3multicritical circle map with finitely many non-flat critical
points and with irrational rotation number �.f /, and let � be its unique invariant
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Borel probability measure. By Yoccoz’s Theorem 6.2, there exists a circle homeo-
morphism h W S1 ! S1 which is a topological conjugacy between f and the rigid
rotation by angle �.f /, namely R�.f /. More precisely, the following diagram
commutes.

.S1; �/
f����! .S1; �/

h

??y
??yh

.S1;m/ ����!
R�.f /

.S1;m/

where m denotes the normalized Lebesgue measure in the unit circle (the Haar
measure for the multiplicative group of complex numbers of modulus 1). There-
fore, � is just the push-forward of Lebesgue measure under h�1, that is, �.A/ D�
h�1

� m

�
.A/ D m .h.A// for any Borel set A in the unit circle (recall from Exer-

cise 2.3 that the conjugacy h is unique up to post-composition with rotations, so
the measure � is well-defined).

In this section we prove that logDf belongs to L1.�/. Let us denote by
c1; c2; : : : ; cN the critical points of f . Let ' W S1 ! R be given by ' D j logDf j.
For each 1 ⩽ j ⩽ N and each n ⩾ 1, let Jn.cj / D In.cj / [ InC1.cj /. We will
use the following four facts:

F1. From the real bounds (Theorem 6.3) there exists 0 < � < 1 such that
jIk.cj /j ⩾ �k for all k ⩾ 1 and each 1 ⩽ j ⩽ N .

F2. As explained above, the measure � is the pullback of the Lebesgue measure
under any topological conjugacy between f and the corresponding rigid
rotation. In particular, for each 1 ⩽ j ⩽ N and for all k ⩾ 1, we have
�.Ik.cj // D jqk� � pkj and by Theorem 1.2(i):

1

qk C qkC1
< �.Ik.cj // ⩽

1

qkC1
for all k ⩾ 1 and each 1 ⩽ j ⩽ N .

F3. By combinatorics, we have�.Ik.cj /nIkC2.cj // D akC1�.IkC1.cj //, for
all k ⩾ 0 and for each 1 ⩽ j ⩽ N .

F4. Since each cj is a non-flat critical point, there exist C0 > 0 and a neighbor-
hood Vj of cj such that for all x 2 Vj we have

'.x/ ⩽ C0 log
1

jx � cj j
: (8.1)

We may assume, of course, that the Vj ’s are pairwise disjoint.
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c

S1

Ik�1nIkC1 IknIkC2

Jk

Jk�1

' D j logDf j

Figure 8.1: Bounding the integral of ' D j logDf j near a critical point c.

With all these facts at hand we are ready to prove the desired integrability result.
This result was first obtained by Przytycki [1993, Th. B], but the proof presented
here is taken from de Faria and Guarino [2016].

Proposition 8.1. The function logDf is �-integrable, i.e., logDf 2 L1.�/.

Proof. For each 1 ⩽ j ⩽ N and each n ⩾ 1, we define En D
SN
jD1 Jn.cj / and

consider 'n W S1 ! R given by

'n D 1S1nEn
� ' ;

that is, 'n D 0 on each Jn.cj / and 'n D ' on the complement of their union.
Note that the sequence f'ng converges monotonically to ' D j logDf j. Let n0
be the smallest positive integer such that Jn0

.cj / � Vj for all 1 ⩽ j ⩽ N . We
only look at values of n greater than n0. Then, since 'n is identically zero on En
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and agrees with ' everywhere else, we can write

Z

S1

'n d� D
Z

S1nEn0

' d�C
NX

jD1

n�1X

kDn0

Z

Ik.cj /nIkC2.cj /

' d� (8.2)

The first integral on the right-hand side is a fixed number independent of n. Hence
it suffices to bound the last double sum. Using (8.1) and the fact that in Ik.cj / n
IkC2.cj / the closest point to cj is f qkC2.cj /, we see that (see Figure 8.1)

n�1X

kDn0

Z

Ik.cj /nIkC2.cj /

' d� ⩽

⩽ C0

n�1X

kDn0

�.Ik.cj / n IkC2.cj // log
1

jIkC2.cj /j
(8.3)

Applying facts F1, F2 and F3 to this last sum, we see that

n�1X

kDn0

�.Ik.cj / n IkC2.cj // log
1

jIkC2.cj /j
⩽

⩽ C1

n�1X

kDn0

.k C 2/ akC1 jqkC1� � pkC1j (8.4)

However we know from Theorem 1.2 that

jqkC1� � pkC1j ⩽
1

qkC2
D 1

akC1qkC1 C qk
<

1

akC1qkC1
(8.5)

Putting (8.5) into (8.4) we get

n�1X

kDn0

�.Ik.cj / n IkC2.cj // log
1

jIkC2.cj /j
⩽ C1

n�1X

kDn0

.k C 2/
qkC1

: (8.6)

Since the qk’s grow exponentially fast (at least as fast as the Fibonacci numbers),
we have 1X

kD0

.k C 2/
qkC1

< 1 :
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Hence the left-hand side of (8.6) is uniformly bounded. Taking this information
back to (8.3) and then to (8.2), we deduce that there exists a constant C2 > 0 such
that Z

S1

'n d� ⩽ C2 for all n ⩾ 1.

But then, by the Monotone Convergence Theorem, ' is �-integrable, as desired.

Remark 8.1. The proof of Proposition 8.1 yields, mutatis mutandis, a slightly
stronger result, namely that logDf 2 Lp.�/ for every finite p ⩾ 1.

8.2 No invariant � -finite measures

As mentioned before, the unique Borel probability measure which is invariant un-
der a minimal multicritical circle map is purely singular with respect to Lebesgue
measure. This result was first proved by Khanin [1991, Th. 4] in the late eighties,
with the help of a certain thermodynamic formalism (see also Graczyk and Świątek
[1993, Prop. 1]). We will follow a very different approach from the one used by
Khanin. We will in fact prove a stronger result, namely the following theorem.

Theorem 8.1. Let f W S1 ! S1 be a C 3 multicritical circle map with irrational
rotation number. Then f does not admit a � -finite invariant measure which is
absolutely continuous with respect to Lebesgue measure.

This theorem was recently proved by the authors, see de Faria and Guarino
[2021]. Our entire exposition here is extracted almost ipsis verbis from that paper.

The fact that a circle map f is uniquely ergodic does not eliminate the pos-
sibility that f leaves invariant an infinite, � -finite measure which is absolutely
continuous with respect to Lebesgue measure. For instance, if f happens to be a
Denjoy counterexample, it is easy to construct a plethora of such measures (see
Exercise 8.1). In fact, examples of minimalC1 diffeomorphisms of the circle pos-
sessing infinite, � -finite invariant measures have been shown to exist by Katznel-
son [1977] (see Exercise 8.2 for a non-smooth example).

Theorem 8.1 is saying that the above phenomenon cannot occur in the realm
of multicritical circle maps. For its proof, one can argue by contradiction. If f is
a minimal multicritical circle map and � is an infinite, � -finite invariant measure,
let us denote by  D d�=dm the Radon–Nikodým derivative of � with respect
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to Lebesgue measure m. Then  is a Borel function such that 0 <  < 1
Lebesgue-a.e., and the following cocycle identity is satisfied:

 .x/ D  ı f .x/ �Df.x/ for Lebesgue a.e. x 2 S1 : (8.7)

The rough idea will be to show that, due to the presence of (non-flat) critical points,
f has the following property. Near every point x on the circle, and at every scale,
one can find two intervals of very different lengths, say I and J , and an iterate
of f mapping one of them onto the other diffeomorphically, say J D f k.I /,
with bounded distortion. However, if E denotes a positive Lebesgue measure set
of points on the circle where  is approximately constant, we can take x to be
a Lebesgue density point of E, and choose I and J so close to x that they are
both almost filled-in by points of E. The cocycle identity (8.7) and a bounded
distortion argument then imply that Df k is approximately equal to 1 inside I .
But this implies that I and J have approximately the same length, a contradiction.

Let us turn this rough idea into a formal criterion.

8.2.1 The Katznelson criterion

The proof of Theorem 8.1, given originally in de Faria and Guarino [2021] and
reproduced in Section 8.2.2 below, is based on a criterion for non-existence of � -
finite measures which is a generalization of a criterion given by Katznelson [1977,
Th. 1.1].

Recall from Chapter 7 that a nested sequence of partitions fQngn⩾0 is a se-
quence of finite interval partitions of S1 (modulo endpoints) with the property
that each atom of Qn is a union of atoms of QnC1, for all n ⩾ 0, and such that
mesh.Qn/! 0 as n!11.

Definition 8.1. A C 1 circle homeomorphism f has the Katznelson property if
there exist a nested sequence of partitions fQngn⩾0 and constants 1 < b0 < b1
and 0 < � < 1 such that the following holds. For each � 2 Qn, the collection
A � D fJ 2 QnC1 W J � �g can be decomposed as a disjoint union A � D
A �
1 [A �

2 [A �
3 with the following properties:

(i) For each J1 2 A �
1 and each J2 2 A �

2 we have jJ1j ⩾ b0jJ2j;

1As customary, the mesh of a partition is the maximum length of its atoms.
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(ii) For each J1 2 A �
1 and each J2 2 A �

2 there exists k 2 N such that f kjJ1

is a diffeomorphism mapping J1 onto J2, and we have Df k.x/ ⩾ b�1
1 for

all x 2 J1.

(iii) We have �.˝/ ⩾ � j�j, where

˝ D
[

J2A
�

1 [A
�

2

J :

(iv) The sub-collections A �
1 and A �

2 have the same number of elements.

Remark 8.2. The sub-collection A �
3 , about which nothing is said in the above

definition, plays no role in the arguments to come. Only A �
1 and A �

2 matter.

Theorem 8.2. Let f W S1 ! S1 be a C 1 minimal homeomorphism, and suppose
that f has the Katznelson property. Then f does not admit a � -finite invariant
measure which is absolutely continuous with respect to Lebesgue measure.

We refer to this theorem as the Katznelson criterion.

Proof. Assume by contradiction that there exists a � -finite measure � which is
invariant under f and is absolutely continuous with respect to Lebesgue measure.
Let  D d�=dm be the corresponding Radon–Nikodým derivative. This is a
Borel measurable function that is positive and finite Lebesgue a.e., and it satis-
fies the cocycle identity (8.7). By an easy induction, that cocycle identity can be
written more generally as

 .x/ D  ı f k.x/ �Df k.x/ for Lebesgue a.e. x 2 S1 ; for all k 2 Z : (8.8)

Fix a small number 0 < ı < 1; we will need it small enough that .1C ı/�1b0 > 1.
For each real number c consider the Borel set Ec D fx 2 S1 W c ⩽  .x/ ⩽
c.1C ı/g. Then we have m.Ec/ > 0 for some choice of c. We choose such c and
from now on write E D Ec .

By the Lebesgue density theorem, m-a.e. x 2 E is such that the density of E
at x is 1. Hence for each � > 0 we can find a suitable level n 2 N and an atom
� 2 Qn such that

m.E \�/
j�j ⩾ 1 � � : (8.9)
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We will show that the assumption at the start of this proof contradicts our standing
hypothesis on f if we take � sufficiently small. How small � has to be will be
determined in the course of the argument to follow.

Let A � and A �
i , i D 1; 2; 3 be as defined before, and for i D 1; 2 let ˝i DS

J2A
�

i
J . Then (iii) in our standing hypothesis tells us that ˝ D ˝1 [ ˝2

satisfies m.˝/ ⩾ � j�j. Hence from (8.9) we have

m.E \˝/
m.˝/

⩾ 1 � ���1 ; (8.10)

provided � is so small that ���1 < 1. Note that our standing hypothesis also tells
us that b0 m.˝2/ ⩽ m.˝1/ ⩽ b1 m.˝2/. These inequalities imply that

m.˝/ ⩽ .1C b�1
0 /m.˝1/ and m.˝/ ⩽ .1C b1/m.˝2/ : (8.11)

Using (8.10) and the first inequality in (8.11), we get

m.˝1/ ⩽ m.E \˝1/Cm.˝ nE/
⩽ m.E \˝1/C ���1

m.˝/

⩽ m.E \˝1/C ���1.1C b�1
0 /m.˝1/ :

Hence we have
m.E \˝1/

m.˝1/
⩾ 1 � ���1.1C b�1

0 / ;

and this lower bound will be positive (in fact close to one) provided � is sufficiently
small. Similarly, using (8.10) and the second inequality in (8.11), we deduce that

m.E \˝2/
m.˝2/

⩾ 1 � ���1.1C b1/ :

Thus, writing � D ���1maxf1C b�1
0 ; 1C b1g D ���1.1C b1/, we have

m.E \˝i /
m.˝i /

⩾ 1 � � ; for i D 1; 2 : (8.12)

Note that � ! 0 when � ! 0. Now, since both ˝1 and ˝2 are disjoint unions
of atoms in QnC1, it follows from (8.12) that there exist atoms J1 2 A �

1 and
J2 2 A �

2 such that

m.Ji \E/ ⩾ .1 � �/jJi j ; for i D 1; 2 : (8.13)
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Let k 2 N be such that f k maps J1 diffeomorphically onto J2, and let us estimate
the Lebesgue measure of f �k.J2 nE/. By (ii) in our standing hypothesis and the
chain rule we have Df �k.y/ ⩽ b1 for all y 2 J2. Since by (8.13) we have
m.J2 nE/ ⩽ �jJ2j, we get

m.f �k.J2 nE// D
Z

J2nE
Df �k dm ⩽ b1�jJ2j : (8.14)

Letting J �
1 D fx 2 J1 \E W f k.x/ 2 Eg, it follows from (8.13) and (8.14) that

m.J �
1 / D m.J1 \E/ �m.f �k.J2 nE// ⩾ Œ.1 � �/b0 � �b1� jJ2j : (8.15)

But now observe that the equality  D . ı f k/Df k holds Lebesgue almost
everywhere: this is simply the cocycle identity (8.8). Since for every x 2 J �

1 we
have both x 2 E and f k.x/ 2 E, it follows from this equality and the definition
of E that for Lebesgue a.e. x 2 J �

1 we haveDf k.x/ ⩾ .1C ı/�1. Therefore

jJ2j > m.f k.J �
1 // D

Z

J�
1

Df k dm ⩾ .1C ı/�1 m.J �
1 / : (8.16)

Combining (8.15) and (8.16) and cancelling out jJ2j from both sides of the result-
ing inequality, we deduce at last that

.1C ı/�1Œ.1 � �/b0 � �b1� < 1 : (8.17)

But since .1 C ı/�1b0 > 1, the inequality (8.17) is clearly violated if � is suf-
ficiently small, which is certainly the case if we choose � sufficiently small. We
have reached the desired contradiction, and the proof is complete.

8.2.2 Proof of Theorem 8.1
The proof of Theorem 8.1 entails two separate arguments, presented in separate
sections below as first step and second step, respectively. Which argument applies
for a given map f depends on the nature of its rotation number – more precisely,
on the behavior of the partial quotients of the continued fraction development of
�.f /.

The first argument deals with all irrational rotation numbers except those num-
bers (of bounded type) whose partial quotients are bounded by a certain constant
B that depends only on the real bounds (Theorem 6.3). The second argument
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takes care of the bounded type case. They are presented as two separate theorems,
namely Theorem 8.3 and Theorem 8.4, respectively.

The arguments presented in both proofs have different flavors, exploiting dif-
ferent aspects of the geometry of multicritical circle maps. In particular, while the
proof of Theorem 8.3 uses the real bounds and Yoccoz’s inequality (Lemma 7.3),
the proof of Theorem 8.4 uses only the real bounds.

First step

The precise result we shall prove here is the following weaker version of Theo-
rem 8.1.

Theorem 8.3. GivenN ⩾ 1 in N and d > 1 there exists a universal constantB D
B.N; d/ 2 N such that the following holds. If f is a multicritical circle map with
at most N critical points whose criticalities are bounded by d , and if the rotation
number of f is irrational and its partial quotients an satisfy lim sup an ⩾ B , then
f does not admit an invariant � -finite measure which is absolutely continuous
with respect to Lebesgue measure.

In the proof of Theorem 8.3, we will make extensive use of the following fact,
which is an immediate consequence of Lemma 7.8.

Lemma 8.1. Let c0 be a critical point of f , and let 0 ⩽ k < anC1 be such that
the interval f qnCkqnC1

�
InC1.c0/

�
� In.c0/ contains a critical point of f qnC1 .

Then
ˇ̌
ˇf i

�
f qnCkqnC1.InC1.c0//

�ˇ̌
ˇ �

ˇ̌
ˇf i

�
In.c0/

�ˇ̌
ˇ for all i 2 f0; 1; : : : ; qnC1g.

Proof. We only sketch the proof. For i D 0 the statement is just Lemma 7.8.
Moreover, by Theorem 6.3, the image of each critical spot under f qnC1 is also
comparable to In.c0/; this is simply because

f qnC1
�
f qnCkqnC1.InC1.c0//

�
D f qnC.kC1/qnC1

�
InC1.c0/

�

is adjacent to f qnCkqnC1 .InC1.c0// in PnC1.c0/. So the statement of our lemma
also holds for i D qnC1. Now, for each i 2 f1; : : : ; qnC1� 1g consider the iterate
f qnC1�i , and apply the Cross-ratio Inequality (Theorem 5.1).

In keeping with the terminology introduced in Section 7.4.2, an interval such
as f qnCkqnC1

�
InC1.c0/

�
appearing in the statement above, containing some crit-

ical point of f qnC1 , is called a critical spot. Thus, Lemma 8.1 is saying that every
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critical spot is large, i.e., is comparable to the atom of Pn.c0/ in which it is con-
tained, and the same happens to all its images up to time i D qnC1.

Proof of Theorem 8.3. By Theorem 8.2, it suffices to show that an f as in the state-
ment satisfies the standing hypothesis previously formulated, provided lim sup an
is sufficiently large. This will be proved with the help of the real bounds (Theo-
rem 6.3), Yoccoz’s inequality (Lemma 7.3) and Lemma 8.1 above.

Let c0 be a critical point of f and consider the associated dynamical partitions
Pn.c0/ for n ⩾ n0.f /, where n0.f / is as in Theorem 6.3. We are also assum-
ing that such n is large enough that the iterates f qn and f qnC1 have negative
Schwarzian derivative at all points in InC1.c0/ (In.c0/ respectively) where their
derivatives do not vanish (this is possible by Proposition 6.2). We will only con-
sider in the proof long atoms of Pn.c0/, the proof for the short ones being the same.
Moreover, we will decompose first the collection

˚
J 2PnC1.c0/ W J � In.c0/

	
,

and then we will spread this decomposition iterating by f . So let � D In.c0/,
and consider the following consecutive atoms of PnC1.c0/ inside �: �0 D
f qn.InC1/ and �j D f jqnC1.�0/ for j D 1; 2; : : : ; anC1 � 1; note that �j D
f qnC1.�j�1/ for all 1 ⩽ j ⩽ anC1 � 1. Some of these intervals may be critical
spots (which are always comparable in size with j�j, by Lemma 8.1). We look at
the bridges between such critical spots, and pick the longest one. More precisely,
let 0 ⩽ j1 ⩽ j2 ⩽ anC1 � 1 with j2 � j1 maximal with the property that � D
f qnC1 j�j1

[���[�j2
is a diffeomorphism onto its image. Let Tn D �j1

[� � �[�j2
,

Rn D �j1
, Ln D �j2

andMn D Tn n .Ln [Rn/ D �j1C1 [ � � � [�j2�1. Note
that �jMn

is an almost parabolic map (Definition 7.3) with length ` D j2�j1�1,
and note that ` ⩾ anC1=.N C 1/, where N is the number of critical points of f .
Let us write J1 D �j1C1 ; J2 D �j1C2 ; : : : ; J` D �j1C` D �j2�1. From the
real bounds (Theorem 6.3), we have jJ1j � j�j � jJ`j, with beau comparability
constants. Therefore, by Yoccoz’s inequality (Lemma 7.3), there exists a constant
C0 > 1, depending only on f , such that, for all 1 ⩽ j ⩽ `,

C�1
0

minfj ; ` � j g2 ⩽
jJj j
j�j ⩽

C0

minfj ; ` � j g2 (8.18)

Now we claim that there exists a constant � > 0 (depending only on f ) such that
ˇ̌
f i .Ln/

ˇ̌
> �

ˇ̌
f i .Mn/

ˇ̌
and

ˇ̌
f i .Rn/

ˇ̌
> �

ˇ̌
f i .Mn/

ˇ̌

for all i 2 f0; : : : ; qnC1g. Indeed, again by combiningTheorem6.3 with Lemma 8.1
we obtain the claim for both i D 0 and i D qnC1. By the Cross-ratio Inequality
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(note that the intervals Tn; f .Tn/; : : : ; f qnC1�1.Tn/ are pairwise disjoint), we de-
duce the claim for any i 2 f1; : : : ; qnC1 � 1g. With this at hand, and since f i jTn

is a diffeomorphism for any i 2 f0; : : : ; qnC1g, we can apply Koebe distortion
principle (Lemma 5.2) in order to obtain a constant K D K.f / > 1 such that
f i jMn

has distortion bounded by K for each i 2 f0; : : : ; qnC1g. Let us now de-
fine B D 2.N C 1/

lp
2KC0

m
C 1. We are assuming from now on that n is one

of infinitely many natural numbers such that anC1 ⩾ B . Let m be the smallest
natural number such that KC 20m

�2 ⩽ 1
2
; in other words, let m D

lp
2KC0

m
.

Since anC1 ⩾ B , we have

`

2
⩾

anC1
2.N C 1/ ⩾

B

2.N C 1/ >
lp

2KC0

m
D m :

Thus, setting J 0 D J1 and J 00 D �m�1.J 0/ D Jm, it follows from (8.18) that

1

C 20m
2

⩽
jJ 00j
jJ 0j ⩽

C 20
m2

⩽
1

2K
<

1

2
: (8.19)

We are now ready to define the desired decomposition of A �, the collection of
all atoms of PnC1.c0/ that are contained in � D In.c0/. Let A �

1 D fJ 0g, let
A �
2 D fJ 00g and let A �

3 D A �n.A �
1 [A �

2 /. We claim that this decomposition
satisfies all conditions (i)-(iv) in the standing hypothesis. From (8.19), we have
jJ 0j ⩾ 2jJ 00j, so (i) is satisfied with b0 D 2. By the mean value theorem, there
exists � 2 J 0 such that

D�m�1.�/ D jJ
00j
jJ 0j ⩾

1

C 20m
2
;

where we have again used (8.19). By Koebe distortion principle, there exists
C1 > 1 (depending only on f ) such that

C�1
1 ⩽

D�m�1.x/
D�m�1.�/

⩽ C1 ; for all x 2 J 0 :

Combining these facts we deduce that D�m�1.x/ ⩾ .C 20C1m
2/�1, and so (ii)

is certainly satisfied if we take k D qnC1.m � 1/ and b1 D KC 20C1m
2 D

KC 20C1

lp
2KC0

m2
. Note that b1 > 2 D b0. For ˝ D J 0 [ J 00, we now
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have, using (8.18), the simple bound m.˝/ D jJ 0j C jJ 00j ⩾ jJ 0j ⩾ C�1
0 j�j :

This shows that (iii) is satisfied if we choose � D C�1
0 < 1. Finally, condition

(iv) is trivially satisfied because both A �
1 and A �

2 have a single element.
Now we spread the previous decomposition along the whole family of long

intervals of Pn.c0/. More precisely, for each i 2 f1; : : : ; qnC1 � 1g we define a
decomposition of A �, the collection of all atoms of PnC1.c0/ that are contained
in � D f i

�
In.c0/

�
, as follows: let A �

1 D ff i .J 0/g, let A �
2 D ff i .J 00/g

and let A �
3 D A � n .A �

1 [ A �
2 /. Again, we claim that this decomposition

satisfies all conditions (i)-(iv) in the standing hypothesis. Indeed, for each i 2
f1; : : : ; qnC1 � 1g let x0

i 2 J 0 and x00
i 2 J 00 be given by the mean value theorem:

ˇ̌
f i .J 00/

ˇ̌
ˇ̌
f i .J 0/

ˇ̌ D Df i .x00
i /

Df i .x0
i /

jJ 00j
jJ 0j :

By bounded distortion and (8.19) we obtain
ˇ̌
f i .J 00/

ˇ̌
ˇ̌
f i .J 0/

ˇ̌ D Df i .x00
i /

Df i .x0
i /

jJ 00j
jJ 0j ⩽ K

jJ 00j
jJ 0j ⩽

K C 20
m2

⩽
1

2
:

So (i) is again satisfied with b0 D 2. Now if we conjugate �m�1 W J 0 ! J 00 with
the iterate f i , we obtain a diffeomorphism f i ı�m�1 ıf �i W f i .J 0/! f i .J 00/
which satisfies the following for all x 2 f i .J 0/:

D
�
f i ı �m�1 ı f �i�.x/ D D�m�1�f �i .x/

�
Df i

�
�m�1 ı f �i .x/

�
Df �i .x/

D D�m�1�f �i .x/
� Df i

�
�m�1 ı f �i .x/

�

Df i
�
f �i .x/

� :

Since f �i .x/ belongs to J 0, �m�1�f �i .x/
�
belongs to J 00 and then

D
�
f i ı �m�1 ı f �i�.x/ ⩾ 1

K
D�m�1�f �i .x/

�
⩾
1

K
.C 20C1m

2/�1 :

Therefore, just as before, (ii) is again satisfied with k D qnC1.m � 1/ and b1 D
KC 20C1m

2 D KC 20C1

lp
2KC0

m2
. By Lemma 8.1, the i -th iterate of a critical

spot, contained in In.c0/, is comparable to f i
�
In.c0/

�
for all i 2 f0; 1; : : : ; qnC1g

and then, by Theorem 6.3, the interval f i .J 0/ is comparable to f i
�
In.c0/

�
as well,

which implies (iii). Again, condition (iv) is trivially satisfied. Summarizing, we
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have shown that, for infinitely many values of n, the partitions Pn.c0/ satisfy
conditions (i) through (iv) of the standing hypothesis. Therefore, by Theorem 8.2,
f does not admit a � -finite invariant measure equivalent to Lebesgue measure.
This finishes the proof.

Second step

We now move to the bounded type case. Here our goal will be to prove the follow-
ing result.

Theorem 8.4. If f is a multicritical circle map with an irrational rotation number
of bounded type, then f does not admit an invariant � -finite measure which is
absolutely continuous with respect to Lebesgue measure.

In the proof of Theorem 8.4 we will make use of the following two auxiliary
results.

Proposition 8.2. Given a multicritical circle map f with an irrational rotation
number of bounded type, there exist constants C0 > 1 and 0 < �0 < �1 < 1 with
the following property. For each x 2 S1, each n; k ⩾ 0 and every pair of atoms
I 2Pn.x/ and J 2PnCk.x/ with J � I , we have

C�1
0 �k0 ⩽

jJ j
jI j ⩽ C0�

k
1 :

Proof. Exercise.

Proposition 8.3. Given a multicritical circle map f with an irrational rotation
number of bounded type, there exists n0 D n0.f / 2 N such that for all n ⩾ n0
we have

Sf qnC1.x/ < 0 for all x 2 S1 regular point of f qnC1 .

Likewise, we have

Sf qn.x/ < 0 for all x 2 S1 regular point of f qn :

We postpone the proof of Proposition 8.3 until the end of this section (see
Section 8.2.3).
Remark 8.3. We emphasize that the statement of Proposition 8.2 is obviously false
for unbounded combinatorics. On the other hand, Proposition 8.3 is most likely
true for any irrational rotation number.
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Our proof of Theorem 8.4 will be based on the following lemma. Recall that
we are fixing our attention on a critical point c of f . Below, we use the following
notation: for all i ⩾ 0, let c�i D f �i .c/; we write accordingly In.c�i / D
f �i .In.c// for all n ⩾ 0 and all i ⩾ 0.

Lemma 8.2. There exist constants K > 1 and 0 < � < 1 such that the following
holds for all n sufficiently large and each 0 ⩽ i < qn. There exist subintervals
�0
i;n � InC1.c�i / and �00

i;n � In.c�i / such that

(i) �0
i;n \�00

i;n D Ø;

(ii) j�0
i;nj ⩾ 2j�00

i;nj;

(iii) j�00
i;nj ⩾ � jIn.c�i /j;

(iv) �00
i;n D f qn.�0

i;n/, and f qn j�0
i;n
W �0

i;n ! �00
i;n is a diffeomorphism

whose distortion is bounded by K.

Proof. We assume from the start that n is so large that f qn jInC1.c�i / has negative
Schwarzian derivative for all 0 ⩽ i < qn. This is possible by Proposition 8.3.
Note that each c�i for 0 ⩽ i < qnC1 is a critical point of f qn . In what follows,
we keep n and 0 ⩽ i < qn fixed.

Note that for all k ⩾ 0 even we have InCkC1.c�i / � InC1.c�i /. By Proposi-
tion 8.2, there exist constants 0 < �0 < �1 < 1 and C0 > 1 such that

C�1
0 �k0 ⩽

jInCkC1.c�i /j
jIn.c�i /j

⩽ C0�
k
1 : (8.20)

Moreover, if we denote by d D d.i; n/ > 1 the power-law at the critical point c�i
of f qn , then we have2

jf qn.InCkC1.c�i //j
jIn.c�i /j

�
� jInCkC1.c�i /j
jIn.c�i /j

�d
: (8.21)

Let us write I D InCkC1.c�i / and J D f qn.I /; these are obviously disjoint
intervals (see Figure 8.2), and they are both atoms of PnCk.c�i /. Combining

2One can easily check that dmin ⩽ d.i; n/ ⩽ dNmax, where dmin and dmax are the smallest and
largest power-law exponents of the critical points of f , and N is the number of such critical points.
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In.c�i /InC1.c�i /

f qn

InCkC1.c�i /

T

�0
i;n

�00
i;n

c�i

Figure 8.2: The iterate f qn maps�0
i;n diffeomorphically onto�00

i;n with bounded
distortion.

(8.20) with (8.21), we deduce that there exists a constant C1 > 1 (independent of
n and k) such that

C�1
1 �

k.d�1/
0 jI j ⩽ jJ j ⩽ C1�

k.d�1/
1 jI j (8.22)

Note that f qn jI W I ! J has at most N critical points3, and has negative
Schwarzian at all regular points. Note that, by choosing k sufficiently large, we
can make jJ j definitely smaller than jI j. The meaning of “definitely smaller”, and
thus how large k has to be, will be clear in a moment.

For p ⩾ 0, let us denote the number of atoms of PnCkCp.c�i / inside I (or J )
by a D a.n; k; p/. Then we have 2p ⩽ a ⩽ .AC 1/p (where A D sup an < 1
is the least upper bound on the convergents of the rotation number of f ). Choose
p D p.N/ smallest with the property that 2p > 3N C2. Since f qn jI has at most
N critical points, and since a > 3N C 2, it follows from the pigeonhole principle
that there exist 3 consecutive atoms of PnCkCp.c�i / inside I , sayL;M;R, such
that the open interval T D int.L[M[R/ contains no critical point of f qn . Hence
f qn jT W T ! f qn.T / is a diffeomorphism with negative Schwarzian derivative.
Applying Koebe’s nonlinearity principle, we see that

jD logDf qn.x/j ⩽ 2

�
for all x 2M : (8.23)

3Again, N is the total number of critical points of f .
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where � is the space ofM inside T , namely

� D min
� jLj
jM j ;

jRj
jM j

�
:

From the real bounds, we know that � ⩾ C2, for some constant C2 > 0. Using
this fact in (8.23) and integrating the resulting inequality, we deduce that

e�2=C2 ⩽
Df qn.x/

Df qn.y/
⩽ e2=C2 ; for all x; y 2M : (8.24)

Now, applying once again Proposition 8.2 (note that we are using the bounded type
hypothesis!), it follows that there exists a constant C3 > 1 depending on A such
that

C�1
3 �

p
0 ⩽

jM j
jI j ⩽ C3�

p
1 ; (8.25)

as well as
C�1
3 �

p
0 ⩽

jf qn.M/j
jJ j ⩽ C3�

p
1 ; (8.26)

Putting together (8.22), (8.25) and (8.26), we deduce that

jM j ⩾ C�1
1 C�2

3 �
p
0�

�k.d�1/�p
1 jf qn.M/j : (8.27)

Likewise, putting together (8.20), (8.22) and (8.27), we get

jf qn.M/j ⩾ .C0C1C3/
�1�kdCp

0 jIn.c�i /j : (8.28)

Now let us choose k ⩾ 1 smallest with the property that

C�1
1 C�2

3 �
p
0�

�k.d0�1/�p
1 ⩾ 2 ; (8.29)

where d0 D mini;n d.i; n/ > 1 Such k exists (and is independent of n) because
�1 < 1.

To finish the proof, we define �0
i;n D M and �00

i;n D f qn.M/. These, we
claim, are the intervals satisfying properties (i)-(iv) in the statement. Indeed, prop-
erty (i) is clear. Property (iv) follows directly from (8.24) if we take K D e2=C2 .
Property (ii) follows from inequalities (8.27) and (8.29). Finally, property (iii)
follows from (8.28), provided we take � D .C0C1C3/

�1�kdCp
0 . The proof is

complete.
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Proof of Theorem 8.4. The proof will based on the generalized Katznelson crite-
rion given by Theorem 8.2. Our argument combines Lemma 8.2 with the Cross
Ratio Inequality.

It is enough to show that f possesses the Katznelson property with respect to
(a subsequence of) the sequence of dynamical partitions Pn.c/ for some choice of
critical point c. For this purpose, as we have seen in the proof of that theorem, and
also taking into account the result of Exercise 8.4, it suffices to prove the following
statement.

Claim. For every sufficiently large n, every atom I 2Pn.c/ contains two disjoint
subintervals �0; �00 such that: (a) j�0j ⩾ 2j�00j; (b) j�0j � jI j � j�00j; (c) there
exists q ⩾ 1 such that �00 D f q.�0/ and f qj�0 W �0 ! �00 is a diffeomorphism
with bounded distortion.4

The comparability constants and bounds implicit in this statement depend only
on the real bounds for f and the bound on the combinatorics. To simplify the
notation a bit, let us write Jk D Ik.c/ [ IkC1.c/ for all k ⩾ 0. In order to prove
the claim, we proceed through the following steps.

(i) We may assume that I is a long atom of Pn.c/, say I D f qnC1�i .In.c//,
where 1 ⩽ i ⩽ qnC1 � 1. If I happens to be a short atom, all we have to
do is recall that every short atom of Pn.c/ is a long atom of PnC1.c/.

(ii) The interval T D f qnC1.In.c// contains the interval JnC4 in its interior,
with definite space on both sides (see Figure 8.3). To see why this is true, first
note that, by the real bounds, the interval JnC4 is comparable to jIn.c/j, i.e.,
jJnC4j � jIn.c/j. Consider the following two atoms of PnC1.c/, which
also lie inside T :

L� D f qnC1.InC2/ � InC1.c/ and R� D f qnCqnC1.InC1.c// � In.c/ :

Both these intervals share an endpoint with T (one on the left, the other on
the right). By simple combinatorics, we see that JnC4 � T is disjoint from
both L� and R�. But by the real bounds, we have jL�j � jInC1.c/j and
jR�j � jIn.c/j. If we denote by L and R the two connected components
of T n JnC4, then one of them contains L� and the other contains R�. For
definiteness, we assume that L � L� and R� � R. Hence we have jLj �
jInC1.c/j � jT j and jR�j � jIn.c/j � jT j.

4The claim’s proof will show that q D qn or q D qnC1, depending on whether I is a long or
short atom of Pn.c/, respectively.
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c

c

c�i

IDf qnC1�i .In.c//

InC1.c/ In.c/

f qnC1�i

f i

JnC4

f �i .JnC4/

f qnC1.In.c//

�00�0

Figure 8.3: Finding two intervals, long and short, inside an atom I 2Pn.c/.

(iii) In particular, (ii) tells us that the cross-ratio ŒJnC4; f qnC1.In.c//� is bounded
away from 0 and1.

(iv) Now look at the interval

f �i .JnC4/ � f �i .f qnC1.In.c/// D f qnC1�i .In.c// D I :

Observe that f �i .JnC4/ D InC4.c�i / [ InC5.c�i / (in the notation in-
troduced prior to Lemma 8.2). Hence we can apply Lemma 8.2 (with n
replaced by nC 4) and deduce that there exist intervals

�0 D �0
i;nC4 � InC5.c�i / and �00 D �00

i;nC4 � InC4.c�i /

satisfying properties (i)-(iv) of that lemma. In particular, we have

j�0j � jf �i .JnC4/j � j�00j : (8.30)
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(v) The intervals �0 and �00 already satisfy properties (a) and (c) in the claim.
Therefore, all we have to do is to verify that (b) holds as well. For this,
it suffices to show that the intervals f �i .JnC4/ and I D f qnC1.In.c�i //
have comparable lengths. Let Li D f �i .L/ and Ri D f �i .R/ be the
two connected components of I n f �i .JnC4/. Since Li � f �i .L�/ and
Ri � f �i .R�/, and since

f �i .L�/ D f qnC1�i .InC2/ and f �i .R�/ D f qnCqnC1�i .InC1.c//

are both atoms of PnC1.c/ contained in the same atom I 2 Pn.c/, we
deduce from the real bounds that jLi j � jI j � jRi j. By the cross-ratio in-
equality, the cross-ratio distortion CrD.f i If �i .JnC4/; I / is bounded above.
Combining this fact with (iii), we deduce that the cross-ratio Œf �i .JnC4/; I �
is bounded below. Since the two lateral intervals Li ; Ri � I and the to-
tal interval I have comparable lengths, it follows that the middle interval
f �i .JnC4/ � I also has length comparable to jI j. Together with (8.30),
this shows at last that j�0j � jI j � j�00j.

This completes the proof of our claim. And as we had already observed, the
claim implies that f satisfies the hypotheses of Theorem 8.2. Therefore it satisfies
the conclusion as well: f does not admit a � -finite absolutely continuous invariant
measure. This finishes the proof of Theorem 8.4.

The punchline

Our main theorem, namely Theorem 8.1, is now an immediate consequence of
steps 1 and 2, or more precisely, of Theorems 8.3 and 8.4.

8.2.3 Negative Schwarzian redux
As promised, we offer a proof of Proposition 8.3, which we rephrase as follows.

Proposition 8.4 (The negative Schwarzian property). For any given multicritical
circle map f with bounded combinatorics there exists n0 D n0.f / 2 N such that
for all x0 2 S1 and all n ⩾ n0 we have

Sf qnC1.x/ < 0 for all x 2 In.x0/ regular point of f qnC1 .

Likewise, we have

Sf qn.x/ < 0 for all x 2 InC1.x0/ regular point of f qn :
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Both the statement above and the proof below are extracted from our paper de
Faria and Guarino [2021]. It should be clear to the reader that Proposition 8.3 is
indeed an immediate consequence of Proposition 8.4. As for the latter, we already
know its statement to be true in the case when x0 is a critical point of f – in which
case it holds in fact for any irrational rotation number: this is precisely what we
did in Section 6.5, Proposition 6.2. Hence all we need is to extend the proof to
the case when x0 is a regular point of a multicritical circle map with bounded
combinatorics. This requires, by way of preparation, a couple of auxiliary results.

Bounded geometry

We say that a minimal circle homeomorphism f has bounded geometry at x 2 S1

if there exists K > 1 such that for all n 2 N and for every pair I; J of adjacent
atoms of Pn.x/ we have

K�1 jI j ⩽ jJ j ⩽ K jI j :

Obviously, every irrational rotation by an angle of bounded type has bounded ge-
ometry, and so does every homeomorphism smoothly or even quasisymmetrically
conjugate to such a rotation. Thus, multicritical circle maps with rotation num-
ber of bounded type have bounded geometry at every point. Here is the precise
statement.

Theorem 8.5. For any given multicritical circle map f with bounded combina-
torics, there exists a constant C > 1 depending only on f , such that for any given
point x 2 S1, for all n 2 N, and for every pair I; J of adjacent atoms of Pn.x/

we have:
C�1 jI j ⩽ jJ j ⩽ C jI j :

Proof. By Herman’s Theorem 7.1, f is quasisymmetrically conjugate to an irra-
tional rotation.

It is also possible to prove this result without using Herman’s theorem (see
Exercise 8.7). Theorem 8.5 is most definitely false for maps with rotation number
of unbounded type. We will have a lot more to say about bounded geometry in
Chapter 9.

If the rotation number �.f / D Œa0; a1; : : :� satisfies supn2Nfang ⩽ B , we say
that f has combinatorics bounded by B . With this terminology, we can state the
following simple consequence of the beau bounds (Theorem 6.4).
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Lemma8.3. GivenB > 1,N ⩾ 1 in N and d > 1 there existsC D C.B;N; d/ >
1with the following property: for any given multicritical circle map f with combi-
natorics bounded by B , and with at most N critical points whose criticalities are
bounded by d , there exists n0 D n0.f / 2 N such that for each critical point c of
f , for all n ⩾ n0 and for every pair of intervals I 2 Pn.c/ and J 2 PnC1.c/
satisfying J � I , we have that jI j ⩽ C jJ j.

Proof. Exercise.

The next auxiliary result we need is the analogue of Fact 6.2 in Section 6.4.
For each n ⩾ 0, we consider the intervals Ln.x0/ D InC1.x0/ and Rn.x0/ D
f qn

�
In.x0/

�
. As usual, we write Ljn.x0/ D f j .Ln.x0//, etc., for the images of

these intervals under the iterates of f .

Lemma 8.4. There exists a constant � > 0 (depending only on f ) such that

jLjn.x0/j > � jI jn .x0/j and jRjn.x0/j > � jI jn .x0/j

for each j 2 f0; : : : ; qnC1g and all n 2 N.

Proof. The proof of Fact 6.2 given in Section 6.4 applies here, mutatis mutandis.
The only difference occurs at the moment when we need to claim that jI qn

n .x0/j �
jIn.x0/j. If x0 is a critical point of f , this fact is immediate from the real bounds,
and holds under no restriction on the rotation number. But if x0 is a regular point,
then we need to use Theorem 8.5 instead, and this is the reason for the bounded
type hypothesis.

This, in turn, can be used to prove the following analogue of Lemma 6.5.

Proposition 8.5 (The C 1 bounds). For any given multicritical circle map f with
bounded combinatorics there exists a constant K D K.f / > 1 such that the
following holds. For any given x0 2 S1 and n 2 N let In D In.x0/ and InC1 D
InC1.x0/. Then we have

(i) Df k.x/ ⩽ K

ˇ̌
f k.In/

ˇ̌

jInj
for all x 2 In and all k 2 f0; 1; : : : ; qnC1g;

(iii) Df k.x/ ⩽ K

ˇ̌
f k.InC1/

ˇ̌

jInC1j
for all x 2 InC1 and all k 2 f0; 1; : : : ; qng;

(iv) kf qnkC1.InC1/
⩽ K and kf qnC1kC1.In/

⩽ K;.
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Proof. Again, the proof of Lemma 6.5 given in Section 6.4 can be repeated here,
mutatis mutandis. The only difference, of course, is that Fact 6.2 is replaced by
Lemma 8.4, which only holds in the bounded type case.

Proving that the Schwarzian is negative

We are finally ready for the proof of Proposition 8.4.

Proof of Proposition 8.4. Let us fix x0 2 S1 and n 2 N. We give the proof only
for the case x 2 In.x0/ regular point of f qnC1 (the other case being entirely
analogous). Let j 2 f0; : : : ; qnC1 � 1g be the minimum positive integer such that

f j
�
In.x0/

�
\ Jn.ci / ¤ Ø

for some i 2 f0; : : : ; N � 1g. Without loss of generality, we may assume that
i D 0. By Lemma 7.7 (and Remark 7.11), the intervals f j .In.x0// and Jn.c0/
have comparable lengths, In other words, there exists C0 > 1, depending only on
f , such that

ˇ̌
f j .x/ � c0

ˇ̌
⩽ C0

ˇ̌
f j .In.x0//

ˇ̌
for all x 2 In.x0/.

Moreover, by Koebe distortion principle there exists C1 > 1 (also depending only
on f ) such that f j jIn.x0/ has distortion bounded by C1, that is:

1

C1
⩽
Df j .x/

Df j .y/
⩽ C1 for all x; y 2 In.x0/.

Recall that, by the non-flatness condition, for each critical point ci there exist a
neighborhood Ui � S1 of ci and a positive constant Ki such that for all x 2
Ui n fcig we have

Sf .x/ < � Ki

.x � ci /2
< 0 : (8.31)

Let U D
SN�1
iD0 Ui , and let V � S1 be an open set whose closure contains no

critical point of f and such that U [V D S1. Since f is of classC 3, we know that
M D supy2V

ˇ̌
Sf .y/

ˇ̌
is finite. Let ın D maxx02S1 max0⩽k<qnC1

ˇ̌
f k.In.x0//

ˇ̌
.

Since f is minimal, ın ! 0 as n ! 1. We choose n0 D n0.f / so large
that ın is smaller than the Lebesgue number of the covering fU ;V g of the circle
for all n ⩾ n0. Moreover, we also require that ın < K0=M K2 C 20 C

2
1 for all

n ⩾ n0, where K D K.f / > 1 is given by Proposition 8.5. Using the chain rule
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for the Schwarzian derivative, we have for all ` 2 fj C 1; : : : ; qnC1g and for all
x 2 In.x0/ regular point of f ` the following identity:

Sf `.x/ D
`�1X

kD0
Sf .f k.x//

h
Df k.x/

i2
:

We decompose this expression as ˙ .n/1 .x/C˙ .n/2 .x/, where

˙
.n/
1 .x/ D

X

kWf k.In.x0//�U

Sf .f k.x//
h
Df k.x/

i2
; (8.32)

and ˙ .n/2 .x/ is the sum over the remaining terms, and we treat both cases sepa-
rately.

(i) Since f j .In.x0// \ Jn.c0/ ¤ Ø, we have f j .In.x0// � U and then the
sum in the right-hand side of (8.32) includes the term with k D j , namely
Sf
�
f j .x/

� �
Df j .x/

�2. Since all the other terms in (8.32) are negative as
well, and since

ˇ̌
f j .x/ � c0

ˇ̌
⩽ C0

ˇ̌
f j .In.x0//

ˇ̌
, we deduce from (8.31)

that:

˙
.n/
1 .x/ < � K0

C 20
ˇ̌
f j .In.x0//

ˇ̌2
h
Df j .x/

i2
:

Lety 2 In.x0/ be such that
ˇ̌
f j .In.x0//

ˇ̌
D Df j .y/ jIn.x0/j. By bounded

distortion, we obtain:

˙
.n/
1 .x/ < � K0

C 20

1

jIn.x0/j2

"
Df j .x/

Df j .y/

#2
< � K0

C 20 C
2
1

1

jIn.x0/j2
:

(8.33)

(ii) Observe that

ˇ̌
ˇ˙ .n/2 .x/

ˇ̌
ˇ ⩽

X

kWf k.In.x0//�V

ˇ̌
Sf .f k.x//

ˇ̌ h
Df k.x/

i2
:
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By Proposition 8.5, there exists K > 1 such that

ˇ̌
ˇ˙ .n/2 .x/

ˇ̌
ˇ ⩽

X

kWf k.In.x0//�V

ˇ̌
Sf .f k.x//

ˇ̌
K2
jf k.In.x0//j2
jIn.x0/j2

⩽
MK2

jIn.x0/j2
X

kWf k.In.x0//�V

ˇ̌
f k.In.x0//

ˇ̌2

⩽
MK2

jIn.x0/j2
max

0⩽k⩽`�1

ˇ̌
f k.In.x0//

ˇ̌ X

kWf k.In.x0//�V

ˇ̌
f k.In.x0//

ˇ̌

⩽
MK2

jIn.x0/j2
ın:

(8.34)

By our choice of n0, we know that ın < K0=M K2 C 20 C
2
1 for all n ⩾ n0, and

then we deduce from (8.33) and (8.34) that, indeed, Sf `.x/ < 0 for all ` 2 fj C
1; : : : ; qnC1g and all x 2 In.x0/ regular point of f `.

8.3 Lyapunov exponents
Recall from Theorem 3.11 (Section 3.4.2), that every diffeomorphism of the circle
without periodic points has zero Lyapunov exponents everywhere. We will see
in this section that an analogous result holds for multicritical circle maps (Theo-
rem 8.6). The proof of this result is considerably more difficult than the one of
Theorem 3.11, since in this case logDf is not a continuous function: it is defined
only in the complement of the critical set of f , and it is unbounded (recall Fig-
ure 6.3).

8.3.1 The Collet–Eckmann condition

The result we wish to present is taken from de Faria and Guarino [2016]. For its
proper formulation, it is best to introduce the notion of Collet–Eckmann condition.
We do this in the restricted context of homeomorphisms of the circle, but of course
a much more general definition is possible.

Definition 8.2. We say that a multicritical circle map f satisfies the Collet–Eck-
mann condition at a critical point c 2 Crit.f / if there exist C > 0 and � > 1
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such thatDf n
�
f .c/

�
⩾ C�n for all n 2 N, or equivalently

lim inf
n!1

1

n
logDf n.f .c// ⩾ log� > 0 :

Theorem 8.6 (Zero Lyapunov Exponent). Let f W S1 ! S1 be a C 3 multicritical
circle map with irrational rotation number, and let � be its unique invariant Borel
probability measure. Then logDf belongs to L1.�/ and it has zero �-mean, in
other words Z

S1

logDf d� D 0 :

Moreover, no critical point of f satisfies the Collet–Eckmann condition.

Remark 8.4. In a recent note by Ji [2022], it has been established that

lim
n!1

1

n
logDf n.f .c// D 0 ;

for each critical point c of f .
Remark 8.5. The Collet–Eckmann condition has a long history in one-dimensional
dynamics for it provides, under mild conditions, absolutely continuous invariant
measures for smooth multimodal maps of the interval (see de Melo and van Strien
[1993, Ch. V] and references therein, and see also Bruin et al. [2008] for recent
developments).

8.3.2 The key step
Our proof of Theorem 8.6 relies on Proposition 8.6 below. As before, let fqngn2N

be the sequence of return times given by the irrational rotation number of f . Let
us denote by c1; c2; : : : ; cN the critical points of f (N ⩾ 1) and let di > 1 denote
the criticality of each ci . Conjugating f by a suitable C 3-diffeomorphism (which
does not affect its Lyapunov exponent – see Exercise 3.5 of Chapter 3) we may
assume that each ci has an open neighborhood V.ci / where f is a power-law of
the form:

f .x/ D f .ci /C .x � ci /jx � ci jdi �1 for all x 2 V.ci /. (8.35)

We also assume, of course, that V.ci / \ V.cj / D Ø whenever i ¤ j .
Recall from the real bounds (Theorem 6.3) that, for each c 2 fc1; c2; : : : ; cN g,

the dynamical partitions
˚
Pn.c/

	
n2N

have the comparability property: any two
consecutive atoms of Pn.c/ have comparable lengths. We will need a couple of
further consequences of the real bounds, that we proceed to state and prove.
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Lemma 8.5. There exists a constant C D C.f / > 1 with the following property.
For each n ⩾ 0, let

Cn D
n
I jn

o2qnC1

jD0

[n
I knC1

oqnCqnC1

kD0

be the set of all atoms of Pn together with their forward images under f up to
iterate qnC1 C 1. Then, for any J1; J2 2 Cn that share a common endpoint we
have

C�1 jJ1j ⩽ jJ2j ⩽ C jJ1j :

Proof. Recall first Proposition 6.1: the six intervals In, InC1, I qn
n , I qnC1

n , I qn

nC1
and I qnC1�qn

n are pairwise comparable (see Figure 6.5). The idea of the proof of
Lemma 8.5 is to prove that: (i) if J 2 Cn, then there is� 2Pn such that J � ��

(in fact, there are at most three such�); and that (ii) if J and� are as above, then
J � ��. This is enough to finish the proof: if J1; J2 2 Cn share a common
endpoint and �1; �2 2 Pn are such that J1 � ��

1 and J2 � ��
2 , then ��

1 and
��
2 must contain at least one atom of Pn in common. Thus, by the real bounds,

they must be comparable, which implies that J1 � J2.
To prove (i) is quite simple: if J D I jnC1, 0 ⩽ j < qn, or J D I kn , 0 ⩽ k <

qnC1, then J is itself an atom of Pn, so we can take � D J . If J D I
qnCj
nC1 ,

0 ⩽ j < qnC1, then J � I jn , so we can take � D I
j
n . If J D I

qnCqnC1

nC1 , then
J � In[InC1, so we can take either of these as�. If J D I qnC1Ck

n , 0 ⩽ k < qn,
then J � I knC1 [ I kn , so we can take either of these as �. If J D I

qnC1CqnCk
n ,

0 ⩽ k < qnC1 � qn, then J � I qnCk
nC1 [ I

qnCk
n � I kn [ I

qnCk
n , so we can take

� D I kn or � D I
qnCk
n . Finally, if J D I

2qnC1
n , then J � I

qnC1

nC1 [ I
qnC1
n �

I
qnC1�qn
n [ InC1 [ In D .InC1/�, so we can take � D InC1. This proves (i).

By the real bounds, we only need to prove (ii) for intervals of Cn that are not
themselves atoms of Pn. With this in mind, we first note that given J 2 Cn,
though there may be (at most) three different choices of � such that J � ��, the
triples of atoms obtained in this way are all comparable; thus, it suffices to prove
(ii) for one such choice of �. We claim that for 0 ⩽ j ⩽ qnC1 we have

I
qnCj
nC1 � I jn :

Proof of the claim: For one, I qnCj
nC1 � I

j
n , so we immediately get I jn ⩾ I

qnCj
nC1 .

We must now prove that I qnCj
nC1 ⩾ I

j
n as well.
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We split into two cases: anC1 D 1 and anC1 ⩾ 2. If anC1 D 1, then

I jn D I
qnCj
nC1 [ I

j
nC2 ; (8.36)

and since I qnCj
nC1 ; I

j
nC2 2 Pn [

˚
I
qnC2

nC1 ; I
qnC1

nC2
	
, it follows from Proposition 6.1

(applied to the partition at level nC 1) that

I
qnCj
nC1 � I

j
nC2 : (8.37)

Combining (8.36) and (8.37), we conclude that I qnCj
nC1 � I

j
n in this case.

We now address the case anC1 ⩾ 2, and we start by analyzing the case j D
qnC1. In this case, we have I qnCj

nC1 D I
qnCqnC1

nC1 , which is a long atom of PnC1
(since anC1 ⩾ 2) adjacent to I qn

nC1. Thus,

I
qnCqnC1

nC1 � I qn

nC1 � I
qnC1
n ; (8.38)

which proves the claim in this case.
Now, let T D I qnC1

nC1 [I
qnC1
n ,M D I qnC1

n nI qnCqnC1

nC1 , and observe thatM is
compactly contained in the interior of T . Let L;R be the connected components
of T n M , i.e., I qnC1

nC1 and I qnCqnC1

nC1 . Assume, without loss of generality, that
L D I qnC1

nC1 and R D I qnCqnC1

nC1 . We claim that the cross-ratio ŒM; T � is bounded
from below by a constant depending only on f . Indeed, since I qnC1

nC1 ; InC1 are
adjacent atoms of PnC1,

L � InC1 � I qnC1
n ;

so we conclude that L and T are comparable. From (8.38),

R � I qnC1
n � T :

It now follows from jT j D jLj C jM j C jRj that M must be comparable to the
three other intervals as well. As a consequence, we conclude that there exists a
constant C0 D C0.f / > 0, depending only on f , such that

ŒM; T � D ŒI qnC1
n n I qnCqnC1

nC1 ; I
qnC1

nC1 [ I
qnC1
n � ⩾ C0 :

We now turn to the case 0 ⩽ j < qnC1. Since the family
n
f i .I

j
nC1 [ I jn /

oqnC1�j

iD0
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has multiplicity of intersection at most 3, the Cross-Ratio Inequality (Theorem 5.1)
implies that the cross-ratio distortion of f qnC1�j on the pair I jn nI qnCj

nC1 ; I
j
nC1[I

j
n

is bounded by some constant C1 D C1.f / > 0:
ŒM; T �

ŒI
j
n n I qnCj

nC1 ; I
j
nC1 [ I

j
n �

⩽ C1 :

Manipulating this inequality, we get

ŒI jn n I
qnCj
nC1 ; I

j
nC1 [ I jn � ⩾ C0=C1 :

Thus, the cross-ratio ŒI jn nI qnCj
nC1 ; I

j
nC1[I

j
n � is bounded from below by a constant

depending only on f . Consequently, the space of I jn n I qnCj
nC1 inside I jnC1 [ I

j
n

is bounded from below by a constant depending only on f ; this is easily seen to
imply that

I
qnCj
nC1 ⩾ I jn n I

qnCj
nC1 : (8.39)

Combining (8.39) with the fact that
ˇ̌
ˇI jn

ˇ̌
ˇ D

ˇ̌
ˇI qnCj
nC1

ˇ̌
ˇ C

ˇ̌
ˇI jn n I qnCj

nC1

ˇ̌
ˇ, we get

I
qnCj
nC1 ⩾ I

j
n . This finishes the proof of the claim.

With the claim at hand, we proceed to finish the proof of Lemma 8.5. Since I jn
is comparable to .I jn /� if 0 ⩽ j < qnC1, or to I�

n if j D qnC1, (ii) holds if J 2 Cn

is the image of a short atom of Pn, i.e., J D I inC1 for some qn ⩽ i ⩽ qnC qnC1.
That (ii) also holds for images of long atoms of Pn is a simple consequence of the
above claim. Indeed, it suffices to show that, for 0 ⩽ k ⩽ qnC1,

I
qnC1Ck
n � I kn :

We first show that I kn ⩾ I
qnC1Ck
n . If 0 ⩽ k < qnC1, then I qnC1Ck

n � .I kn /� �
I kn , so I kn ⩾ I

qnC1Ck
n ; and in the case k D qnC1, I

2qnC1
n � .In/� � In � I qnC1

n ,
so I qnC1

n ⩾ I
2qnC1
n as well. It remains to prove that I qnC1Ck

n ⩾ I kn , but this
follows immediately from the claim, since we have

I
qnC1Ck
n � I knC1

and
I knC1 � I

qnCk
nC1 � I kn :

The first comparability in the previous equation follows from the real bounds,
while the second follows from the claim. This finishes the proof of Lemma 8.5.
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Lemma 8.5 implies the following two results.

Lemma8.6. There existsB0 D B0.f / > 1 such that for each c 2 fc1; c2; : : : ; cN g,
for each n 2 N and for each atom � 2Pn.c/ we have

j�j
B0

⩽
ˇ̌
f qn.�/

ˇ̌
⩽ B0j�j :

Lemma 8.7. There exists B1 D B1.f / > 1 with the following property. Let
� 2 Pn.c/ and denote by �� the union of � with its two immediate neighbours
in Pn.c/. If 0 ⩽ j < k ⩽ qn are such that the intervals f j .��/, f jC1.��/,…,
f k�1.��/ do not contain any critical point of f , then the map f k�j W f j .�/!
f k.�/ has distortion bounded by B1, that is

1

B1
⩽
Df k�j .x/

Df k�j .y/
⩽ B1 for all x; y 2 f j .�/.

Proof. Since the iterate f k�j W f j .��/ ! f k.��/ is a diffeomorphism, we
would like to apply Koebe’s distortion principle (Lemma 5.2). By combinatorics,
we already know that the family f j .��/, f jC1.��/,… , f k�1.��/ has multi-
plicity of intersection equal to 3. Thus, we only need to prove that f k.�/ has
definite space inside f k.��/, which follows at once from Lemma 8.5.

Yet another consequence of the real bounds:

Lemma 8.8. There exists B2 D B2.f / > 1 with the following property: if c ¤ c0

are critical points of f and � 2 Pn.c/, �0 2 Pn.c
0/ for some n 2 N are such

that � \�0 ¤ Ø, then B�1
2 j�0j ⩽ j�j ⩽ B2j�0j.

Proof. This follows from the combinatorial fact that � is contained in the union
of two adjacent atoms of Pn.c

0/, one of which is �0, and likewise for �0.

For each k ⩾ 0 and each critical point c we will use the notation Jk.c/ D
Ik.c/ [ IkC1.c/ D

�
f qkC1.c/; f qk .c/

�
3 c. The key step in the proof of Theo-

rem 8.6 is the following fact.

Proposition 8.6. There exists C D C.f / > 0 with the following properties:

1. For each x 2 S1 and all n ⩾ 0 we have logDf qn.x/ ⩽ C .

2. For all n ⩾ 0, if x 2 S1 is such that f i .x/ …
SjDN
jD1 J2n.cj / for all

0 ⩽ i ⩽ qn, then logDf qn.x/ ⩾ �Cn.
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In what follows we denote by C0, C1, C2, C3,… positive constants (greater
than 1, in fact) depending only on f . Moreover, for any two positive numbers a
and b we use the notation a � b to mean that C�1a ⩽ b ⩽ Ca for some constant
C > 1 depending only on f .

Proof. Let us fix once and for all a critical point c 2 Crit.f /. We assume that
n ⩾ 0 is large enough so that each atom of Pn.c/ contains at most one critical
point of f . Let x 2 S1 and let� 2Pn.c/ be such that x 2 �. Let�� � � be as
in Lemma 8.7. Just by taking n larger still, we may assume that, for 0 ⩽ k < qn,
each f k.��/ contains at most one critical point of f . We say that 0 ⩽ k < qn
is a critical time for x if f k.��/ contains a critical point of f . Let us write
0 ⩽ k1 < k2 < � � � < km < qn for the sequence of all critical times for x.
Note thatm ⩽ 3N since the family

˚
f k.��/

	
0⩽k<qn

has intersection multiplicity
equal to 3. Using these critical times and the chain rule we can write:

Df qn.x/ D Df k1.x/

2
4
m�1Y

jD1
Df kj C1�kj �1�f kj C1.x/

�
Df

�
f kj .x/

�
3
5 (8.40)

�Df qn�km�1�f kmC1.x/
�
Df

�
f km.x/

�
:

Weproceed to estimate each term in the product (8.40) above. FromLemma 8.7
(with j D 0 and k D k1) we have:

Df k1.x/ �
ˇ̌
f k1.�/

ˇ̌

j�j : (8.41)

Again from Lemma 8.7 (with kj C1 and kjC1 replacing j and k respectively) we
have for all j 2 f1; : : : ; m � 1g:

Df kj C1�kj �1�f kj C1.x/
�
�
ˇ̌
f kj C1.�/

ˇ̌
ˇ̌
f kj C1.�/

ˇ̌ :

For each j 2 f1; : : : ; mg let ˇj 2 Crit.f / be the (unique) critical point of f in
f kj .��/, and let dj be its criticality. Since we are assuming that n is sufficiently
large, we may suppose that f kj .��/ � V.ˇj / for all j 2 f1; : : : ; mg. Then, from
the power-law expression (8.35) we have:

Df
�
f kj .x/

�
�
ˇ̌
f kj .x/ � ˇj

ˇ̌dj �1
; (8.42)
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and recall that dj � 1 > 1 for all j 2 f1; : : : ; mg. Still using the power-law
expression we see that:

ˇ̌
f kj C1.�/

ˇ̌
�
ˇ̌
f kj .�/

ˇ̌dj for all j 2 f1; : : : ; mg. (8.43)

Using Lemma 8.7 yet again, we also see that:

Df qn�km�1�f kmC1.x/
�
�

ˇ̌
f qn.�/

ˇ̌
ˇ̌
f kmC1.�/

ˇ̌ :

Let us now prove assertions (1) and (2) in the statement of the proposition.
Note that (8.42) yields:

Df
�
f kj .x/

�
⩽ C0

ˇ̌
f kj .�/

ˇ̌dj �1 for all j 2 f1; : : : ; mg, (8.44)

where C0 D C0.f / > 0. Combining all these facts, namely (8.41)-(8.44), we
deduce the following (upper) telescoping estimate:

Df qn.x/ ⩽ C1

ˇ̌
f k1.�/

ˇ̌

j�j

2
4
m�1Y

jD1

ˇ̌
f kj C1.�/

ˇ̌
ˇ̌
f kj C1.�/

ˇ̌
ˇ̌
f kj .�/

ˇ̌dj �1
3
5�

�
ˇ̌
f km.�/

ˇ̌dm�1
ˇ̌
f qn.�/

ˇ̌
ˇ̌
f kmC1.�/

ˇ̌

�
ˇ̌
f k1.�/

ˇ̌

j�j

2
4
m�1Y

jD1

ˇ̌
f kj C1.�/

ˇ̌
ˇ̌
f kj .�/

ˇ̌

3
5
ˇ̌
f qn.�/

ˇ̌
ˇ̌
f km.�/

ˇ̌ D
ˇ̌
f qn.�/

ˇ̌

j�j ⩽ C2 ;

(8.45)

where in the last line we have used (8.43) and finally Lemma 8.6. This proves
item (1). In order to prove item (2) note first that all estimates provided above are
two-sided, except (8.44). In order to get a lower bound for the left side of (8.44)
we use the hypothesis in (2). Since f kj .x/ … J2n.ˇj / we have:

ˇ̌
f kj .x/ � ˇj

ˇ̌
⩾ C3

ˇ̌
I2n.ˇj /

ˇ̌
: (8.46)

From the real bounds we know that there exists � 2 .0; 1/ depending only on
f such that C�1

4 �n
ˇ̌
In.ˇj /

ˇ̌
⩽
ˇ̌
I2n.ˇj /

ˇ̌
⩽ C4�

n
ˇ̌
In.ˇj /

ˇ̌
. Moreover, we claim

that
ˇ̌
In.ˇj /

ˇ̌
is comparable to

ˇ̌
f kj .�/

ˇ̌
. Indeed, this follows from Lemma 8.8
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because In.ˇj / 2 Pn.ˇj / intersects an atom of Pn.c/ in f kj .��/, and this
atom has length comparable to

ˇ̌
f kj .�/

ˇ̌
(such atom is either f kj .�/ itself, or

one of its neighbours). Using these facts in (8.46) we deduce that:

Df
�
f kj .x/

�
⩾ C5 �

n.dj �1/ˇ̌f kj .�/
ˇ̌dj �1

:

Using this lower estimate in place of the upper estimate (8.44) and proceeding
as in (8.45) we arrive at the estimate

Df qn.x/ ⩾ C6 �
n.d1Cd2C���Cdm�m/ ; (8.47)

where again C6 D C6.f / > 1. Note that 0 < d1 C d2 C � � � C dm � m <

3.d1 C d2 C � � � C dN /, and since ˛ D 3.d1 C d2 C � � � C dN / is a positive
constant depending only on f we get:

Df qn.x/ ⩾ C6 �
n˛ ;

and then:
logDf qn.x/ ⩾ �n˛ log

1

�
C logC6 ⩾ �C7 n :

With Proposition 8.6 at hand we are ready to prove Theorem 8.6.

Proof of Theorem 8.6. The fact that no critical point of f satisfies the Collet–Eck-
mann condition follows at once from item (1) of Proposition 8.6. By Proposi-
tion 8.1 we know that logDf 2 L1.�/, and then we know from Birkhoff’s ergodic
theorem that

lim
n!C1

�
logDf n.x/

n

�
D
Z

S1

logDf d� ;

for �-almost every x 2 S1. For each n ⩾ 0 let

An D S1n
jDN[

jD1

qn�1[

iD0
f �i�J2n.cj /

�

D

8
<
:x 2 S1 W 8 0 ⩽ i ⩽ qn � 1 W f i .x/ 2 S1n

jDN[

jD1
J2n.cj /

9
=
; ;
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and consider

A D lim sup
n2N

An D
C1\

kD1

C1[

nDk
An :

We claim that A has full �-measure. Indeed, since

�
�
J2n.cj /

�
D �

�
I2n.cj /

�
C �

�
I2nC1.cj /

�
⩽

1

q2nC1
C 1

q2nC2
;

we deduce that qn �
�
J2n.cj /

�
! 0 (exponentially fast in n, in fact) and since

�.An/ ⩾ 1�Nqn �
�
J2n.cj /

�
we see that �.An/! 1 as n!C1. This implies

the claim that �.A/ D 1. Now for each x 2 A we have from Proposition 8.6 that
there exists a sequence nk !C1 such that:

�Cnk
qnk

⩽
logDf qnk .x/

qnk

⩽
C

qnk

;

and letting k !C1 we get that:

lim
k!C1

logDf qnk .x/

qnk

D 0 :

Therefore:
lim

n!C1

�
logDf n.x/

n

�
D 0

for �-almost every x 2 A, and then we are done since A has full �-measure.

8.4 Further ergodic properties
In Section 3.4.3 we introduced the notion of automorphic measure for a circle
diffeomorphism, and discussed an important result by Douady and Yoccoz [1999],
namely Theorem 3.12, which states both existence and uniqueness of automorphic
measures of any given exponent for C 1CBV diffeomorphisms. It turns out that, at
least for positive exponents, the same holds for multicritical circle maps. More
precisely, we have the following result.

Theorem 8.7. Let f W S1 ! S1 be a multicritical circle map. For any given s ⩾ 0

there exists a unique automorphic measure of exponent s for f . This measure has
no atoms, is supported on the whole circle and it is ergodic under f .
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For a proof of the existence part of this theorem, see Exercise 8.9. We would
like to mention here that, in a recent preprint by Goncharuk and Yampolsky [2023],
both existence and uniqueness of s-automorphic measures have been established
for the particular exponent s D �1.

As we have also seen in Chapter 3, any C 1CBV circle diffeomorphism without
periodic points is ergodic with respect to Lebesgue measure (recall Theorem 3.10).
Therefore, it is worth mentioning here, for future reference, the following special
case of Theorem 8.7.

Theorem 8.8. If f W S1 ! S1 is a multicritical circle map, then f is ergodic
with respect to Lebesgue measure.

Just as in the proof of Theorem 3.10, one can use a Lebesgue density argument
to prove Theorem 8.8 (see also the proof of Lemma 1.5 in Chapter 1). The needed
distortion estimates, however, are considerably more involved than those in the
diffeomorphism case.

Another important ergodic object introduced in Section 3.4.3 was the notion of
invariant distribution. Recall that, as proved by Avila and Kocsard [2011], every
C1 diffeomorphism of the circle with irrational rotation number is distributionally
uniquely ergodic, i.e., each linear space D 0

k
.f / is one-dimensional, spanned by

the unique f -invariant probability measure (Theorem 3.13, see also Theorem 3.14).
For multicritical circle maps and distributions of order 1, the following is known.

Theorem 8.9. If f W S1 ! S1 is a multicritical circle map, then the linear space
D 0
1 .f / is one-dimensional (spanned by the unique f -invariant probability mea-

sure).

Both Theorem 8.7 and Theorem 8.9 were proved in the recent manuscript by
de Faria, Guarino, and Nussenzveig [2023].
Remark 8.6. It is reasonable to conjecture that every sufficiently smooth multicrit-
ical circle map with irrational rotation number is distributionally uniquely ergodic.
This conjecture is certainly made plausible by Theorem 8.9. As we write these
lines, however, the problem is still open.

8.5 Hausdorff dimension
We close this chapter with an elegant recent result due to Trujillo [2020]. Only
the statement will be given, however – discussing the proof would constitute a
digression into the realm of geometric measure theory.
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As we have seen in Section 8.2, the unique invariant probability measure �
under a multicritical circle map f is purely singular with respect to Lebesgue
measure. The Hausdorff dimension of �, denoted dimH .�/, is by definition the
smallest of the Hausdorff dimensions of all measurable sets having full�-measure.
More precisely,

dimH .�/ D inf fdimH .E/ W E � S1 is measurable and �.E/ D 1g :
A natural question to ask is: how does the Hausdorff dimension of � vary with
f ? Obviously, a priori it should only depend on the bi-Lipschitz conjugacy class
of f . In his recent paper, Trujillo [ibid.] establishes lower and upper bounds for
dimH .�/ that depend only on the Diophantine nature of the rotation number of
f . In order to state his result, let us first recall from Chapter 4 that an irrational
number ˛ is said to be Diophantine of order ı ⩾ 0 if there exists a positive constant
C D C.˛/ > 0 such that

ˇ̌
ˇ̌˛ � p

q

ˇ̌
ˇ̌ ⩾

C

q2Cı ; for all p; q 2 Z; q ¤ 0 :

We denote by Dı the set of all Diophantine numbers of order ı. Recall from Exer-
cise 4.11 that D0 is precisely the set of numbers of bounded type. As we will see
in Appendix A, the set D0 has zero Lebesgue measure (see Lemma A.1), whereas
for each ı > 0 the set Dı has full Lebesgue measure (see Lemma A.4).

Theorem 8.10. If f is a C 3 multicritical circle map with irrational rotation num-
ber � D �.f / and� is its unique invariant probability measure, then the following
holds.

(i) If � 2 Dı for some ı ⩾ 0, then there exists � > 0 such that

dimH .�/ ⩾
1

2ı C � :

(ii) If � … Dı for some ı > 0, then

dimH .�/ ⩽
1

ı C 1 :

Note that the above theorem does not provide an upper bound for dimH .�/
in the case when the rotation number �.f / is of bounded type (i.e., lies in D0).
Nevertheless, it had already been known since the work of Graczyk and Świątek
[1993] that in the bounded type case the Hausdorff dimension of � lies strictly
between 0 and 1.
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Exercises

Exercise 8.1. Let f W S1 ! S1 be a C 1 non-minimal circle homeomorphism
with irrational rotation number (e.g., a Denjoy counterexample). Show that there
exist uncountably many � -finite f -invariant measures which are non-atomic and
have pairwise disjoint supports.

Exercise 8.2. Work through the following steps to construct a minimal homeomor-
phism of S1, with arbitrary irrational rotation number, having an infinite, � -finite
invariant measure which is absolutely continuous with respect to Lebesgue mea-
sure. Fix an irrational ˛ 2 .0; 1/, and consider the rotation R˛.

(i) Show that there exists a closed, perfect and totally disconnected setE0 � S1

whose rotated copies En D Rn˛.E0/, n 2 Z are pairwise disjoint.

(ii) Let �0 be a non-atomic Borel probability measure on S1 supported by E0,
and let �n D .Rn˛/��0, n 2 Z, be its rotated copies under R˛. Set � DP
n2Z �n and

� D 1

3

X

n2Z

2�jnj�n :

Show that � is a probability measure on S1 whose support is the whole
circle, and that � is an infinite, � -finite measure which is invariant under the
rotation R˛.

(iii) Show that the measures � and � are equivalent, i.e., they are mutually abso-
lutely continuous.

(iv) Let h W S1 ! S1 be the primitive of � given by h.x/ D
R x
0 d�.t/ D

�Œ0; x�, and verify that h is a homeomorphism. Show that h�� D m.

(v) Check that the measure z� D h�� is infinite but � -finite, and prove that it is
absolutely continuous with respect to Lebesgue measure.

(vi) Finally, letting f˛ D h ı R˛ ı h�1, show that f˛ leaves z� invariant, i.e.,
.f˛/�z� D z�.

This example is due to Katznelson [1977, p. 11].
Exercise 8.3. Show that the homeomorphism f˛ W S1 ! S1 constructed in the
previous exercise is not ergodic with respect to Lebesgue measure. Deduce that
f˛ cannot be C 2, or even C 1CBV.
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Exercise 8.4. Let f W S1 ! S1 be a minimal C 1 homeomorphism satisfying the
following hypothesis. There exist constants ˛;K > 1 and ˇ > 0 such that for any
given interval I on the circle, we can find (a) two disjoint intervals J 0; J 00 � I

with jJ 0j ⩾ ˛jJ 00j and jJ 00j ⩾ ˇjI j; and (b) an iterate of f mapping J 0 diffeo-
morphically onto J 00 with distortion bounded by K. Show that f satisfies the
conclusion of Theorem 8.2.

Exercise 8.5. Fill in the missing details of the proof of Lemma 8.1.

Exercise 8.6. Prove Proposition 8.2.

Exercise 8.7. Give a proof of Theorem 8.5 that is independent of Herman’s Theo-
rem 7.1.

Exercise 8.8. Divergent Poincaré series. Let f W S1 ! S1 be a multicritical
circle map with irrational rotation number, and let � be its unique invariant Borel
probability measure. For each s > 0, we define the Poincaré series of f of expo-
nent s to be the function Ps;f W S1 ! Œ0;1� given by

Ps;f .x/ D
1X

nD0

�
Df n.x/

�s
:

The main purpose of this exercise is to show that Ps;f diverges �-a.e.

(i) Show that there exists a countable dense set on the circle on which Ps;f is
finite for all s > 0.

(ii) Show that the identity

Ps;f .x/ D 1C
�
Df n.x/

�s
Ps;f .f .x//

holds for each x 2 S1.

(iii) Using Theorem 8.6 and the fact that � is f -invariant, show with the help of
Jensen’s inequality that

log
�Z

S1

�
Df n

�s
d�

�
⩾ 0 ;

for each n ⩾ 0.
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(iv) Deduce from (iii) that

Z

S1

n�1X

kD0

�
Df qk

�s
d� ⩾ n ;

for each n ⩾ 1 (where, as usual, fqkgk⩾0 is the sequence of return times
associated with the rotation number �.f /).

(v) Now let A D fx 2 S1 W Ps;f .x/ D 1g. Show that A is Borel measurable
and, using (ii), that A is f -invariant.

(vi) For each m ⩾ 1, let

Xm D
˚
x 2 S1 W Ps;f .x/ ⩽ m

	
:

Show that if �.A/ D 0, then limm!1 �.Xm/ D 1. Combine this fact with
(iv) to arrive at a contradiction.

(vii) From (v), (vi) and the fact that � is ergodic, deduce that �.A/ D 1.

Exercise 8.9. Existence of automorphic measures. Let f W S1 ! S1 be a mul-
ticritical circle map with irrational rotation number. Fix s > 0, let Ps;f be the
corresponding Poincaré series, and consider the set A defined in Exercise 8.8. Fix
x 2 A, and for each n ⩾ 1, let

Sn.x/ D
qn�1X

iD0
.Df i .x//s :

Consider the atomic probability measure

�s;x;n D
1

Sn.x/

qn�1X

iD0
.Df i .x//s ıf i .x/ ;

(i) Show that there exist a probability measure �s;x 2 P.S1/ and a monotone
sequence .nk/ � N such that, for all ' 2 C 0.S1/,

Z

S1

' d�s;x;nk
�!

Z

S1

' d�s;x :
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(ii) Let K D sup kDf qnkC0.S1/ and recall from the real bounds that K < 1.
Show that for each k ⩾ 1 we have

ˇ̌
ˇ̌
Z

S1

Œ' � .' ı f /.Df /s� d�s;x;nk

ˇ̌
ˇ̌ ⩽ 1

Snk
.x/
k'kC0.S1/.1CKs/ :

(iii) Deduce from (i) and (ii) that �s;x is an s-automorphic measure for f .



9 Orbit Flexibility

In this chapter we study the geometric structure of individual orbits of a multicri-
tical circle map with irrational rotation number.

From the dynamical standpoint, a minimal circle homeomorphism f W S1 !
S1 is topologically very homogeneous: all orbits look topologically the same. But
are such orbits geometrically the same? In order to turn this somewhat vague
question into a mathematically meaningful one, we need to properly define the
underlying concept of geometric equivalence. We also need to assume that f has
some reasonable degree of smoothness.

Let us agree to say that the orbits Of .x/ and Of .y/ of two points x; y 2
S1 are geometrically equivalent if there exists a self-conjugacy h W S1 ! S1

(h ı f D f ı h) which is a quasisymmetric homeomorphism carrying Of .x/ to
Of .y/. So let us ask that question again: are two given orbits Of .x/ and Of .y/

geometrically equivalent?
The answer is easily seen to be yes if f is smoothly conjugate to a rotation. For

instance, when f is a smooth diffeomorphism with Diophantine rotation number,
the rigidity results discussed in Section 4.5 imply that f is smoothly conjugate to
a rotation – and all orbits under a rigid rotation are not just merely geometrically
equivalent, they are isometric. By contrast, our purpose in the present chapter is to
explain that the answer to the above question is almost always no when f is a crit-
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ical circle map. Precise statements will be given in due time. The entire exposition
here is extracted from our own recent work, de Faria and Guarino [2022b].

9.1 Geometric equivalence of orbits
Ideally, we would like to classify orbits of a (reasonably smooth) minimal homeo-
morphism of the circle up to quasisymmetric equivalence.

As we have seen in Chapter 7, quasisymmetry can be regarded as a very weak
form of geometric regularity. Indeed, it is so weak that one might guess, for in-
stance, that every conjugacy between two critical circle maps is quasisymmetric.
This guess is reinforced by Theorem 7.1, which, we recall, states that every multi-
critical circle map whose rotation number is an irrational of bounded type is qua-
sisymmetrically conjugate to the corresponding rotation.

However, the above guess is unfortunately wrong. Our purpose in the present
chapter is to explain that a conjugacy between two critical circle maps is almost
never quasisymmetric. We will first identify a mechanism which forces the break-
down of quasisymmetry for a topological conjugacy (see Lemma 9.4 in Section 9.6),
and then we will show that this mechanism is abundant, both from the topological
and measure-theoretical viewpoints (see Theorem 9.6 in Section 9.2). The precise
statements will be given below – see Theorems 9.1 to 9.3.

9.1.1 Orbit-flexibility
Some of these results can be stated in the light of the complementary concepts of
orbit-rigidity and orbit-flexibility, which we presently describe.

Definition 9.1. We say that a minimal circle homeomorphism f is quasisymmet-
rically orbit-rigid if for any pair of points x; y on the circle there exists a qua-
sisymmetric homeomorphism hx;y which conjugates f to itself and maps x to y.
If f is not quasisymmetrically orbit-rigid, we say that f is quasisymmetrically
orbit-flexible.

Example 1. Every rotation is quasisymmetrically orbit-rigid, and the equivalence
between orbits is in fact given by an isometry.

Example 2. Every sufficiently smooth circle diffeomorphism with Diophantine ro-
tation number is quasisymmetrically orbit-rigid. This follows from the Herman–
Yoccoz theorems of Section 4.5.
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For multicritical circle maps, we have the following simple consequence of
Theorem 7.1.

Proposition 9.1. Every multicritical circle map f with rotation number ˛ D �.f /
of bounded type is quasisymmetrically orbit-rigid.

Proof. Let h W S1 ! S1 be a quasisymmetric conjugacy between f and the
rotation R˛, whose existence is guaranteed by Theorem 7.1. Given x; y 2 S1, let
R be the circle rotation withR.x/ D h�1.y/. Then ' D hıR is a quasisymmetric
homeomorphism, and since any two rotations commute, we have

'�1 ı f ı ' D .h ıR/�1 ı f ı .h ıR/ D R�1 ıR˛ ıR D R˛ :

Therefore ' conjugates f to R˛, and since '.x/ D y, it maps the orbit of x onto
the orbit of y.

By contrast, we will show in Theorem 9.1 that (uni)critical circle maps whose
rotation numbers belong to a certain full-measure set are quasisymmetrically orbit-
flexible (see also Proposition 9.2). In particular, the centralizers of such maps in the
group of all homeomorphisms of the circle contain non-quasisymmetric elements
(see Section 9.1.4 below).

9.1.2 Statement for unicritical maps
In the unicritical case we have the following coexistence phenomenon.

Theorem 9.1. There exists a full Lebesgue measure set RA � Œ0; 1� of irrational
numbers with the following property. Let f and g be two C 3 circle homeomor-
phisms with a single (non-flat) critical point (say, cf and cg respectively) and with
�.f / D �.g/ 2 RA. For any given x 2 S1 let hx 2 Diff0C.S1/ be the topological
conjugacy between f and g determined by hx.x/ D cg . Let A be the set of points
x 2 S1 such that the homeomorphism hx is quasisymmetric, and let B D S1 nA
be its complement in the unit circle (that is, B is the set of points x 2 S1 such that
the homeomorphism hx is not quasisymmetric). Then A is dense in S1, while B

contains a residual set (in the sense of Baire) and it has full �f -measure, where
�f denotes the unique f -invariant probability measure.

Remark 9.1. A somewhat related coexistence phenomenon occurs in the context
of Lorenz maps, and also in the context of circle maps with flat intervals (see
Martens, Palmisano, and Winckler [2018] and references therein).
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Remark 9.2. The proof of Theorem 9.1, to be given in Section 9.6, still works if
one of the two maps has more than one critical point.

Let us pose two questions that arise from Theorem 9.1.
Question 9.1. Denote by BT � .0; 1/ the set of irrational numbers of bounded
type. Corollary 7.3 implies that RA is disjoint from BT (since, in this case, all
conjugacies are quasisymmetric). Is it true that RA D Œ0; 1�n .Q[BT/? Is it true,
at least, that RA contains a residual subset of Œ0; 1�?
Question 9.2. Note that both sets A and B defined in Theorem 9.1 are f -invariant.
Indeed, this follows from the identity hx D hf .x/ ı f and the fact that f itself
(hence f n for all n 2 Z) is a quasisymmetric homeomorphism. By Theorem 7.2,
the critical point of f belongs to A (and then its whole orbit), since hcf

is always
a quasisymmetric homeomorphism. It could be the case that A D

˚
f n.cf / W n 2

Z
	
. Is it true, at least, that A is a countable set?
In Section 9.1.4 belowwe describe more precisely the notion of orbit-flexibility,

and state some straightforward consequences of Theorem 9.1. In Section 9.1.5 we
state some further consequences of Theorem 9.1, this time involving geometric
bounds for dynamical partitions (see Theorem 9.5).

9.1.3 Statements for multicritical maps
As usual, we denote by an D an.�/, n 2 N, the infinite sequence of partial quo-
tients of the continued fraction development of a given irrational number �. Let
us consider the set E1 consisting of all numbers � 2 .0; 1/ for which the corre-
sponding an’s are even and limn!1 an D 1. It is not difficult to see that E1
is a meager set whose Lebesgue measure is equal to zero (see Exercise 9.3). De-
spite being both topologically and measure-theoretically negligible, this set does
contain some interesting Diophantine, Liouville and transcendental numbers, see
Section 9.5. Our second goal in this chapter is to prove the following result.

Theorem 9.2. There exists a set G � Œ0; 1�2, which contains a residual set (in the
Baire sense) and has full Lebesgue measure, for which the following holds. Let f
and g be twoC 3 multicritical circle maps with the same irrational rotation number
� and such that the map f has exactly one critical point c0, whereas the map g
has exactly two critical points c1 and c2. Denote by ˛ and 1�˛ the �g -measures
of the two connected components of S1 n fc1; c2g, where �g denotes the unique
invariant probability measure of g. If .�; ˛/ belongs to G , then the topological
conjugacy between f and g that takes c0 to c1 is not quasisymmetric. Moreover,



248 9. Orbit Flexibility

the set of rotation numbers RB D f� W .�; ˛/ 2 G for some ˛g contains the set
E1 defined above.

The proofs of both Theorem 9.1 and Theorem 9.2 will be given in Section 9.6.
The following auxiliary result, a complete proof of which can be found in de Faria
and Guarino [2022b], will be discussed in Section 9.7.

The C1 Realization Lemma. For any given .�; ˛/ 2
�
Œ0; 1� nQ

�
� .0; 1/ there

exists aC1 bi-critical circle map with rotation number �, a unique invariant Borel
probability measure � and with exactly two critical points c1 and c2 such that the
two connected components of S1 n fc1; c2g have �-measures equal to ˛ and 1�˛
respectively.
Remark 9.3. It is possible to prove a similar Analytic Realization Lemma using
the results of Zakeri [1999, Section 7].

Together with Theorem 9.2, theC1 Realization Lemma implies the following
result.

Theorem 9.3. There exists a set RC � Œ0; 1� of irrational numbers, which contains
a residual set (in the Baire sense), has full Lebesgue measure and contains E1,
for which the following holds. For each � 2 RC , there exist two C1 multicritical
circle maps f; g W S1 ! S1 with the following properties:

1. Both maps have the same rotation number �;

2. The map f has exactly one critical point c0, whereas the map g has exactly
two critical points c1 and c2;

3. The topological conjugacy between f and g that takes c0 to c1 is not qua-
sisymmetric.

9.1.4 Centralizers

Following Yoccoz [1984a, 1995a], we denote by Z0.f / D fh 2 Diff0C.S1/ W
h ı f D f ı hg the centralizer of f in Diff0C.S1/. We also denote by QS.S1/
the subgroup of Diff0C.S1/ consisting of those homeomorphisms of the circle that
are quasisymmetric. In this language, Theorem 9.1 has the following immediate
consequence.

Theorem 9.4. If f W S1 ! S1 is a unicritical circle map with �.f / 2 RA, then
f is quasisymmetrically orbit-flexible. In particular, Z0.f / n QS.S1/ ¤ Ø.
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See also Avila, Cheraghi, and Eliad [2022, Section 4] for recent results on the
centralizers of some analytic circle maps. In fact, much more can be obtained from
Theorem 9.1. First, we need a definition. Let f W S1 ! S1 be a minimal circle
homeomorphism.

Definition 9.2. If x; y 2 S1, we say that x is f -equivalent to y, and write x �f y,
if there exists a quasisymmetric homeomorphism h 2 Z0.f / such that h.x/ D y.

It is clear that �f is an equivalence relation, so we can consider the set of
equivalence classes Xf D S1= �f . Below, in the proof of Proposition 9.2, we
will use the following observation.

Lemma 9.1. All equivalence classes are homeomorphic to each other.

Proof. Let us mark some point c 2 S1. For any given x 2 S1 consider Fx W
S1 ! S1 defined as follows: given y 2 S1 let hx;y 2 Z0.f / be determined by
hx;y.x/ D y, and then let Fx.y/ be defined by hx;y

�
Fx.y/

�
D c. It not difficult

to prove thatFx is a circle homeomorphism which identifies the class of x with the
class of c. In particular, given x; y 2 S1, the homeomorphism F�1

y ıFx identifies
the class of x with the class of y.

Note that if f is either a diffeomorphism or a (C 3) multicritical circle map,
then points in the same f -orbit are f -equivalent. More generally, for such f ’s,
if x �f y then for each x0 2 Of .x/ and each y0 2 Of .y/ we have x0 �f y0.
This happens because, in the cases considered, f itself (hence f n for all n 2 Z) is
a quasisymmetric homeomorphism. Note that, being f -invariant, all equivalence
classes are dense in the unit circle.

In the language introduced before, if Xf reduces to a single point, then f
is quasisymmetrically orbit-rigid, whereas if Xf has more than one point, then
f is quasisymmetrically orbit-flexible. Now we can state the following simple
consequence of Theorem 9.1.

Proposition 9.2. If f W S1 ! S1 is a unicritical circle map whose rotation
number belongs to the set RA of Theorem 9.1, then all its equivalence classes are
meagre (in the sense of Baire). In particular Xf is uncountable.

Proof. By definition, the set A given by Theorem 9.1 (applied to the particular
case g D f ) is the equivalence class of cf , the critical point of f . Being disjoint
from the residual set B, the set A is meagre. By Lemma 9.1, all classes are
meagre, and therefore, by Baire’s theorem, their number is uncountable.
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As already explained, if f W S1 ! S1 is an irrational rotation or a smooth dif-
feomorphism whose rotation number is Diophantine, thenXf is a single point. By
Proposition 9.1, the same happens with any multicritical circle map with rotation
number of bounded type.

9.1.5 Unbounded geometry

Let f be a C 3 multicritical circle map with irrational rotation number. Just as in
Section 8.2.3, we say that f has bounded geometry at x 2 S1 if there existsK > 1

such that for all n 2 N and for every pair I; J of adjacent atoms of Pn.x/ we
have

K�1 jI j ⩽ jJ j ⩽ K jI j ;
where

˚
Pn.x/

	
n2N

is the standard sequence of dynamical partitions of the circle
associated to x 2 S1 (see Section 6.3.1). With this at hand, consider the set

A D A .f / D fx 2 S1 W f has bounded geometry at xg :

The relation between bounded geometry and quasisymmetric homeomorphisms is
given by the following result.

Proposition 9.3. Let f be a multicritical circle map with irrational rotation num-
ber, and let x 2 A .f /. As before, for any given y 2 S1 let hx;y 2 Z0.f / be
determined by hx;y.x/ D y. Then

y 2 A .f /, hx;y 2 QS.S1/ :

Proof. For the “if” implication suppose, by contradiction, that y … A . This means
that there exists a sequence fnkgk2N � N such that for each k 2 N we can find a
pair Ik; Jk of adjacent atoms of Pnk

.y/ satisfying limk jIkj=jJkj D C1 . How-
ever, both intervals h�1

x;y.Ik/ and h�1
x;y.Jk/ are adjacent and belong to Pnk

.x/, and
since x 2 A , the ratios

ˇ̌
h�1
x;y.Ik/

ˇ̌
=
ˇ̌
h�1
x;y.Jk/

ˇ̌
are bounded. But this implies that

the quasisymmetric homeomorphism hx;y does not have weakly bounded cross-
ratio distortion, which is impossible by Corollary 7.1. For the “only if” implication
we refer the reader to Exercise 9.2.

An immediate consequence of Proposition 9.3 is that the set A is f -invariant,
since f itself (hence f n for all n 2 Z) is a quasisymmetric homeomorphism. As
it follows from the real bounds (Theorem 6.3), all critical points of f belong to A .
Being f -invariant and non-empty, the set A is dense in the unit circle. However,
the following consequence of Theorem 9.1 shows that A can be rather small.
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Theorem 9.5. Let RA � .0; 1/ be the full Lebesgue measure set given by Theo-
rem 9.1, and let f be aC 3 critical circle map with a single (non-flat) critical point
and rotation number � 2 RA. Then the set A .f / is meagre (in the sense of Baire)
and it has zero �f -measure.

To prove Theorem 9.5, note first that Proposition 9.3 is saying that the set
A .f / is an equivalence class for the�f relation and then, by Proposition 9.2, we
already know that it is meagre. Moreover, since the critical point of f belongs to
A (by Theorem 6.3), we deduce that A .f / is precisely the equivalence class of
the critical point. With this observation at hand, Theorem 9.5 follows at once from
Theorem 9.1, just by considering the particular case g D f .

By contrast, recall that if f has bounded combinatorics, then the set A .f / is
the whole circle: f has bounded geometry at any point in the unit circle.

9.2 Renormalization trails and ancestors

Let f W S1 ! S1 be an orientation preserving circle homeomorphism with irra-
tional rotation number � D Œa0; a1; a2; : : : �. Let us fix some point x in the unit
circle, and for each n ⩾ 0 let us consider the interval In D In.x/ having x and
f qn.x/ as its endpoints1. Suppose we are given another point on the circle, say
y. Looking at the past of y, i.e., at its negative orbit O�

f
.y/, we see that for each

n ⩾ 0 there exists in O�
f
.y/ a most recent visitor to In[ InC1; this point is called

the n-th generation ancestor of y (with respect to x and f ).
Let us be a bit more formal. Consider the rectangle R D Œ0; 1� � Œ�1; 1�

in R2, and let M D
�
Œ0; 1� n Q

�
� Œ�1; 1� � R. For any given y in S1, we

will define/construct in what follows a sequence of pairs .�n; ˛n/ 2 M , called
renormalization trail (see Definition 9.4 below) of y with respect to x and f . Let
us define simultaneously the initial cases n D 0 and n D 1. First, let �0 D � D
Œa0; a1; a2; : : : � 2 Œ0; 1� nQ and �1 D G.�/ D Œa1; a2; : : : � 2 Œ0; 1� nQ, where
G W Œ0; 1� ! Œ0; 1� is the Gauss map (recall Chapter 1, see also Appendix A). To
define ˛0 and ˛1 consider both intervals

I0 D
�
x; f .x/

�
and I1 D

�
f a0.x/; x

�

1The interval In[InC1, whose interior contains x, is sometimes called the n-th renormalization
domain of f around x. The meaning of the word “renormalization” will be explained in Chapter 10.
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If y belongs to the short interval I1 we define

˛0 D �
�
.x; y/

�
2 Œ0; 1 � a0 �0� and ˛1 D �

�
�
.x; y/

�

�.I1/
2 Œ�1; 0� :

Otherwise, there exist y0 in the long interval I0 and i 2 f0; 1; : : : ; a0 � 1g such
that f i .y0/ D y, in which case we define

˛0 D 1 �
�
�
�
.x; y0/

�
C i �0

�
D 1 � �

�
.x; y/

�
and ˛1 D

�
�
.x; y0/

�

�.I0/
:

Note that ˛0 2 Œ1 � a0 �0; 1�, whereas ˛1 2 Œ0; 1�. It should be noted also that, in
the definition of ˛0, we are measuring arcs in the counterclockwise sense: in the
first case, we measure �

�
.x; y/

�
considering the arc determined by x and y which

is contained in I1, while in the second case we measure �
�
.x; y0/

�
considering

the arc determined by x and y0 which is contained in I0. In this way we obtain
the first two terms of the sequence of pairs .�n; ˛n/ 2M D

�
Œ0; 1� nQ

�
� Œ�1; 1�.

After the first n terms are defined, let �nC1 2 Œ0; 1� nQ be given by

�nC1 D GnC1.�/ D GnC1�Œa0; a1; : : : �
�
D ŒanC1; anC2; : : : � :

If y belongs to the long interval f i .In/ for some i 2 f0; 1; : : : ; qnC1 � 1g,
let yn 2 In be such that f i .yn/ D y. Otherwise, y belongs to the short interval
f j .InC1/ for some j 2 f0; 1; : : : ; qn � 1g, and then let yn 2 InC1 be given by
f j .yn/ D y. In the first case, see Figure 9.1, we define

˛nC1 D
�
�
.x; yn/

�

�.In/
2 Œ0; 1�;

while in the second case we define

˛nC1 D �
�
�
.yn; x/

�

�.InC1/
2 Œ�1; 0�:

We can now formally define the notion of ancestor.

Definition 9.3. The points yn, n ⩾ 0, defined above are called the renormalization
ancestors (or simply the ancestors) of y with respect to x and f .

We are in fact more interested in the sequence of pairs .�n; ˛n/ 2M D
�
Œ0; 1�n

Q
�
� Œ�1; 1�. Accordingly, we formulate the following definition.
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In

InC1

f qn

f qnC1

Yn

x yn
f qn.x/f qnC1.x/

˛nC1 D
�.Yn/

�.In/

Figure 9.1: Calculating renormalization trails.

Definition 9.4. The sequence
˚
.�n; ˛n/

	
n⩾0
� M is called the renormalization

trail, or simply the trail, of the point y with respect to x and f .

In Section 9.4, we will prove the following result.

Theorem 9.6. There exists a full Lebesgue measure set R � Œ0; 1� of irrational
numbers with the following property: given a minimal circle homeomorphism f

with �.f / 2 R and given any point x 2 S1 there exists a set Bx � S1 which is
residual (in the Baire sense) and has full �f -measure such that for all y 2 Bx

the renormalization trail
˚
.�n; ˛n/

	
of y (with respect to x and f ) is dense in the

rectangle Œ0; 1� � Œ�1; 1�.
Being dense in Œ0; 1�, the orbit under the Gauss map of any element of R

accumulates at the origin. In particular, R is disjoint from the set BT � Œ0; 1� of
bounded type numbers. Note also that Bx is disjoint from O

C
f
.x/ D

˚
x; f .x/;

f 2.x/; : : :
	
, since for n ⩾ 0 the second coordinate of the renormalization trail of

f n.x/ with respect to x and f eventually becomes constant equal to 0.

9.3 The skew product
In this section we construct a skew product (see Section 9.3.2 below) that will be
crucial in order to prove Theorem 9.6 (its proof will be given in Section 9.4) and
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also to prove Theorem 9.2 (see Section 9.6).

9.3.1 The fiber maps
For any given � 2 Œ0; 1� nQ consider the piecewise affine dynamical system T� W
Œ�1; 1�! Œ�1; 1� given by

T�.˛/ D

8
ˆ̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
:

�˛ for ˛ 2
�
� 1; 0

�

� ˛

�G.�/
for ˛ 2

�
0; � G.�/

�

�
1 � ˛
�

�
for ˛ 2

�
�G.�/; 1

�
,

where G is, as before, the Gauss map. Each T� is a Markov map, its graph is
depicted in Figure 9.2.

9.3.2 The skew product

As before (see Section 9.2) we consider the rectangle R D Œ0; 1� � Œ�1; 1� in R2,
and letM D

�
Œ0; 1� nQ

�
� Œ�1; 1� � R. Consider the skew product T WM !M

given by
T .�; ˛/ D

�
G.�/ ; T�.˛/

�
;

where G is the Gauss map, and where the fiber maps T� were introduced in the
previous section (Section 9.3.1). The main dynamical property of the skew product
T that we will need here is the following.

Proposition 9.4. There exists a set G0 � Œ0; 1� � Œ�1; 1�, which is residual (in the
Baire sense) and has full Lebesgue measure, such that any initial condition in G0

has a positive orbit under T which is dense in Œ0; 1� � Œ�1; 1�.

The set G0 given by Proposition 9.4 will be crucial in the proof of Theorem 9.6
(which will be given in Section 9.4 below), and also in the proof of Theorem 9.2
(see Section 9.6). In Section 9.7 we will also need the following fact.

Lemma 9.2 (Topologically Exactness). Let U be a subset of the rectangle R with
non-empty interior. Then there exists n 2 N such that T n.U \M/ DM .

We postpone the proofs of Proposition 9.4 and Lemma 9.2 until Appendix C.
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0

1

�1

�1

O�0 O�1

� � �

� � �

O�a0�1 1DO�a0

Figure 9.2: The fiber map T� ; here, O�j D .G.�/ C j /� for each 0 ⩽ j ⩽ a0,
where a0 D b1�c.

9.4 Proof of Theorem 9.6

Just as before, let f W S1 ! S1 be an orientation preserving circle homeo-
morphism with irrational rotation number �. With Proposition 9.4 at hand, The-
orem 9.6 will be a straightforward consequence of the following fact:

Lemma 9.3. Given x and y in S1 we have

.�n; ˛n/ D T n.�0; ˛0/ for all n 2 N,

where f.�n; ˛n/g is the renormalization trail of y with respect to x and f , as
defined in Section 9.2, and T W M ! M is the skew product constructed in
Section 9.3.2.
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Throughout the proof of Lemma 9.3 we will make repeated use of the formula
�.In/ D

Qn
jD0G

j .�/ (recall Exercise 6.2).

Proof. By our definition of renormalization trails, �n D Gn.�/ for all n 2 N,
which coincides with the first coordinate T n.�0; ˛0/, as we can see directly from
the definition of our skew product T . So we only need to deal with the second
coordinate of the trails.

Let us treat first the cases n D 0 and n D 1. If on one hand y belongs to the
short interval I1 D

�
f a0.x/; x

�
, we have ˛0 2

�
0; �0G.�0/

�
and then

T�0
.˛0/ D T�0

�
�..x; y//

�
D � �..x; y//

�0G.�0/
D �

�
�
.x; y/

�

�.I1/
D ˛1 :

On the other hand, if y … I1 then there exist y0 in the long interval I0 D
�
x; f .x/

�

and i 2 f0; 1; : : : ; a0 � 1g such that f i .y0/ D y, in which case we have ˛0 2�
�0G.�0/; 1

�
and then

T�0
.˛0/ D T�0

�
1 � �..x; y0// � i �0

�
D
�
�..x; y0//C i �0

�0

�

D
�
�..x; y0//

�0

�
D �..x; y0//

�0
D �..x; y0//

�.I0/
D ˛1 :

In any case, ˛1 D T�0
.˛0/ and then .�1; ˛1/ D T .�0; ˛0/, as desired.

In order to prove the desired result for the remaining values of n, we have three
cases to consider.

(i) If yn 2 InC2 , we have

0 ⩽ ˛nC1 D
�..x; yn//

�.In/
⩽
�.InC2/
�.In/

D �nC1G.�nC1/ ;

and then

T�nC1
.˛nC1/ D �

˛nC1
�nC1G.�nC1/

D � ˛nC1 �.In/
�.InC2/

D � �..x; yn//
�.InC2/

D ˛nC2 :

(ii) If yn 2 In n InC2 , we have

�.InC2/
�.In/

< ˛nC1 ⩽ 1 ;
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which implies ˛nC1 2
�
�nC1G.�nC1/; 1

�
, and then

T�nC1
.˛nC1/ D

�
1 � ˛nC1
�nC1

�
:

Consider the fundamental domains �j;n � In for f qnC1 given by

�j;n D f j qnC1Cqn.InC1/ D
�
f .jC1/ qnC1Cqn.x/; f j qnC1Cqn.x/

�

for j 2 f0; 1; : : : ; anC1�1g, and let `n 2 f0; 1; : : : ; anC1�1g be defined by

yn 2 �`n;n. We claim that `n D
�
1 � ˛nC1
�nC1

�
. Indeed, since �

�
�j;n

�
D

�.InC1/ for all j 2 f0; 1; : : : ; anC1 � 1g, it follows that

`n �.InC1/ ⩽ .1 � ˛nC1/ �.In/ < .`n C 1/�.InC1/:

Equivalently,

`n ⩽ .1 � ˛nC1/
�.In/

�.InC1/
< `n C 1 :

Finally, from

�.In/

�.InC1/
D
Qn
jD0G

j .�/
QnC1
jD0Gj .�/

D 1

GnC1.�/
D 1

�nC1
;

we deduce that `n ⩽
1 � ˛nC1
�nC1

< `n C 1 , which implies the claim. With

this at hand we deduce that

T�nC1
.˛nC1/ D

�
1 � ˛nC1
�nC1

�

D 1 � ˛nC1
�nC1

� `n

D �.In/ � ˛nC1 �.In/
�.InC1/

� `n

D
�.In/ �

�
�..x; yn//C `n �.InC1/

�

�.InC1/
D ˛nC2 :

(iii) Whenever yn belongs to the short interval InC1, we have ˛nC1 2 Œ�1; 0/
and then T�nC1

.˛nC1/ D �˛nC1 D ˛nC2 , since ynC1 D yn belongs now
to the long interval InC1.
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This finishes the proof of Lemma 9.3.

Proof of Theorem 9.6. Let G0 � R be given by Proposition 9.4. By Fubini’s theo-
rem, there exists a full Lebesgue measure set R � Œ0; 1� such that for each � 2 R,
the set R� D

˚
˛ 2 Œ�1; 1� W .�; ˛/ 2 G0

	
has full Lebesgue measure in Œ�1; 1�.

In particular, R� is also residual2 in Œ�1; 1� for all � 2 R. Given a minimal cir-
cle homeomorphism f with �.f / 2 R and given any point x 2 S1, the map
that sends ˛ 2 .0; 1/ to the point y 2 S1 n fxg which satisfies �f

�
Œx; y�

�
D ˛

(and note that such point is unique if we fix, say, the counterclockwise orienta-
tion) is a homeomorphism that, by definition, identifies the Lebesgue measure in
.0; 1/ with the probability measure �f in S1 n fxg. By combining Proposition 9.4
with Lemma 9.3, we deduce that it is enough to take Bx as the image (under the
homeomorphism described above) of R� \ .0; 1/.

9.5 Even-type rotation numbers

Let us now present a result concerning trails for maps whose rotation number be-
longs to the special class appearing in the statements of Theorem 9.2 and Theo-
rem 9.3. We denote by E the set of those irrationals 0 < � < 1 all of whose partial
quotients an.�/ are even (in particular an.�/ ⩾ 2 for all n). We also consider the
subset E1 D f� 2 E W limn!1 an.�/ D1g.
Remark 9.4. We note en-passant that E1 contains some Diophantine numbers:
for example, the number � D Œa1; a2; : : : ; an; : : :� with an D 2n is Diophantine,
and it clearly belongs to E1. The set E1 also contains many Liouville numbers:
for instance, any � D Œa1; a2; : : : ; an; : : :� with an even and an > en

n for all n 2
N belongs to E1. Finally, note that the transcendental number� D .e�1/=.eC1/
also belongs to E1; indeed, its continued fraction expansion has an D 4n� 2 for
all n ⩾ 1, i.e., � D Œ2; 6; 10; 14; : : :� – this is a special case of an old identity due
to Euler and Lambert3.

Proposition 9.5. Let f W S1 ! S1 be a minimal circle homeomorphism with
�.f / D �. Given x; y 2 S1 distinct, let f.�n; ˛n/gn⩾0 be the renormalization

2Indeed, let fAng be a sequence of open and dense sets in R such that \An D G0. For each
� 2 R and each n we have that

�
f�g � Œ�1; 1�

�
\ An is open and has full Lebesgue measure in

f�g � Œ�1; 1�, and in particular it is also dense in f�g � Œ�1; 1�.
3Which states that tanh .x�1/ D Œx; 3x; 5x; 7x; : : :� for all x 2 N; see Lang [1995, p. 71]
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trail of y with respect to x and f . If � 2 E and ˛0 D 1
2
, then for all n ⩾ 1 we

have �n < 1
2
, and

˛n D

8
ˆ̂<
ˆ̂:

�n

2
if n is odd,

1

2
C �n if n is even.

(9.1)

In particular, if � 2 E1, then there exists a subsequence ni ! 1 such that
˛ni
! 1

2
.

Proof. First note that, if a0; a1; a2; : : : are the partial quotients of the continued
fraction expansion of �0, then by hypothesis an ⩾ 2 for all n, and this already
implies that �n < 1

an
⩽ 1

2
for all n ⩾ 1. This takes care of the first assertion in

the statement. In order to prove the second assertion, we will use Lemma 9.3 and
induction on n.
(1) Base of induction. We have ˛0 D 1

2
, and since ˛0 > �0G.�0/ D �0�1,

Lemma 9.3 tells us that

˛1 D T�0
.˛0/ D

�
1 � ˛0
�0

�
D
�
1

2�0

�
:

But ��1
0 D a0 C �1, where a0 ⩾ 2 is even. Therefore

˛1 D
�
1

2
.a0 C �1/

�
D �1

2
:

This verifies (9.1) for n D 1. Let us now look at ˛2. We have ˛1 > �1G.�1/ D
�1�2. Hence, using Lemma 9.3 and the fact that ��1

1 D a1 C �2, we see that

˛2 D T�1
.˛1/ D

�
1 � ˛1
�1

�

D
�
1

�1
� 1
2

�

D
�
a1 C �2 �

1

2

�

D
�
�2 �

1

2

�

D 1

2
C �2 :
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This verifies (9.1) for n D 2. Summarizing, we have established the base of the
induction.

(2) Induction step. Suppose (9.1) holds for n. In order to show that this assertion
holds for nC 1, there are two cases to consider, according to whether n is odd or
even.

(i) If n is odd, then we are assuming that ˛n D 1
2
�n. In particular, we have

˛n > �n�nC1 D �nG.�n/, so Lemma 9.3 tells us that

˛nC1 D T�n
.˛n/ D

�
1 � ˛n
�n

�
D

�
1

�n
� 1
2

�

Using here that ��1
n D an C �nC1, we get

˛nC1 D
�
an C �nC1 �

1

2

�
D 1

2
C �nC1 :

This establishes the induction step when n is odd.

(ii) If n is even, then we are assuming that ˛n D 1
2
C �n, by the induction

hypothesis. Hence we have ˛n > 1
2
> �n�nC1 D �nG.�n/, and therefore

from Lemma 9.3 we deduce that

˛nC1 D T�n
.˛n/ D

�
1 � ˛n
�n

�

D
�
1

2�n
� 1

�

D
�
1

2�n

�
: (9.2)

Again, using that ��1
n D an C �nC1, we see that

˛nC1 D
�
1

2
anC1 C

1

2
�nC1

�
D �nC1

2
;

where in the last equality we have at last used the fact that an is an even
integer! This establishes the induction step when n is even, and completes
the proof of the second assertion.
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Finally, the last assertion in the statement is easily proved: if � 2 E1, then �n ! 0

as n ! 1. Hence by (9.1) we see that ˛2i ! 1
2

as i ! 1. This concludes the
proof.

Remark 9.5. The above proof still works if only the odd partial quotients a2kC1
are required to be even (but still requiring an ¤ 1 for all n). The resulting class
of numbers with this property is a bit larger than E, but still has zero Lebesgue
measure.

9.6 Proofs of Theorems 9.1 and 9.2
In this section we prove our first two main results, namely Theorem 9.1 and Theo-
rem 9.2. We first recall the setup for both theorems, and fix some notation.

Let f; g W S1 ! S1 be two C 3 (multi)critical circle maps with the same
irrational rotation number � D Œa0; a1; : : : ; an; : : :�. Let h W S1 ! S1 be a
topological conjugacy between f and g mapping orbits of f to orbits of g (i.e.,,
such that h ı f D g ı h). Let x; z 2 S1 be such that h.x/ D z. Suppose also
that w 2 S1, w ¤ z, is a critical point for g. Assume one of the following two
scenarios (which correspond to the situations in Theorem 9.1 and Theorem 9.2,
respectively).

Scenario A. Both f and g are uni-critical circle maps, with critical points
at x and w, respectively.

Scenario B. The map f is uni-critical with critical point at x, whereas the
map g is bi-critical with critical points at z and w.

In either scenario, let y D h�1.w/ and let yn, n ⩾ 0, be the renormalization
ancestors of y (with respect to x and f ). Likewise, letwn D h.yn/, n ⩾ 0, denote
the renormalization ancestors of w D h.y/ (with respect to z and g). Finally, let
.�n; ˛n/, n ⩾ 0, be the renormalization trail of y (with respect to x and f ) – which
is also the renormalization trail of w (with respect to z and g).

Both Theorem 9.1 and Theorem 9.2 will be straightforward consequences of
the following result.

Lemma 9.4. In either of the two scenarios above, suppose that there exists a sub-
sequence ni !1 such that �ni C1 ! 0 as i !1, and

ˇ̌
˛ni C1 � 1

2

ˇ̌
< 1
4

for all
i . Then the conjugacy h is not quasisymmetric.
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x

z

�ni

Lni
Rni

h.�ni
/h.Lni

/ h.Rni
/

f qni .x/f qni C1.x/

gqni .z/gqni C1.z/

yni

wni

Figure 9.3: The distortion of cross-ratios is large.

The proof of this lemma, in turn, depends on the fact that, inside every interval
of the form In.x/, critical spots are large. We have seen this already (in Chapter 7),
but for convenience we repeat the statement here.

Lemma 9.5. Let 0 ⩽ k < anC1 be such that the interval

�k;n D f qnCkqnC1.InC1.x// � In.x/

contains a critical point of f qnC1 . Then j�k;nj � jIn.x/j.

Proof. The proof is outlined in Section 7.4.3, Exercise 7.9; the reader is invited to
fill in the details.

Proof of Lemma 9.4. The idea is to show that h has unbounded distortion of cross-
ratios: once this is proved, then Corollary 7.1 implies that the homeomorphism
h is not quasisymmetric. Passing to a subsequence if necessary, we may assume
that either (a) yni

2 Ini
for all i ; or (b) yni

2 Ini C1 for all i . We give the proof
assuming that case (a) holds. The proof in case (b) is the same, mutatis mutandis.

By restricting our attention to sufficiently large i , we may assume that �ni C1 <
1
9
, which implies that ani C1 > 8. Then we must have yni

2 Ini
n Ini C2. Indeed,
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if yni
2 Ini C2, then ˛ni C1 ⩽ �.Ini C2/=�.Ini

/ < 1
9
, which contradicts the

hypothesis. Since the intervals

�.j / D f qni
Cjqni C1.Ini C1/ ; 0 ⩽ j ⩽ ani C1 � 1 ;

constitute a partition of Ini
nIni C2 (modulo endpoints), it follows that there exists

0 ⩽ kni
⩽ ani C1 � 1 such that yni

2 �ni
D �.kni

/.

Claim. We have kni
� ani C1 � ani C1 � kni

.

In order to prove this claim, we first recall that

1 � ˛ni C1 D
�.Œyni

; f qni .x/�/

�.Ini
/

; (9.3)

where as before � is the unique Borel probability measure invariant under f .
Moreover, we have

kni
�1[

jD0
�.j / � Œyni

; f qni .x/� � �ni
[

kni
�1[

jD0
�.j / : (9.4)

Since �.�.j // D �.Ini C1/ for all j , from (9.3) and (9.4) we get

kni

�.Ini C1/
�.Ini

/
⩽ 1 � ˛ni C1 ⩽ .kni

C 1/ �.Ini C1/
�.Ini

/
: (9.5)

Taking into account that

�ni C1 D
�.Ini C1/
�.Ini

/

and that, by hypothesis, 1
4
< 1 � ˛ni C1 < 3

4
, we deduce from (9.5) that

1

4�ni C1
� 1 < kni

<
3

4�ni C1
:

But ��1
ni C1 D ani C1 C �ni C2, and 0 < �ni C2 < 1, so

1

4
� 1

ani C1
<

kni

ani C1
<

3

4

�
1C 1

ani C1

�
;
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and since �ni C1 < 1
9

implies ani C1 > 8, we deduce that

1

8
<

kni

ani C1
<

27

32
:

This proves the claim.
Now, provided ni is sufficiently large, the map f qni C1 restricted to the interval

Ini
nIni C2 is an almost parabolic map (see Definition 7.3 in Section 7.3). Here we

need ni large enough so that, restricted to the interval in question, the map f qni C1

is a diffeomorphism with negative Schwarzian derivative, and this is possible by
Proposition 8.3. By Yoccoz’s inequality (Lemma 7.3) and the above claim, we
have

j�kni
j

jIni
j �

1

minfk2ni
; .ani C1 � kni

/2g �
1

a2ni C1
:

Letting Lni
and Rni

denote the left and right components of Ini
n�ni

, we know
from the real bounds (Theorem 6.3) that jLni

j � jIni
j � jRni

j. Therefore we see
that

Œ�ni
; Ini

� D j�ni
jjIni
j

jLni
jjRni

j �
1

a2ni C1
: (9.6)

The next step is to estimate the cross-ratio determined by the pair of intervals
h.�ni

/ and h.Ini
/. Here, we first note that wni

D h.yni
/ 2 h.�ni

/ is a criti-
cal point for the map gqni C1 ; in the terminology of Estevez and de Faria [2018],
h.�ni

/ is therefore a critical spot of gqni C1 jh.Ini
/. As we saw in Lemma 9.5,

every critical spot of a renormalization return map is comparable to the interval
domain of said return map. Hence we have jh.�ni

/j � jh.Ini
/j. Moreover, by

the real bounds for g, we have jh.Lni
/j � jh.Ini

/j � jh.Rni
/j. These facts show

that
Œh.�ni

/; h.Ini
/� D jh.�ni

/jjh.Ini
/j

jh.Lni
/jjh.Rni

/j � 1 : (9.7)

Combining (9.6) with (9.7), we finally get an estimate on the cross-ratio distortion
of the pair of intervals �ni

� Ini
under h, to wit

CrD.hI�ni
; Ini

/ D Œh.�ni
/; h.Ini

/�

Œ�ni
; Ini

�
� a2ni C1 :

But since �ni C1 ! 0, we have ani C1 !1. This shows that the cross-ratio distor-
tion of h blows up, and so h cannot be quasisymmetric (again, recall Corollary 7.1).
The proof of Lemma 9.4 is complete.
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Proof of Theorem 9.1. Consider the sets R and Bcf
given by Theorem 9.6 (ap-

plied to f and x D cf ), and define RA D R. Then Lemma 9.4 (applied in the
Scenario A case) implies that Bcf

� B, which proves Theorem 9.1. Remem-
ber also that, as explained in Section 9.1.2, the fact that the complement of B is
dense follows from the fact that it is non-empty and invariant under the minimal
homeomorphism f .

Proof of Theorem 9.2. By Lemma 9.4 (applied in the Scenario B case), it is enough
to consider

G D G0 [
�

E1 �
�
1

2

��
� R ;

where G0 is given by Proposition 9.4, and E1 is given by Proposition 9.5.

9.7 The C1 realization lemma

9.7.1 Admissible pairs
We start Section 9.7 with a definition. Remember that R denotes the rectangle
Œ0; 1� � Œ�1; 1� in R2, andM D

�
Œ0; 1� nQ

�
� Œ�1; 1� � R.

Definition 9.5. A pair .�; ˛/ 2M is said to be admissible if there exists aC1 mul-
ticritical circle map g with irrational rotation number �, a unique invariant mea-
sure � and with exactly two critical points c1 and c2 such that the two connected
components of S1 n fc1; c2g have �-measures equal to ˛ and 1 � ˛ respectively.

The set of admissible pairs is denoted by A. Let us examine some of its prop-
erties.

Lemma 9.6. Any pair .�; ˛/ 2 .0; 1/2 such that � … Q and � � 2˛ D 0 belongs
to A.

Proof. Let f0 be a C1 critical circle map with a single critical point c.f0/ and
such that �.f0/ D ˛ (note that f0 can be chosen to be real-analytic, say from
the Arnold’s family). Let us denote by � the unique invariant Borel probability
measure of f0. Define g D f 20 D f0 ı f0 , and note that g is a real-analytic
bi-critical circle map, with irrational rotation number �.g/ D 2�.f0/ D 2˛ D �

and with two critical points c1.g/ D c.f0/ and c2.g/ D f �1
0

�
c.f0/

�
. Moreover,

the unique invariant Borel probability measure of g is �, and the two connected
components of S1 n fc1; c2g have �-measures equal to ˛ and 1 � ˛ respectively,
since c1 D f0.c2/.
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Lemma 9.7. The set A of admissible pairs is forward invariant under T , where
T WM !M is the skew product constructed in Section 9.3.

Proof. Let .�; ˛/ 2 A and let f be aC1 bi-critical circle map, with critical points
c1 and c2, such that .�; ˛/ is the initial term of the renormalization trail of c2 with
respect to c1 and f . For some fixed n 2 N, we want to prove that T nC1.�; ˛/ 2 A.
By Lemma 9.3, T nC1.�; ˛/ coincides with the .n C 1/-th term .�nC1; ˛nC1/ of
the renormalization trail of c2 (with respect to c1 and f ). Recall, from Section 9.2,
that �nC1 D GnC1.�/ and that if c2 belongs to the long interval f i

�
In.c1/

�
for

some i 2 f0; 1; : : : ; qnC1 � 1g, we have that

˛nC1 D
�
�
.c1; yn/

�

�.In/
;

where yn 2 In.c1/ is given by f i .yn/ D c2. Otherwise, c2 belongs to the short
interval f j

�
InC1.c1/

�
for some j 2 f0; 1; : : : ; qn � 1g, and then

˛nC1 D �
�
�
.yn; c1/

�

�.InC1/
;

where yn 2 InC1.c1/ is given by f j .yn/ D c2. Let us assume that we are in the
first case (the proof for the second one being the same), and note that the iterate
f qn restricts to a C1 homeomorphism (with a critical point at c1) between the
intervals

InC1.c1/ [ f �qnC1
�
InC1.c1/

�
D
�
f qnC1.c1/; f

�qnC1.c1/
�

and

�0;n [ f �qnC1
�
�0;n

�
D
�
f qnC1Cqn.c1/; f

�qnC1Cqn.c1/
�
;

where �0;n D f qn
�
InC1.c1/

�
D
�
f qnC1Cqn.c1/; f

qn.c1/
�
, as defined in the

course of the proof of Lemma 9.3. Identifying points in this way we obtain from
the interval

InC1.c1/ [ In.c1/ [ f �qnC1
�
�0;n

�
D
�
f qnC1.c1/; f

�qnC1Cqn.c1/
�
;

a compact boundaryless one-dimensional topological manifold N . Denote by
� W InC1.c1/ [ In.c1/ [ f �qnC1

�
�0;n

�
! N the quotient map, and let

� W N ! S1 be any homeomorphism which is a C1 diffeomorphism between
N n f�.c1/g and S1 n

˚
�
�
�.c1/

�	
. Note that � ı � maps the interior of In.c1/
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C1-diffeomorphically onto S1 n
˚
�
�
�.c1/

�	
. Let g W S1 ! S1 be given by the

identity
g ı � ı � D � ı � ı f qnC1 in In.c1/,

and note that g is a well-defined C1 circle homeomorphism, with irrational ro-
tation number equal to �nC1 D GnC1.�/. Moreover, g has exactly two critical
points in S1, given by Oc1 D � ı �.c1/ and Oc2 D � ı �.yn/. Finally, note that the
unique invariant Borel probability measure �g of g in S1 is given by

�g
�
� ı �.A/

�
D �.A/ =�

�
In.c1/

�
D �.A/ =

nY

jD0
Gj .�/;

for any Borel set A � In.c1/. In particular, the two connected components of
S1 n f Oc1; Oc2g have �g -measures equal to ˛nC1 and 1 � ˛nC1 respectively. This
finishes the proof of Lemma 9.7.

We remark that the glueing procedure described in the proof of Lemma 9.7
was introduced by Lanford in the eighties, see Section 10.2 and Lanford [1987,
1988] for much more.

Lemma 9.8. The set A of admissible pairs has non-empty interior inM .

We will not prove this result here. For a proof, see the original paper de Faria
and Guarino [2022b, Prop. 7.5]. We are now in a position to give a quick proof of
the C1 Realization Lemma, which we restate as follows.

Theorem 9.7 (The C1 Realization Lemma). Every pair in M is admissible; in
other words, A DM .

Proof. Since the set A of admissible pairs is obviously non-empty (see for instance
Lemma 9.6 above), Theorem 9.7 follows by combining Lemma 9.2 and Lemma 9.7
with Lemma 9.8.

Finally, when combined with Theorem 9.2, the C1 Realization Lemma im-
plies Theorem 9.3. This is left as an exercise to the reader.

Exercises

Exercise 9.1. Show that if f W S1 ! S1 is quasisymmetrically conjugate to a
rigid rotation R˛, then every conjugacy between f and R˛ is quasisymmetric.
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Exercise 9.2. Let f W S1 ! S1 be a multicritical circle map, and let x 2 S1 be
such that f has bounded geometry at x.

(i) Show that there exists a fine grid Gx D fQn.x/gn⩾0 with the property that,
for every n ⩾ 0, each atom � 2 Qn.x; f / is a union of atoms of Pm.x/

for some m ⩽ nC 1. [Hint: imitate the recursive construction used in the
proof of Proposition 7.6].

(ii) Let y 2 S1 be another point such that f has bounded geometry at y, and
let hx;y 2 Z0.f / be the self-conjugacy such that hx;y.x/ D y. Using (i),
prove that hx;y is quasisymmetric.

Exercise 9.3. Prove that the set E1 defined in Section 9.1.3 is uncountable. Prove
also that E1 is a set of first category of Baire (i.e., it is meager) and that its
Lebesgue measure is equal to zero. [Hint: see Appendix A.]
Exercise 9.4. Let f be a smooth bi-critical circle map with irrational rotation num-
ber �f , unique invariant measure �f and critical points c1 and c2. Say that the
two connected components of S1 n fc1; c2g have �f -measures equal to ˛f and
1 � ˛f respectively. As we know from Corollary 2.1, the rotation number �f
is continuous under C 0 perturbations. Show that ˛f is continuous under smooth
perturbations. More precisely, prove the following statement, borrowed from de
Faria and Guarino [2022b, Lem. 7.6]: given " > 0 there exists ı D ı."; f / > 0

such that if g is a smooth bi-critical circle map with irrational rotation number �g
satisfying dC1.f; g/ < ı, then j�f � �g j < " and j˛f � ˛g j < " [Hint: recall
Theorem 3.3, the Denjoy–Koksma inequality].

Exercise 9.5. Deduce Theorem 9.3 from Theorem 9.2 and the C1 Realization
Lemma.
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10 Smooth Rigidity
and

Renormalization

In recent years, the main new tool introduced in dynamics to understand the fine-
scale structure of a low-dimensional system is renormalization. The notion of
renormalization stems from statistical mechanics and field theory, and was intro-
duced in the context of one-dimensional dynamics – more precisely, in the study of
bifurcations of one-parameter families of unimodal maps – more than four decades
ago, through the numerical observations and conjectures formulated by Coullet
and Tresser [1978] and independently by Feigenbaum [1978].

In a nutshell, to renormalize a (smooth) dynamical system around some point
of interest (usually a critical point) means to consider a small, dynamically defined
neighborhood of that point in phase space, and to take the first return map to that
neighborhood, linearly rescaling it to unit size. If this can be done for a sequence
of smaller and smaller neighborhoods of the special point, then we say that the
system is infinitely renormalizable at that point. Now, if two systems are topo-
logically equivalent, and are infinitely renormalizable, it makes sense to compare
their successive renormalizations around corresponding special points. If these
corresponding successive renormalizations get closer and closer together (say in
the C 0 sense), this points to both systems having the same asymptotic geometric
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structure near their special points – and we expect this to happen at all points in the
forward orbits of the special points. In other words, the general ansatz is that the
convergence of successive renormalizations implies a form of geometric rigidity.
This is the rosy picture, but the reality is rather thorny, as we shall see.

Our goal in the present chapter is to explain the interplay between rigidity and
renormalization convergence in the specific context of (multi)critical circle maps.
We shall see that, when correctly interpreted, the above ansatz is true most of the
time (Section 10.3), but not always (Section 10.5).

10.1 Smooth rigidity

The notion of smooth rigidity first appeared in hyperbolic geometry in the sixties,
through the seminal work of Mostow, who showed that the fundamental group (the
topology) of a complete, finite-volume hyperbolic manifold of dimension greater
than two completely determines its geometry. In dynamical systems, smooth rigid-
ity means that a finite number of dynamical invariants determines the fine scale
structure of orbits. More precisely, maps that are topologically conjugate and share
these invariants are in fact smoothly conjugate. Numerical observations by Feigen-
baum, Kadanoff, and Shenker [1982], Ostlund et al. [1983], and Shenker [1982]
suggested in the early eighties that this was the case for C 3 critical circle maps
with a single critical point and with irrational rotation number of bounded type.
This was posed as a conjecture in several works by Feigenbaum, Kadanoff, and
Shenker [1982], Lanford [1987, 1988], Ostlund et al. [1983], Rand [1987, 1988,
1992], and Shenker [1982] among others. We proceed to state the most recent
results in this area, namely Theorems 10.1 and 10.2 below.

Theorem 10.1. Let f and g be two C 4 circle homeomorphisms with the same
irrational rotation number and with a unique critical point of the same odd integer
criticality. Let h be the unique topological conjugacy between f and g that maps
the critical point of f to the critical point of g. Then:

1. h is a C 1 diffeomorphism.

2. h is C 1C˛ at the critical point of f for a universal ˛ > 0.

3. There exists a full Lebesgue measure set of rotation numbers (containing
those of bounded type) for which the conjugacy h is a global C 1C˛ diffeo-
morphism.
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Recall that an irrational number � D Œa0; a1; : : : � is of bounded type if supfang
is finite (see Chapter 4 and Appendix A). By Theorem 6.2, the rotation number is
the unique invariant of the C 0 conjugacy classes of critical circle maps with no
periodic orbits. Theorem 10.1 is saying that, inside each topological class, the
order of the critical point is the unique invariant of the C 1 conjugacy classes! This
is what we call rigidity.

A delicate problem is to precisely determine “how smooth” the conjugacy h
is. By comparing with the material presented in Chapter 4 we see that, on the one
hand, the presence of the critical point gives us more rigidity than in the case of
diffeomorphisms: a smooth conjugacy is obtained for all irrational rotation num-
bers, with no need of a Diophantine condition. On the other hand, in Section 10.5
we will construct examples where the conjugacy h is not globally C 1C˛. It might
be possible, but probably quite difficult, to obtain a sharp arithmetical condition
on the rotation number that would allow us to decide whether the conjugacy is
“better than C 1”.

Theorem 10.2. Any two C 3 critical circle maps with a single critical point, with
the same irrational rotation number of bounded type and with the same odd integer
criticality are conjugate to each other by a C 1C˛ circle diffeomorphism, for some
˛ > 0.

This fourth and last part of the present book is entirely devoted to explaining the
proof of these two fundamental results; deep tools coming from Renormalization
Theory and Holomorphic Dynamics will be introduced along the way. As it will be
clear to the reader (specially in Chapter 14), the ideas of Dennis Sullivan, Curtis
McMullen and Mikhail Lyubich (conceived in the context of unimodal maps of the
interval) were crucial to develop the rigidity theory of critical circle maps (for an
overview of Sullivan’s major contributions to the area of Dynamical Systems, we
refer the reader to the recent expository paper by de Faria and van Strien [2023]).

We remark that the statement of Theorem 10.2 is the precise statement of the
rigidity conjecture mentioned above. Together, Theorems 10.1 and 10.2 can be
regarded as the state of the art concerning rigidity of critical circle maps with a
single critical point of integer criticality (see also the recent paper by Gorbovickis
and Yampolsky [2020], where rigidity is obtained for real-analytic unicritical cir-
cle maps of bounded combinatorics, with non-integer criticalities which are close
enough to an odd integer). As it will be explained in the next chapters, both results
were first proved for real-analytic unicritical circle maps, mainly as a combina-
tion of works by the first named author together with de Melo, and by Yampol-
sky (see de Faria [1999], de Faria and de Melo [1999, 2000], Khanin and Teplin-
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sky [2007], Khmelev and Yampolsky [2006], and Yampolsky [1999, 2001, 2002,
2003]). In the current form (i.e., for C r maps), Theorem 10.1 was proved by Guar-
ino, Martens, and de Melo [2018], while Theorem 10.2 was proved by Guarino
and de Melo [2017]. In both cases, the main task is to reduce the rigidity prob-
lem for C r unicritical circle maps to the real-analytic case. This reduction will be
discussed in detail in Chapter 13.

What about dynamics with more critical points? Let f be a C 3 multicritical
circle map with irrational rotation number � 2 .0; 1/, unique invariant Borel prob-
ability measure � and N ⩾ 1 critical points ci , for 0 ⩽ i ⩽ N � 1. As before, all
critical points are assumed to be non-flat: in C 3 local coordinates around ci , the
map f can be written as t 7! t jt jdi �1 for some di > 1 (Definition 5.1). More-
over, just as in Chapter 6 (recall Definition 6.2), we define the signature of f to
be the .2N C 2/-tuple

.� IN I d0; d1; : : : ; dN�1I ı0; ı1; : : : ; ıN�1/;

where di is the criticality of the critical point ci , and ıi D �Œci ; ciC1/ (with the
convention that cN D c0).

Now consider two multicritical circle maps, say f and g, with the same irra-
tional rotation number. By Theorem 6.2, they are topologically conjugate to each
other. By elementary reasons, if f and g have the same signature there exists
a circle homeomorphism h, which is a topological conjugacy between f and g,
identifying each critical point of f with a corresponding critical point of g having
the same criticality. As proved in Chapter 7, such conjugacy h is a quasisymmetric
homeomorphism (Theorem 7.2).

Question 10.1. Is this conjugacy a smooth diffeomorphism?

Of course, only such an h conjugating f and g has the chance of being smooth
(in fact, as explained in Chapter 9, for Lebesgue almost every rotation number most
conjugacies between f and g fail to be even quasisymmetric). The following re-
sult follows by combining the recent papers Estevez and Guarino [2023], Estevez,
Smania, and Yampolsky [2022], and Yampolsky [2019].

Theorem 10.3. Let f and g be real-analytic bi-critical circle maps with the same
irrational rotation number, both critical points of cubic type and with the same sig-
nature. If their common rotation number is of bounded type, then the topological
conjugacy h is a C 1C˛ diffeomorphism.
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To the best of our knowledge, Theorem 10.3 is the first rigidity statement avail-
able for maps with more than one critical point. In other words, Question 10.1 re-
mains wide open (but see the recent preprint Gorbovickis and Yampolsky [2021]).

As stated in the introduction to this chapter, the main tool to study rigidity prob-
lems in low dimensional dynamics is renormalization theory. Renormalization of
a dynamical system with a marked point (usually a critical point) means a (suitably
rescaled) first return map to a neighborhood of such point. Thus, renormalization
can be thought as a supra dynamical system, acting on an infinite dimensional
phase space made up by the original dynamics (see Section 10.2 for the precise
definition of renormalization of multicritical circle maps). In the context of one
dimensional dynamics, the renormalization program was initiated by Dennis Sulli-
van in the eighties (Sullivan [1986, 1992]), and then carried out by mathematicians
such as Yoccoz, Douady, Hubbard, Shishikura, McMullen, Lyubich, Martens, de
Melo, Yampolsky, van Strien and Avila among others.

A fundamental principle in this theory states that exponential convergence
of renormalization orbits implies rigidity: topological conjugacies are actually
smooth (when restricted to the attractors of the original systems). We refer the
reader to de Melo and van Strien [1993, Section VI.9] for the seminal case of
unimodal maps with bounded combinatorics (specifically, see Theorem 9.4 on
page 552).

Let us be more precise: by Yoccoz’s Theorem 6.2, two multicritical circle maps
f and g with the same irrational rotation number are topologically conjugate to the
corresponding rigid rotation, and in particular to each other. To obtain a smooth
conjugacy between f and g, we need to assume the existence of a topological
conjugacy h that identifies their critical sets, while preserving corresponding crit-
icalities. In other words, f and g need to have the same signature (recall Defini-
tion 6.2). It turns out that for Lebesgue almost every rotation number, such conju-
gacy h is a C 1C˛ diffeomorphism, provided the successive renormalizations of f
and g (around critical points identified under h) converge together exponentially
fast in the C 1 topology (see the recent paper by Estevez and Guarino [2023]). For
unicritical circle maps, it is sufficient to have exponential convergence of renor-
malizations in the C 0 topology, and this is the main theorem that we will prove in
this chapter (see Theorem 10.4 in Section 10.3 below). Our proof will follow very
closely the original source, de Faria and de Melo [1999].

Thus, the main step to obtain rigidity, as in Section 10.1 above, is to estab-
lish geometric contraction of the successive renormalizations of multicritical cir-
cle maps with the same signature. The dynamics of renormalization, however, is
usually difficult to understand. To begin with, its phase space is neither bounded
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nor locally compact. Therefore, no recurrence is given a priori. This makes some
basic dynamical questions, such as existence of attractors and periodic orbits, quite
difficult to solve.1 In particular, proving exponential contraction is a challenging
problem. In the case of a single critical point and real-analytic dynamics, exponen-
tial contraction was obtained in de Faria and de Melo [2000] for rotation numbers
of bounded type, and extended in Khmelev and Yampolsky [2006] to cover all
irrational rotation numbers (Theorem 13.1). Both papers lean heavily on complex
dynamics techniques (to be discussed in Chapters 11 and 14), and therefore an
additional hypothesis is required: the criticality at both critical points has to be
an odd integer. These results have been recently extended in at least two direc-
tions: in Gorbovickis and Yampolsky [2020], exponential contraction is obtained
for real-analytic critical circle maps of bounded combinatorics, with non-integer
criticalities which are close enough to an odd integer, while in Guarino, Martens,
and de Melo [2018] and Guarino and de Melo [2017], exponential contraction is
established for critical circle maps with a finite degree of smoothness, (but still
with odd integer criticalities, see Theorems 13.2 and 13.3). Finally, in the case of
two critical points, it is proved in Yampolsky [2019] both the existence of periodic
orbits and the hyperbolicity (under renormalization) of those periodic orbits, for
real-analytic bi-critical circle maps (with both critical points of cubic type). These
results have been recently extended to bounded combinatorics in Estevez, Smania,
and Yampolsky [2022]. See Chapter 13 for more details.

10.2 Renormalization of commuting pairs
As mentioned before, to renormalize a dynamical system means to consider a first
return map around some interesting point, and then to rescale this return map. In
the context of circle maps, the first return map to a small neighborhood of a point is
always discontinuous. Hence it was already clear from the start (see Feigenbaum,
Kadanoff, and Shenker [1982] and Ostlund et al. [1983]) that the natural thing to
do is to construct a renormalization operator (see Definition 10.3) acting not on the
space of critical circle maps but on a suitable space of critical commuting pairs,
whose precise definition is the following.

Definition 10.1. A C r critical commuting pair � D .�; �/ consists of two C r
orientation preserving homeomorphisms � W I� ! �.I�/ and � W I� ! �.I�/

1As a first step, the real bounds (Theorem 6.3) can be used to establish C r bounds for return
maps, as in Section 6.4 (see also de Faria and de Melo [1999, App. A]). A standard Arzelà–Ascoli
argument gives then pre-compactness of renormalization orbits.
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where:

1. I� D Œ0; �.0/� and I� D Œ�.0/; 0� are compact intervals in the real line;

2.
�
� ı �

�
.0/ D

�
� ı �

�
.0/ ¤ 0;

3. D�.x/ > 0 for all x 2 I�nf0g andD�.x/ > 0 for all x 2 I� nf0g;

4. The origin is a non-flat critical point for both � and �, with the same criti-
cality.

5. The left-derivatives of the composition � ı � at the origin coincide with the
corresponding right-derivatives of � ı�: for each j 2 f1; 2; : : : ; rg we have
Dj�

�
� ı �

�
.0/ D DjC

�
� ı �

�
.0/.

For a commuting pair as above, both � and � extend to C r homeomorphisms,
defined on interval neighborhoods of their respective domains, which commute
around the origin. In other words, the commuting condition (2) in Definition 10.1
actually holds on an open interval. Let us be more precise.

Lemma 10.1. There exist open intervals V� � I� and VC � I� and C r homeo-
morphic extensionsb� W V� ! b�.V�/ � R andb� W VC ! b�.VC/ � R of � and
� respectively, satisfying

�
b� ıb�

�
.x/ D

�b� ıb�
�
.x/ for all x in the open interval C

around the origin given by C D
˚
x 2 V� \ VC Wb�.x/ 2 V� andb�.x/ 2 VC

	
.

Proof. Since the origin is a non-flat critical point of odd criticality, there exists an
open interval C around it on which we can extend both � and � to C r homeomor-
phismsb� W C ! A andb� W C ! B , where A is an open interval around �.0/ and
B is an open interval around �.0/ (we may suppose that A, B and C are pairwise
disjoint). Moreover, since the criticality of bothb� andb� at the origin is the same
odd integer, the compositionb� ıb��1 W A! B is actually a C r diffeomorphism.

Let V� D A [ I� [ C , which is an open interval where I� is compactly
contained, and in the same way let VC D C [ I� [ B .

Since the composition �ı� is already defined at the left part ofC , the extension
of � defined above (given by the non-flatness of the critical point) allows us to
extend � to the left part of A in the following way: for any y 2 A there exists a
unique x 2 C such thatb�.x/ D y (since A Db�.C / andb� W C ! A is invertible)
and then we defineb� W A! R asb�.y/ D �

�
�.x/

�
D
�
� ı � ıb��1�.y/ if y < �.0/

andb�.y/ D �.y/ if y ⩾ �.0/.
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By Condition (5) in Definition 10.1, the left-derivatives of the composition
�ı � ıb��1 at the point �.0/ coincide with the corresponding right-derivatives of �
at �.0/, that is,b� is of classC r at the point �.0/ (and therefore on the whole domain
V�). Note also thatb� has no critical points on V�nf0g sinceb� ıb��1 W A! B is a
C r diffeomorphism and � has no critical points in B \ I� by Condition (3).

In the same way, since the composition � ı � is already defined at the right
part of C and since � is also defined on C , we extend � to the right part of B by
imposing the commuting conditionb� ıb� Db� ıb� on C as before.

The following construction was introduced by Lanford (see Lanford [1987,
1988]), and it is known as the glueing procedure (recall also the proof of Lemma 9.7
in the previous chapter). It follows from Lemma 10.1 that the map � extends to
a diffeomorphism from a neighborhood of �.0/ onto a neighborhood of � ı �.0/.
Identifying those points in this way, we obtain from the interval

�
�.0/; � ı �.0/

�
a

smooth, compact one-dimensional manifold M without boundary. The discontin-
uous piecewise smooth map

f� .t/ D

8
<
:
� ı �.t/ for t 2

�
�.0/; 0

�

�.t/ for t 2
�
0; � ı �.0/

�

projects to a smooth homeomorphism on the quotient manifoldM . Choosing any
diffeomorphism  W M ! S1, we obtain a multicritical circle map in S1 sim-
ply by conjugating with  . Although there is no canonical choice for the diffeo-
morphism  , any two different choices give rise to smoothly-conjugate multicrit-
ical circle maps in S1. Therefore any critical commuting pair represents a whole
smooth conjugacy class of multicritical circle maps. In particular, this procedure
allows us to define the rotation number of a commuting pair.

On the other hand, any critical circle map f with irrational rotation number
� gives rise to a sequence of critical commuting pairs in a natural way: let F be
the lift of f to the real line (for the canonical covering t 7! e2�it ) satisfying
DF.0/ D 0 and 0 < F.0/ < 1. For each n ⩾ 1 let bIn be the closed interval in the
real line, adjacent to the origin, that projects under t 7! e2�it to In. Let T W R!
R be the translation x 7! x C 1, and define � W bIn ! R and � W bInC1 ! R as:

� D T �pnC1 ı F qnC1 and � D T �pn ı F qn ;

where fpn=qng is the sequence of convergents associated to �, as defined in Chap-
ter 1. It is not difficult to check that .�jbIn

; �jbInC1
/ is a critical commuting pair,

usually denoted by .f qnC1 jIn
; f qn jInC1

/.
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0 �.0/�.0/
�ı�.0/D�ı�.0/

�

�

�

�

I�

I�

I�

I�

Figure 10.1: A critical commuting pair and its underlying interval exchange.

For a commuting pair � D .�; �/ we denote bye� the pair .e�jfI�
;e�jfI�

/, where
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tilde means rescaling by the linear factor 1=jI� j. In other words, jeI� j D 1 and the
length of eI� equals the ratio between those of I� and I� .

Given two critical commuting pairs �1 D .�1; �1/ and �2 D .�2; �2/ let A1
and A2 be the Möbius transformations such that for i D 1; 2:

Ai
�
�i .0/

�
D �1; Ai .0/ D 0 and Ai

�
�i .0/

�
D 1 :

Definition 10.2. For any 0 ⩽ r < 1 define the C r metric on the space of C r
critical commuting pairs in the following way:

dr.�1; �2/ D max
�ˇ̌
ˇ̌ �1.0/
�1.0/

� �2.0/
�2.0/

ˇ̌
ˇ̌ ;
A1 ı �1 ı A�1

1 � A2 ı �2 ı A�1
2


r

�

where k�kr is the C r -norm for maps in Œ�1; 1� with one discontinuity at the origin,
and �i is the piecewise map defined by �i and �i :

�i W I�i
[ I�i

! I�i
[ I�i

such that �i jI�i
D �i and �i jI�i

D �i

When we are dealing with real analytic critical commuting pairs, we consider
the C!-topology defined in the usual way: we say that

�
�n; �n

�
!
�
�; �

�
if there

exist two open sets U� � I� and U� � I� in the complex plane and n0 2 N

such that � and �n for n ⩾ n0 extend continuously to U�, are holomorphic in U�
and we have

�n � �

C0.U�/

! 0, and such that � and �n for n ⩾ n0 extend
continuously to U� , are holomorphic in U� and we have

�n� �

C0.U�/

! 0. We
say that a set C of real analytic critical commuting pairs is closed if every time we
have f�ng � C and f�ng ! �, we have � 2 C . This defines a Hausdorff topology,
stronger than the C r -topology for any 0 ⩽ r ⩽1 (in particular any C!-compact
set of real analytic critical commuting pairs is certainly C r -compact also, for any
0 ⩽ r ⩽1).

Note that dr is not a metric but rather a pseudo-metric, since it assigns distance
zero to any pair of commuting pairs that are conjugate by a homothety: if ˛ is a
positive real number,H˛.t/ D ˛t and �1 D H˛ı�2ıH�1

˛ , then dr.�1; �2/ D 0. In
order to have a metric, we simply need to restrict to normalized critical commuting
pairs, as defined above.

Let � D .�; �/ be a critical commuting pair according to Definition 10.1, and
recall that

�
� ı �

�
.0/ D

�
� ı �

�
.0/ ¤ 0. Let us suppose that

�
� ı �

�
.0/ 2 I� (see

Figure 10.1) and define the height �.�/ of � as a 2 N if

�aC1��.0/
�
< 0 ⩽ �a

�
�.0/

�
;
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and �.�/ D 1 if no such a exists. Thus, the height of the commuting pair
.f qnC1 jIn

; f qn jInC1
/ induced by a critical circle map f is exactly anC1, where

�.f / D Œa0; a1; : : :�. Now, for � D .�; �/with
�
�ı�

�
.0/ 2 I� and �.�/ D a <1,

the pair �
�jŒ0;�a.�.0//� ; �

a ı �jI�

�

is again a commuting pair, and if � is induced by a critical circle map, i.e.,

� D
�
f qnC1 jIn

; f qn jInC1

�
;

then we have
�
�jŒ0;�a.�.0//� ; �

a ı �jI�

�
D
�
f qnC1 jInC2

; f qnC2 jInC1

�
:

This motivates the following definition.

Definition 10.3. Let � D .�; �/ be a critical commuting pair with
�
� ı �

�
.0/ 2 I�.

We say that � is renormalizable if �.�/ D a < 1. In this case, we define the
pre-renormalization of � as the critical commuting pair

pR.�/ D
�
�jŒ0;�a.�.0//� ; �

a ı �jI�

�
;

and we define the renormalization of � as the normalization of pR.�/; that is,

R.�/ D p̃R.�/ D
�
e�j zŒ0;�a.�.0//�

; �̃a ı �j zI�

�
:

A critical commuting pair is a special case of a generalized interval exchange
map of two intervals, and the renormalization operator defined above is just the
restriction of the Zorich accelerated version of the Rauzy–Veech renormalization
for interval exchange maps (see for instance Yoccoz [2006]). However, we keep
in this book the classical terminology for critical commuting pairs.

If �.Rj .�// <1 for j 2 f0; 1; : : : ; n� 1g we say that � is n-times renormal-
izable, and if �.Rj .�// < 1 for all j 2 N we say that � is infinitely renormal-
izable. The space of all infinitely renormalizable commuting pairs is the natural
phase-space for renormalization. For such a pair, the irrational number whose
continued fraction expansion equals

�
�
�
�
�
; �
�
R.�/

�
; : : : ; �

�
R
n.�/

�
; �
�
R
nC1.�/

�
; : : :

�

is, by definition, the rotation number of the critical commuting pair � (note that
if � is induced by a critical circle map with irrational rotation number, then it is
infinitely renormalizable and both definitions of rotation number coincide).
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To understand the action of renormalization on the rotation number of a com-
muting pair, recall that the Gauss map G W Œ0; 1�! Œ0; 1� is given by

G.�/ D
�
1

�

�
for � ¤ 0 , and G.0/ D 0.

If � D Œa0; a1; a2; : : :� belongs to
�
1=.kC 1/; 1=k

�
, then 1=� D a0C Œa1; a2; : : :�

and then a0 D
j
1
�

k
D k and G.�/ D Œa1; a2; : : :�. This shows that the Gauss

map acts as a left shift on the continued fraction expansion of �, and therefore the
action of the renormalization operator on the rotation number is given by

�
�
R.�/

�
D G

�
�.�/

�
D �

�
Œa0; a1; a2; : : : �

�
D Œa1; a2 : : : � : (10.1)

In particular, the way the renormalization operator R acts on (infinitely renormal-
izable) critical commuting pairs is by sending topological classes to topological
classes.

10.3 A fundamental principle

Recall that, by Yoccoz’s Theorem 6.2, two C 3 multicritical circle maps, say f
and g, with the same irrational rotation number are topologically conjugate to
each other. If f and g have the same signature (Definition 6.2) there exists a
homeomorphism h W S1 ! S1, which is a topological conjugacy between f and
g, identifying each critical point of f with a critical point of g having the same
criticality. By Theorem 7.2, h is a quasisymmetric homeomorphism. Such an h,
mapping critical points to critical points and preserving criticalities, is the only
hope of a smooth conjugacy between f and g (as explained in Chapter 9, it turns
out that for almost every rotation number most conjugacies between f and g fail
to be quasisymmetric).

10.3.1 Main theorem
The following result, originally proved by de Faria and de Melo [1999, First Main
Theorem], is the main result of this chapter.

Theorem 10.4. There exists a set A of rotation numbers, having full Lebesgue mea-
sure and containing all numbers of bounded type, for which the following holds.
Let f and g be topologically conjugate C 3 critical circle maps, and let h be the
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conjugacy between f and g that maps the critical point of f to the critical point
of g. If their common rotation number belongs to A, and if their renormalizations
converge together exponentially fast in the C 0-topology, then h is C 1C˛ for some
˛ > 0.

This theorem has been recently extended by Estevez and Guarino [2023] to
cover the multicritical case. Here, one needs to assume, of course, that both maps
have the same signature, and the hypothesis of exponential convergence in the
C 0-topology has to be replaced by exponential convergence in the C 1-topology.
Indeed, contraction of the first derivatives is needed in order to control the relative
position of the various critical points for the return maps. As mentioned in the
introduction of this chapter, proving exponential contraction of renormalization is
a challenging problem, to be discussed in Chapter 13.

The set A � .0; 1/ of rotation numbers considered in the statement of Theo-
rem 10.4 was introduced in de Faria and de Melo [1999, Section 4.4]. Its precise
definition is the following.

Definition 10.4. Let A � .0; 1/ be the set of irrational numbers � D Œa0; a1; : : :�
satisfying:

1. lim sup
n!1

1

n

n�1X

jD0
log aj <1 ,

2. lim
n!1

1

n
log an D 0 ,

3.
1

n

kCnX

jDkC1
log aj ⩽ !

�n
k

�
,

for all 0 < n ⩽ k, where ! is a monotone function (that depends on �) such that
!.t/ > 0 for all t > 0, and such that t !.t/! 0 as t ! 0.

The set A has full Lebesgue measure in .0; 1/, and a proof of this fact will be
given in Appendix A (see Corollary A.1 and Lemma A.3). Obviously, all bounded
type numbers satisfy the three conditions above. The number whose partial quo-
tients are given by an D k if n D 2k with k ⩾ 1 and an D 1 otherwise is an
explicit element of A that is not of bounded type. This number satisfies (3) with
!.t/ D 1=

p
t .
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Still in the unicritical case, if one asks for the conjugacy to be only C 1, rather
thanC 1C˛, we have the following result obtained by Khanin and Teplinsky [2007,
Th. 2].

Theorem 10.5. Let f and g beC 3 unicritical circle maps with the same irrational
rotation number. If the renormalizations of f and g converge together exponen-
tially fast in the C 2 topology, then f and g are conjugate to each other by a C 1
diffeomorphism.

This theorem will not be proved here; we refer the reader to their original
paper. Let us mention that it would be important, for the rigidity problem for
multicritical circle maps discussed in Section 10.1 (recall Question 10.1), to adapt
their approach to the multicritical case. In other words, to prove that exponential
convergence of renormalization orbits implies C 1 rigidity for multicritical circle
maps with arbitrary irrational rotation numbers. To the best of our knowledge, this
has not yet been established.

The proof of Theorem 10.4 to be given here is the same proof given in de
Faria and de Melo [1999]. In addition to the real bounds from Chapter 6 (Theo-
rems 6.3 and 6.4), several tools from Chapter 7, such as the notion of fine grids
(Definition 7.2), the criterion for smoothness given by Proposition 7.3, and Yoc-
coz’s lemma on almost parabolic maps (Definition 7.3 and Lemma 7.3), will be
used in the proof.
Remark 10.1. As pointed out in de Faria and de Melo [ibid., Prop. 2.2], the real
bounds imply that exponential convergence of renormalizations is preserved under
conjugacy by a smooth diffeomorphism. In other words, if two C r maps are C r
conjugate, then the C r�1 distance between their successive renormalizations goes
to zero exponentially fast. This is true even in the general multicritical case: see
Exercise 10.1.

10.3.2 Comparing orbits of two almost parabolic maps
The following consequence of Yoccoz’s inequality will be need in the proof of
Theorem 10.4.

Proposition 10.1. Let � and be two almost parabolic maps with the same length
` defined on the same interval. Then for all x 2 J1.�/ \ J1. / and for all 0 ⩽
k ⩽ `=2, we have

j�k.x/ �  k.x/j ⩽ C k3 k� �  kC0 : (10.2)
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Proof. First note, using the mean-value theorem, that

j�k.x/ �  k.x/j D

ˇ̌
ˇ̌
ˇ̌
k�1X

jD0

�
�k�j�1.�. j .x/// � �k�j�1. jC1.x//

�
ˇ̌
ˇ̌
ˇ̌

⩽

k�1X

jD0

ˇ̌
ˇD�k�j�1.�j /

ˇ̌
ˇ
ˇ̌
ˇ�. j .x// �  . j .x//

ˇ̌
ˇ ;

where �j lies between �. j .x// and  jC1.x/. Hence we have

j�k.x/ �  k.x/j ⩽ k� �  k0
k�1X

jD0

ˇ̌
ˇD�k�j�1.�j /

ˇ̌
ˇ : (10.3)

Let us estimate each summand in the right-hand side of (10.3). Letm D m.j / be
such that �j 2 �jCm.�/, and assume also that j Cm ⩽ a=2. This last condition
is always satisfied if the central fundamental domain of  lies to the left of the
central fundamental domain of � (if this is not the case, then reverse the roles of
� and  in (10.3) and throughout). Using Yoccoz’s Lemma 7.3, we see that

jD�k�j�1.�j /j �
.j Cm/2

.a � k �mC 1/2 ⩽

�
j Cm
j C 1

�2
: (10.4)

Hence, it suffices to estimate m as a function of j . For this purpose, let n D n.j /
be such that  jC1.x/ 2 Œ�jCn�1.x/; �jCn.x/�. We claim thatm ⩽ nC1. There
are two possibilities. The first is that �. j .x// ⩾  jC1.x/: in this case we see
easily that

�j 2 Œ jC1.x/; �. j .x//� � Œ�jCn�1.x/; �jCnC1.x/�

and so m ⩽ n C 1. The second is that �. j .x// <  jC1.x/. In this case we
have �j <  jC1.x/ < �jCn.x/ 2 �jCnC1.�/, so once again m ⩽ nC 1. This
proves our claim.

So now we must bound n as a function of j . Again, there are two cases to
consider.

(a) We have Œ jC1.x/;  jC2.x/� � Œ�jCn�1.x/; �jCn.x/� (as depicted in
Figure 10.2(a)). In this case, Yoccoz’s Lemma gives us

1

j 2
⩽

C

.j C n/2 ;
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which implies n ⩽ Cj .

(b) We have  jC2.x/ > �jCn.x/. In this case, �jCn.x/ is the first point in
the �-orbit of x that lands inside the interval� D Œ jC1.x/;  jC2.x/� (see
Figure 10.2(b)). Let p be such that �jCnCi .x/ 2 � for i D 0; 1; : : : ; p� 1
but �jCnCp.x/ … �. Then we have � � Œ�jCn�1.x/; �jCnCp.x/�, and
this time Yoccoz’s Lemma gives us

1

j 2
⩽ C

�
1

.j C n/2 C
1

.j C nC 1/2 C � � � C
1

.j C nC p/2
�
⩽

C

j C n

Therefore n ⩽ Cj 2 in this case.

In either case we see that m ⩽ Cj 2. Carrying this information back to (10.4), we
deduce that

jD�k�j�1.�j /j ⩽ C j 2 : (10.5)

Substituting (10.5) into (10.3), we arrive at (10.2), and the proof is complete.

.a/

.b/

�jCn.x/

�jCn.x/�jCn�1.x/

�jCn�1.x/

�jCnCp.x/

 jC1.x/

 jC1.x/  jC2.x/

 jC2.x/

�

Figure 10.2: Bounding n in terms of j .
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Remark 10.2. It is worth pointing out that Proposition 10.1, which as we saw is
based on the geometric inequalities given by Yoccoz’s Lemma 7.3, will be sig-
nificantly improved in Chapter 12 (see for instance Lemma 12.11 and Proposi-
tion 12.3). Such sharper estimates, although not needed in the present chapter,
will be crucial in Chapter 13.

10.3.3 Proof of Theorem 10.4

Recall that we are dealing here with unicritical circle maps. There is no loss of
generality in assuming that the critical point c is the same for both maps. Let
fQn.f /gn⩾0 be the fine grid for f constructed in Proposition 7.6. The idea of the
proof is to show that the conjugacy h and this fine grid satisfy, at each level n, the
coherence condition ˇ̌

ˇ̌ jI j
jJ j �

jh.I /j
jh.J /j

ˇ̌
ˇ̌ ⩽ C�n ; (10.6)

for each pair of adjacent atoms I; J 2 Qn.f / and some constants C > 0 and
0 < ˇ < 1, and then invoke Proposition 7.3.

First we introduce some notation, to be used throughout the proof. We write
xn D xn.f / D f qn.c/. Accordingly, we write In.f / instead of In.c; f /, so
that the endpoints of In.f / are c and xn.f /. We denote by Jn.f / the interval
In.f /[InC1.f / and by fn W Jn.f /! Jn.f / the first return map to this interval.
Finally, we write fn D Rnf for the n-th renormalization of f around c (this is
just the return map fn linearly rescaled so that In.f / becomes the unit interval).

Now, the first thing to observe is that, if the renormalizations fn and gn con-
verge together exponentially fast, then jxn.f / � cj=jxn.g/ � cj converges to a
limit exponentially fast also. More precisely, we have the following lemma.

Lemma 10.2. If kfn �gnk0 ⩽ C�k for some 0 < � < 1 and all n ⩾ 0, then the
ratio jxn.f / � cj=jxn.g/ � cj converges to a limit exponentially fast. Moreover,
for all m; k ⩾ 1 we have

ˇ̌
ˇ̌ jIm.f /j
jIk.f /j

� jIm.g/jjIk.g/j

ˇ̌
ˇ̌ ⩽ C�minfm;kg jIm.f /j

jIk.f /j
: (10.7)

Proof. The hypothesis tells us that
ˇ̌
ˇ̌ jInC1.f /j
jIn.f /j

� jInC1.g/j
jIn.g/j

ˇ̌
ˇ̌ ⩽ C1�

n ;
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for all n ⩾ 1. Writing ˛n D jxn.f / � cj=jxn.g/ � cj D jIn.f /j=jIn.g/j, and
taking into account that C�1

2 jIn.g/j ⩽ jInC1.g/j ⩽ C2jIn.g/j by the real bounds
(for some C2 > 1), we see that the above inequality is equivalent to

ˇ̌
ˇ̌˛nC1
˛n
� 1

ˇ̌
ˇ̌ ⩽ C3�

n :

This is the same as ˛nC1 D .1 C �n/˛n where j�nj ⩽ C3�
n. Therefore ˛n D

˛1
Qn�1
jD1.1C�j /, and this shows that lim˛n exists. Finally, note that ifm > k ⩾ 1

then ˇ̌
ˇ̌˛m
˛k
� 1

ˇ̌
ˇ̌ ⩽

ˇ̌
ˇ̌
ˇ̌
m�1Y

jDk
.1C �j / � 1

ˇ̌
ˇ̌
ˇ̌ ⩽ C4

m�1X

jDk
�j < C5�

k ;

and similarly for j1 � ˛k=˛mj, and these facts clearly imply (10.7).

Remark 10.3. Having established this lemma, we may assume, after conjugating
one of the maps (say g) by a suitable smooth diffeomorphism, that the limit of the
ratios jIn.f /j=jIn.g/j is in fact equal to one. This will be our standing hypothesis
from now on (used at the end of the proof of Lemma 10.5 below).

Definition 10.5. Let fm W Jm.f / ! Jm.f / be the m-th first return map of f
and let k ¤ 0 be an integer such that jkj ⩽ damC1=2e (where dxe denotes the
smallest integer ⩾ x). The restricted domain of f km , denoted Dm;k , is defined as
follows.

Dm;k D

8
ˆ̂̂
<̂
ˆ̂̂
:̂

ImC1 [
�
f

d amC1
2

e�k
m .xm/; xm

�
; when k > 0

�
fm.xmC2/; f

d amC1
2

e�k
m .xm/

�
; when k ⩽ �1

In informal terms, the restricted domainDm;k is the set of points in Jm which
can be iterated k times by fm without ever going across the central fundamental
domain of fm in Jm.f / n JmC1.f /.

Lemma 10.3. For all x 2 Dm;k we have jDf km.x/j ⩽ K, where K ⩾ 1 depends
only on the real bounds.

Proof. Follows easily from the real bounds and Yoccoz’s Lemma 7.3. The details
are left to the reader as an exercise.
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Lemma 10.4. Let v be a vertex of PkCp.f / such that v 2 Jk.f /. Then there
exist k ⩽ m ⩽ k C p and 1 ⩽ N ⩽ p such that v can be represented in the form

v D �1 ı �2 ı � � � ı �N .xm/ ;

where �j D f kj
mj

for some k ⩽ mj ⩽ k C p and jkj j ⩽ damj C1=2e, and where
the point �jC1 ı � � � ı �N .xm/ belongs to the restricted domain of �j for each j .

Proof. For simplicity of notation, we write Ji D Ji .f / in this proof. Let k ⩽
m1 ⩽ k C p be largest with the property that v 2 Jm1

n Jm1C1, and let 0 < i ⩽
am1C1 be such that f im1

.v/ 2 Jm1C1. If i ⩽ dam1
=2e then let k1 D �i ; otherwise

let k1 D am1C1� i . We get �1 D f k1
m1

and a new vertex v1 D f �k1
m1

.v/ 2 Jm1C1.
If v1 2 JkCp then v1 D fkCp.xkCp/ necessarily, and we can stop. On the other
hand, if v1 … JkCp, then once again there existsm2 in the rangem1 < m2 < kCp
such that v1 2 Jm2

n Jm2C1, and we can proceed inductively. At the end of
this process we get sequences m1 < m2 < � � � < mN ⩽ k C p (so N ⩽ p)
and v1; v2; : : : ; vN with vj 2 Jmj

n Jmj C1, and for each j an integer kj with
jkj j ⩽ damj C1=2e such that vjC1 D f �kj

mj
.vj /. The last vertex vN is necessarily

xm for some m ⩽ k C p. Hence it suffices to take �j D f
kj
mj

to get the desired
representation.

From now on, we assume that the corresponding successive renormalizations
of f and g approach each other exponentially, in other words kfn�gnk0 ⩽ C�n

for some 0 < � < 1 and all n ⩾ 0, just as stated in the hypothesis of Lemma 10.2.

Lemma 10.5. There exists a constant 0 < �� < 1 for which the following holds.
Let v 2 Jk.f / be a vertex of PkCp.f / and let w D h.v/ 2 Jk.g/ be the
corresponding vertex of PkCp.g/. If �.f / satisfies condition (2), then we have

jv � wj ⩽ C jJk.f /jKp�k� ; (10.8)

where K ⩾ 1 is the constant of Lemma 4.8.

Proof. By Lemma 10.4 above, there exist points xm D xm.f /, ym D xm.g/ and
a number N ⩽ p such that

jv � wj D j�1 ı �2 ı � � � ı �N .xm/ �  1 ı  2 ı � � � ı  N .ym/j ;

where �j D f kj
mj

and  j D gkj
mj

, with k ⩽ mj ⩽ k C p and jkj j ⩽ damj C1=2e.
For each i ⩾ 1, let �i;f be the affine map x 7! c C jIi .f /jx, and define �i;g
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in the same way. For each i ⩾ k, let Ai;f D ��1
k;f
ı �i;f and Ai;g D ��1

k;g
ı

�i;g . In order to estimate jv � wj, we shall estimate jv� � w�j, where v� D
��1
k;f
.v/ and w� D ��1

k;g
.w/. To do this, for each i ⩾ k consider the map f �

i W
��1
k;f
.Ji .f //! ��1

k;f
.Ji .f // given by

f �
i D ��1

k;f ı fi ı�k;f D Ai;f ı fi ı A�1
i;f ;

and let g�
i be similarly defined.

First we claim that for all x 2 ��1
k;f
.Ji .f // \��1

k;g
.Ji .g// we have

jf �
i .x/ � g�

i .x/j ⩽ C1�
k jIi .f /j
jIk.f /j

: (10.9)

To see why, note that by inequality (10.7) of Lemma 10.2 we have, for all z in the
domain of both renormalizations fi and gi ,

ˇ̌
Ai;f .z/ � Ai;g.z/

ˇ̌
D

ˇ̌
ˇ̌ jIi .f /j
jIk.f /j

� jIi .g/jjIk.g/j

ˇ̌
ˇ̌ jzj ⩽ C2�

k jIi .f /j
jIk.f /j

:

Similarly, for all x 2 ��1
k;f
.Ji .f // \��1

k;g
.Ji .g// we have, again by (10.7),

ˇ̌
ˇA�1
i;f .x/ � A

�1
i;g.x/

ˇ̌
ˇ D

ˇ̌
ˇ̌ jIk.f /j
jIi .f /j

� jIk.g/jjIi .g/j

ˇ̌
ˇ̌ jxj ⩽ C3�

k jIk.f /j
jIi .f /j

jxj ⩽ C4�
k :

Here we have used that jxj ⩽ jJi .f /j=jIk.f /j ⩽ C5jIi .f /j=jIk.f /j (recall from
the real bounds that jJi .f /j � jIi .f /j). Also, by hypothesis we have kfi �
gik0 ⩽ C6�

k . Combining these three estimates with a standard telescoping trick,
we get (10.9), and the claim is proved.

Now let ��
j D Amj ;f ı�j ıA�1

mj ;f
and �

j D Amj ;g ı j ıA�1
mj ;g

. Applying
(10.9) with i D mj and using Proposition 10.1, we have

ˇ̌
ˇ��
j .x/ �  �

j .x/
ˇ̌
ˇ ⩽ C7 jkj j3�k

jImj
.f /j

jIk.f /j
: (10.10)

By the real bounds, there exists 0 < �1 < 1 such that jImj
.f /j=jIk.f /j ⩽

C8�
mj �k
1 . Taking � D maxf�; �1g, we deduce from (10.10) that

ˇ̌
ˇ��
j .x/ �  �

j .x/
ˇ̌
ˇ ⩽ C9 a

3
mj C1�

mj : (10.11)
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We can at last start our estimate of jv� �w�j. First, note that xm D �m;f .1/ and
ym D �m;g.1/. Writing x�

m D ��1
k;f
.xm/ and y�

m D ��1
k;g
.ym/, we see after a

simple computation that jx�
m � y�

mj ⩽ C10�
m. Combining this fact with (10.11)

and using Lemma 10.3, we get

j��
N .x

�
m/ �  �

N .y
�
m/j ⩽ j��

N .x
�
m/ �  �

N .x
�
m/j C j �

N .x
�
m/ �  �

N .y
�
m/j

⩽ C9a
3
mN C1�

mN C C10K�m :
From this, and since

j��
N�1.�

�
N .x

�
m// �  �

N�1. 
�
N .y

�
m//j ⩽

j��
N�1.�

�
N .xm//� �

N�1.�
�
N .x

�
m//j C j �

N�1.�
�
N .x

�
m//� �

N�1. 
�
N .y

�
m//j ;

we deduce that

j��
N�1.�

�
N .x

�
m// �  �

N�1. 
�
N .y

�
m//j ⩽

C9
�
a3mN �1C1�

mN �1 CKa3mN C1�
mN

�
C C10K2�m :

Proceeding inductively in this fashion, we get in the end

jv� � w�j ⩽ C9

NX

jD1
Kj�1a3mj C1�

mj C C10KN�m :

Using that N ⩽ p and taking C11 D maxfC9; C10g, we arrive at

jv� � w�j ⩽ C11K
p

0
@�m C

NX

jD1
a3mj C1�

mj

1
A : (10.12)

We have of course �m ⩽ �k . Moreover, since k ⩽ mj < mjC1 for all j , we have
NX

jD1
a3mj C1�

mj <

1X

nDk
a3n�

n :

But since .an/ satisfies condition (2), we know that lim .a3n/1=n D 1. In particular,
if " > 0 is such that .1 C "/

p
� D 1, there exists C12 D C12."/ > 0 such that

a3n < C12.1C "/n for all n. Therefore
1X

nDk
a3n�

n < C12

1X

nDk

�p
�
�n
D C12

1 �
p
�

�p
�
�k

:
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Taking this back to (10.12) yields jv��w�j ⩽ C13K
p�
�p

�
�k

. Therefore, noting
that under the assumption given in the remark after Lemma 10.2 we have

jv � wj D j�k;f .v�/ ��k;g.w�/j ⩽ jIk.f /j
�
jv� � w�j C C14�k

�
;

and taking �� D
p
�, we get (10.8) as desired.

Lemma 10.6. There exists a constant M > 0 depending only on the real bounds
such that if �� 2Pk.f / and � 2PkCp.f / is contained in ��, then

j�j ⩾ Mp

�
akC1akC2 � � � akCp

�2 j�
�j :

Proof. This again follows from Yoccoz’s Lemma 7.3 and a simple inductive argu-
ment.

Let us now consider the fine grid fQn.f /gn⩾0 constructed before. It will be
convenient to use the following terminology.

Definition 10.6. The level of an atom � 2 Qn.f /, denoted `.�/, is the largest
m ⩽ n such that � is contained in an atom of Pm.f /.

Lemma 10.7. If Qn.f / contains an atom of level m, then

n ⩽ c0

mX

jD1
log .1C ajC1/ (10.13)

for some absolute constant c0 > 0. In particular, if the partial quotients of �.f /
satisfy (1), then m ⩾ c1n for some constant 0 < c1 < 1 that depends only on
�.f /.

Proof. Let� 2 Qn.f / be an atom of levelm. Let�1 � �2 � � � � � �n D � be
such that �k 2 Qk.f /, and note that 1 D `.�1/ ⩽ `.�2/ ⩽ � � � ⩽ `.�n/ D m.
Given 1 ⩽ l ⩽ m, let i and s (maximal) be such that

`.�iC1/ D `.�iC2/ D � � � D `.�iCs/ D l :

Then there exists I 2Pl.f / such that each�j with iC1 ⩽ j ⩽ iCs is a union of
atoms of PlC1.f / inside I . From the very construction of the partitions Qj .f /
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(Proposition 4.5), we see that the number of atoms of PlC1.f / inside �j is at
least twice the number of such atoms inside�jC1, for each iC1 ⩽ j ⩽ iC s�1.
Moreover, �iCs contains at least two such atoms, otherwise its level would be
l C 1. Since the total number of atoms of PlC1.f / that lie inside I is at most
1CalC1, it follows that 2s ⩽ 1CalC1, whence s ⩽ log2 .1C alC1/. This proves
(10.13) with c0 D 1= log 2.

Now, if �.f / satisfies (1), then there exists B > 0 depending on �.f / such
that

Pm
jD1 log ajC1 ⩽ Bm. Therefore

n ⩽ c0

mX

jD1
log .1C ajC1/ ⩽ c0 .B C log 2/m ;

which proves the last assertion, with c1 D c�1
0 .B C log 2/�1.

Lemma 10.8. If �.f / satisfies (2) and (3) then there exists 0 < ˇ < 1 with
the following property. If L and R are adjacent atoms of Qn.f / and we have
`.L/ ⩾ m and `.R/ ⩾ m, then

ˇ̌
ˇ̌ jLj
jRj �

jh.L/j
jh.R/j

ˇ̌
ˇ̌ ⩽ Cˇm : (10.14)

Proof. Writem D kCp with p D d�ke where � > 0 is a small constant (its size
will be determined in the course of the argument). We may assume that L [ R is
contained in a single atom � of Pk.f /. There are two cases to consider.

(a) If L [ R � Jk.f /, then the required coherence estimate (10.14) follows
from Lemma 10.5 and Lemma 10.6. To see this, let v1; v2; v3 2PkCp.f /
be the endpoints of L and R, v2 being their common endpoint. Let w1, w2,
w3 be the corresponding endpoints of h.L/ and h.R/. Then by Lemma 10.5
we have jvi � wi j ⩽ C0jJk.f /j�k , where � D K��� < 1 if � is small
enough. On the other hand, condition (3) tells us that

akC1akC2 � � � akCp ⩽ expfp!.p=k/g ⩽ expfp!.�/g :

Combining this fact with Lemma 10.6, we get

jv1 � v2j ⩾
Mp

�
akC1akC2 � � � akCp

�2 jJk.f /j ⩾
Mp

e2p!.�/
jJk.f /j :
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The same lower bound holds for jv2�v3j. From these facts, we deduce after
some simple computations that

ˇ̌
ˇ̌ jLj
jRj �

jh.L/j
jh.R/j

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌ jv1 � v2j
jv2 � v3j

� jw1 � w2jjw2 � w3j

ˇ̌
ˇ̌

⩽ C1
�ke2p!.�/

Mp
⩽ C2

 
�e2�!.�/

M �

!k
⩽ C3ˇ

m
1 ;

where ˇ1 D
�
�e2�!.�/=M �

�1=.1C�/
. Since � < 1 and �!.�/ ! 0 as

� ! 0, we see that ˇ1 < 1 if � is small enough.

(b) If L[R is not contained in Jk.f /, there exists j < qkC1 such that f j is a
diffeomorphism on an interval containing� and its two neighbors in Pk.f /

and such that f j .�/ � Jk.f /. By the Koebe principle and the real bounds,
the distortion of f j onL[R is bounded by exp.C4�p0 / (where 0 < �0 < 1
is the beau constant of Theorem 3.1). Therefore we have

ˇ̌
ˇ̌ jLj
jRj �

jf j .L/j
jf j .R/j

ˇ̌
ˇ̌ ⩽ C5�

p
0 ⩽ C6�

m
1 ; (10.15)

where �1 D �
�=.1C�/
0 . Working similarly with h.L/; h.R/ 2 Qn.g/, we

get also
ˇ̌
ˇ̌ jh.L/j
jh.R/j �

jgj .h.L//j
jgj .h.R//j

ˇ̌
ˇ̌ ⩽ C7�

m
1 : (10.16)

Putting (10.15) and (10.16) together and using (a) we get inequality (10.14)
with the constant ˇ D maxf�1; ˇ1g.

Hence in both cases (10.14) is established, and we are done.

The proof of Theorem 10.4 is now almost complete. If L and R are adjacent
atoms of Qn.f / as above, then combining Lemma 10.7 with Lemma 10.8 we
deduce that the coherence condition (10.6) is satisfied with � D ˇc1 . Therefore
by Proposition 7.3 the conjugacy h is indeed C 1C˛ for some ˛ > 0.
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10.4 The Cm-Approximation Lemma
Our purpose in this section is to present a technical lemma extracted from de Faria
and de Melo [1999, App. A]. This lemma will be used in the proof of Proposi-
tion 10.2, but it can be applied to many other one-dimensional situations, so it is
of some independent interest.

We will use the following notation. Let m ⩾ 1 be a fixed integer and let
I; J � R be fixed closed intervals. We denote by Cm.I / the Banach space of
Cm-mappings f W I ! R with the norm kf km D maxfkDif k0 W 0 ⩽ i ⩽ mg,
where k�k0 D supx2I j�.x/j. If the need arises to emphasize the domain of f , we
sometimes write kf kI;m instead of kf km. We consider also the closed, convex
subset Cm.I; J / � Cm.I / consisting of those f ’s such that f .I / � J .

The reader will undoubtedly be familiar with Leibnitz’s formula for the k-th
derivative of a product of two functions, to wit

Dk.uv/ D
kX

jD0

 
k

j

!
DjuDk�j v ;

from which it is clear that

kuvkm ⩽ 2mkukmkvkm (10.17)

whenever u; v 2 Cm.I /. Perhaps less familiar to the reader is the fact that some-
thing similar holds for the composition of two Cm mappings. Namely, we have
Faa-di-Bruno’s formula (cf. Herman [1979, p. 42]), which reads

Dk.f ı g/ D
kX

jD1
Bj;k.D

1g;D2g; : : : ;Djg/Dk�jC1f ı g ;

where each Bj;k is a homogeneous polynomial of degree k�j C1 on j variables
whose coefficients are non-negative numbers depending only on k and j . It readily
follows from this formula that if  2 Cm.I; J / and � 2 Cm.J / then

k� ı  km ⩽ A.m/k�km
mX

kD1
k kkm ; (10.18)

where A.m/ D max1⩽k⩽mmax1⩽j⩽k Bj;k.1; 1; : : : ; 1/.
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Another well-known fact we will need below is the following. Supposem > 1

and consider the composition operator .f; g/ 7! f ı g as a map � W Cm.J / �
Cm�1.I; J /! Cm�1.I / . Then � is C 1 and its Fréchet derivative is given by

D�.f; g/ .u; v/ D u ı g C v Df ı g : (10.19)

Note that Cm.J / � Cm�1.I; J / � Cm.J / � Cm�1.I /; we consider this last
product endowed with the norm

ˇ̌
.f; g/

ˇ̌
I;J;m

D maxfkf kJ;m; kgkI;m�1g :

Lemma 10.9. For eachM > 0, there exists c.M/ > 0with the following property.
If f1; g1 2 Cm.J / and f2; g2 2 Cm�1.I; J / and if j.f1; f2/jI;J;m < M and
j.g1; g2/jI;J;m < M , then

kf1 ı f2 � g1 ı g2km�1 ⩽ c.M/ j.f1 � g1; f2 � g2/jI;J;m :

Proof. By the mean value theorem,

kf1 ı f2 � g1 ı g2km�1 ⩽ sup
.�; /

kD�.�; /k j.f1 � g1; f2 � g2/jI;J;m ;

where the supremum is taken over all .�;  / in the line segment joining .f1; f2/
to .g1; g2/ inside Cm.J / � Cm�1.I; J /, and where

kD�.�; /k D sup
˚
kD�.�; /.u; v/km�1 W j.u; v/jI;J;m ⩽ 1

	

is the operator-norm of D�.�; /. Using (10.19), and then (10.17) and (10.18),
we have

kD�.�; /.u; v/km�1 ⩽ ku ı  km�1 C kv D� ı  km�1 ⩽

⩽ A.m � 1/
�
kukm�1 C 2m�1kvkm�1kD�km�1

�m�1X

kD1
k kkm�1

From this, and taking into account that kukm�1 ⩽ kukm ⩽ j.u; v/jI;J;m as well
as kvkm�1 ⩽ j.u; v/jI;J;m, we deduce that

kD�.�; /k ⩽ A.m � 1/
�
1C 2m�1kD�km�1

� m�1X

kD1
k kkm�1 :
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Finally, since kD�km�1 ⩽ k�km and j.�;  /jI;J;m < M , we get

sup
.�; /

kD�.�; /k ⩽ A.m � 1/
�
1C 2m�1M

� m�1X

kD1
M k D c.M/ :

Let us denote by Bm.I IM/ the ball of radius M centered at the origin in
Cm.I /.

Lemma 10.10 (The Cm-Approximation Lemma). For each M > 0, there exist
constants "M > 0 and CM > 0 such that the following holds for all " ⩽ "M . Let
�1; �2; : : : ; �nC1 be closed intervals on the line or on the circle, and for each
1 ⩽ i ⩽ n let fi ; gi 2 Cm.�i ; �iC1/ be such that

(a) For all 1 ⩽ j ⩽ k ⩽ n, we have fk ı fk�1 ı � � � ı fj 2 Bm.�j IM/;

(b) We have
Pn
iD1 kfi � gikm < ".

Then for all k ⩽ n we have gk ıgk�1 ı � � � ıg1 2 Bm�1.�1I 2M/, and moreover

kfk ı fk�1 ı � � � ı f1 � gk ı gk�1 ı � � � ı g1km�1 ⩽ CM

kX

jD1
kfj � gj km :

Proof. Using the notation of Lemma 10.9, let us write

CM D max f1; c.2M/; c.2M/c.3M/g

and "M D M=CM . We proceed by induction on k. When k D 1, we have
kf1 � g1km ⩽ " and there is nothing to prove. Suppose the assertion is valid for
all j < k, and write (omitting the composition symbols)

kfkfk�1 � � � f1 � gkgk�1 � � �g1km�1 ⩽

⩽

kX

jD1
kfk � � � fjC1gjgj�1 � � �g1 � fk � � � fjC1fjgj�1 � � �g1km�1 : (10.20)

Since j.fj ; gj�1ı� � �ıg1/j�1;�j ;m < 2M and also j.gj ; gj�1ı� � �ıg1/j�1;�j ;m <

2M , it follows from Lemma 10.9 that

kfjgj�1 � � �g1 � gjgj�1 � � �g1km�1 ⩽ c.2M/kfj � gj km ;
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for j D 1; : : : ; k. In particular, by the induction hypothesis, we have for all
1 ⩽ j ⩽ k � 1

kfjgj�1 � � �g1km�1 ⩽ kgjgj�1 � � �g1km�1 C "M c.2M/ < 3M :

Taking this back to (10.20) and applying once again Lemma 10.9, we get

kfkfk�1 � � � f1 � gkgk�1 � � �g1km�1

⩽ c.2M/kfk � gkkm C c.2M/c.3M/

k�1X

jD1
kfj � gj km

⩽ CM

kX

jD1
kfj � gj km ;

and this shows also that kgkgk�1 � � �g1km�1 ⩽ M C "MCM < 2M , thereby
completing the induction.

10.5 Counterexamples to C 1C˛ rigidity

As explained in Section 10.1, two C 4 critical circle maps with the same irrational
rotation number and with a single critical point of the same odd integer criticality
are conjugate to each other by a C 1 diffeomorphism. Moreover, this conjugacy is
in fact a C 1C˛ diffeomorphism for Lebesgue almost every rotation number (The-
orem 10.1). These results immediately raise the question of whether such conju-
gacy is alwaysC 1C˛. The following result, obtained by Avila [2013], says that the
above conjecture is not true, even if we restrict ourselves to the analytic category.

Theorem 10.6. There exist real-analytic critical circle maps f and g with the same
irrational rotation number and with a single critical point (of the same criticality)
such that if h is the topological conjugacy between f and g identifying critical
points, then h is not C 1C˛ for any ˛ > 0.

The first examples of this kind were obtained by de Faria and de Melo [1999,
Second Main Theorem] in theC1 category. Our goal in this section is to present a
detailed construction of suchC1 examples (see Theorem 10.7 below). To achieve
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this goal, we will consider critical circle maps whose rotation number �.f / D
Œa0; a1; : : : ; an; : : :� satisfies

8
<̂

:̂

lim sup
1

n
log an D 1

an ⩾ 2 for all n.
(10.21)

The class of all rotation numbers satisfying (10.21) will be denoted by B. It can
be shown that the Hausdorff dimension of B is less than or equal to 1=2, see Good
[1941].

Theorem 10.7. For every � 2 B there exist C1 critical circle maps f , g with
�.f / D �.g/ D � such that f and g are not C 1C˛ conjugate for any ˛ > 0.

The proof will make use of a C1 surgery procedure that we explain below.
These counterexamples have one additional feature: their successive renormaliza-
tions do converge together at an exponential rate. This follows from general results,
such as Theorem 13.3 below, but it will also be clear from the construction.

10.5.1 Saddle-node surgery

Given f as above and a fixed n ⩾ 1, let Jn D Jn.f / D Œf qnC1.c/; f qn.c/� � S1

be the n-th renormalization interval of f . When n is very large, the first return
map fn W Jn ! Jn is an almost parabolic map of length anC1.

Let �.n/1 be the fundamental domain of this almost parabolic map which is
adjacent to xn D f qn.c/, and let �.n/j D f

j�1
n .�

.n/
1 /, for all j ⩽ anC1. Let

zn 2 �
.n/
1 be the point such that f anC1

n .zn/ D xnC3 D f qnC3.c/, that is,
zn D f qnC3�anC1qnC1.c/. Note that since anC1 ⩾ 2, xnC3 is not an endpoint of
f
anC1
n .�

.n/
1 /, and so by the real bounds it splits f anC1

n .�
.n/
1 / into two intervals

of comparable lengths. Hence the same holds for zn. Namely, zn splits �.n/1 into
two intervals Ln, Rn with jLnj � jRnj. In particular we have � j�.n/1 j ⩽ jLnj ⩽
.1 � �/j�.n/1 j (and similarly for Rn) for some constant � depending on the real
bounds. We use this fact in the proof of Proposition 10.2 below.

Consider now another critical circle map zf with the same rotation number
as f , the interval zJn D Jn. zf /, the first return map zfn W zJn ! zJn, the point
zzn D zf qnC3�anC1qnC1.zc/ and the corresponding intervals zLn, zRn. Also, let
Nn D danC1=2e.
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Definition 10.7. The number
ˇ̌
ˇ̌
ˇ
jf Nn�1
n .Ln/j
jf Nn�1
n .Rn/j

� j
zf Nn�1
n .zLn/j
j zf Nn�1
n . zRn/j

ˇ̌
ˇ̌
ˇ

is called the n-th order discrepancy between f and zf .

Proposition 10.2. Given a C1 critical circle map f with �.f / 2 B, consider a
function �.n/!1 such that

lim sup
1

n�.n/
log anC1 D 1 :

Then for all n ⩾ 1, there exists a critical circle map zf D F.nIf / with the same
rotation number and critical point as f and having the following properties.

(a) We have zf j .c/ D f j .c/ for 0 ⩽ j ⩽ qnC1; in particular, Jn. zf / D Jn D
Jn.f /.

(b) We have zf D ˚ ı f , where ˚ is a C1 diffeomorphism such that

k˚˙1 � IdS1 kCk ⩽ BkjJnj�.n/�kC1

for all k, where Bk > 0 is constant depending only on k.

(c) The n-th order discrepancy between f and zf is ⩾ C jJnj2�.n/.

(d) We have JnC1. zf / D JnC1.f / and zfnC1 D fnC1; in particular,m-th order
discrepancy between f and zf is equal to zero for all m > n.

Proof. We modify f inside f �1.�.n/1 / using a C1 bump function so as to move
zn by a distance ⩾ C j�.n/1 j1C�.n/ inside �.n/1 . This we do as follows.

Let ' W Œ0; 1�! Œ0; 1� be a C1 perturbation of the identity such that j'.x/ �
xj ⩾ j�.n/1 j�.n/ for all � ⩽ x ⩽ 1�� (and � as above), and such that jDk'.x/j ⩽
Bkj�.n/1 j�.n/ for all 0 ⩽ x ⩽ 1 and all k ⩾ 2. Define �n W �.n/1 ! �

.n/
1

by �n D An ı ' ı A�1
n where An is the affine orientation-preserving map that

carries Œ0; 1� onto�.n/1 . Note that j�n.zn/� znj ⩾ j�.n/1 j1C�.n/. Moreover, since
Dk�n D j�.n/1 j1�kDk', we have

k�˙1
n � Id

�
.n/
1

kCk ⩽ Bkj�.n/1 j�.n/�kC1
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for all k. Define  n W �.n/anC1
! �

.n/
anC1

as the conjugate of ��1
n by the diffeomor-

phism f
anC1�1
n W �.n/1 ! �

.n/
anC1

, namely

 n D f
anC1�1
n ı ��1

n ı .f
anC1�1
n /�1 : (10.22)

Using the Cm Approximation Lemma 10.10, we see from (10.22) that

k ˙1
n � Id

�
.n/
an

kCk�1 ⩽ Ck�˙1
n � Id

�
.n/
1

kCk ⩽ Bkj�.n/1 j�.n/�kC1 :

Define ˚ W S1 ! S1 to be equal to �n on �.n/1 , to  n on �.n/an
and to the identity

everywhere else. The critical circle map we look for is zf D ˚ ı f . Note that
k˚˙1 � IdS1 kCk ⩽ Bkj�.n/1 j�.n/�kC1 for all k; since j�.n/1 j � jJnj by the
real bounds, this proves (b). It is also clear from the construction that property (a)
holds too. It follows in particular that the first nC1 partial quotients of the rotation
number of zf agree with those of f . More remarkable is that, because what �n
does is undone by  n, we have

8
<̂

:̂

zf qn jInC1 D f qn jInC1

zf qnC1 jIn D f qnC1 jIn :

In other words, zfn D fn, the n-th renormalizations agree. Therefore all subse-
quent renormalizations agree as well. This shows that �. zf / D �.f / and also
proves (d ).

It remains to prove (c), so we estimate the n-th order discrepancy between f
and zf from below. Since jzn � zznj ⩾ j�.n/1 j1C�.n/, a simple calculation yields

ˇ̌
ˇ̌
ˇ
jLnj
jRnj

� j
zLnj
j zRnj

ˇ̌
ˇ̌
ˇ ⩾ C j�.n/1 j�.n/ ⩾ C jJnj2�.n/ ; (10.23)

provided n is sufficiently large. Since, by the real bounds, the map f N�1
n W

�
.n/
1 ! �

.n/
Nn

has bounded distortion, and since zfn D fn, inequality (10.23)
gives us ˇ̌

ˇ̌
ˇ
jf Nn�1
n .Ln/j
jf Nn�1
n .Rn/j

� j
zf Nn�1
n .zLn/j
j zf Nn�1
n . zRn/j

ˇ̌
ˇ̌
ˇ ⩾ C jJnj2�.n/ ;

and this proves (c).



10.5. Counterexamples to C 1C˛ rigidity 301

10.5.2 The counterexamples

We now iterate the procedure given by Proposition 10.2 to prove Theorem 10.7.

Proof of Theorem 10.7. We start with a C1 map f with �.f / 2 B as before and
select n1 < n2 < � � � such that

lim
i!1

1

ni�.ni /
log ani C1 D1 ; (10.24)

where �.n/ is as in Proposition 10.2. Now generate a sequence g0; g1; : : : ; gi ; : : :
recursively, starting with g0 D f , and taking, for all i ⩾ 0, giC1 D F.niC1; gi /,
where F.�; �/ is as given in Proposition 10.2. Each gi is a C1 critical circle map
with �.gi / D �.f /, and giC1 D ˚iC1 ıgi , where ˚iC1 is a C1 diffeomorphism
with

k˚˙1
kC1 � IdS1 kCk ⩽ Bk�

ni .�.ni /�kC1/ ; (10.25)

for all k, where 0 < � < 1 is a constant depending only on the real bounds. From
(10.25) it follows that ˚ D lim˚i ı � � � ı ˚1 exists as a C1 diffeomorphism, and
therefore so does g D limgi D ˚ ı f as a critical circle map.

Using properties (c) and (d ) of Proposition 10.2 for each gi , we deduce that
the ni -th order discrepancy between f and g satisfies

ˇ̌
ˇ̌
ˇ
jf Ni �1
ni

.Lni
/j

jf Ni �1
ni

.Rni
/j
� jg

Ni �1
ni

.zLni
/j

jgNi �1
ni

. zRni
/j

ˇ̌
ˇ̌
ˇ ⩾ C jJni

j2�.ni / ; (10.26)

where Ni D dani C1=2e, etc.
Now, let h W S1 ! S1 be the conjugacy between f and g mapping the critical

point c to itself. Suppose h were C 1Cˇ for some ˇ > 0. Then the left-hand side
of (10.26) would be ⩽ C jf Ni �1

ni
.�
.ni /
1 /jˇ , where �.ni /

1 D Lni
[ Rni

. But by
Yoccoz’s Lemma 7.3, we have

jf Ni �1
ni

.�
.ni /
1 /j � 1

N 2
i

jJni
j � 1

a2ni C1
jJni
j : (10.27)

Combining the above with (10.26) and (10.27), we would get the inequality

a
2ˇ
ni C1jJni

j2�.ni /�ˇ ⩽ C :
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But by the real bounds jJnj ⩾ C�n for all n, where 0 < � < 1. Therefore, taking
logarithms, we would have

lim sup
log ani C1
ni�.ni /

⩽
1

ˇ
log

1

�
; (10.28)

but this clearly contradicts (10.24).

Remark 10.4. A closer look at the construction performed above, especially at
expressions (10.25) and (10.28), reveals that if

lim sup
1

n
log an >

k

ˇ0
log

1

�

then one can construct a pair of C k critical circle maps (whose renormalizations
converge exponentially fast) that are not C 1Cˇ conjugate for any ˇ ⩾ ˇ0.

Exercises

Exercise 10.1. Let f be a C r multicritical circle map with critical points labeled
c1; c2; : : : ; cN , and let � a C r circle diffeomorphism. Prove that there exist con-
stants C D C.f; �/ > 0 and 0 < � D �.f / < 1 such that, for all n 2 N and
each 1 ⩽ i ⩽ N , we have

dr�1
�
R
n
i f ; R

n
i .� ı f ı ��1/

�
⩽ C �n ;

where Rn
i denotes the n-th renormalization around the i -th critical point (i.e.,

around ci for f and around �.ci / for the conjugated map).
Exercise 10.2. Give a detailed proof of Lemma 10.6
Exercise 10.3. Show that the number � whose partial quotients are an D 22

n is
Diophantine (recall Chapter 4) and belongs to the set B defined by (10.21).
Exercise 10.4. Give a detailed proof of the assertion made in Remark 10.4.



11 Quasiconformal
Deformations

This chapter should be regarded as a second intermezzo (after Chapter 5). Here we
briefly review some standard facts about the theory of quasiconformal mappings
in the complex plane and the Riemann sphere. In such a short exposition we can
hardly do justice to this beautiful and powerful theory. We refer the reader to the
books of Ahlfors [2006] and Lehto and Virtanen [1973], which are classical refer-
ences for the subject. Modern treatments, highlighting connections with Dynam-
ical Systems and Teichmüller theory, can be found in the books of Carleson and
Gamelin [1993], Farb and Margalit [2012], de Faria and de Melo [2008], Gardiner
[1987], Gardiner and Lakic [2000], Hubbard [2006], McMullen [1994, 1996], and
de Melo and van Strien [1993]. Here we limit ourselves to stating some fundamen-
tal facts about quasiconformal mappings, and to establishing an approximation re-
sult, namely Theorem 11.4 (borrowed from Guarino and de Melo [2017]), that will
be a useful tool in the discussions of Chapter 13. Some of the ideas mentioned in
this chapter will reappear in Chapter 14, which is fully focused on holomorphic
methods.

The use of quasiconformal theory in holomorphic dynamics was initiated by
Sullivan [1985]. He applied one of the cornerstones of the theory – the measur-
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able Riemann mapping theorem with parameters or Ahlfors–Bers theorem (see
Section 11.1) – to solve a long-standing conjecture by Fatou, stating that every
component of the complement of the Julia set of a rational map of the Riemann
sphere is eventually periodic.

What makes quasiconformal maps so useful in the study of holomorphic dy-
namical systems is the fact that, unlike analytic maps, they are very flexible. In
many arguments in dynamics, say in the study of structural stability, it is some-
times necessary to be able to deform a given system into another nearby, within
the same topological class, preserving its smoothness. Deformations using con-
jugation by C 1 diffeomorphisms (or better) are usually inadequate, because they
preserve the eigenvalues at all periodic points. In the case of holomorphic dynam-
ics, there is an abundance of periodic points in the non-wandering set of the map
(which is essentially its Julia set), and the situation is simply too rigid to allow
this type of deformation. By contrast, using conjugation by quasiconformal home-
omorphisms, one can deform a holomorphic system into another system which
is still holomorphic, but has different multipliers at corresponding periodic points.
Moreover, the Ahlfors–Bers theorem yields a continuous path of holomorphic sys-
tems of the same topological type (known as Beltrami paths, see Chapter 14 below)
joining the original system to the deformed one.

In this book, we are interested in the theory of quasiconformal maps only to
the extent that it can be applied to the study of critical circle maps. In what follows,
we make no attempt at a systematic exposition of this beautiful theory, but simply
take stock of the relevant facts that will be needed later.

11.1 Quasiconformal homeomorphisms

The notion of quasiconformal homeomorphism was born of the necessity to solve
a geometric extremal problem that can be formulated as follows: Given two rectan-
gles in the plane, what is the most nearly conformal homeomorphism mapping one
rectangle to the other, sending vertices to vertices? The answer turns out to be the
obvious affine map that carries vertices to vertices as specified, but a proof of this
fact depends on an inequality established by Grötzsch in 1928. Such affine map
will be conformal if and only if the ratios between the “vertical” and “horizontal”
sides are the same for both rectangles.
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11.1.1 The geometric definition

The above extremal problem can be similarly formulated replacing rectangles with
round annuli having concentric boundaries. The answer by Grötzsch reveals in
particular that a conformal homeomorphism exists between both annuli if and only
if the ratios of inner to outer radius are the same for both annuli, i.e., if and only if
the have the same modulus, as we proceed to define.

Given 0 < r < R ⩽ 1, the conformal modulus, or simply modulus, of the
round annulus Ar;R D fz 2 C W r < jzj < Rg is defined to be mod.Ar;R/ D
log .R=r/. Now, given any topological annulus in the plane, i.e., any doubly con-
nected region ˝ � C not equal to a punctured disk or plane, it can be shown (as
a special case of the famous uniformization theorem, see Exercise 11.9) that there
exists a conformal equivalence between ˝ and some round annulus Ar;R; hence
we define mod.˝/ D mod.Ar;R/.

Thus, the above discussion motivates the following geometric definition of
quasiconformality.

Definition 11.1. An orientation-preserving homeomorphism f W U ! V be-
tween two regions U; V in the complex plane (or Riemann sphere) is said to be
K-quasiconformal, where K ⩾ 1 is a given constant, if for every topological an-
nulus ˝ � U we have K�1mod.˝/ ⩽ mod.f .˝// ⩽ K mod.˝/.

This definition makes it obvious that a composition of a K1-quasiconformal
homeomorphism with a K2-quasiconformal homeomorphism is K1K2-quasicon-
formal, and that the inverse of a K-quasiconformal homeomorphism is also K-
quasiconformal. However, it is not of much practical value when we want to ex-
amine quasiconformal maps at the infinitesimal level. For instance, it is far from
obvious from this definition that a 1-quasiconformal homeomorphism is in fact
conformal (this is known as Weyl’s lemma).

11.1.2 The analytic definition

Let us first recall the two basic differential operators of complex calculus:

@

@z
D 1

2

�
@

@x
� i @

@y

�
and

@

@z
D 1

2

�
@

@x
C i @

@y

�
:

Instead of @f
@z

and @f
@z

, we will use the more compact notation @f and @f respec-
tively. In other words, if ˝ is a domain in C and f W ˝ ! C is differentiable at
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w 2 ˝ (in the real sense), then
�
Df.w/

�
.z/ D @f .w/ z C @f .w/ z for any z 2 C.

Recall also that a continuous function h W R ! R is absolutely continuous if it
is differentiable at Lebesgue almost every point, its derivative is integrable and
h.b/ � h.a/ D

R b
a Dh.t/ dt , for any a and b in R. A continuous function f W

˝ � C ! C is absolutely continuous on lines in˝ if its real and imaginary parts
are absolutely continuous on Lebesgue almost every horizontal line, and Lebesgue
almost every vertical line.

Definition 11.2. Let ˝ � C be a domain and let K ⩾ 1. An orientation-
preserving homeomorphism f W ˝ ! f .˝/ is K-quasiconformal if it is abso-
lutely continuous on lines and

ˇ̌
ˇ@f .z/

ˇ̌
ˇ ⩽

�
K � 1
K C 1

� ˇ̌
@f .z/

ˇ̌
for a.e. z 2 ˝.

A proof that Definition 11.1 and Definition 11.2 are equivalent can be found
in Ahlfors [2006, Ch. II].

11.1.3 Measurable Riemann mapping theorem
Given a K-quasiconformal homeomorphism f W ˝ ! f .˝/ we define its Bel-
trami coefficient as the measurable function �f W ˝ ! D given by

�f .z/ D
@f .z/

@f .z/
for a.e. z 2 ˝.

Note that �f belongs to L1.˝/ and satisfies k�f k1 ⩽ .K � 1/=.K C 1/ < 1.
Conversely, any measurable function from ˝ to C with L1 norm less than one
is the Beltrami coefficient of a quasiconformal homeomorphism. More precisely,
we have the following result, which is known as Morrey’s theorem or measurable
Riemann mapping theorem.

Theorem 11.1. Given any measurable function � W ˝ ! D such that j�.z/j ⩽
.K � 1/=.K C 1/ < 1 almost everywhere in ˝ for some K ⩾ 1, there exists a
K-quasiconformal homeomorphism f � W ˝ ! f �.˝/ which is a solution of the
Beltrami equation

@f �.z/ D @f �.z/ �.z/ for a.e. z 2 ˝. (11.1)
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This solution is unique up to post-composition with biholomorphisms. In particu-
lar, if ˝ is the entire Riemann sphere, there is a unique solution (called the nor-
malized solution) that fixes 0, 1 and1.

See Ahlfors [ibid., Ch. V, Section B] or Lehto and Virtanen [1973, Ch. V] for
the proof. Note that Theorem 11.1 not only assures the existence of a solution of
the Beltrami equation, but also the fact that such a solution is a homeomorphism,
i.e., injective in ˝.
Remark 11.1. Theorem 11.1 yields a solution to the classical problem of finding
local isothermal coordinates on a given Riemannian surface. This problem goes
back to Gauss, and in modern language his solution amounts to solving the Bel-
trami equation in the case when the Beltrami coefficient is a function that can be
written as a convergent power series in z and z. In Exercise 11.10, the reader is
invited to find a solution to (11.1) when � is a polynomial in z and z.

Later in this chapter (in the proof of Theorem 11.4) we will need the following
fact, whose proof can be found in Ahlfors [2006, Ch. V, Section C].

Proposition 11.1. If �n ! 0 in the unit ball of L1.bC/, then the normalized qua-
siconformal homeomorphisms f �n converge to the identity uniformly on compact
sets of C. In general, if�n ! � almost everywhere in bC and k�nk1 ⩽ k < 1 for
all n 2 N, then the normalized quasiconformal homeomorphisms f �n converge
to f � uniformly on compact sets of C.

The Beltrami equation induces therefore a one-to-one correspondence between
the space of quasiconformal homeomorphisms of bC that fix 0, 1 and1, and the
space of (equivalence classes of) measurable complex-valued functions� onbC for
which k�k1 < 1. The following deep result expresses the analytic dependence
of the solution of the Beltrami equation with respect to �, and it is known as the
Ahlfors–Bers theorem.

Theorem 11.2. Let U be an open subset of some complex Banach space and con-
sider a map U � C ! D, denoted by .�; z/ 7! ��.z/, satisfying the following
properties.

1. For every � the function C ! D given by z 7! ��.z/ is measurable, and
k��k1 ⩽ k for some fixed k < 1.

2. For Lebesgue almost every z 2 C, the function U ! D given by � 7!
��.z/ is holomorphic.
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For each � 2 U , let f �� be the unique quasiconformal homeomorphism of the
Riemann sphere that fixes 0, 1 and1, and whose Beltrami coefficient is �� (f ��

is given by Theorem 11.1). Then � 7! f ��.z/ is holomorphic for all z 2 C.

Again, we refer the reader to Ahlfors [2006, Ch. V, Section C] for a proof of
Theorem 11.2.

11.2 A simple dynamical application
The measurable Riemann mapping theorem and its version with parameters, the
Ahlfors–Bers theorem, have countless striking applications to many different ar-
eas, such as holomorphic dynamics, Kleinian groups, Riemann surface theory, Te-
ichmüller theory. See the books we mentioned in the introduction to this chapter
and references therein.

Here, we would like to discuss a simple application which is more specifically
related to critical circle maps. It concerns our old friend, the Arnold family f˛ W
C� ! C�, with corresponding lifts F˛ W C ! C given by

F˛.z/ D z C ˛ �
1

2�
sin 2�z :

The maps f˛ W C� ! C� are holomorphic branched covering of the cylinder
C� D C=Z, branched at z D 1, and the restrictions f˛jS1 are critical circle
maps with a unique cubic critical point at z D 1. We will show here that the
elements of this family whose restrictions to S1 have irrational rotation number are
quasiconformally rigid. This fact will be relevant in our discussion of holomorphic
commuting pairs in Chapter 14.

But first, some terminology and general facts. If f W C� ! C� is holomor-
phic, we denote by Sf the set of singular values of f , i.e., points in C� all neigh-

borhoodsU of which are such that f �1.U /
f�! U fails to be a covering map. We

also write Xf D C� nSf for the set of regular values, so that f �1.Xf /
f�! Xf

is always a covering map. For example, since 1 2 @D is the unique critical point
of f˛, it is easy to see that Sf˛

D ff˛.1/g; in this case f �1
˛ .Xf˛

/ has an infinite
discrete complement in C�. We let Jf be the Julia set of f (the closure of the
set of repelling periodic points). A theorem due to Keen [1988] asserts that, if Sf
is finite, then f has no wandering domains, i.e., no connected component of the
complement of Jf is wandering. This is certainly the case with the maps in the
Arnold family.
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We will need the following lemma.

Lemma 11.1. The family ff˛g is topologically complete, i.e., every symmetric, nor-
malized holomorphic self-map of C� which is topologically conjugate to a member
of the family is a member also.

Proof. Let f W C� ! C� be holomorphic and suppose h W bC ! bC is an ori-
entation preserving homeomorphism fixing 0 and 1 and satisfying h ı f˛ D
f ı h. Let A.z/ D �z, where � D h ı f˛.1/=f˛.1/. This A is homotopic to
h relative to Sf˛

[ f0;1g, so the covering homotopy theorem yields a holomor-
phic lift bA W f �1

˛ .Xf˛
/ ! f �1.Xf /, which is then homotopic to h relative to

f �1
˛ .Sf˛

/[ f0;1g. Some easy topology and the removable singularity theorem
show that bA is Möbius and fixes 0 and1. In particular, if f is symmetric about
@D and is normalized so that its critical point lies at 1 2 @D, then bA is the identity
and j�j D 1, say � D e2�i� . Therefore f D A ı f˛ ı bA�1 D f˛C� .

Theorem 11.3. If �.f˛/ is irrational then f˛ admits no non-trivial, symmetric,
invariant Beltrami differentials entirely supported in its Julia set.

Proof. Now suppose � is an f˛-invariant Beltrami differential in bC with support
in Jf˛

; assume also that � is symmetric about @D. For all sufficiently small real
t , let ht W bC ! bC be the unique solution to @ht D .t�/ @ht fixing f0; 1;1g
pointwise, and let ft D ht ı f˛ ı h�1

t . Since t� is symmetric and f˛-invariant,
each ft is symmetric and holomorphic, and has a single critical point at 1 2 @D.
Using Lemma 11.1, we have ft D f˛t

for some ˛t . But then �.f˛t
/ D �.f˛/ is

irrational, so ˛t D ˛ for all t (because the function ˛ 7! �.f˛/ is a devil staircase;
see Lemma 4.7). Therefore, ht commutes with f˛ for all t ; in particular ht must
permute the elements of Yn D f �n

˛ .1/, which is discrete in C�, for each n ⩾ 0.
Since h0 D IdbC and for each z 2 bC the path t ! ht .z/ is continuous by the
Ahlfors–Bers theorem, we deduce that ht fixes Yn pointwise for all n ⩾ 0, for all
t . But by Montel’s theorem,

Jf˛
�
[

n⩾0

Yn ;

so ht agrees with the identity over Jf˛
for all t . Since ht is conformal outside Jf˛

,
it follows that ht � IdbC for all t , and so � � 0 almost everywhere.
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11.3 Holomorphic approximation lemma
As already mentioned, our goal in this brief chapter is to prove the following con-
sequence of Theorem 11.2, borrowed from Guarino and de Melo [2017, Prop. 5.5]
and Guarino [2012, Prop. 3.3.2].

Theorem 11.4. For any bounded domain U in the complex plane there exists a
number C.U / > 0, with C.U / ⩽ C.W / if U � W , such that the following holds.
Let

˚
Gn W U ! Gn.U /

	
n2N

be a sequence of quasiconformal homeomorphisms
satisfying:

• The images Gn.U / are uniformly bounded: there exists R > 0 such that
Gn.U / � B.0;R/ for all n 2 N;

• �n ! 0 in L1, where �n is the Beltrami coefficient of Gn in U .

Then for any given domain V , compactly contained in U , there exist n0 2 N and
a sequence

˚
Hn W V ! Hn.V /

	
n⩾n0

of bi-holomorphisms such that

kHn �GnkC0.V / ⩽ C.U /

 
R

d
�
@V; @U

�
!
k�nk1 for all n ⩾ n0,

where d
�
@V; @U

�
denotes the Euclidean distance between the boundaries of U

and V .

Proof. For each n 2 N we first extend �n to the complement of U in the trivial
way:

�n.z/ @Gn.z/ D @Gn.z/ for a.e. z 2 U , and �n.z/ D 0 for all z 2 bC nU .

Of course if�n � 0we just takeHn D GnjV , so we may assume that k�nk1 > 0.
Fix some small " 2

�
0; 1 � k�nk1

�
and denote by Bn the open disk B

�
0; .1 �

"/=k�nk1
�
centred at the origin with radius .1�"/=k�nk1 in the complex plane

(note that D � Bn). Consider the one-parameter family of Beltrami coefficients˚
�n.t/

	
t2Bn

defined by
�n.t/ D t � �n ;

and note that for all t 2 Bn we have
�n.t/


1 < 1�" < 1. Denote by f �n.t/ the

solution of the Beltrami equation with coefficient �n.t/, given by Theorem 11.1,
normalized to fix 0, 1 and1. Note that f �n.0/ is the identity for all n 2 N and
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that, by uniqueness, there exists a biholomorphism Hn W f �n.1/.U / ! Gn.U /

such that
Gn D Hn ı f �n.1/ in U .

In order to estimate the uniform distance betweenGn andHn, we need to first
estimate the distance between f �n.1/ and the identity. To be more precise, we will
prove now that the ratio

f �n.1/ � Id

C0.U /

= k�nk1 is bounded by a constant
only depending onU (thus, independent of n). Indeed, by Theorem 11.2, we know
that for any z 2 C the curve

˚
f �n.t/.z/ W t 2 Œ0; 1�

	
is smooth. Following Ahlfors

[2006, Ch. V, Section C], we use the notation

Pfn.z; s/ D lim
t!0

f �n.sCt/.z/ � f �n.s/.z/

t
:

The limit exists for every z 2 C and every s 2 Œ0; 1�, and the convergence is
uniform on compact sets of C. Then we have

f �n.1/ � Id

C0.U /

D sup
z2U

nˇ̌
ˇf �n.1/.z/ � z

ˇ̌
ˇ
o
⩽ sup
z2U

�Z 1

0

ˇ̌ Pfn.z; s/
ˇ̌
ds

�
:

Moreover, Pfn has the following integral representation, borrowed from Ahlfors
[ibid., Ch. V, Section C, Theorem 5]:

Pfn.z; s/ D �
1

�

“

U

�n.w/ S
�
f �n.s/.w/; f �n.s/.z/

� �
@f �n.s/.w/

�2
dxdy ;

for every z 2 C and every s 2 Œ0; 1�, where w D x C iy and

S.w; z/ D 1

w � z �
z

w � 1 C
z � 1
w
D z.z � 1/
w.w � 1/.w � z/ :

From the well-known formula

det
�
Df �n.s/.w/

�
D
ˇ̌
ˇ@f �n.s/.w/

ˇ̌
ˇ
2
�
ˇ̌
ˇ@f �n.s/.w/

ˇ̌
ˇ
2

(11.2)

we obtain
ˇ̌
ˇ@f �n.s/.w/

ˇ̌
ˇ
2
D 1

1 � jsj2j�n.w/j2
det

�
Df �n.s/.w/

�
;
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and then we deduce that
ˇ̌
ˇ Pfn.z; s/

ˇ̌
ˇ is bounded by

1

�

“

U

j�n.w/j
1 � jsj2j�n.w/j2

det
�
Df �n.s/.w/

� ˇ̌
S
�
f �n.s/.w/; f �n.s/.z/

�ˇ̌
dxdy

⩽
1

�

k�nk1
1 � jsj2k�nk21

“

U

det
�
Df �n.s/.w/

� ˇ̌
S
�
f �n.s/.w/; f �n.s/.z/

�ˇ̌
dxdy

D 1

�

k�nk1
1 � jsj2k�nk21

“

f �n.s/.U /

ˇ̌
S
�
w; f �n.s/.z/

�ˇ̌
dxdy :

Therefore, the length of the curve
˚
f �n.t/.z/ W t 2 Œ0; 1�

	
is bounded by

1

�

Z 1

0

"
k�nk1

1 � jsj2k�nk21

“

f �n.s/.U /

ˇ̌
S
�
w; f �n.s/.z/

�ˇ̌
dxdy

#
ds

⩽
1

�

k�nk1
1 � k�nk21

Z 1

0

"“

f �n.s/.U /

ˇ̌
S
�
w; f �n.s/.z/

�ˇ̌
dxdy

#
ds :

Considering

Mn.U / D
1

�
sup
z2U

(Z 1

0

"“

f �n.s/.U /

ˇ̌
S
�
w; f �n.s/.z/

�ˇ̌
dxdy

#
ds

)
;

we get f �n.1/ � Id

C0.U /

⩽
k�nk1

1 � k�nk21
Mn.U /:

Recall that, by hypothesis, �n ! 0 in L1.U /. With this at hand, we deduce
from Proposition 11.1 that, for any s 2 Œ0; 1�, the sequence

˚
f �n.s/

	
converges

uniformly to the identity in U . Therefore, the sequence
˚
Mn.U /

	
converges to

1

�
sup
z2U

�“

U

ˇ̌
S.w; z/

ˇ̌
dxdy

�
<
1

�
sup
z2U

�“

C

ˇ̌
S.w; z/

ˇ̌
dxdy

�
:

We claim that this supremum is finite. Indeed, for fixed z 2 C we have that
S.w; z/ is in L1.C/, since it has simple poles at 0, 1 and z, and is O

�
jwj�3

�
near

1. Finiteness follows then from the compactness of U . With this at hand, we
obtain n1 2 N such that for all n ⩾ n1 we have

f �n.1/ � Id

C0.U /

⩽M.U / k�nk1
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with
M.U / D 2

�
sup
z2U

�“

U

ˇ̌
S.w; z/

ˇ̌
dxdy

�
;

where we have used the fact that x 7! x=.1 � x2/ is tangent to the identity at the
origin.

Finally, we restrict both Hn and Gn D Hn ı f �n.1/ to V , and estimate
its uniform distance. With this purpose, let ı > 0 be the Euclidean distance
between the boundaries @V and @U (which are disjoint compact sets), that is,
ı D d

�
@V; @U

�
D min

˚
jz � wj W z 2 @V;w 2 @U

	
. Again by Proposition 11.1,

there exists n0 ⩾ n1 in N such that for all n ⩾ n0 we have V � f �n.1/.U / and
moreover

f �n.1/.U / � B.z; ı=2/ for all z 2 V .
If we consider the restriction ofHn to V we have

kHn �GnkC0.V / ⩽
H 0

n


C0.V /

f �n.1/ � Id

C0.U /

⩽
H 0

n


C0.V /

M.U / k�nk1 :

Finally, by Cauchy’s standard estimates, we deduce for all z 2 V
ˇ̌
H 0
n.z/

ˇ̌
D
ˇ̌
ˇ̌ 1
2�i

Z

@B.z;ı=2/

Hn.w/

.w � z/2 dw
ˇ̌
ˇ̌ ⩽

2 kHnkC0.f �n.1/.U //

ı

D
2 kGnkC0.U /

ı
⩽
2R

ı
for all n ⩾ n0.

In other words,
H 0

n


C0.V /

⩽
2R

d
�
@V; @U

� for all n ⩾ n0,

and then we obtain for all n ⩾ n0 that
Hn �Gn


C0.V /

k�nk1
⩽

R

d
�
@V; @U

� 4

�
sup
z2U

�“

U

ˇ̌
S.w; z/

ˇ̌
dxdy

�
:

Therefore, it is enough to consider

C.U / D 4

�
sup
z2U

�“

U

ˇ̌
S.w; z/

ˇ̌
dxdy

�
:
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Theorem 11.4 will be crucial in Chapter 13, in order to shadow renormaliza-
tion orbits of C 3 critical circle maps with suitable C! critical commuting pairs
(see Theorem 13.4). We remark that Theorem 11.4 is applicable to many other
situations – see for example the recent paper Clark and Trejo [2020, Section 5.5].

Exercises

Exercise 11.1. We start with an elementary but important fact. Consider an ellipse
in the complex plane centered at the origin, whose major axis makes an angle �
with the (positive) real axis. LetL be the length of this major axis, and let ` be the
length of the minor one. If

z 7! w1 z C w2 z

is an R-linear transformation that maps the given ellipse onto a round circle, con-
sider

� D w2

w1
;

and note that� is well defined, since the pairw1; w2 is unique up to multiplication
by a nonzero constant. Show that the eccentricity of the ellipse, i.e., the ratio
L=` 2 Œ1;C1/, equals

1C j�j
1 � j�j ;

and that the angle � coincideswith�=2C arg.�/=2 (Hint: Takew1 D e�i� .L�1C
`�1/ and w2 D ei� .L�1 � `�1/ , so that � D e.2���/i L=` � 1

L=`C 1 ).

Let U; V;W be domains in the complex plane. In the next four exercises, the
reader may assume that f W V 7! W and g W U 7! V are K-quasiconformal C 1
diffeomorphisms.

Exercise 11.2. Conclude from Exercise 11.1 that, for every z 2 U , the differential
of g at z maps each ellipse centered at the origin with eccentricity

1C
ˇ̌
�g.z/

ˇ̌

1 �
ˇ̌
�g.z/

ˇ̌ ⩽ K ;
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and whose major axis makes an angle �=2 C arg
�
�g.z/

�
=2 with the (positive)

real axis, onto a round circle1.

Exercise 11.3. Prove the identity (11.2).

Exercise 11.4. Prove that

�f ıg.z/ D
�g.z/C �f

�
g.z/

�
@g.z/=@g.z/

1C �f
�
g.z/

�
@g.z/=@g.z/

D
�g.z/C �f

�
g.z/

�
@g.z/=@g.z/

1C �g.z/ �f
�
g.z/

�
@g.z/=@g.z/

for every z 2 U .

Exercise 11.5. Using the previous exercise, show that if f is holomorphic, then
�f ıg D �g (note that this is consistent with the fact that postcomposing g with a
conformal map f does not change which ellipse gets mapped to a circle). On the
other hand, if g is holomorphic, show that

�f ı g D
�
g0

jg0j

�2
�f ıg :

In particular,
ˇ̌
�f ı g

ˇ̌
D
ˇ̌
�f ıg

ˇ̌
, which is consistent with the fact that precom-

posing f with a conformal map g can change the direction but not the eccentricity
of an ellipse that is mapped to a circle.

Exercise 11.6. Using Exercise 11.4, prove that the inverse of aK-quasiconformal
diffeomorphism isK-quasiconformal, and that the composition of aK1-quasicon-
formal diffeomorphism with aK2-quasiconformal diffeomorphism isK1K2-quasi-
conformal.

Exercise 11.7. Let V � C be a domain and let � be a Beltrami coefficient on V ,
that is, � W V ! D is a measurable function such that j�.z/j ⩽ .K � 1/=.K C 1/
almost everywhere in V , for some K ⩾ 1. The pull-back of � under a conformal

1Recall that a K-quasiconformal homeomorphism has a derivative almost everywhere with re-
spect to the Lebesgue measure. By Exercise 11.2, such derivative maps an ellipse of eccentricity
at most K onto a circle. Hence a quasiconformal map defines a (measurable) field of ellipses with
bounded eccentricity, which is mapped into a field of circles by the derivatives. By Theorem 11.1,
the converse is also true: any measurable field of ellipses with bounded eccentricity comes from a
quasiconformal homeomorphism in this way.
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map f W U ! V is defined as

�
f ��

�
.z/ D

 
.f �1/0.f .z//ˇ̌
.f �1/0.f .z//

ˇ̌
!2
�
�
f .z/

�
:

Naturally, we say that � is f -invariant if U D V and f �� D � in V . If this is
the case, show that if the K-quasiconformal homeomorphism h W V ! h.V / is
given by Theorem 11.1, then the conjugate h ı f ı h�1 is holomorphic.

The following example is borrowed from the book of Carleson and Gamelin
[1993, Ch. VI.4].

Exercise 11.8. Let A � C be an open annulus centered at the origin, let t 2 .0; 1/
and consider the Beltrami coefficient �t on A given by

�t .z/ D t
�
z

jzj

�2
:

(i) Show that each �t is invariant under any rotation of the annulus A.

(ii) Show that, for each t 2 .0; 1/, the homeomorphism

ht .z/ D jzj2t=.1�t/z D z1=.1�t/ zt=.1�t/

is a solution of the Beltrami equation @ht D @ht �t in A.

Exercise 11.9. An annular Riemann surface is a Riemann surface S whose fun-
damental group �1.S/ is isomorphic to Z. Using the Uniformization Theorem,
show that any annular Riemann surface is conformally equivalent either to Cnf0g,
D n f0g or to an annulus Ar;R D

˚
z 2 C W r < jzj < R

	
. In the last case, show

that the ratio R=r is unique (Hint: Let S be an annular Riemann surface which
is not biholomorphic to the punctured plane. By the Uniformization Theorem, S
is conformally equivalent to a quotient of the upper half-plane H by a group �
of Möbius transformations, which acts freely and properly discontinuously on H.
Being isomorphic to �1.S/, the group � must be generated by a single transfor-
mation  W H ! H, i.e., � D f ngn2Z. Now discuss on the number of fixed
points of  in H, noting that  has no fixed points in H (since � acts freely on
H), and at most two in H).
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Exercise 11.10. The purpose of this exercise is to find local solutions to the Bel-
trami equation @f D �@f in the special case when � is a polynomial in z and z
with complex coefficients, say

�.z/ D
NX

i;jD0
aij z

izj : (11.3)

The idea is to first seek a formal solution written in power-series as follows:

f .z/ D
1X

m;nD0
cm;nz

mzn ; (11.4)

where the coefficients cm;n 2 C are to be determined.

(i) Plugging (11.3) and (11.4) into the Beltrami equation and comparing coeffi-
cients, show that for all `; k ⩾ 0 we have

.`C 1/ck;`C1 D
NX

i;jD0
.k C 1 � i/aij ckC1�i;`�j :

Here and below, we adopt the convention that cm;n D 0 whenever m or n
is negative.

(ii) If A D max jaij j, show using (i) that for all m ⩾ 0 and n ⩾ 1 we have

jcm;nj ⩽
A

n

NX

i;jD0
.mC 1 � i/

ˇ̌
cmC1�i;n�1�j

ˇ̌
:

(iii) Now suppose the coefficients cm;0 are given, and we know that there exists
� > 0 such that jcm;0j ⩽ �m for all m ⩾ 0. Using (ii) and induction in n,
prove that for all m; n ⩾ 0 we have

jcm;nj ⩽
 
mC n
n

!
N 2mAn�

mCn :

(iv) Deduce from (iii) that the series in (11.4) has a positive radius of conver-
gence, and therefore the resulting f solves the Beltrami equation for � in a
neighborhood of the origin.



12 Lipschitz
Estimates for

Renormalization

Our goal in this chapter is to prove a modulus of continuity for the renormaliza-
tion operator defined in Chapter 10. Our main result is Theorem 12.2, which estab-
lishes a Lipschitz estimate for renormalization, when restricted to suitable bounded
pieces of topological conjugacy classes of C 3 critical commuting pairs with irra-
tional rotation number and negative Schwarzian derivative. This is a rather techni-
cal and difficult chapter, and the reader may skip it on a first reading (just saving
the statement of Theorem 12.2 for later use). Our exposition in the whole chap-
ter follows closely the original work by Guarino, Martens, and de Melo [2018,
Sections 5–10].

12.1 Lipschitz estimates for controlled commuting pairs

In order to state the main result of the present chapter, we need a couple of defini-
tions. The bounded pieces mentioned in the introduction are defined as follows.



12.1. Lipschitz estimates for controlled commuting pairs 319

Definition 12.1. Let K > 1 and let � D .�; �/ be a normalized C 3 critical com-
muting pair which is renormalizable with some period a 2 N. We say that � is
K-controlled if the following seven conditions are satisfied:

• 1=K ⩽ �.0/ ⩽ K;

• �.0/ � �
�
�.0/

�
⩾ 1=K;

• �a�1��.0/
�
� �a

�
�.0/

�
⩾ 1=K;

• �a
�
�.0/

�
⩾ 1=K;

• �aC1��.0/
�
⩽ �1=K;

• k�kC3.Œ�1;0�/ ⩽ K and k�kC3.Œ0;�.0/�/ ⩽ K;

• D�.x/ ⩾ 1=K for all x 2
�
�a.�.0//; �.0/

�
.

Of course if � is K0-controlled and K1 ⩾ K0, then � is also K1-controlled.

Definition 12.2. ForK > 1 let K D K .K/ be the space of normalized C 3 crit-
ical commuting pairs which are K-controlled. For K > 1 and a 2 N let Ka.K/

be the space of normalized C 3 critical commuting pairs which are renormalizable
with period a and K-controlled.

From the real bounds (Theorem 6.4) we know that after a finite number of
renormalizations, every C 4 critical circle map with arbitrary irrational rotation
number gives rise to a controlled commuting pair. More precisely, we have the
following.

Theorem 12.1. There exists a universal constant K0 > 1 with the following prop-
erty: for any given C 4 critical circle map f with irrational rotation number there
exists n0 D n0.f / 2 N such that the critical commuting pair Rn.f / is K0-
controlled for any n ⩾ n0.

TheC 4 smoothness hypothesis is needed for the critical commuting pairRn.f /

to be C 3 bounded for n large enough. As mentioned before, our main result in this
chapter is the following.

Theorem 12.2 (Lipschitz estimate). For any given K > 1, there exist two con-
stants "0 D "0.K/ 2 .0; 1/ and L D L.K/ > 1 with the following property.
Let �0 and �1 be two infinitely renormalizable normalized C 3 critical commuting



320 12. Lipschitz Estimates for Renormalization

pairs which are K-controlled, let both �0 and �1 have negative Schwarzian, and
let �.�0/ D �.�1/ 2 Œ0; 1�nQ and d2.�0; �1/ < "0. Then we have

d2
�
R.�0/;R.�1/

�
⩽ Ld2.�0; �1/;

where d2 denotes the C 2 distance in the space of C 2 critical commuting pairs.

Let us make a few comments before entering the proof of Theorem 12.2.
Remark 12.1. One might guess that the condition

�
1=�.�0/

˘
D
�
1=�.�1/

˘
should

be enough in order to compare the commuting pairs R.�0/ and R.�1/. Unfortu-
nately, this is not the case since there is no bound for the expansion of the renormal-
ization operator along different topological classes (even sharing the same period
of renormalization, see Proposition 12.1 for precise estimates). This is to be ex-
pected if we remember that renormalization acts as the Gauss map on the rotation
number (as in (10.1)), and that the Gauss map has unbounded derivative on .0; 1/.
Remark 12.2. All estimates performed in this chapter rely heavily on Yoccoz’s
Lemma 7.3, and that is why we require the negative Schwarzian condition in The-
orem 12.2. But recall that, given a C 3 multicritical circle map f with a critical
point ci , we know from Proposition 6.2 that the critical commuting pair Rn

i .f /

has negative Schwarzian for sufficiently large n. Therefore, this assumption in
Theorem 12.2 is harmless for the applications we have in mind.
Remark 12.3. It is not difficult to prove Theorem 12.2 if one considers an irrational
rotation number of bounded type (say, bounded by M ) allowing the Lipschitz
constant L to depend on M (see Exercise 12.2). The main point in Theorem 12.2
is that the constant L does not depend on the number of compositions defining the
renormalization operator.

The remainder of this chapter is devoted to the proof of Theorem 12.2. As
mentioned in the introduction, this is a rather technical and difficult chapter, and
the reader may skip it on a first reading, just saving the statement of Theorem 12.2
for later use.

12.2 Standard families

Fix K0 > 1 and let K be the space of normalized C 3 critical commuting pairs
which are K0-controlled (Definition 12.1). We will consider in this section a
C 3 critical commuting pair � D .�; �/ with negative Schwarzian that belongs
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to K , which is renormalizable with period a 2 N. For such a pair, we will con-
struct/define its corresponding standard family.

For ` 2 f0; : : : ; ag, let x` D �`.�.0//. Note that x` 2 I� D Œ0; �.0/� for all
` 2 f0; : : : ; ag. Denote by I`, ` 2 f1; : : : ; ag, the fundamental domains of � given
by I` D Œ�`.�.0//; �`�1.�.0//�. By the commuting condition, I1 D �.I�/ D
�.Œ�1; 0�/.

12.2.1 Glueing procedure and translations
Using the same notation as in the proof of Lemma 10.1, we have the following
fact.

Lemma 12.1. There exists s0 D s0.K / > 0 such that, for any � D .�; �/ 2 K ,
both components ofAn

˚
�.0/

	
and both components ofB n

˚
�.0/

	
have Euclidean

length greater than or equal to s0.

Proof. There exist positive constants ı and � (depending only on K0) such that
both components of C n f0g have Euclidean length greater than or equal to ı,
infC fD�g > � and infC fD g > �. Then it is enough to take 0 < s0 < .ı�/2dC1,
where the integer 2d C 1 is the criticality of � and � at the origin.

Still in the notation of the proof of Lemma 10.1, let M D V� [ VC= �,
where x � y if x 2 A, y 2 B and b�.x/ D b�.y/. Note that �.0/ � �.0/ by
the commuting condition (2) in Definition 10.1. Let p W V� [ VC ! M be
the canonical projection for the identification �, and note that M is a compact
boundaryless one-dimensional C 3 manifold, since the mapb��1 ıb� W A! B is a
C 3 diffeomorphism.

Lemma 12.2. There exists a C 3 diffeomorphism  WM ! S1 such that defining
P W V� [ VC ! S1 as P D  ı p we have that for all x; y 2 A \ I� , for all
x; y 2 B \ I� and for all x; y 2 .I� [ I�/n.A [ B/,

jx � yj
K

⩽ d
�
P.x/; P.y/

�
⩽ Kjx � yj

for some universal constant K D K.K / > 1, where d denotes the Euclidean
distance in the unit circle.

From now on let P W V� [ VC ! S1 be the C 3 map defined in Lemma 12.2.
Given t 2 R we define the translation by t on I� [ I� to be the C 3 map T W
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I� [ I� �R! I� [ I� given by
�
P ı Tt

�
.x/ D e2�itP.x/ ;

that is, T .x; t/ D Tt .x/ D P�1�e2�itP.x/
�
, whenever is clear which preimage

under P we choose for points in P.A/. In particular T0 is the identity on I� [ I�.
Note also that

@T

@t
.x; t/ D 1

DP
�
Tt .x/

� and
@T

@x
.x; t/ D DP.x/

DP
�
Tt .x/

� :

From Lemma 12.2, we get that 1=K ⩽ @T
@t
.x; t/ ⩽ K for all x 2 I� [ I�.

12.2.2 Standard families of commuting pairs
By Condition (5) in Definition 10.1, the discontinuous piecewise smooth map
zf� W I� [ I� ! I� [ I� given by

zf� .x/ D
�
�.x/ for x 2 I�
�.x/ for x 2 I�

projects under p to a C 3 homeomorphism of the quotient manifold M , and then
it projects under P to a C 3 critical circle map f� in S1.

By Lemmas 12.1 and 12.2 above, the Euclidean length of both components
of P.A/n

˚
f�
�
P.0/

�	
in S1 is bounded from below by some positive constant l0,

universal in K . For t 2 W D .�l0; l0/ let ft W S1 ! S1 be the C 3 critical circle
map given by ft .z/ D e2�itf� .z/, and note that f0 D f� . Since the critical value
of ft (which is e2�itf�

�
P.0/

�
) belongs to P.A/ we can lift each ft up to a C 3

critical commuting pair �t D .�t ; �t / with

�t .x/ D
�
Tt ı�0

�
.x/ D T

�
�0.x/; t

�
and �t .x/ D

�
Tt ı�0

�
.x/ D T

�
�0.x/; t

�
:

Note that

@�t

@t
.x/ D 1

DP
�
�t .x/

� and
@�t

@t
.x/ D 1

DP
�
�t .x/

� :

Lemma 12.3. There existsK D K.K / > 1 such that jt j=K ⩽ d2.�0; �t / ⩽ Kjt j
for all t 2 W .
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Now let Wa � W be the set of all t 2 W such that �t is renormalizable with
period a, that is,

Wa D
�
t 2 W W

�
1

�.�t /

�
D
�

1

�.�0/

�
D a

�
:

Lemma 12.4. There exists a0 D a0.K / 2 N such that if a ⩾ a0 we have that
Wa � W . If we denote the boundary points of Wa by �wa� and waC, that is,
Wa D Œ�wa�; waC�, we have that

�aC1
�wa

�

�
��wa

�
.0/
�
D 0 and �awa

C

�
�wa

C
.0/
�
D 0 :

Proof. By Lemma 12.2, there exists a universal upper bound K > 0 for the first
derivative of P in V� [ VC. By Yoccoz’s Lemma 7.3, it is enough to take a0 ≳�
K=jW j

�1=2 in order to have jW j ≳ K=a20. The assertion about the boundary of
Wa follows by combinatorics.

Corollary 12.1. Let a0 D a0.K / be given by Lemma 12.4. Let � be a normal-
ized C 3 critical commuting pair that belongs to K which is renormalizable with
period a ⩾ a0. Given x 2

�
0; �a

�
�.0/

��
, there exists tx ⩽ 0 in Wa.�/ such that

�atx

�
�tx .0/

�
D x.

Finally, let V D Œ�v�; vC� � Wa defined by

�aC1
�v�

�
��v�.0/

�
D �1=K20 and �avC

�
�vC.0/

�
D 1=K20 :

Lemma 12.5. For any t 2 V and any k 2 f1; : : : ; a� 1g, the C 3 diffeomorphism
�a�k
t W Ik.t/! Ia.t/ has universally bounded distortion.

Recall that I`.t/ D
�
x`.t/; x`�1.t/

�
, for all ` 2 f1; : : : ; ag.

Proof. Combine Koebe distortion principle (Lemma 5.2) with theK-control.

Lemma 12.6. Let a0 D a0.K / be given by Lemma 12.4. Let �0 D .�0; �0/

and �1 D .�1; �1/ be two normalized C 3 critical commuting pairs that belong
to K which are renormalizable with the same period a ⩾ a0. Then there exists
t0 2 V.�0/ � Wa.�0/ such that

�at0

�
�t0.0/

�
D �a1

�
�1.0/

�
and d2.�0; �t0/ ⩽ Kd2.�0; �1/ ;

where the constant K D K.K / > 1 is given by Lemma 12.3.
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0

�0.0/ �t0
.0/ �0.0/ �t0

.0/

�0
�t0

�t0
ı�t0

.0/

�0ı�0.0/

Figure 12.1: Standard families of critical commuting pairs (in this figure, the
period of �0 is equal to 3, while the period of �t0 is 6).

Proof. We may suppose that �a0
�
�0.0/

�
⩾ �a1

�
�1.0/

�
, that is, �a1

�
�1.0/

�
belongs

to the interval
�
1=K0; �

a
0

�
�0.0/

��
� Œ1=K0; K0�. By Corollary 12.1 there exists

t0 < 0 in V.�0/ such that �at0
�
�t0.0/

�
D �a1

�
�1.0/

�
. Note that �aC1

t0

�
�t0.0/

�
⩽

�aC1
0

�
�0.0/

�
⩽ �1=K0 < �1=K20 . Now let K D K.K / > 1 be given by

Lemma 12.3. We claim that jt0j ⩽ Kd2.�0; �1/. Indeed, if jt0j > Kd2.�0; �1/ we
would have �t0 < �1 and �t0 < �1 in the corresponding intersections of domains,
but this implies that �at0

�
�t0.0/

�
< �a1

�
�1.0/

�
which is a contradiction. Then jt0j ⩽

Kd2.�0; �1/ and we are done.
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12.2.3 Renormalization of standard families

As before, fix K0 > 1 and let K be the space of normalized C 3 critical commut-
ing pairs which are K0-controlled (Definition 12.1). Again, we consider in this
section a normalized C 3 critical commuting pair � D .�; �/ in K with negative
Schwarzian, which is renormalizable with some period a 2 N. Let V.�/ be the
parameter interval for the standard family around � constructed in Section 12.2.2,
and consider the one-parameter family of C 3 critical commuting pairs given by
Gt D pR.�t / for each t 2 V ; that is, Gt is the pre-renormalization of �t (Defini-
tion 10.3).

Proposition 12.1. There exists K D K.K / > 1 such that for all t 2 V and for
all x in the domain of Gt we have

@Gt

@t
.x/ � a3 if x < 0, and

@Gt

@t
.x/ � 1 if x > 0.

Proof. We claim first that for t 2 V and x 2 I�t
we have the identity

@Gt

@t
.x/ D @�t

@t
.x/D�at

�
�t .x/

�
C

aX

kD1

@T

@t

�
�0
�
�k�1
t

�
�t .x/

��
; t
�
D�a�k

t

�
�kt
�
�t .x/

��
:

(12.1)
Indeed, fix x 2 I�t

and for each j 2 f0; 1; : : : ; ag let yj .t/ D �
j
t

�
�t .x/

�
. Note

that y0.t/ D �t .x/ and ya.t/ D Gt .x/ for x < 0. Since yjC1.t/ D �t
�
yj .t/

�
D

T
�
�0
�
yj .t/

�
; t
�
for all j 2 f0; 1; : : : ; a � 1g we see that

y0
jC1.t/ D y0

j .t/
@T

@x

�
�0
�
yj .t/

�
; t
�
D�0

�
yj .t/

�
C @T

@t

�
�0
�
yj .t/

�
; t
�

(12.2)

D y0
j .t/D�t

�
yj .t/

�
C @T

@t

�
�0
�
yj .t/

�
; t
�
;

since from �t .x/ D T
�
�0.x/; t

�
we get D�t .x/ D @T

@x

�
�0.x/; t

�
D�0.x/. By
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0

�0.0/ �t0
.0/ �0.0/ �t0

.0/

�0
�t0

�t0
ı�t0

.0/

�0ı�0.0/

Figure 12.2: Both critical commuting pairs of Figure 12.1, and their renormaliza-
tions.

induction on (12.2) we obtain that for all j 2 f1; : : : ; ag,

y0
j .t/ D y0

0.t/

j�1Y

lD0
D�t

�
yl.t/

�
C
j�1X

kD1

@T

@t

�
�0
�
yk�1.t/

�
; t
� j�1Y

lDk
D�t

�
yl.t/

�

C @T

@t

�
�0
�
yj�1.t/

�
; t
�

D y0
0.t/D�

j
t

�
y0.t/

�
C
j�1X

kD1

@T

@t

�
�0
�
yk�1.t/

�
; t
�
D�

j�k
t

�
yk.t/

�

C @T

@t

�
�0
�
yj�1.t/

�
; t
�

D y0
0.t/D�

j
t

�
y0.t/

�
C

jX

kD1

@T

@t

�
�0
�
yk�1.t/

�
; t
�
D�

j�k
t

�
yk.t/

�
:
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In particular,

@Gt

@t
.x/ D y0

a.t/ D y0
0.t/D�

a
t

�
y0.t/

�
C

aX

kD1

@T

@t

�
�0
�
yk�1.t/

�
; t
�
D�a�k

t

�
yk.t/

�
;

and then we obtain for all t 2 V and all x 2 I�t
the desired identity (12.1). Now

by Lemma 12.2, the K0-control and Lemma 12.5 we have

0 ⩽
@�t

@t
.x/D�at

�
�t .x/

�
D
 
D�0

�
�a�1
t .�t .x//

�
DP

�
�0
�
�a�1
t .�t .x//

��

DP
�
�t .x/

�
DP

�
�at
�
�t .x/

��
!
D�a�1

t

�
�t .x/

�

⩽ KD�0
�
�a�1
t .�t .x//

�
D�a�1

t

�
�t .x/

�
⩽ K

ˇ̌
Ia.t/

ˇ̌
ˇ̌
I1.t/

ˇ̌ ⩽ K:

On the other hand, for all k 2 f1; : : : ; ag, we have

@T

@t

�
�0
�
�k�1
t

�
�t .x/

��
; t
�
D 1

DP
�
�kt
�
�t .x/

�� 2
�
1

K
;K

�
;

again by Lemma 12.2. Therefore, it follows from (12.1) that for any x < 0 we
have

@Gt

@t
.x/ �

a�1X

kD1
D�a�k

t

�
�kt
�
�t .x/

��
; whenever a > 1.

Again by Lemma 12.5 (bounded distortion) and the K0-control we have that

@Gt

@t
.x/ �

a�1X

kD1

jIa.t/j
jIk.t/j

�
a�1X

kD1

1

jIk.t/j
:

Therefore, by Yoccoz’s Lemma 7.3 we obtain

@Gt

@t
.x/ �

a�1X

kD1
minfk; a � kg2 � a3 for any x < 0.

Finally, recall that for x 2
�
0; �at

�
�t .0/

��
we have Gt .x/ D �t .x/ and then

@Gt

@t
.x/ D @�t

@t
.x/ D 1

DP
�
�t .x/

� 2
�
1

K
;K

�

by Lemma 12.2.
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With Proposition 12.1 at hand, we obtain the following.

Corollary 12.2. There exists K D K.K / > 1 such that for all t 2 V and
x; y 2 I�t

we have ˇ̌
ˇ@Gt

@t
.x/
ˇ̌
ˇ

ˇ̌
ˇ@Gt

@t
.y/
ˇ̌
ˇ
⩽ K :

In particular,
ˇ̌
Gt .x/ �G0.x/

ˇ̌
ˇ̌
Gt .y/ �G0.y/

ˇ̌ D
ˇ̌
�at
�
�t .x/

�
� �a0

�
�0.x/

�ˇ̌
ˇ̌
�at
�
�t .y/

�
� �a0

�
�0.y/

�ˇ̌ ⩽ K

for all t 2 V nf0g and x; y 2 I�t
\ I�0

D
�
maxf�0.0/; �t .0/g; 0

�
.

12.3 Orbit Deformations
We begin this section with the following fact.

Lemma 12.7. Given K > 1, there exists a0 D a0.K/ 2 N with the following
property. Let � D .�; �/ be a normalizedC 3 critical commuting pair with negative
Schwarzian which is K-controlled and renormalizable with some period a ⩾ a0.
Then there exists a unique p in I� such that

ˇ̌
�.p/�p

ˇ̌
⩽
ˇ̌
�.x/�x

ˇ̌
for all x 2 I�.

Moreover, the point p belongs to the interior of I�,D�.p/ D 1 andD2�.p/ < 0.

Proof. Since � is renormalizable we know that x > �.x/ for all x 2 I�. From the
continuity of � and the compactness of its domain I�, we obtain the existence of
a point p such that 0 <

ˇ̌
�.p/ � p

ˇ̌
⩽
ˇ̌
�.x/ � x

ˇ̌
for all x 2 I�.

We claim first that if a0 > K2 and a ⩾ a0, then p belongs to the interior of
I�. Indeed, note first that the (positive) difference Id�� equals jI� j at the origin,
and equals

ˇ̌
�.I�/

ˇ̌
at the point �.0/. In both cases it is greater than 1=K, by the

K-control hypothesis. If p is one of the boundary points of I�, we would haveˇ̌
�.x/ � x

ˇ̌
⩾ 1=K for all x 2 I�, and since the period of � is a, we would have

a=K < jI�j. On the other hand, again by the K-control hypothesis, we have
a0 > K

2 > KjI�j and then jI�j < a0=K, which gives the desired contradiction.
With the claim at hand, we clearly haveD�.p/ D 1 andD2�.p/ ⩽ 0. Unique-

ness of p follows at once from the Minimum Principle (Lemma 5.1). Now we
claim that D2�.p/ is strictly negative. Indeed, if D2�.p/ D 0 we would have
D3�.p/ D S�.p/ < 0, and then it would exist ı0 > 0 such that D2�.x/ > 0 for
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all x 2 .p � ı0; p/. But then it would exist 0 < ı1 ⩽ ı0 such that
ˇ̌
�.x/ � x

ˇ̌
<ˇ̌

�.p/ � p
ˇ̌
for all x 2 .p � ı1; p/, which gives the desired contradiction.

Remark 12.4. We can slightly improve the statement of Lemma 12.7: there exists
K0 D K0.K/ > 1 such that D2�.p/ < �1=K0. Indeed, the fact that D2�.p/ is
uniformly bounded away from zero (by a constant depending only on K) follows
from (the proof of) Yoccoz’s Lemma 7.3.

Throughout this section, fix K > 1 and let K be the space of normalized C 3
critical commuting pairs which areK-controlled (Definition 12.1). Let � D .�; �/
and z� D .z�; z�/ be two C 3 critical commuting pairs with negative Schwarzian
that belong to K which are renormalizable with the same period a ⩾ a0, where
a0 2 N is given by Lemma 12.7. Denote by " > 0 the C 2 distance between �
and z�, that is, " D d2.�; z�/. We will assume that " < "0, where "0 > 0 will be
fixed later in this section (see the proof of Claim 12.3.1 below, during the proof
of Lemma 12.11). Moreover, we will only consider in this section the special
situation when

(1) I� D Iz� and I� D Iz� D Œ�1; 0�,

(2) p D zp, whereD�.p/ D Dz�. zp/ D 1 (see Lemma 12.7).

LetH W I� ! Œ�"; "� � R be defined byH.x/ D �.x/ � z�.x/; and let

h D H.p/:

Observe that for every x 2 I� we have
ˇ̌
H.x/

ˇ̌
⩽ jhj C ".x � p/2;

and ˇ̌
DH.x/

ˇ̌
⩽ "jx � pj: (12.3)

Indeed, given x 2 I� there exists y 2 I� such that DH.x/ D D2H.y/.x �
p/ and then

ˇ̌
DH.x/

ˇ̌
D
ˇ̌
D2H.y/

ˇ̌
jx � pj ⩽ "jx � pj, and there exists also

z 2 Œp; x� � I� such that H.x/ D h C DH.z/.x � p/ and then
ˇ̌
H.x/

ˇ̌
⩽

jhj C
ˇ̌
DH.z/

ˇ̌
jx � pj ⩽ jhj C ".x � p/2.

As before, we will use the following notation. For ` 2 f0; : : : ; ag, let x` D
�`.�.0//. Note that x` 2 I� D Œ0; �.0/� for all ` 2 f0; : : : ; ag. Define zx` D
z�`.z�.0// similarly. Denote by I`, ` 2 f1; : : : ; ag, the fundamental domains of
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� given by I` D Œ�`.�.0//; �`�1.�.0//�. By the commuting condition, I1 D
�.I�/ D �.Œ�1; 0�/. Define zI` similarly. Let us state some consequences of
Yoccoz’s Lemma (Lemma 7.3).

Lemma 12.8. Let � be a C 3 K-controlled critical commuting pair which has
negative Schwarzian and is renormalizable with some period a ⩾ a0, where a0
is given by Lemma 12.7. Let N 2 f1; : : : ; ag be defined by p 2 INC1 , that is,
xNC1 ⩽ p ⩽ xN , where p is given by Lemma 12.7. Then we have

1. N � a, i.e., there exist two constants ı0 D ı0.K / and ı1 D ı1.K / with
0 < ı0 ⩽ ı1 < 1 such that ı0 a ⩽ N ⩽ ı1 a;

2. jI`j �
1

`2
for 1 ⩽ ` ⩽ N and jI`j �

1

.a � `/2 for N ⩽ ` ⩽ a�1;

3.
ˇ̌
x` � p

ˇ̌
� N � `

`N
D 1

`
� 1

N
<
1

`
for all ` ⩽ min

˚
ba
2
c; N � 1

	
.

Proof. To prove Item (1) we claim that jINC1j � p � �.p/. Indeed, note first
that p � �.p/ ⩽ jINC1j C jINC2j. Being adjacent fundamental domains of �,
we know from Yoccoz’s Lemma that jINC1j � jINC2j, and then p � �.p/ ⩽
.1CK0/ jINC1j for some K0 D K0.K/. On the other hand, we have
jINC2j
p � �.p/ D

xNC1 � xNC2
p � �.p/ D 1C 1

p � �.p/

Z p

xN C1

�
D�.t/ � 1

�
dt

D 1C 1

p � �.p/

Z p

xN C1

.p � t /
�
�D2�.p/CO.t � p/

�
dt

⩽ 1C
Z p

xN C1

�
�D2�.p/CO.t � p/

�
dt ⩽ 1CK0.p � xNC1/

⩽ 1CK0 jINC1j :
Using again jINC1j � jINC2j, we obtain the claim. Combining the comparability
jINC1j � p � �.p/ with Yoccoz’s Lemma 7.3, we deduce that jINC1j � 1=a2

(recall that the positive number p � �.p/ is less than or equal to the length of
any fundamental domain of �) and then N � a, which implies Item (1). Item (2)
follows at once from Item (1) and Yoccoz’s lemma. To prove Item (3) note first
that by definition of N ,

NX

jD`C1
jIj j D

ˇ̌
x` � xN

ˇ̌
⩽
ˇ̌
x` � p

ˇ̌
⩽
ˇ̌
x` � xNC1

ˇ̌
D

NX

jD`C1
jIj j C jINC1j
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for all ` 2 f1; : : : ; N � 1g. By Item (2) we have
PN
jD`C1 jIj j �

PN
jD`C1

1
j 2 ,

that is,

1

K0

NX

jD`C1

1

j 2
⩽
ˇ̌
x` � p

ˇ̌
⩽ K0

2
4

NX

jD`C1

1

j 2
C 1

.N C 1/2

3
5

for all ` ⩽ min
˚
ba
2
c; N � 1

	
, where K0.K/ > 1 is given by Lemma 7.3. From

the elementary estimates

N � `
.`C 1/.N C 1/ D

1

`C 1 �
1

N C 1 D
Z NC1

`C1

dt

t2
⩽

⩽

NX

jD`C1

1

j 2
⩽

Z N

`

dt

t2
D 1

`
� 1

N
D N � `

`N
;

we obtain

1

K0

1

.`C 1/.N C 1/ ⩽
ˇ̌
x` � p

ˇ̌

N � ` ⩽ K0

�
1

`N
C 1

.N C 1/2
�

for all ` ⩽ min
˚
ba
2
c; N � 1

	
, which implies Item (3).

A similar application of Lemma 7.3 is given by the following.

Lemma 12.9. There exists K0 D K0.K / > 1 such that for any � 2 K renor-
malizable with period a 2 N, and for any b <

�
a
2

˘
we have

jxb � xa�bj ⩽
K0

b
:

Note that the constant K0 does not depend on the period a.

Proof. By Yoccoz’s Lemma 7.3,

jxb � xa�bj D
a�bX

`DbC1
jI`j ⩽ K

0
@

a�bX

`DbC1

1

minf`; a � `g2

1
A :

To finish, note that
a�bX

`DbC1

1

minf`; a � `g2 ⩽
2

b
:
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Indeed, by symmetry it is enough to prove that

ba=2cX

`DbC1

1

minf`; a � `g2 ⩽
1

b
;

which follows again from elementary calculus. Indeed,

ba=2cX

`DbC1

1

minf`; a � `g2 D
ba=2cX

`DbC1

1

`2
⩽

Z ba=2c

b

dt

t2
⩽

Z C1

b

dt

t2
D 1

b
:

Yet another consequence of Yoccoz’s lemma is the following.

Lemma 12.10. There exist a0 D a0.K / 2 N and b D b.K / 2 f1; ::; a0g with
the following property. Given �; z� 2 K renormalizable with period a ⩾ a0 we
have that

zx zN�b ⩾ xN�1 and zx zNCb ⩽ xNC2 :

Recall that we are assuming that p D zp. The number b given by Lemma 12.10
will be used in Lemmas 12.11, 12.13 and 12.14 below.

Proof. Consider

a0 �
1

ı0
2
K2

ı2
and 2

K2

ı2
⩽ b < ı0 a0 ;

whereK is given by Lemma 7.3, ı D minfı0; 1�ı1g and ı0; ı1, in turn, are given
by Item (1) of Lemma 12.8. We claim that jzx zN�b � zx zN j ⩾ jxN�1 � pj. Indeed,
on one hand,

jzx zN�b � zx zN j D
zNX

`D zN�bC1

j zI`j ⩾
1

K

zNX

`D zN�bC1

1

`2
⩾
1

K

b

. zN � b C 1/. zN C 1/
:

On the other hand,

jxN�1 � pj ⩽ jIN j C jINC1j

⩽ K

�
1

minfN; a �N g2 C
1

minfN C 1; a �N � 1g2
�
⩽
2K

ı2
1

a2
:
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Therefore, it is enough to have

b ⩾
2K2

ı2
1

a2
. zN � b C 1/. zN C 1/;

which follows from our choice of b (recall that zN ⩽ ı1 a < a and then zN C 1 ⩽
a). Then jzx zN�b � zx zN j ⩾ jxN�1 � pj as claimed, and this implies at once that
zx zN�b ⩾ xN�1. The other estimate can be proved in the same way.

The distance between corresponding critical iterates of � and z� will be denoted
by �x`, that is,

�x` D zx` � x` D z�`
�z�.0/

�
� �`

�
�.0/

�
for all ` 2 f0; 1; : : : ; ag.

Lemma 12.11. There exists K D K.K / > 0 such that for ` ⩽ min
˚
ba=2c; N �

b; zN � b
	

we have
j�x`j ⩽ K

�
jhj `C "

`

�
;

where b is given by Lemma 12.10.

Proof. Let x0 D �.0/ D z�.0/ be the common critical value of � and z�, which is
the right boundary point of I� D Iz�. Recall that, by definition, x` D �`.x0/ and
zx` D z�`.x0/ for all ` 2

˚
1; : : : ; a

	
. We will consider the case xba=2c ⩽ zxba=2c.

Note that for any ` 2
˚
1; : : : ; ba=2c

	
and any k 2 f0; : : : ; ` � 1g we have, by

combinatorics,

xa�`CkC1 ⩽ xba=2cC1 < xba=2c ⩽ zxba=2c ⩽ zxkC1 < zxk :

Therefore xba=2cC1 < �.zxk/, and then xa�`CkC1 < �.zxk/, that is, both points
�
�
z�k.x0/

�
and z�kC1.x0/ lie to the right of the point xa�`CkC1. In particular the

iterate �`�k�1 is well defined in the interval with boundary points �
�
z�k.x0/

�
and

z�kC1.x0/. This allows us to use a simple telescopic trick and the mean-value
theorem, in order to write for any ` 2

˚
1; : : : ; ba=2c

	

j�x`j D

ˇ̌
ˇ̌
ˇ̌
`�1X

kD0

�
�`�k�1��

�
z�k.x0/

��
� �`�k�1�z�kC1.x0/

��
ˇ̌
ˇ̌
ˇ̌ (12.4)

⩽

`�1X

kD0

ˇ̌
D�`�k�1.yk/

ˇ̌ˇ̌
H
�
z�k.x0/

�ˇ̌
;
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where, for each k 2 f0; : : : ; ` � 1g, the point yk lies between �
�
z�k.x0/

�
and

z�kC1.x0/ (the points y0; y1; : : : ; y`�1 depends also on each fixed `, but we will
denote them by yk to simplify the notation). From Section 12.3 and Lemma 12.8
we get that

ˇ̌
H
�
z�k.x/

�ˇ̌
⩽ jhj C K"

.k C 1/2 : (12.5)

For each k 2 f0; : : : ; `� 1g, let us denoteDk D
ˇ̌
D�`�k�1.yk/

ˇ̌
. Our goal is,

therefore, to estimate the sum

ˇ̌
�`.x/ � z�`.x/

ˇ̌
⩽

`�1X

kD0
Dk

�
jhj C K"

.k C 1/2
�
: (12.6)

For each k 2 f0; : : : ; ` � 1g let m D m.k/ 2 f1; : : : ; ag be such that yk 2 Im.�/,
where Im.�/ D

�
�m.x/; �m�1.x/

�
as before. Since we are assuming xba=2c ⩽

zxba=2c we have thatm ⩽ a=2C1. We claim thatm.k/ � k for all k 2 f0; : : : ; `�
1g. More precisely, we have the following.

Claim 12.3.1. There exists C D C.K / > 1 such that k
C
< m < Ck for all

k 2 f0; : : : ; ` � 1g and for all ` 2
˚
1; : : : ; ba=2c

	
.

Proof. From Lemma 12.8 we know that jyk � pj � 1
m

, and then it is enough to
prove that jyk � pj � 1

k
. Recall that d2.�; z�/ < "0, where "0 > 0 will be fixed

later in the proof. On one hand jyk � pj ⩽
ˇ̌
z�k.x0/� p

ˇ̌
� 1

k
. On the other hand,

since ` ⩽ min
˚
N � b; zN � b

	
, the point p does not belong to the interval with

boundary points �
�
z�k.x0/

�
and z�kC1.x0/, and then

jyk � pj ⩾ min
˚ˇ̌
z�kC1.x0/ � p

ˇ̌
;
ˇ̌
�
�
z�k.x0/

�
� p

ˇ̌	

D
ˇ̌
z�kC1.x0/ � p

ˇ̌
�
ˇ̌
�
�
z�k.x0/

�
� z�kC1.x0/

ˇ̌

D
ˇ̌
z�kC1.x0/ � p

ˇ̌
�
ˇ̌
H
�
z�k.x0/

�ˇ̌
:

From (12.5) we get
ˇ̌
H
�
z�k.x0/

�ˇ̌
⩽ K

�
jhj C "

.kC1/2
�
⩽ K

.kC1/2 since jhj ⩽
K=a2 by Yoccoz’s lemma (indeed, by Lemma 7.3, the length of the fundamental
domain

�
�.p/; p

�
is bounded by 1=a2, up to a multiplicative constant. That is,

both p � �.p/ and p � z�.p/ are bounded by 1=a2 up to a multiplicative constant,
and then jhj ⩽ K=a2). Therefore

jyk � pj ⩾
1

K

�
1

k C 1 �
K2

.k C 1/2
�
D 1

K

�
1 � K2

k C 1

�
k

k C 1
1

k
⩾

1

4k
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if k ⩾ 2K2C 1 and then jyk �pj � 1
k

in this case. We choose "0 > 0 in order to
have that if k ⩽ 2K2C 1, then both z�kC1.x/ and �.z�k.x// belong to the interval�
z�kC2.x/; z�k.x/

�
, and again jyk � pj � 1

k
as we wanted to prove.

We have two claims regarding the values ofDk .

Claim 12.3.2. There exists K D K.K / > 0 such that for all k 2 f0; : : : ; ` � 1g
and ` 2 f1; : : : ; a=2g we haveDk ⩽ K.

Proof. By bounded distortion and Yoccoz’s lemma we know that

ˇ̌
D�`�k�1.yk/

ˇ̌
�
ˇ̌
ImC`�k�1.�/

ˇ̌
ˇ̌
Im.�/

ˇ̌ � m2
ˇ̌
ImC`�k�1.�/

ˇ̌
;

and then it is enough to prove that
ˇ̌
ImC`�k�1.�/

ˇ̌
⩽
K

m2
. To prove this, we have

two cases to consider.

• If �`�k�1.yk/ ⩾ p, then
ˇ̌
ImC`�k�1.�/

ˇ̌
� 1

.mC ` � k � 1/2 by Yoccoz’s

lemma. Since ` � k � 1 ⩾ 0, we are done.

• If �`�k�1.yk/ < p, then
ˇ̌
ImC`�k�1.�/

ˇ̌
� 1

.a �m � `C k C 1/2 , and

since a � m � ` ⩾ 0 we obtain
ˇ̌
ImC`�k�1.�/

ˇ̌
⩽ K=.k C 1/2. Since

m � k by Claim 12.3.1, we obtain Claim 12.3.2.

Claim 12.3.3. There exists K D K.K / > 0 such that, if k <
`

4.C � 1/ , then

Dk ⩽ K
k2

`2
.

Proof. Write m D b�kc with 1
C
< � < C (see Claim 12.3.1). If m < k, we

have that � < 1 and ` C m � k � 1 D �` C .1 � �/` � .1 � �/k � 1 D
�`C .1� �/.`� k/� 1 ⩾ �`� 1 ⩾ 1

C
`. Since `Cm� k � 1 ⩽ ` ⩽ a

2
, we have

that

Dk ⩽ K
C 2k2

�
`
C

�2 ⩽ K
k2

`2
:
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On the other hand, if m > k (that is, � > 1), we have mC ` � k � 1 ⩽ `C .� �
1/k � 1 ⩽ `C .C � 1/k � 1 ⩽ `C 1

4
` � 1 ⩽ 3

2
a. Then

ˇ̌
ImC`�k�1.�/

ˇ̌
� 1

.mC ` � k � 1/2 ⩽
1

.` � 1/2 ;

and so we also have Dk ⩽ K k2

`2 in this case, since 1
3
a < j < 2

3
a implies

1
a�j >

1
2
1
j
> 1
4

1
a�j .

With Claim 12.3.2 andClaim 12.3.3 at hand, we are ready to estimate sum (12.6).

`�1X

kD0
Dk

�
jhj C K"

.k C 1/2
�
D jhj

0
@
`�1X

kD0
Dk

1
ACK"

0
B@

�
`

4.C �1/

˘
X

kD0

Dk

.k C 1/2

1
CA

CK"

0
B@

`�1X

kD
�

`
4.C �1/

˘
C1

Dk

.k C 1/2

1
CA

⩽ Kjhj`CK "

`2

0
B@

�
`

4.C �1/

˘
X

kD0

�
k

k C 1

�2
1
CA

CK"

0
B@

`�1X

kD
�

`
4.C �1/

˘
C1

1

.k C 1/2

1
CA

⩽ Kjhj`CK"
`
CK"

`
:

For the last inequality, we have used that both sequences

1

`

0
B@

�
`

4.C �1/

˘
X

kD0

�
k

k C 1

�2
1
CA and `

0
B@

`�1X

kD
�

`
4.C �1/

˘
C1

1

.k C 1/2

1
CA

remain bounded when ` goes to infinity, with constants depending only on C . We
have proved Lemma 12.11.
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Lemma 12.12. For every a ⩾ 1, there exists Ka D Ka.a/ > 0 such that

j�xaj ⩽ Ka ":

Proof. We have

j�`C1j D jz�.zx`/ � �.x`/j D j�.zx`/ � �.x`/CH.zx`/j ⩽ Dj�x`j C " ;

whereD D maxfD�g. Therefore,

j�xaj ⩽ " �
aX

kD0
Da�k ;

and the lemma is proved.

The following definition is given for general commuting pairs which are con-
tained in the previously discussed set K of K0-controlled commuting pairs.

Definition 12.3. Given L > 1 we say that the commuting pairs �0 D .�0; �0/ and
�1 D .�1; �1/, with a�0

D a�1
D a, are L-synchronized if

j�xaj ⩽ L � d2.�0; �1/:

By working just as in the proof of Lemma 12.11, but with backwards iterations,
we obtain the following.

Lemma 12.13. Given L > 0 there exists K D K.K ; L/ > 0 such that if �; z� 2
K are L-synchronized with a� D az� D a, then we have

j�x`j ⩽ K
�
jhj .a � `/C "

a � `
�

for all ` 2 N such that max
˚
ba=2c; N C b; zN C b

	
⩽ ` ⩽ a.

Proposition 12.2. For every L > 0 there existsK D K.K ; L/ > 1 such that the
following holds. If �; z� 2 K areL-synchronized with a� D az� D a, then we have

jhj ⩽ K
"

a2
:
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Proof. Let us suppose that z�.p/ D �.p/ C h with h > 0. We want to prove
that, under the synchronization assumption, the ratio C D a2h=" is uniformly
bounded in K . As before, let N 2 f1; : : : ; ag be defined by p 2 ŒxNC1; xN �.
By Yoccoz’s Lemma, there exists K0 D K0.K / > 1 such that N D �a with
1=K0 ⩽ � ⩽ 1 � 1

K0
. In the same way let zN D z�a defined by p 2 Œzx zNC1; zx zN �

with 1=K0 ⩽ z� ⩽ 1 � 1
K0

.
By Lemma 12.9 there exists K1 D K1.K / > 1 such that .xj ; zxj / �

�
p �

K1=M;p
�
when .1� 1

K0
/a ⩽ j ⩽ a�M , and .xj ; zxj / �

�
p; pCK1=M

�
when

M ⩽ j ⩽ a=K0 for any M 2
˚
1; : : : ; ba=K0c

	
. Let K2 D K2.K / > 1 be the

constant given by Lemma 12.11. By Lemma 12.13 we have

j�xa�M j ⩽ K3

�
hM C "

M

�
(12.7)

for some universal constantK3.L;K / > 1. LetK D maxfK0; K1; K2; K3g and
let us suppose that a > K.4K C 1/ (otherwise we are done since jhj ⩽ "). Fix
M 2

˚
1; : : : ; ba=2c

	
small enough in order to have

0 < � D M

a
<

1

K.4K C 1/ < 1 :

Let T D
�
p � K=M;p C K=M

�
and recall that .xj ; zxj / � T for all j 2

fM; : : : ; a � M g. The next three claims will show that if C is big enough, in
terms of K and �.K/, the pairs � and z� cannot be L-synchronized.

Claim 12.3.4. If C ⩾ 2
�
K
�

�2
, then z�.x/ ⩾ �.x/C h

2
for all x 2 T .

Proof. As before

z�.x/� �.x/ ⩾ h� ".x � p/2 ⩾ h� "
�
K

M

�2
D h� "

a2

�
K

�

�2
⩾ h� h

2
D h

2
:

In the last inequality we have used that
"

a2
⩽
h

2

�
�

K

�2
since

a2h

"
⩾ 2

�
K

�

�2
.

Note that 0 < � <
1

K.4K C 1/ implies 1 � 2�K2 � �K 2 .0; 1/.
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Claim12.3.5. IfC >
1

�

�
2K2

1 � 2�K2 � �K

�
, then there exists `0 2 fM; : : : ; a=Kg

such that x`0
⩽ zx`0

.

Proof. We will prove first that
� a
K
�M

� h
2
⩾ K

�
hM C "

M

�
: (12.8)

Indeed, since 1 � 2�K2 � �K > 2K2

C�
, we have

1 � 2�K2 � �K
2�K

>
K

C�2

and then
hM

�
1 � 2�K2 � �K

2�K

�
> K

"

M

since "=M D hM=C�2. From

1 � 2�K2 � �K
2�K

D 1

2

�
1

�K
� 1 � 2K

�
;

we obtain
h

2

� a
K
�M

�
�KhM > K

"

M
;

which implies the desired estimate (12.8). Now, estimate (12.8) combined with
Lemma 12.11 gives us

ˇ̌
xM � zxM

ˇ̌
⩽
� a
K
�M

� h
2
: (12.9)

With estimate (12.9) at hand, we are ready to prove Claim 12.3.5. Indeed, let
` 2 fM; : : : ; a=Kg be such that p ⩽ zx` < x` ⩽ p CK=M (note that, if no such
` exists, we are done). From Claim 12.3.4 we have

zx`C1 � x`C1 D z�.zx`/ � �.x`/
⩾ h=2C �.zx`/ � �.x`/
D h=2CD�.y`/.zx` � x`/
D h=2C zx` � x` CD2�.z`/.y` � p/.zx` � x`/ ;
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where y` 2 Œzx`; x`� and z` 2 Œp; y`� are given by the mean-value theorem. Since
D2�.z`/ < 0, y` � p > 0 and zx` � x` < 0,

zx`C1 � x`C1 ⩾ h=2C zx` � x` ; that is, �x`C1 ⩾ h=2C�x` :

Therefore, if the difference zx`C1 � x`C1 is still negative, it will be at least h=2
closer to zero than the previous difference zx`�x`. What estimate (12.9) tells us is
that we have enough time inside the interval .p; pCK=M/ in order to interchange
the positions of the critical iterates. We have proved Claim 12.3.5.

Claim 12.3.5 implies that x` ⩽ zx` for all ` 2 f`0; : : : ; a �M g, sinceD� > 0
and h > 0. Therefore, by Claim 12.3.4, we have

j�xa�M j ⩾
h

2

�
a �M �

�
1 � 1

K

�
a

�
: (12.10)

Our third and last claim tells us that (12.10) contradicts the synchronization
assumption. Note that 0 < � < 1

K.4KC1/ implies 1 � �K.4K C 1/ 2 .0; 1/.

Claim 12.3.6.

If C ⩾ 1
�

h
4K2

1��K.4KC1/

i
, then 2K

�
hM C "

M

�
⩽ h

2

�
a �M �

�
1 � 1

K

�
a
�
.

Proof. Note first that

2K
�
hM C "

M

�
D "

a

�
2K

�
C� C 1

�

��

and
h

2

�
a �M �

�
1 � 1

K

�
a

�
D "

a

�
C

2

�
1

K
� �

��
:

A straightforward computation shows that both conditions

C ⩾
1

�

�
4K2

1 � �K.4K C 1/

�
and 2K

�
C� C 1

�

�
⩽
C

2

�
1

K
� �

�

are actually equivalent.
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We are ready to finish the proof of Proposition 12.2. Indeed, by combining
estimates (12.7) and (12.10) we have

h

2

�
a �M �

�
1 � 1

K

�
a

�
⩽
ˇ̌
xa�M � zxa�M

ˇ̌

⩽ K
�
hM C "

M

�
< 2K

�
hM C "

M

�

which contradicts Claim 12.3.6. Therefore

C ⩽ max

(
2

�
K

�

�2
;
1

�

�
2K2

1 � 2�K2 � �K

�
;
1

�

�
4K2

1 � �K.4K C 1/

�)
;

that is, the ratio C D a2h=" is bounded by a constant only depending on K and
L. We have proved Proposition 12.2.

With Proposition 12.2 at hand, we can improve both Lemmas 12.11 and 12.13
under the synchronization assumption.

Lemma 12.14. Given L > 0, there exists K D K.K ; L/ > 0 such that if �; z� 2
K are L-synchronized with a� D az� D a, then we have

j�x`j ⩽
K"

`
for all 1 ⩽ ` ⩽ min

˚
ba=2c; N � b; zN � b

	
, and

j�x`j ⩽
K"

a � ` for all a ⩾ ` ⩾ max
˚
ba=2c; N C b; zN C b

	
.

Moreover, we have the following.

Proposition 12.3. For every L > 0, there exists K D K.K ; L/ > 0 such that
the following holds. If � and z� are L-synchronized then

j�x`j ⩽ K" � 1
`

for all ` 2 f0; 1; : : : ; a=2g.

and
j�x`j ⩽ K" � 1

a � ` for all ` 2 fa=2; : : : ; ag.
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Proof. By Lemma 12.14, we only need to estimate j�x`j for the intermediate
iterates min

˚
ba=2c; N �b; zN �b

	
< ` <

˚
ba=2c; N Cb; zN Cb

	
. We will prove

only the first part of the statement (the other being the same), that is, we will prove
that

j�x`j ⩽ K" � 1
`

for all ` 2
˚
minfba=2c; N � b; zN � bg; : : : ; a=2

	
.

We use the same notation as in the proof of Proposition 12.2. By the choice of
� we know thatM ⩽ min

˚
ba=2c; N �b; zN �b

	
and a�M ⩾ max

˚
ba=2c; N C

b; zN C b
	
.

Recall that H W I� ! Œ�"; "� � R is defined as H.x/ D �.x/ � z�.x/. By
Proposition 12.2 we have that

ˇ̌
H.x/

ˇ̌
⩽ "

�
K
a2 C .x�p/2

�
and then

ˇ̌
H.x/

ˇ̌
⩽ K"

a2

whenever x 2 T , since for x 2 T we have that jx � pj ⩽ K
M

⩽ K
a

. Therefore, by
considering ˛ D 1C K

a
and ˇ D K"

a2 , we obtain that �x`C1 ⩽ ˛ �x` C ˇ, and
then

�x`Cn ⩽ ˛n�x` C ˇ
n�1X

jD0
˛j ; for all 1 ⩽ n ⩽ .ı1 � ı0/aC 2b.

Note that
Pn�1
jD0 ˛

j D ˛n�1
˛�1 D

a
K
.˛n � 1/. Moreover, since n < a, we have that

˛n D .K
a
C 1/n ⩽ e

Kn
a is bounded. Therefore,

�x`Cn ⩽ ˛n�x` C ˇ
a

K
.˛n � 1/ ⩽ K

"

`

�
˛n C `

a
.˛n � 1/

�
⩽ K

"

`
˛n ⩽ K

"

`
:

Finally, from ` ⩾ M D �a and n ⩽ .ı1 � ı0/a C 2b, we get that n
`

is bounded
and then �x`Cn ⩽ K "

`Cn , as we wanted to prove.

For ` 2 f1; : : : ; ag let
�` D j�x` ��x`�1j:

Proposition 12.4. For every L > 0, there exists K D K.K ; L/ > 0 such that
the following holds. If � and z� are L-synchronized then

�` ⩽ K

�
" � log `

`2
C "2 � 1

`

�
for all ` ⩽ a=2.

and
�` ⩽ K

�
" � log.a � `/

.a � `/2 C "
2 � 1

a � `

�
for all ` ⩾ a=2.
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Proof. The proof of the second part of this proposition can be obtained as the first
part by working backward. (See also the proof of Proposition 12.3.) We will only
present the proof of the first part. Note that, for ` ⩾ 1,

�`C1 DjŒz�.x` C�x`/ � �.x`/� � Œz�.x`�1 C�x`�1/ � �.x`�1/�j
DjŒ�.x` C�x`/ � �.x`/C z�.x` C�x`/ � �.x` C�x`/��
Œ�.x`�1 C�x`�1/ � �.x`�1/C z�.x`�1 C�x`�1/ � �.x`�1 C�x`�1/�j
DjŒD�.�`/�x` CH.x` C�x`/��
ŒD�.�`�1/�x`�1 CH.x`�1 C�x`�1/�j

⩽jD�.�`/�x` �D�.�`�1/�x`�1j C jDH.�/ zI`j

The intermediate point � is in zI`. Hence, by using (12.3), the Yoccoz Lemma 7.3,
and Lemma 12.8, we have

jDH.�/ zI`j ⩽ K" � 1
`3
: (12.11)

The intermediate point �` is in Œx`; x` C �x`�. Similarly, �`�1 2 Œx`�1; x`�1 C
�x`�1�. This allows for the following estimate.

jD�.�`/�x` �D�.�`�1/�x`�1j ⩽
jI`C1j
jI`j

�` C
ˇ̌
ˇ̌
�
D�.�`/ �

jI`C1j
jI`j

�
�x`

ˇ̌
ˇ̌C

ˇ̌
ˇ̌
�
D�.�`�1/ �

jI`C1j
jI`j

�
�x`�1

ˇ̌
ˇ̌

⩽
jI`C1j
jI`j

�` CK.jI`j C j�x`j/j�x`jC

K.jI`j C j�x`�1j/j�x`�1j

Using the Yoccoz Lemma 7.3 and Proposition 12.3, we obtain

jD�.�`/�x` �D�.�`�1/�x`�1j ⩽
jI`C1j
jI`j

�` CK
�
"
1

`3
C "2 1

`2

�
: (12.12)

Combining (12.11) and (12.12) with the chain of estimates obtained at the begin-
ning of the proof, we deduce that

�`C1 ⩽
jI`C1j
jI`j

�` CK
�
"
1

`3
C "2 1

`2

�
:
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After iterating this recursive estimate and using the Yoccoz Lemma 7.3, we finally
obtain

�` ⩽ K

`�1X

kD1

�
"
1

k3
C "2 1

k2

�
� jI`jjIkC1j

⩽ K

0
@" 1
`2

`�1X

kD1

1

k
C "2 1

`4

`�1X

kD1
k2

1
A

⩽ K

�
" � log `

`2
C "2

`

�
:

12.4 Composition
In this section we will discuss composition of multiple diffeomorphisms. Let I D
Œa; b� be a compact interval in the real line, and let D D Diff2C

�
Œa; b�

�
be the space

of orientation preserving C 2 diffeomorphisms of I , endowed with the C 2-metric.
Let X D C 0.I / be the space of continuous functions from Œa; b� to the real line,
and recall that X is a Banach space when endowed with the sup norm. Just as
we did in Chapters 3 and 5, we consider the nonlinearity function N W D ! X ,
defined as

N  D D2 

D 
D D logD :

Note that N is a homeomorphism, whose inverse is given by

�
N

�1�
�
.x/ D aC

 
b � a

R b
a exp

� R s
a �.t/dt

�
ds

!Z x

a

exp
�Z s

a

�.t/dt

�
ds ;

for any x 2 Œa; b� and any � 2 X . To prove that N �1� 2 D note thatDN �1� >
0, since @

@x

� R x
a exp

� R s
a �.t/dt

�
ds
�
D exp

� R x
a �.t/dt

�
> 0.

More generally, if f W I ! R is a C 2 map and x is a regular point of f , we
define N f .x/ D D2f .x/=Df .x/. As the reader can easily prove, the chain rule
for the nonlinearity is N .f ıg/ D N f ıgDgCN g, while the kernel of N is
the group of affine transformations. In particular, N .Aıf / D N f whenever A
is affine. Note also that the nonlinearity goes to infinity around any non-flat critical
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point. Elementary properties of nonlinearity can be found in the work of Martens
[1998]. On bounded sets it is bi-Lipschitz. In particular, we have the following.

Lemma 12.15. LetB be a bounded set inX D C 0.I /. There existsK D K.B/ >
0 such that for any pair �,  in B we have

d2.N
�1�;N �1 / ⩽ KdC0.�;  /:

Proof. Use the inverse of the nonlinearity to estimate the C 0 distance between
f D N �1� and g D N �1 , as in Martens [ibid., Lem. 10.2, page 579].
This gives dC0.N �1�;N �1 / ⩽ KdC0.�;  /. Since both f D N �1� and
g D N �1 belong to Diff2C.I / there exists t0 2 I such that Df.t0/ D Dg.t0/,
and then logDf.t/ � logDg.t/ D

R t
t0

�
� �  

�
.s/ ds for all t 2 I . Therefore

dC0.logDf; logDg/ ⩽ jI jdC0.�;  /, and since both f and g are C 1-bounded
we get dC0.Df;Dg/ ⩽ KdC0.�;  /. Finally note that for all t 2 I we have

ˇ̌
.D2f �D2g/.t/

ˇ̌
⩽
ˇ̌
.� �  /.t/

ˇ̌ˇ̌
Df.t/

ˇ̌
C
ˇ̌
.Df �Dg/.t/

ˇ̌ˇ̌
 .t/

ˇ̌
:

As explained above, the nonlinearity allows us to identify the set D of dif-
feomorphisms with the Banach space X D C 0.I /. This defines the nonlinearity
norm on D : jf j D kN f kC0 . The following lemma says that composition of
multiple diffeomorphisms on C 1-bounded sets is Lipschitz continuous in the non-
linearity norm. This lemma is an adaptation of the Sandwich Lemma in Martens
[ibid., Lem. 10.5, page 581].

Lemma 12.16. Given M > 0, there exists K D K.M/ > 0 such that for
f1; : : : ; fn, g1; : : : ; gn in Diff3C

�
Œ0; 1�

�
satisfying

•
Pn
jD1 kN fj kC0 ⩽M ,

•
Pn
jD1 kN gj kC0 ⩽M ,

•
Pn
jD1 kDN fj kC0 ⩽M ,

•
Pn
jD1 kDN gj kC0 ⩽M ,

we have
N

�
n
jD1 fj

�
�N

�
n
jD1 gj

�
C0

⩽ K

nX

jD1

N fj �N gj

C0 :
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In particular,

dC2

�
n
jD1 fj ;n

jD1gj
�
⩽ K

nX

jD1

N fj �N gj

C0 :

The branches of renormalizations are compositions of a homeomorphism and
multiple diffeomorphisms. The composition of multiple diffeomorphisms can be
controlled by Lemma 12.16. To control the effect of the first factor we need the
following lemma, a basic property of composition.

Lemma 12.17. For every L > 0, there exists K D K.L/ > 0 such that the fol-
lowing holds. Let q; zq W Œ�1; 0�! Œ0; 1� be C 3 homeomorphisms with one critical
point,Dq.0/ D Dzq.0/ D 0. Let f; zf W Œ0; 1�! Œ0; 1� be C 3 diffeomorphisms. If
jqjC3 , jzqjC3 , jf jC3 , j zf jC3 ⩽ L then

dC2. zf ı zq; f ı q/ ⩽ K dC2. zf ; f /C dC2.zq; q/:

As before, fix K0 > 1 and let K be the space of normalized C 3 critical
commuting pairs which are K0-controlled. Let � D .�; �/ and z� D .z�; z�/ be two
C 3 critical commuting pairs with negative Schwarzian that belong to K which
are renormalizable with the same period a 2 N. Denote by " > 0 the C 2 distance
between � and z�, that is, " D d2.�; z�/. We may assume in the computations that
" 2 .0; 1/. We will only consider the special situation when

(1) I� D Iz� and I� D Iz� ,

(2) p D zp whereD�.p/ D Dz�. zp/ D 1 (see Lemma 12.7).

For each ` 2 f1; : : : ; a � 1g let f` 2 Diff3C
�
Œ0; 1�

�
given by f` D A�1

`C1 ı � ı A`,
where A` W Œ0; 1�! I` is the unique orientation preserving affine diffeomorphism

A`.x/ D jI`jx C x` D
�
�`�1

�
�.0/

�
� �`

�
�.0/

��
x C �`

�
�.0/

�
:

Note thata�1
`D1f` D A

�1
a ı �a�1 ı A1 in Diff3C

�
Œ0; 1�

�
.

Lemma 12.18. There existsK D K.K / > 1 such that for any � in K renormal-
izable with period a 2 N we have

a�1X

`D1

ˇ̌
N f`.x/

ˇ̌
⩽ K and

a�1X

`D1

ˇ̌
D.N f`/.x/

ˇ̌
⩽ K for all x 2 Œ0; 1�.
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Proof. Note that N f`.x/ D N .� ı A`/.x/ D N �
�
A`.x/

�
jI`j and that

D.N f`/.x/ D D.N �/.A`.x//jI`j2 for all x 2 Œ0; 1�. Since � 2 Ka, we know
that N � is C 1-bounded in

�
�a.�.0//; �.0/

�
and then

a�1X

`D1

ˇ̌
N f`.x/

ˇ̌
⩽ K

a�1X

`D1
jI`j ⩽ KjI�j and

a�1X

`D1

ˇ̌
D.N f`/.x/

ˇ̌
⩽ K

a�1X

`D1
jI`j2 ⩽ KjI�j

a�1X

`D1
jI`j ⩽ KjI�j2:

In the same way, let zA` W Œ0; 1� ! zI` be the unique orientation preserving
affine diffeomorphism, and define g` D zA�1

`C1 ı z� ı zA` 2 Diff3C
�
Œ0; 1�

�
. The first

factors of the renormalizations are controlled by

Lemma 12.19. There exists K > 0 such that

kA�1
1 ı �kC3 ; k zA�1

1 ı z�kC3 ⩽ K

and

dC2

�
A�1
1 ı �; zA�1

1 ı z�
�
⩽ K":

Proof. The four maps � W Œ�1; 0�! I1, z� W Œ�1; 0�! zI1, A�1
1 W Œ0;K�! R and

zA�1
1 W Œ0;K� ! R are C 3-bounded by some constant M > 1 universal on K .

Similar to Lemma 12.17, we get

dC2

�
A�1
1 ı �; zA�1

1 ı z�
�
⩽ K

�A�1
1 � zA�1

1


C2 C

� � z�

C2

�

⩽ K
�A�1

1 � zA�1
1


C2 C "

�
:
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Observe that
ˇ̌
A�1
1 .x/ � zA�1

1 .x/
ˇ̌
D
ˇ̌
jI1j�1.x � x1/ � j zI1j�1.x � zx1/

ˇ̌

D
ˇ̌
.x � x1/.zx0 � zx1/ � .x � zx1/.x0 � x1/

ˇ̌

jI1jj zI1j

D
ˇ̌
x.zx0 � x0/C x.x1 � zx1/C .x0zx1 � zx0x1/

ˇ̌

jI1jj zI1j

⩽ K

 
�x0 C�x1 C jx0zx1 � zx0x1j

jI1jj zI1j

!

⩽ K

 
�x0 C�x1 C jx0jjzx1 � x1j C jx1jjx0 � zx0j

jI1jj zI1j

!

⩽ K.�x0 C�x1/=jI1jj zI1j ⩽ K";

where we used Lemma 12.11. On the other hand,
ˇ̌
.A�1
1 /0 � . zA�1

1 /0
ˇ̌
D
�
j zI1j � jI1j

�
=jI1jj zI1j ⩽ .�0 C�1/=jI1jj zI1j;

and we finish in the same way as before.

Lemma 12.20. There exists K > 0 such that for ` ⩽ a, we have

kN f` �N g`kC0 ⩽ K
�
" jI`j C�` C j�x`j jI`j

�
:

Proof. Note that
j zA`x � A`xj ⩽ K

�
j�x`j C�`

�
:

Therefore,

jN f`.x/ �N g`.x/j DjN f .A`.x//jI`j �N g. zA`.x//j zI`jj
⩽
ˇ̌
N f .A`x/jI`j �N g.A`x/j zI`j

ˇ̌
C

jDN g.�`/j � .j�x`j C�`/ � j zI`j
⩽K

�
"jI`j C�` C .j�x`j C�`/.jI`j C�`/

�

⩽K
�
"jI`j C�` C j�x`jjI`j

�
:
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Lemma 12.21. For every L > 0, there exists K D K.K ; L/ > 0 such that the
following holds. If � and z� are L-synchronized, then

aX

`D1
kN f` �N g`kC0 ⩽ K":

Proof. Let a" D
�
1
"

˘
. Assume for a moment that a ⩾ a". Then Lemma 12.9

implies jxa�a"
� xa"

j; jzxa�a"
� zxa"

j ⩽ K". Hence,
X

a"⩽`⩽a�a"

kN f` �N g`kC0 ⩽
X

a"⩽`⩽a�a"

kN f`kC0 C kN g`kC0

⩽
X

a"⩽`⩽a�a"

kN f kC0 � jI`j C kN gkC0 � j zI`j

⩽ K
�
jxa�a"

� xa"
j C jzxa�a"

� zxa"
j
�

⩽ K":
(12.13)

These estimates hold trivially when a < a". Note that
aX

`D1
kN f` �N g`kC0 D

a"X

`D1
kN f` �N g`kC0 C

a�a"X

`Da0

kN f` �N g`kC0

C
aX

`Da�a"

kN f` �N g`kC0 :

The middle term is estimated by (12.13). The first (and third) term can be estimated
by using Lemma 12.20, Yoccoz’s Lemma 7.3, Propositions 12.3 and 12.4. Namely,

a"X

`D1
kN f` �N g`kC0 ⩽ K

a"X

`D1
" jI`j C�` C j�x`j jI`j

⩽ K

a"X

`D1
"
1

`2
C " log `

`2
C "2 1

`
C " 1

`3

⩽ K"CK
a"X

`D1
"2
1

`

⩽ K"CK "2 log
1

"

⩽ K":
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The lemma follows.

The following proposition holds for general critical commuting pairs with neg-
ative Schwarzian which are contained in the previously discussed set K ; that is,
the set of normalized C 3 critical commuting pairs which are K-controlled.

Proposition 12.5. For every L > 0 there existsK D K.K ; L/ > 0 such that the
following holds. If �0 and �1 are L-synchronized then

d2
�
pR.�0/; pR.�1/

�
⩽ Kd2.�0; �1/:

Proof. There existsK D K.K / > 0 such that the following holds. There exists a
diffeomorphism h W Dom.�1/! Dom.�0/ such that � D �0 and z� D h ı �1 ı h�1

satisfy the normalizations

(1) I� D Iz� and I� D Iz� ,

(2) p D zp whereD�.p/ D Dz�. zp/ D 1,

needed to apply the results from Sections 12.3 and 12.4. We may construct the
conjugation such that

dC3.h; Id/ ⩽ Kd2.�0; �1/

and hjDom
�
pR.�1/

�
D Id. This last condition implies

pR.�1/ D pR.z�/:

In particular, it suffices to prove the proposition for the pairs � and z�.
Let pR.�/ D .�0; � 0/ and pR.z�/ D .z�0; z� 0/. Because, � 0 D � and z� 0 D z� it

suffices to estimate the distance between �0 and z�0.
Let IaC1 D ŒxaC1; xa� and A W Œ0; 1� ! IaC1 be the orientation preserving

affine diffeomorphism. Let
F D A�1 ı �0;

and similarly defineG D zA�1 ı z�0. Now apply Lemmas 12.16 and 12.21 to obtain

dC2.F;G/ ⩽ K";

where " D d2.�; z�/. A similar argument as the proof of Lemma 12.19 one ob-
tains d2.�0; z�0/ ⩽ K": This shows that pre-renormalization is Lipschitz among
synchronized pairs.
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12.5 Order

Commuting pairs might have different domains. Any natural definition of order
between such systems has to include this difference of domains also. There are
two cases:

Case I: � ı �.0/ > 0, Case II: � ı �.0/ < 0.

Definition 12.4. Let �0 D .�0; �0/ and �1 D .�1; �1/ be two commuting pairs and
t ⩾ 0. If

(1) �0.x/C t ⩽ �1.x/ for x 2 Dom.�0/ \ Dom.�1/ and

(2) �0.0/ ⩽ �1.0/ and �0.0/ ⩽ �1.0/

we write
�0 ⩽t �1:

Lemma 12.22. Let �0 D .�0; �0/ and �1 D .�1; �1/ be two commuting pairs such
that �0 ⩽t �1.

If Case I holds, then:

(1) a�0
⩽ a�1

,

(2) for x 2 Œ�1.0/; 0� and k D 0; 1; : : : ; a�0

�k0 ı �0.x/C t ⩽ �k1 ı �1.x/:

If Case II holds, then:

(1) a�0
⩾ a�1

,

(2) for x 2 Œ0; �0.0/� and k D 0; 1; : : : ; a�1

�k0 ı �0.x/C t ⩽ �k1 ı �1.x/:

The proof of Lemma 12.22 is different for Case I and Case II. We will only
present the proof in Case I.
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Proof. Let x 2 Œ0; �0.0/�. The order condition of Definition 12.4(1) gives the
statement of the Lemma for k D 0, �0.x/ C t ⩽ �1.x/. Property (2) follows
inductively. Namely,

�kC1
0 ı �0.x/C t D �0.�k0 ı �0.x//C t ⩽ �1.�

k
0 ı �0.x//

⩽ �1.�
k
1 ı �1.x//

D �kC1
1 ı �1.x/:

In particular, �a�0

0 ı �0.x/ ⩽ �
a�0

1 ı �1.x/. This implies, a�0
⩽ a�1

.

Pre-renormalization preserves order. Namely, we have the following.

Lemma 12.23. If �0 ⩽t �1 and a�0
D a�1

, then pR.�0/ ⩽t pR.�1/.

Proof. We will only present the proof in Case I. Let a D a�0
D a�1

. Observe,
�pR.�0/.0/ D �0.0/ ⩽ �1.0/ D �pR.�1/.0/. Hence, the left side of the domains
of the pre-renormalizations satisfy the order condition of Definition 12.4(2). Con-
sider the right side of the domains of the pre-renormalizations,

�pR.�0/.0/C t D �a0 ı �0.0/C t ⩽ �a1 ı �1.0/ D �pR.�1/.0/; (12.14)

where we used Lemma 12.22(2). This means that the right side of the domain of
the pre-renormalizations also satisfies the order condition of Definition 12.4(2).

According to Lemma 12.22(2) the estimate (12.14) also holds for any x 2
Œ�1.0/; 0�, instead of x D 0. This means that the pre-renormalization also satisfies
the order condition of Definition 12.4(1).

The following proposition will play a key role in the proof of the Synchroniza-
tion-Lemma (see Section 12.6 below).

Proposition 12.6. If �0 ⩽t �1 with t > 0 then

��0
¤ ��1

:

Proof. Assume a�0
.n/ D a�1

.n/ for n ⩾ 0. Applying Lemma 12.23,

.pR/n.�0/ ⩽t .pR/n.�1/:

Note, �.pR/n.�0;1/.0/! 0. Hence,

0 > �.pR/n.�1/.0/ ⩾ �.pR/n.�0/.0/C t ⩾
1

2
t > 0

for n large enough, a contradiction.
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12.6 Synchronization
In the next statement we refer to the constant "0 > 0 obtained in Section 12.3 (see
in particular the proof of Claim 12.3.1, during the proof of Lemma 12.11).

Synchronization-Lemma. For any given K0 > 1 there exists L D L.K0/ >

1 such that the following holds. Let �0 and �1 be two C 3 critical commuting
pairs which areK0-controlled, both �0 and �1 have negative Schwarzian, �.�0/ D
�.�1/ 2 Œ0; 1�nQ and d2.�0; �1/ < "0. Then �0 and �1 are L-synchronized.

We omit mention of the hypothesis d2.�0; �1/ < "0 in the proof presented
below, but it is needed to allows us to apply the estimates obtained in Sections 12.3
and 12.5.

Proof of the Synchronization-Lemma. We will only present the proof in Case I.
Let a D a�0

D a�1
. Choose a0 ⩾ 1 such that Lemma 12.6 applies. The Syn-

chronization Lemma follows from Lemma 12.12 when a ⩽ a0. We will assume
a ⩾ a0.

We may assume that x1a ⩾ x0a . There exists K D K.K0/ > 0 such that the
following holds: there exists a diffeomorphism h W Dom.�1/ ! Dom.�0/ such
that � D �0 and z� D h ı �1 ı h�1 satisfy the normalizations

x1.�/ D x1.z�/:

We may construct the conjugation such that

dC3.h; Id/ ⩽ Kd2.�0; �1/

and hjDom
�
pR.�1/

�
D Id. This last condition implies

xa.�1/ D xa.z�/:

In particular, it suffices to prove synchronization for the pairs � and z�. Let " D
d2.�; z�/ ⩽ Kd2.�0; �1/.

Apply Lemma 12.6 to obtain a commuting pair �t0 in the standard family of �
such that

�xa.�t0 ;
z�/ D 0:

From Lemma 12.6 we get
0 ⩽ t0 ⩽ K": (12.15)
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Note, if t0 > 0 is much larger than " ⩾ dC0.�; z�/ then �t0.x/ > z�.x/. This would
imply xa.�t0/ > xa.z�/ because x1.�/ D x1.z�/. Assume that

zxa D xa C L"; (12.16)

where, just as before, x` D �`.�.0// and zx` D z�`.z�.0// for ` 2 f0; : : : ; ag. Note
also that our assumption x1a ⩾ x0a , implies that zxa ⩾ xa.

We have to show thatL is uniformly bounded. From (12.16) and Corollary 12.2
we get for every x 2 Œ�pR.�t0

/.0/; 0�

pR.�t0/.x/ � pR.�/.x/ ⩾
1

K

�
pR.�t0/.0/ � pR.�/.0/

�

D 1

K

�
pR.z�/.0/ � pR.�/.0/

�

D 1

K
.zxa � xa/ D

1

K
L":

(12.17)

From Proposition 12.5 we get for every x 2 Œ�pR.�t0
/.0/; 0�

ˇ̌
pR.�t0/.x/ � pR.z�/.x/

ˇ̌
⩽ Kd2.�t0 ;

z�/
⩽ Kd2.�; z�/CK"
⩽ K";

(12.18)

where we also used (12.15). Combine (12.17) and (12.18) to get for every x 2
Œ�pR.�t0

/.0/; 0�

pR.z�/.x/ ⩾ pR.�/.x/C 1

K
L" �K": (12.19)

As a matter of fact (12.19) holds for x 2 Œ�1; 0�. This follows from the following.
Let x 2 Œ�1; �pR.�t0

/.0/�. Observe that, according to (12.15),
ˇ̌
Œ�1; �pR.�t0

/.0/�
ˇ̌
D t0 ⩽ K":

This implies that

pR.z�/.x/ ⩾ pR.�/.�pR.�t0
/.0//C

1

K
L" �K" �maxfDpR.z�/gt0

⩾ pR.�/.x/C 1

K
L" �K":
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Hence, for x 2 Œ�1; 0� we have

pR.z�/.x/ ⩾ pR.�/.x/C 1

K
L" �K": (12.20)

So, when L ⩾ 2K2 then for the relevant x < 0,

.pR/2.z�/.x/ > .pR/2.�/.x/: (12.21)

The last part of the proof will show that similar estimates hold for relevant pos-
itive points. The goal is to prove

�
pR

�2
.z�/ ⩾t

�
pR

�2
.�/ for some positive t .

The branches on the left side of the second pre-renormalizations, according to
(12.21), satisfy the order condition of Definition 12.4(1). The right side of the
domains of the second pre-renormalizations do satisfy the order condition of Def-
inition 12.4(2). Namely,

Dom
�
.pR/2.�/

�
\ fx ⩾ 0g D Œ0; xa� � Œ0; zxa� D Dom

�
.pR/2.z�/

�
\ fx ⩾ 0g:

What remains is to describe the branches on the right and the domains on the left.
Let x 2 Dom

�
.pR/2.�/

�
\ fx ⩾ 0g D Œ0; xa� and for k ⩾ 1 define

zk.x/ D
�
pR.�/

�k
.x/;

and similarly, zzk.x/ D
�
pR.z�/

�k
.x/; Observe,

jz1.x/ � zz1.x/j D jpR.�/.x/ � pR.z�/.x/j D j�.x/ � z�.x/j ⩽ ":

Hence, applying (12.20),

zz2.x/ D pR.z�/.zz1/

⩾ pR.�/.zz1/C
1

K
L" �K"

⩾ z2.x/ �max
�
DpR.�/

�
� jz1.x/ � zz1.x/j C

1

K
L" �K"

⩾ z2.x/C
1

K
L" �K" > z2.x/;

when L ⩾ 2K2. Let b D apR.�/ D apR.z�/. By repeatedly applying (12.20) with
L ⩾ 2K2, we obtain

�
pR

�2
.z�/.x/ D zzb.x/ >

�
pR

�2
.�/.x/ D zb.x/: (12.22)
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In particular,

Dom
�
.pR/2.z�/

�
\ fx ⩽ 0g D Œzzb; 0� � Œzb; 0�

D Dom
�
.pR/2.�/

�
\ fx ⩽ 0g:

(12.23)

The estimates (12.22) and (12.23) finish the proof of
�
pR

�2
.z�/ ⩾t

�
pR

�2
.�/;

for some t > 0. However, this contradicts Proposition 12.6 because
�
pR

�2
.z�/

and
�
pR

�2
.�/ have the same rotation number. This contradiction establishes the

synchronization with L ⩽ 2K2.

12.7 Lipschitz Estimate
In this section we finally prove Theorem 12.2.

Proof of Theorem 12.2. The Synchronization Lemma from Section 12.6 tells us
that, for L D L.K /, the pairs �0 and �1 are L-synchronized. Now the Lipschitz
estimate for renormalization of synchronized pairs, Proposition 12.5, implies a
Lipschitz estimate for pre-renormalization along topological classes. The fact that
the maps are synchronized implies that the domains of the pre-renormalizations
are also close. This means that the normalizations will not affect the Lipschitz
property.

Exercises

Exercise 12.1. Let f1; : : : ; fn W R ! R be C 1 maps with C 1 norm bounded by
some constant B > 0, and let g1; : : : ; gn W R ! R be C 0 maps. By induction,
prove that

fn ı � � � ı f1 � gn ı � � � ı g1

C0 ⩽

0
@
n�1X

jD0
Bj

1
A max
i2f1;:::;ng

fi � gi

C0 :

Exercise 12.2. Using the previous exercise, prove a C 0 version of Theorem 12.2
for bounded combinatorics (allowing the Lipschitz constant to depend on the bound,
see Remark 12.3). Find the minimum set of hypothesis you need to assume (recall
Remarks 12.1 and 12.2).



13 Exponential
Convergence: the

Smooth Case

As discussed in Section 10.1, the main motivation behind our study of multicriti-
cal circle maps is to understand the smooth rigidity problem. To be more precise,
the goal is to answer Question 10.1: let h be a topological conjugacy between two
multicritical circle maps, say f and g, and assume that h identifies each critical
point of f with a corresponding critical point of g having the same criticality. Is
h a smooth diffeomorphism? As we saw in Theorems 10.1 and 10.2, this prob-
lem has essentially been solved in the case of a single critical point, of an odd
integer criticality. Moreover, as we saw in Theorem 10.3, rigidity has also been
established for bi-critical circle maps of bounded combinatorics (see also the re-
cent preprint Gorbovickis and Yampolsky [2021]). As explained in Chapter 10,
the rigidity problem reduces to proving geometric contraction of renormalization
along multicritical circle maps with the same signature. In the remainder of this
book (Chapters 13 and 14) we will survey the main ideas needed to establish such
contraction in the unicritical case. We finish this initial paragraph by pointing out
that the analytic tools developed in both Chapters 11 and 12 are crucial for the
methods to be discussed in the present chapter.

The following fundamental theorem was obtained by de Faria and de Melo
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[2000] for rotation numbers of bounded type, and extended by Khmelev and Yam-
polsky [2006] to cover all irrational rotation numbers.

Theorem 13.1. There exists a universal constant � in .0; 1/ with the following
property. Given two real-analytic unicritical commuting pairs �1 and �2 with the
same irrational rotation number and the same criticality, there exists a constant
C > 0 such that

dr
�
R
n.�1/;R

n.�2/
�
⩽ C�n

for all n 2 N and for any 0 ⩽ r <1.

The proof of Theorem 13.1 relies on holomorphic methods, and it will be dis-
cussed in the next chapter (Chapter 14). In the present chapter we would like to
explain how one can use Theorem 13.1 in order to prove exponential contraction
of renormalizations for unicritical circle maps with a finite degree of smoothness.
More precisely, we will explain the proof of the following two results, which are
Guarino and de Melo [2017, Th. C] and Guarino, Martens, and de Melo [2018,
Th. B] respectively.

Theorem 13.2. There exists a universal constant � 2 .0; 1/ with the following
property. Given two C 3 unicritical circle maps f and g with the same irrational
rotation number of bounded type and the same odd integer criticality, there exists
C > 0 such that for all n 2 N we have

d0
�
R
n.f /;Rn.g/

�
⩽ C�n :

Theorem 13.3. There exists a universal constant � 2 .0; 1/ with the following
property. Given two C 4 unicritical circle maps f and g with the same irrational
rotation number and the same odd integer criticality, there exists C > 0 such that
for all n 2 N we have

d2
�
R
n.f /;Rn.g/

�
⩽ C�n :

As established in Chapter 10, such exponential convergence of renormaliza-
tion orbits implies the desired smooth rigidity: topological conjugacies are actu-
ally diffeomorphisms. To be more precise, when combined with Theorems 10.4
and 10.5, Theorems 13.2 and 13.3 imply Theorems 10.1 and 10.2 respectively.
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13.1 The shadowing property

The link between C r unicritical circle maps and real-analytic ones is given by the
following result.
Theorem 13.4 (Shadowing). There exists a C!-compact set K of real-analytic
unicritical commuting pairs with the following property. For any r ⩾ 3 there
exists a constant � D �.r/ 2 .0; 1/ such that, given a C r unicritical circle map f
with irrational rotation number and odd integer criticality, there exist C > 0 and
a sequence ffngn2N contained in K such that

dr�1
�
R
n.f /; fn

�
⩽ C�n for all n 2 N, (13.1)

and such that the pair fn has the same rotation number as the pair Rn.f / for all
n 2 N.

The compact set K and the approximations ffng given by Theorem 13.4 were
constructed in Guarino and de Melo [2017, Sections 6 and 7]. However, in that
work, the exponential convergence (13.1) was only established for the C 0 metric
(see Guarino and de Melo [ibid., Th. D]). These estimates were later extended to
the C r�1 metric in Guarino, Martens, and de Melo [2018, Th. 11.1]. We proceed
to survey some of the main tools for this construction.

For simplicity, and without loss of generality, let us assume in this section
that the critical point of f is of cubic type. The deformations from smooth to
analytic commuting pairs needed in order to proveTheorem 13.4 will be done in the
complex plane, with the help of Theorem 11.4. With this as our goal, we will first
extend both components of the unicritical commuting pair Rn.f / to open sets in
the complex plane. This is achieved by the following result, which is Guarino and
de Melo [2017, Th. 6.1] (given a bounded interval I of the real line we denote its
Euclidean length by jI j, and for any ˛ > 0 we denote by N˛.I / the R-symmetric
topological disk

N˛.I / D
˚
z 2 C W d.z; I / < ˛jI j

	
;

where d denotes the Euclidean distance in the complex plane).
Theorem 13.5. There exist universal constants � 2 .0; 1/, and ˛ > 0 and ˇ > 0

with the following property. Let f be a C 3 unicritical circle map with irrational
rotation number and cubic critical point. For all n ⩾ 1, denote by

�
�n; �n

�
the

components of the critical commuting pair Rn.f /. Then there exist constants
n0 2 N andC > 0 such that for each n ⩾ n0 both �n and �n extend (after normal-
ization) to R-symmetric orientation-preserving C 3 maps defined in N˛

�
Œ�1; 0�

�

and N˛
�
Œ0; �n.0/�

�
respectively, and the following seven properties are satisfied:
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1. �n and �n each have a unique critical point at the origin, which is of cubic
type;

2. The extensions �n and �n commute in B.0; �/, that is, both compositions
�n ı �n and �n ı �n are well defined in B.0; �/, and they coincide;

3. Nˇ
�
�n.Œ�1; 0�/

�
� �n

�
N˛
�
Œ�1; 0�

��
;

4. Nˇ
�
Œ�1; .�n ı �n/.0/�

�
� �n

�
N˛
�
Œ0; �n.0/�

��
;

5. �n
�
N˛
�
Œ0; �n.0/�

��
[ �n

�
N˛
�
Œ�1; 0�

��
� B.0; ��1/;

6. We have

max
z2N˛.Œ�1;0�/nf0g

(ˇ̌
@�n.z/

ˇ̌
ˇ̌
@�n.z/

ˇ̌
)
⩽ C�n I

7. We have

max
z2N˛.Œ0;�n.0/�/nf0g

(ˇ̌
@�n.z/

ˇ̌
ˇ̌
@�n.z/

ˇ̌
)
⩽ C�n :

In the language of Chapter 11, the last two items of Theorem 13.5 say that the
Beltrami coefficients of the corresponding extensions of �n and �n are exponen-
tially small in n. An important tool used in Guarino and de Melo [2017, Section 6]
in order to prove Theorem 13.5 is the notion of asymptotically holomorphic maps,
that we review in the next section.

13.1.1 Extended lifts of critical circle maps

In this section we lift a critical circle map to the real line, and then we extend this
lift in a suitable way to a neighborhood of the real line in the complex plane (see
Definition 13.2 below).

In order to do this, let A W C n f0g ! C n f0g be the map corresponding to the
parameters a D 0 and b D 1 in the Arnold family defined in Section 6.1.2. Recall
that the lift ofA to the complex plane, under the canonical universal covering map
� W C ! C n f0g given by �.z/ D e2�iz , is the entire map eA W C ! C given by

eA.z/ D z � 1

2�
sin.2�z/:
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Note that A preserves the unit circle, and its restriction A W S1 ! S1 is a real-
analytic critical circle map. The critical point of A is placed at 1, and is of cubic
type (the critical point is also a fixed point for A).

Now let f be a C 3 critical circle map with a single critical point (which is
placed at the point 1, and is of cubic type), and let ef be the unique lift of f under
� satisfying D ef .0/ D 0 and 0 < ef .0/ < 1. It is not difficult to prove (see
Exercise 13.1) that there exist C 3 orientation preserving circle diffeomorphisms
h1 and h2, with h1.1/ D 1 and h2.1/ D f .1/, such that the following diagram
commutes.

S1 S1

S1 S1

✲f

❄
h1

✲A

✻
h2

For each s 2 f1; 2g let ehi be the lift of hs to the real line determined by ehs.0/ 2
Œ0; 1/. In Proposition 13.1 below we will extend botheh1 andeh2 to complex neigh-
borhoods of the real line, satisfying the following property.

Definition 13.1. Let I be a compact interval in the real line, let U be a neighbor-
hood of I in C and letH W U ! C be a C 1 map. We say thatH is asymptotically
holomorphic of order r ⩾ 1 in I if for every z 2 I we have @H.z/ D 0 and
moreover

@H.z/

.Im z/r�1 ! 0

uniformly as Im z goes to zero. We say that H is asymptotically holomorphic of
order r in R if it is asymptotically holomorphic of order r in compact sets of R.

In the following statement we suppose r ⩾ 1, even though we will apply it
for r ⩾ 3. In the proof we follow the exposition of Graczyk, Sands, and Świątek
[2005, Lem. 2.1, page 623].

Proposition 13.1. For each s D 1; 2 there exists Hs W C ! C of class C r with
the following properties.

1. Hs is an extension of ehs: HsjR D ehs;

2. Hs commutes with unitary horizontal translation: Hs ı T D T ıHs;

3. Hs is asymptotically holomorphic in R of order r;
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4. Hs is R-symmetric: Hs. Nz/ D Hs.z/.

Moreover there existR > 0 and four domains BR, UR, VR andWR in C, symmet-
ric about the real line and such that

• BR D
˚
z 2 C W �R < Im z < R

	
;

• H1 is an orientation preserving diffeomorphism between BR and UR;

• eA.UR/ D VR;

• H2 is an orientation preserving diffeomorphism between VR and WR.

• both infz2BR

ˇ̌
@H1.z/

ˇ̌
and infz2VR

ˇ̌
@H2.z/

ˇ̌
are positive numbers.

Proof. For z D x C iy 2 C, with y ¤ 0, let Px;y be the degree r polynomial
map that coincide with ehs in the r C 1 real numbers

�
x C j

r
y

�

j2f0;1;:::;rg
:

Recall that Px;y can be given by the following linear combination (the so-called
Lagrange’s form of the interpolating polynomial):

Px;y.z/ D
rX

jD0

ehs
�
x C .j=r/y

� rY

lD0
l¤j

z �
�
x C .l=r/y

�
�
x C .j=r/y

�
�
�
x C .l=r/y

�

D
rX

jD0

ehs
�
x C .j=r/y

� rY

lD0
l¤j

z � x � .l=r/y�
.j � l/=r

�
y
:

We defineHs.x C iy/ D Px;y.x C iy/, that is,

Hs.x C iy/ D Px;y.x C iy/ D
rX

jD0

ehs
�
x C .j=r/y

� rY

lD0
l¤j

ir � l
j � l :

After computation we obtain

Hs.x C iy/ D Px;y.x C iy/ D
1

N

rX

jD0

.�1/j
1C i.j=r/

 
r

j

!
ehs
�
x C .j=r/y

�
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where

N D
rX

jD0

.�1/j
1C i.j=r/

 
r

j

!
¤ 0 :

Note that Hs is as smooth as ehs , and Hs.x/ D ehs.x/ for any real number x. As
ehs is a lift, for any j 2 f0; 1; : : : ; rg we have ehs

�
x C 1 C .j=r/y

�
D ehs

�
x C

.j=r/y
�
C 1, but then PxC1;y

�
xC 1C .j=r/y

�
D Px;y

�
xC .j=r/y

�
C 1 for any

j 2 f0; 1; : : : ; rg, and this implies PxC1;y ı T D T ı Px;y in the whole complex
plane. To prove thatHs is asymptotically holomorphic of order r in R note that

@Hs.x C iy/ D
1

2N

rX

jD0
.�1/j

 
r

j

!
eh0
s

�
x C .j=r/y

�
;

and for each k 2 f0; : : : ; rg,

@k

@yk
@Hs.x C iy/ D

�
1

2N

��
1

rk

� rX

jD0
.�1/j j k

 
r

j

!
ehs
.kC1/�

x C .j=r/y
�
:

By using the identity
Pr
jD0.�1/j j k

�
r
j

�
D 0 for each k 2 f0; : : : ; r � 1g, we

obtain, for every x 2 R,

@Hs.x/ D
�
1

2N

�
eh0
s.x/

rX

jD0
.�1/j

 
r

j

!
D 0 ;

and for each k 2 f0; : : : ; r � 1g,

@k

@yk
@Hs.x/ D

�
1

2N

� ehs
.kC1/

.x/

rk

!
rX

jD0
.�1/j j k

 
r

j

!
D 0 :

By Taylor’s theorem,

lim
y!0

@Hs.x C iy/
yr�1 D 0

uniformly on compact subsets of the real line, and hence Hs is asymptotically
holomorphic of order r in R. To obtain the symmetry as in the fourth item of
the statement, we can take z 7!

�
Hs.z/ C Hs. Nz/

�
=2, preserving all the other

properties. Finally, it is easy to check (see Exercise 13.3) that the Jacobian ofHs
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at a point x in R is equal to jeh0
s.x/j2 ¤ 0. This gives us a complex neighborhood

of the real line where Hs is an orientation preserving diffeomorphism, and the
positive constant R. Since we also have @Hs D eh0

s on the real line (again, see
Exercise 13.3), and each ehs is the lift of a circle diffeomorphism, we obtain the
last item of Proposition 13.1.

Definition 13.2. The map F W BR ! WR defined by F D H2 ı eA ıH1 is called
the extended lift of the critical circle map f .

BR WR

UR VR

✲F

❄

H1

✲eA

✻
H2

Note the following properties.

• F is C r in the horizontal band BR;

• T ı F D F ı T in BR;

• F is R-symmetric, and coincides with ef when restricted to the real line;

• F is asymptotically holomorphic in R of order r ;

• The critical points of F in BR are the integers (the same as eA), and they are
of cubic type.

We remark that the extended lift of a real-analytic critical circle map will be
C1 in the corresponding horizontal strip, but not necessarily holomorphic.

13.1.2 Almost Schwarz inclusion

To the best of our knowledge, asymptotically holomorphic maps were first used
in one-dimensional dynamics by Lyubich in the early nineties (but only published
in Lyubich [2019]), and later by Graczyk, Sands, and Świątek [2005]. One of its
fundamental properties is Proposition 13.2 below, an almost Schwarz inclusion,
that we proceed to explain.
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Given an open interval I D .a; b/ � R, consider C.I / D
�
C nR

�
[ I . This

domain C.I / can be naturally endowed with a hyperbolic Riemannian metric. In-
deed, by the Riemann mapping theorem we can define on C.I / a complete and
conformal metric of constant curvature equal to �1, just by pulling back the stan-
dard Poincaré metric of the unit disk D by any conformal uniformization. Note
that, by symmetry, I is always a hyperbolic geodesic.

For any given � 2 .0; �/, let D be the open disk in the plane intersecting the
real line along I , and for which the angle from R to @D at the point b (measured
anticlockwise) equals � . LetDC D D \ fz W Im z > 0g and letD� be the image
ofDC under complex conjugation. Define the Poincaré disk of angle � based on
I asD� .a; b/ D DC[I[D�, that is,D� .a; b/ is the set of points in the complex
plane that view I under an angle greater or equal than � . Note that for � D �=2,
the Poincaré disk D� .I / is just the Euclidean disk whose diameter is the interval
I (see Figure 13.1).

For each � 2 .0; �/ let ".�/ D log tan
�
�=2 � �=4

�
2 .0;C1/. As it is not

difficult to prove (see Exercise 13.6), the Poincaré diskD� .I / coincides with the
set of points in C.I / whose hyperbolic distance to I is less than ". In particular,
we can state the classical Schwarz lemma in the following way: let I and J be two
intervals in the real line and let � W C.I /! C.J / be a holomorphic map such that
�.I / � J . Then for any � 2 .0; �/ we have that �

�
D� .I /

�
� D� .J /. The main

reason to choose asymptotically holomorphic maps to extend one-dimensional
dynamics (recall Proposition 13.1 and Definition 13.2 above) is the following
asymptotic Schwarz lemma (on its statement, we denote by diam

�
D� .a; b/

�
the

Euclidean diameter of the Poincaré diskD� .a; b/).

Figure 13.1: Poincaré disks.
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Proposition 13.2 (Almost Schwarz inclusion). Let h W I ! R be a C 3 diffeomor-
phism from a compact interval I with non-empty interior into the real line. LetH
be any C 3 extension of h to a complex neighborhood of I , which is asymptotically
holomorphic of order 3 on I . Then there exist M > 0 and ı > 0 such that if
a; b 2 I are different, � 2 .0; �/ and diam

�
D� .a; b/

�
< ı then

H
�
D� .a; b/

�
� Dz�

�
h.a/; h.b/

�
;

where z� D � �M jb � aj diam
�
D� .a; b/

�
. Moreover, z� > 0.

A proof of this result can be found in Graczyk, Sands, and Świątek [2005,
Prop. 2, p. 629]. Let us point out that a predecessor of this almost Schwarz in-
clusion, for real-analytic maps, already appeared in de Faria and de Melo [2000,
Lem. 3.3, p. 350], see Lemma 14.6 in Chapter 14.

When combined with Theorem 6.3 (the real bounds), the geometric control
given by Proposition 13.2 provides bounds on the quasiconformal distortion of
the renormalizations of the previously mentioned extensions (one does not study
the dynamics of these extensions, just their geometric behaviour). This control
implies Theorem 13.5 (see Guarino and de Melo [2017, Section 6.3, p. 1753] for
the computations).

With Theorem 13.5 at hand, the deformations from Rn.f / to fn (in order to
prove Theorem 13.4) will be done with the help of Theorem 11.4. Our exposition in
the remainder of this section (Section 13.1) follows closely Guarino and de Melo
[ibid., Section 7].

By a topological disk we mean an open, connected and simply connected set
properly contained in the complex plane. Let � W C ! Cnf0g be the holomorphic
covering z 7! exp.2�iz/, and let T W C ! C be the horizontal translation
z 7! z C 1 (which is a generator of the group of automorphisms of the covering).
For any R > 1 consider the band

BR D
˚
z 2 C W � logR < 2� Im z < logR

	
;

which is the universal cover of the round annulus

AR D
�
z 2 C W 1

R
<
ˇ̌
z
ˇ̌
< R

�

via the holomorphic covering� . SinceBR is T -invariant, the translation generates
the group of automorphisms of the covering. The restriction � W R ! S1 D @D
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is also a covering map, the automorphism T preserves the real line, and again
generates the group of automorphisms of the covering.

More generally, an annulus is an open and connected set A in the complex
plane whose fundamental group is isomorphic to Z. By the Uniformization The-
orem (recall Exercise 11.9) such an annulus is conformally equivalent either to
the punctured disk D n f0g, to the punctured plane C n f0g, or to some round an-
nulus AR D

˚
z 2 C W 1=R <

ˇ̌
z
ˇ̌
< R

	
. In the last case the value of R > 1 is

unique, and there exists a holomorphic covering map from D to A whose group
of deck transformations is infinite cyclic, and such that any generator is a Möbius
transformation that has exactly two fixed points at the boundary of the unit disk.

Since the deck transformations are Möbius transformations, they are isome-
tries of the Poincaré metric on D and therefore there exists a unique Riemannian
metric on A such that the covering map provided by the Uniformization Theorem
is a local isometry. This metric is complete, and in particular, any two points can
be joined by a minimizing geodesic. There exists a unique simple closed geodesic
in A, whose hyperbolic length is equal to �2= logR. The length of this closed
geodesic is therefore a conformal invariant.

We denote by � the antiholomorphic involution z 7! 1= Nz in the punctured
plane C n f0g, and we say that a map is S1-symmetric if it commutes with �. An
annulus is S1-symmetric if it is invariant under� (for instance, the round annulus
AR described above is S1-symmetric). In this case, the unit circle is the core curve
(the unique simple closed geodesic) for the hyperbolic metric in A. In this section
we will deal only with S1-symmetric annulus. In particular any time that some
annulus A0 is contained in some other annulus A1, we have that A0 separates the
boundary components of A1 (more technically, the inclusion is essential in the
sense that the fundamental group �1.A0/ injects into �1.A1/).

Besides Theorem 13.5, the main tool for proving Theorem 13.4 is Theorem 11.4.
The proof of Theorem 13.4 will be divided in three sections. Throughout the proof,
C will denote a positive constant (independent of n 2 N) and n0 will denote
a (large enough) positive integer. At first, let n0 2 N given by Theorem 13.5.
Moreover let us use the following notation: W1 D N˛

�
Œ�1; 0�

�
, W2 D W2.n/ D

N˛
�
Œ0; �n.0/�

�
, W0 D B.0; �/ and V D B.0; ��1/, where ˛ > 0 and � 2 .0; 1/

are the universal constants given by Theorem 13.5. Recall that �n.0/ D �1 for all
n ⩾ 1 after normalization.

13.1.3 A bidimensional glueing procedure

From Theorem 13.5 we have the following.
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Lemma 13.1. There exists an R-symmetric topological disk U with:

�1 2 U � W1 nW0;

such that for all n ⩾ n0 the composition:

��1
n ı �n W U !

�
��1
n ı �n

�
.U /

is an R-symmetric orientation-preserving C 3 diffeomorphism.

For each n ⩾ n0 denote by An the diffeomorphism ��1
n ı �n. Note that

k�An
k1 ⩽ C�n in U for all n ⩾ n0, and that the domains

˚
An.U /

	
n⩾n0

are
uniformly bounded since they are contained in [jW j

2 . Fix " > 0 and ı > 0 such
that the rectangle:

V D
�
� 1 � ";�1C "

�
�
�
� iı; iı

�

is compactly contained in U , and apply Theorem 11.4 to the sequence of R-sym-
metric orientation-preserving C 3 diffeomorphisms:

fAn W U ! An.U /gn⩾n0

to obtain a sequence of R-symmetric biholomorphisms:
˚
Bn W V ! Bn.V /

	
n⩾n0

such that An � Bn

C0.V /

⩽ C�n for all n ⩾ n0.

By combining Theorem 13.5 with the commuting condition, we obtain the
following configuration.

Lemma 13.2. For each n ⩾ n0 there exist three R-symmetric topological disks
Vi .n/ for i 2 f1; 2; 3g with the following five properties:

• 0 2 V1.n/ � W0;

•
�
�n ı �n

�
.0/ D

�
�n ı �n

�
.0/ D �n.�1/ 2 V2.n/ � W2;

• �n.0/ 2 V3.n/ � W2;
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• When restricted to V1.n/, both �n and �n are orientation-preserving three-
fold C 3 branched coverings onto V and V3.n/ respectively, with a unique
critical point at the origin;

• Both restrictions �njV and �njV3.n/ are orientation-preserving C 3 diffeo-
morphisms onto V2.n/.

In particular ��1
n ı �n is an orientation-preserving C 3 diffeomorphism from V

onto V3.n/ for all n ⩾ n0.

For each n ⩾ n0 letU1.n/,U2.n/ andU3.n/ be three R-symmetric topological
disks such that

• U1.n/, U2.n/ and U3.n/ are pairwise disjoint;

• V
T
Uj .n/ D ; and Vi .n/

T
Uj .n/ D ; for i; j 2 f1; 2; 3g;

• U1.n/ � W1 and U2.n/
S
U3.n/ � W2;

and such that

Un D interior

2
4V

[ 
iD3[

iD1
Vi .n/

![
0
@
jD3[

jD1
Uj .n/

1
A
3
5

is an R-symmetric topological disk (see Figure 13.2). Note that

I�n
[ I�n

� Un � W1 [W2 for all n ⩾ n0,

and that Un n
�
V [ V1.n/ [ V2.n/ [ V3.n/

�
has three connected components,

which are precisely U1.n/, U2.n/ and U3.n/. By Theorem 13.5 we can choose
U1.n/, U2.n/ and U3.n/ in order to also have:

Nı
�
Œ�1; 0�

�
[Nı

�
Œ0; �n.0/�

�
� Un for all n ⩾ n0,

for some universal constant ı > 0, independent of n ⩾ n0. Note also that each Un

is uniformly bounded since it is contained in N˛
�
Œ�1;K�

�
, where ˛ > 0 is given

by Theorem 13.5, and K > 1 is the universal constant given by the real bounds.
For each n ⩾ n0 let Tn be an R-symmetric topological disk such that:

• V , V1.n/, V2.n/ and Bn.V / are contained in Tn,
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0�1 �n.�1/ �n.0/

�n

An D ��1
n ı �n

�n

V An.V /

�n �n

Figure 13.2: The domain Un.

• Tn n
�
V [ Bn.V /

�
is connected and simply connected,

• The Hausdorff distance between Tn and Un is less than or equal to
An � Bn


C0.V /

⩽ C�n;

Lemma13.3. For eachn ⩾ n0 there exists an orientation-preserving R-symmetric
C 3 diffeomorphism ˚n W Un ! Tn such that

• ˚n � Id in the interior of V [ U1.n/ [ V1.n/, in particular ˚n.0/ D 0.

• Bn D ˚n ı
�
��1
n ı �n

�
ı ˚�1

n in V , that is, ˚n ı An D Bn ı ˚n in V .

•
˚n � Id


C0.Un/

⩽ C�n.

• k�˚n
k1 ⩽ C�n in Un.

Proof. For each n ⩾ n0 we have kAn � BnkC0.V / ⩽ C�n and therefore
 Id�

�
Bn ı A�1

n

�
C0
�
V3.n/

� ⩽ C�n:
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If we define ˚njV3.n/ D Bn ı A�1
n we also have k�˚n

k1 D k�A�1
n
k1 in V3.n/,

which is equal to k�An
k1 in V . In particular k�˚n

k1 ⩽ C�n in V3.n/, and then
we define˚n in the whole Un by interpolatingBn ıA�1

n in V3.n/with the identity
in the interior of V [ U1.n/ [ V1.n/.

Consider the seven topological disks:

X1.n/ D interior
�
V [ U1.n/ [ V1.n/

�
� W1 \Un ;

X2.n/ D interior
�
V1.n/ [ U2.n/ [ V2.n/ [ U3.n/ [ V3.n/

�
� W2 \Un ;

bX1.n/ D fz 2 X1.n/ W �n.z/ 2 Ung ; bX2.n/ D fz 2 X2.n/ W �n.z/ 2 Ung ;
bTn D ˚n

� bX1.n/
�
[ ˚n

� bX2.n/
�
� Tn ;

Y1.n/ D X1.n/ \ ˚n
� bX1.n/

�
and Y2.n/ D X2.n/ \ ˚n

� bX2.n/
�
:

Note that V , V1.n/ and Bn.V / are contained in bTn for all n ⩾ n0. Moreover, we
have the following two corollaries of Theorem 13.5.

Lemma 13.4. There exists ı > 0 such that for all n ⩾ n0 we have:

Nı
�
Œ�1; 0�

�
� Y1.n/ and Nı

�
Œ0; �n.0/�

�
� Y2.n/ :

Lemma 13.5. Both:

sup
n⩾n0

(
sup

z2Y1.n/

˚
det

�
D�n.z/

�	
)

and sup
n⩾n0

(
sup

z2Y2.n/

˚
det

�
D�n.z/

�	
)

are finite, where det.�/ denotes the determinant of a square matrix.

Let

b�n W ˚n
� bX1.n/

�
!
�
˚n ı �n

�� bX1.n/
�
defined byb�n D ˚n ı �n ı ˚�1

n ;

and

b�n W ˚n
� bX2.n/

�
!
�
˚n ı �n

�� bX2.n/
�
defined byb�n D ˚n ı �n ı ˚�1

n :

Since each˚n is an R-symmetricC 3 diffeomorphism, the pair
�
b�n;b�n

�
restricts to

a critical commuting pair with the same rotation number as .�n; �n/, and the same
criticality (that we are assuming to be cubic, in order to simplify). Note also that
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b�n.0/ D �1 for all n ⩾ n0. Moreover, from Lemma 13.5 and
˚n�Id


C0.Un/

⩽

C�n we have�n �b�n

C0
�
Y1.n/

� ⩽ C�n and k�n �b�nkC0
�
Y2.n/

� ⩽ C�n for all n ⩾ n0.

Therefore, it is enough to shadow the sequence
�
b�n;b�n

�
in the domains Y1.n/ and

Y2.n/, instead of .�n; �n/ (the shadowing sequence will be constructed in Sec-
tion 13.1.5 below). The main advantage of working with the sequence

�
b�n;b�n

�
is

precisely the fact thatb��1
n ıb�n is univalent in V for all n ⩾ n0 (since it coincides

with Bn). In particular, we can choose each topological disk Un and Tn defined
above with the additional property that, identifying V with Bn.V / via the biholo-
morphism Bn, we obtain from Tn an abstract annular Riemann surface Sn (with
the complex structure induced by the quotient).

Let us denote by pn W Tn ! Sn the canonical projection. The projection of
the real line, pn.R\Tn/, is real-analytic diffeomorphic to the unit circle S1. We
call it the equator of Sn.

Since complex conjugation leaves Tn invariant and commutes with Bn, it in-
duces an antiholomorphic involution Fn W Sn ! Sn acting as the identity on
the equator pn.R \ Tn/. Note that Fn has a continuous extension to @Sn that
switches the boundary components.

Since Sn is obviously neither biholomorphic to D n f0g nor to C n f0g, we
have mod.Sn/ <1 for all n ⩾ n0, where mod.�/ denotes the conformal modulus
of an annular Riemann surface (recall Section 11.1.1 and also Exercise 11.9). For
each n ⩾ n0 let Rn in .1;C1/ be given by

Rn D exp
�
mod.Sn/=2

�
:

In other words, Sn is conformally equivalent to ARn
D

˚
z 2 C W R�1

n <

jzj < Rn
	
. Any biholomorphism between Sn and ARn

must send the equator
pn
�
R \ Tn

�
onto the unit circle S1 (because the equator is invariant under the

antiholomorphic involution Fn, and the unit circle is invariant under the antiholo-
morphic involution z 7! 1= Nz in ARn

). Let 	n W Sn ! ARn
be the conformal

uniformization determined by 	n
�
pn.0/

�
D 1, and let Pn W Tn ! ARn

be the
holomorphic surjective local diffeomorphism

Pn D 	n ı pn
(see Figure 13.3). Note that Pn.0/ D 1 and Pn.Tn \ R/ D S1 for all n ⩾ n0.
Moreover Pn.z/Pn.z/ D 1 for all z 2 Tn and all n ⩾ n0. From now on we forget
about the abstract cylinder Sn.
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Lemma 13.6. There exist two constants ı > 0 and C > 1 such that for all n ⩾ n0
and for all z 2 Nı

�
Œ�1;e�n.0/�

�
we have z 2 bTn � Tn and:

1

C
<
ˇ̌
P 0
n.z/

ˇ̌
< C :

Proof. By the real bounds there exists a universal constant C0 > 1 such that for
each n ⩾ n0 there exists wn 2

�
� 1;e�n.0/

�
such that

1

C0
<
ˇ̌
P 0
n.wn/

ˇ̌
< C0 :

We need to construct a definite complex domain around
�
�1;e�n.0/

�
wherePn has

universally bounded distortion. Again by the real bounds there exist ı > 0 and l 2
N with the following properties. For each n ⩾ n0 there exists z1; z2; : : : ; zkn

2�
� 1;e�n.0/

�
with kn < l for all n ⩾ n0 such that

•
�
� 1;e�n.0/

�
�
Skn

iD1B.zi ; ı/.

• B.zi ; 2ı/ � bTn � Tn for all i 2 f1; : : : ; kng.

• PnjB.zi ;2ı/ is univalent for all i 2 f1; : : : ; kng.

By convexity we have for all n ⩾ n0 and for all i 2 f1; : : : ; kng that

sup
v;w2B.zi ;ı/

( ˇ̌
P 0
n.v/

ˇ̌
ˇ̌
P 0
n.w/

ˇ̌
)
⩽ exp

 
sup

w2B.zi ;ı/

(ˇ̌
P 00
n .w/

ˇ̌
ˇ̌
P 0
n.w/

ˇ̌
)!

;

and by Koebe distortion theorem (see for instance Carleson and Gamelin [1993,
Section I.1, Theorem 1.6]) we have

sup
w2B.zi ;ı/

(ˇ̌
P 00
n .w/

ˇ̌
ˇ̌
P 0
n.w/

ˇ̌
)
⩽
2

ı
for all n ⩾ n0 and for all i 2 f1; : : : ; kng.

Now we project each commuting pair .e�n;e�n/ from bTn to the round annu-
lus ARn

.
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Proposition 13.3 (Glueing procedure). The pair

b�n W ˚n
� bX1.n/

�
! Tn and b�n W ˚n

� bX2.n/
�
! Tn

projects under Pn to a well-defined orientation-preserving C 3 map

Gn W Pn
� bTn

�
� ARn

! ARn
:

For each n ⩾ n0, Pn. bTn/ is a �-invariant annulus with positive and finite modu-
lus. EachGn is S1-symmetric and, when restricted to the unit circle, it produces a
C 3 critical circle map gn W S1 ! S1 with cubic critical point at Pn.0/ D 1, and
with rotation number �.gn/ D �

�
Rn.f /

�
. In other words, the following diagram

˚n

V VAn.V/ Bn.V/
Un Tn

�1 0 �n.0/ �1 0 b�n.0/

Pn

	n

pn

ARn

pn.Tn \R/

1
Rn

1 Rn

S1 Sn

Figure 13.3: Bidimensional glueing procedure.
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commutes.
bTn � Tn Tn

Pn
� bTn

�
� ARn

ARn

✲

�
b�n;b�n

�

❄
Pn

❄

Pn

✲Gn

Moreover, the unique critical point of Gn in Pn
� bTn

�
is the one in the unit circle.

Finally, we have
ˇ̌
ˇ@Gn.z/

ˇ̌
ˇ ⩽ C�n j@Gn.z/j for all z 2 Pn

� bTn
�
n f1g,

that is, k�Gn
k1 ⩽ C�n in Pn

� bTn
�
.

Proof. This follows from

• The construction of Un and Tn;

• The property Bn D ˚n ı
�
��1
n ı �n

�
ı ˚�1

n in V ;

• The commuting condition in V1.n/;

• The symmetry Pn.z/Pn.z/ D 1 for all z 2 Tn and all n ⩾ n0;

• The fact that Pn W Tn ! ARn
is holomorphic, Pn.0/ D 1 and Pn.Tn \

R/ D S1 for all n ⩾ n0.

Note that each gn belongs to the smooth conjugacy class obtained with the
glueing procedure described in Section 10.2 applied to the C 3 critical commuting
pair

�
b�n;b�n

�
. In the next section we will construct a sequence of real-analytic

critical circle maps, with the desired combinatorics, that extend to holomorphic
maps exponentially close to Gn in a definite annulus around the unit circle (see
Proposition 13.4 below).
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13.1.4 Main perturbation
The goal of this section is to construct the following sequence of perturbations.

Proposition 13.4 (Main perturbation). There exist a constant r > 1 and a se-
quence of holomorphic maps defined in the annulus Ar :

fHn W Ar ! Cgn⩾n0

such that for all n ⩾ n0 the following holds.

• Ar � Pn. bTn/ � Pn.Tn/ D ARn
;

•
Hn �Gn


C0.Ar /

⩽ C�n;

• Hn.Ar/ �
�
Gn ı Pn

�� bTn
�
� Pn.Tn/ D ARn

;

• Hn preserves the unit circle and, when restricted to the unit circle,Hn pro-
duces a real-analytic critical circle map hn W S1 ! S1 such that

– The unique critical point of hn is at Pn.0/ D 1, and is of cubic type;
– The critical value of hn coincide with the one of gn, that is, hn.1/ D
gn.1/ 2 Pn.V \R/;

– �.hn/ D �.gn/ D �
�
Rn.f /

�
2 R nQ.

• The unique critical point ofHn in Ar is the one in the unit circle.

The remainder of this section is devoted to proving Proposition 13.4. We will
not perturb the maps Gn directly (basically because they are non invertible). In-
stead, we will decompose them (see Lemma 13.7 below), and then we will perturb
on their coefficients (see the definition after the statement of Lemma 13.7). Those
perturbations will be done, again, with the help of Theorem 11.4.

As before, let A W C n f0g ! C n f0g be the map corresponding to the parame-
ters a D 0 and b D 1 in the Arnold family defined in Section 6.1.2. Recall that A
preserves the unit circle, and its restriction A W S1 ! S1 is a real-analytic critical
circle map. The critical point of A is placed at 1, and is of cubic type (the critical
point is also a fixed point for A).

Lemma 13.7. For each n ⩾ n0 there exist

• a real number Sn > 1,
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• an orientation-preserving C 3 diffeomorphism  n W Pn
� bTn

�
! ASn

which
is symmetric about S1, and

• a biholomorphism �n W A.ASn
/ !

�
Gn ı Pn

�
. bTn/, also symmetric about

S1,

such that Gn D �n ı A ı  n in Pn
� bTn

�
. In other words, the following diagram

commutes.
Pn
� bTn

� �
Gn ı Pn

�� bTn
�

ASn
A.ASn

/

✲Gn

❄

 n

✲A

✻
�n

Proof. For each n ⩾ n0 let Sn > 1 such that A.ASn
/ is a �-invariant annulus

with
mod

�
A.ASn

/
�
D mod

��
Gn ı Pn

�
. bTn/

�
:

In particular there exists a biholomorphism �n W A.ASn
/ !

�
Gn ı Pn

�
. bTn/ that

commutes with�. Each �n preserves the unit circle and we can choose it such that
�n.1/ D Gn.1/, that is, �n takes the critical value of A into the critical value of
Gn. Since both Gn and A are three-fold branched coverings around their critical
points and local diffeomorphisms away from them, the equation Gn D �n ı A ı
 n induces an orientation-preserving C 3 diffeomorphism  n W Pn

� bTn
�
! ASn

,
that commutes with � and such that  n.1/ D 1, that is,  n takes the critical
point of Gn into the one of A. The fact that  n is smooth at 1 with non-vanishing
derivative follows from the fact that the critical points ofGn and A have the same
criticality.

The diffeomorphisms  n and �n are called the coefficients of Gn in Pn
� bTn

�
.

As already mentioned, the idea to prove Proposition 13.4 is to perturb each
diffeomorphism  n with Theorem 11.4. In order to control the C 0 size of those
perturbations, we will need some geometric control. With this as our goal, we state
and prove four lemmas before entering into the proof of Proposition 13.4.

Lemma 13.8. We have

1 < inf
n⩾n0

fRng and sup
n⩾n0

fRng < C1 :



378 13. The smooth case

Proof. This follows at once from Lemma 13.6.

Lemma 13.9. For all n ⩾ n0 both Pn. bTn/ and
�
Gn ı Pn

�
. bTn/ are �-invariant

annulus with finite modulus. Moreover there exists a universal constant K > 1

such that
1

K
< mod

�
Pn. bTn/

�
< K for all n ⩾ n0 .

Proof. By Lemma 13.8 we know thatR D supn⩾n0
fRng is finite, and since for all

n ⩾ n0 both Pn. bTn/ and
�
Gn ıPn

�
. bTn/ are contained in the corresponding ARn

,
we obtain at once that both Pn. bTn/ and

�
Gn ı Pn

�
. bTn/ have finite modulus, and

also that supn⩾n0

˚
mod

�
Pn. bTn/

�	
is finite. Just as in Lemma 13.8, the fact that

infn⩾n0

˚
mod

�
Pn. bTn/

�	
is positive follows from Lemmas 13.4 and 13.6.

Lemma 13.10. There exists a constant r0 > 1 such that Ar0
� Pn

� bTn
�

for all
n ⩾ n0.

Proof. By the invariance with respect to the antiholomorphic involution z 7! 1= Nz,
the unit circle is the core curve (the unique closed geodesic for the hyperbolic
metric) of each annulus Pn

� bTn
�
. Since infn⩾n0

˚
mod

�
Pn. bTn/

�	
is positive, the

statement is well-known (see for instance McMullen [1994, Ch. 2, Theorem 2.5]).

Lemma 13.11. We have

s D inf
n⩾n0

fSng > 1 and S D sup
n⩾n0

fSng < C1:

Proof. Since � n
D �Gn

in Pn
� bTn

�
, we have k� n

k1 ⩽ C�n in Pn
� bTn

�

for all n ⩾ n0. By the geometric definition of quasiconformal homeomorphisms
(Definition 11.1),

�
1 � C�n
1C C�n

�
mod

�
Pn. bTn/

�
⩽ 2 log.Sn/ ⩽

�
1C C�n
1 � C�n

�
mod

�
Pn. bTn/

�

for all n ⩾ n0, and then we are done by Lemma 13.9.

With this geometric control at hand, we are ready to prove Proposition 13.4.
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Proof of Proposition 13.4. Let r0 > 1 given by Lemma 13.10 (recall that Ar0
�

Pn
� bTn

�
for all n ⩾ n0), and fix r 2

�
1; .1Cr0/=2

�
. How small r�1must be will

be determined in the course of the argument (see Lemma 13.12 below). For any
r 2

�
1; .1C r0/=2

�
consider r D r0 � .r � 1/ 2

�
.1C r0/=2; r0

�
. The sequence

of S1-symmetric C 3 diffeomorphisms
˚
 n W Ar0

!  n.Ar0
/
	
n⩾n0

satisfy the hypothesis of Theorem 11.4 since

• � n
D �Gn

in Pn
� bTn

�
and therefore k� n

k1 ⩽ C�n for all n ⩾ n0, and

•  n.Ar0
/ � ASn

� AS for all n ⩾ n0 (see Lemma 13.11 above).

Apply Theorem 11.4 to the bounded domain Ar , compactly contained in Ar0
, to

obtain a sequence of S1-symmetric biholomorphisms
˚b n W Ar ! b n.Ar/

	
n⩾n0

such that b n �  n

C0.Ar /

⩽ C�n for all n ⩾ n0.

Fix n0 big enough to have b n.Ar/ � ASn
. We may assume that each b n fixes the

point 1 (just as  n does) by considering

z 7!
 

1

b n.1/

!
b n.z/ :

Since
ˇ̌b n.z/

ˇ̌
⩽ S for all z 2 Ar and for all n ⩾ n0 (where S 2 .1;C1/ is given

by Lemma 13.11) and since
ˇ̌
ˇb n.1/ � 1

ˇ̌
ˇ ⩽ C�n for all n ⩾ n0, we know that this

new map (that we will still denote by b n to simplify) satisfy all the properties that
we want for b n, and also fixes the point z D 1.

For each n ⩾ n0 consider the holomorphic map Hn W Ar ! C defined by
Hn D �n ı A ı b n. We have

• Hn.Ar/ �
�
Gn ı Pn

�� bTn
�
� ARn

.

• Hn is S1-symmetric and therefore it preserves the unit circle.
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• When restricted to the unit circle,Hn produces a real-analytic critical circle
map hn W S1 ! S1.

• The unique critical point of Hn in Ar is the one in the unit circle, which is
at Pn.0/ D 1, and is of cubic type.

• The critical value of Hn coincide with the one of Gn, that is, Hn.1/ D
Gn.1/ 2 Pn.V \R/.

We divide in three lemmas the rest of the proof of Proposition 13.4. We need
to prove first that, for a suitable r > 1,Hn is C 0 exponentially close to Gn in the
annulus Ar (Lemma 13.12 below), and then that we can choose eachHn with the
desired combinatorics for its restriction hn to the unit circle (Lemma 13.13 below).
This last perturbation will change the critical value of eachHn (it will not coincide
with the one of Gn any more). We will finish the proof of Proposition 13.4 with
Lemma 13.14, that allow us to keep the critical point ofHn at the pointPn.0/ D 1,
and to place the critical value ofHn at the point gn.1/ for all n ⩾ n0. This will be
important in the following subsection, the last one of this section.

Lemma 13.12. There exists r 2
�
1; .1 C r0/=2

�
such that in the annulus Ar we

have: Hn �Gn

C0.Ar /

⩽ C�n for all n ⩾ n0.

Proof. The proof is divided in three claims.
First claim: There exists ˇ > 1 such that Aˇ � A.ASn

/ for all n ⩾ n0.
Indeed, by Lemma 13.11 the round annulus A.1Cs/=2 is compactly contained

in ASn
for all n ⩾ n0, and therefore the annulus A

�
A.1Cs/=2

�
is contained in

A.ASn
/ for all n ⩾ n0. Thus we just take ˇ > 1 such that Aˇ � A

�
A.1Cs/=2

�
and

the first claim is proved.
From now on we fix ˛ 2 .1; ˇ/.
Second claim: There exists r 2

�
1; .1C r0/=2

�
close enough to one in order to

simultaneously have .A ı b n/.Ar/ � A˛ and .A ı n/.Ar/ � A˛ for all n ⩾ n0.
Indeed, since Ar � Ar , b n is holomorphic, and b n.Ar/ � ASn

� AS for all
n ⩾ n0 (where S 2 .1;C1/ is given by Lemma 13.11), we have by Cauchy’s
derivative estimate that supn⩾n0

nˇ̌b 0
n.z/

ˇ̌
W z 2 Ar

o
is finite. Since each b n pre-

serves the unit circle, and since
b n �  n


C0.Ar /

⩽ C�n for all n ⩾ n0, the
second claim is proved.

Another way to prove the second claim is by noting that, since A˛ � Aˇ �
Aˇ � A.ASn

/ for all n ⩾ n0, the hyperbolic metric on any annulus A.ASn
/ and
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the Euclidean metric are comparable inA˛ with universal parameters, that is, there
exists a constant K > 1 such that

1

K
jz � wj ⩽ dA.ASn /

.z; w/ ⩽ Kjz � wj

for all z; w 2 A˛ and for all n ⩾ n0, where dA.ASn /
denote the hyperbolic dis-

tance in the annulus A.ASn
/ (this is well-known, see for instance Carleson and

Gamelin [1993, Section I.4, Theorem 4.3]). Since each A ı b n W Ar ! A.ASn
/

is holomorphic and preserves the unit circle, we know by the Schwarz lemma that
for all z 2 Ar and for all n ⩾ n0 we have:

dA.ASn /

�
.A ı b n/.z/;S1

�
⩽ dAr

�
z;S1

�
;

where dAr
denote the hyperbolic distance in the annulus Ar . Since all distances

dA.ASn /
are comparable with the Euclidean distance in Aı with universal param-

eters, we have for all z 2 Ar and for all n ⩾ n0 that:

d
�
.A ı b n/.z/;S1

�
⩽ KdAr

�
z;S1

�
;

where d is just the Euclidean distance in the plane. Fix r 2
�
1; .1 C r0/=2

�

close enough to one in order to have that z 2 Ar implies dAr

�
z;S1

�
< ˛�1

K˛
(and

therefore .Aıb n/.z/ 2 A˛ for all n ⩾ n0). Again since
b n� n


C0.Ar /

⩽ C�n

for all n ⩾ n0, the second claim is proved.
Third claim: There exists a positive numberM such that

ˇ̌
�0
n.z/

ˇ̌
< M for all

z 2 A˛ and for all n ⩾ n0.
Indeed, recall that �n

�
A.ASn

/
�
D
�
Gn ı Pn

�� bTn
�
� ARn

for all n ⩾ n0. By
Lemma 13.8 there exists a (finite) number � such that �n

�
A.ASn

/
�
� B.0;�/

for all n ⩾ n0. Since A˛ � Aˇ � Aˇ � A.ASn
/ for all n ⩾ n0, the third claim

follows from Cauchy’s derivative estimate.
With the three claims at hand, Lemma 13.12 follows.

To control the combinatorics after perturbation we use the monotonicity of the
rotation number.

Lemma 13.13. Let f be a C 3 critical circle map and let g be a real-analytic
critical circle map that extends holomorphically to the annulus

AR D
�
z 2 C W 1

R
<
ˇ̌
z
ˇ̌
< R

�
for some R > 1:
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There exists a real-analytic critical circle map h, with �.h/ D �.f /, also
extending holomorphically to AR, where we have

h � g

C0.AR/

⩽ dC0.S1/

�
f; g

�
:

In particular

dC r .S1/

�
h; g

�
⩽ dC0.S1/

�
f; g

�
for any 0 ⩽ r ⩽1:

Proof. LetF andG be the corresponding lifts of f and g to the real line satisfying

�.f / D lim
n!C1

F n.0/

n
and �.g/ D lim

n!C1
Gn.0/

n
:

Consider the band BR D fz 2 C W � logR < 2� Im z < logRg, which is the uni-
versal cover of the annulus AR via the holomorphic covering z 7! e2�iz . Let
ı D kF � GkC0.R/, and for any t in Œ�1; 1� let Gt W BR ! C defined as
Gt D G C tı. Each Gt preserves the real line, and its restriction is the lift of
a real-analytic critical circle map. Moreover, each Gt commutes with unitary hor-
izontal translation inBR. Note that kGt �GkC0.BR/

D jt jı ⩽ kF �GkC0.R/ for
any t 2 Œ�1; 1�. Moreover for any x 2 R the family

˚
Gt .x/

	
t2Œ�1;1� is monotone

in t , and we haveG�1.x/ ⩽ F.x/ ⩽ G1.x/. In particular there exists t0 2 Œ�1; 1�
such that

lim
n!C1

Gnt0.0/

n
D �.F / ;

and we define h as the projection of Gt0 to the annulus AR.

After the perturbation given by Lemma 13.13 we still have the critical point
of hn placed at 1, but its critical value is no longer placed at gn.1/ (however they
are exponentially close). To finish the proof of Proposition 13.4 we need to fix
this, without changing the combinatorics of hn in S1. Until now each Hn is S1-
symmetric, in the sense that it commutes with z 7! 1= Nz in the annulus Ar . We
will loose this property in the following perturbation, which turns out to be the last
one.

Lemma 13.14. For each n ⩾ n0 consider the (unique) Möbius transformation
Mn which maps the unit disk D onto itself fixing the basepoint z D 1, and which
maps Hn.1/ to Gn.1/. Then there exists � 2 .1; r/ such that A� � Mn.Ar/ for
all n ⩾ n0. Moreover for each n ⩾ n0 we have:

Mn ıHn ıM�1
n �Gn


C0.A�/

⩽ C�n:
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Note that, when restricted to the unit circle, eachMn gives rise to an orientation-
preserving real-analytic diffeomorphism which is, as Lemma 13.14 indicates,C1-
exponentially close to the identity.

Proof. Consider the biholomorphism  W H ! D given by  .z/ D z�i
zCi , whose

inverse  �1 W D ! H is given by  �1.z/ D i
�
1Cz
1�z

�
. Note that  maps the

vertical geodesic of equation
˚
z 2 H W Re z D 0

	
onto the interval .�1; 1/

in D. Since  and  �1 are Möbius transformations, both extend uniquely to
corresponding biholomorphisms of the entire Riemann sphere. The extension of
 is a real-analytic diffeomorphism between the compactification of the real line
and the unit circle, which maps the point at infinity to the point z D 1. For each
n ⩾ n0 consider the real number tn defined by

tn D  �1�Gn.1/
�
�  �1�Hn.1/

�
D 2i

 
Gn.1/ �Hn.1/�

1 �Gn.1/
��
1 �Hn.1/

�
!
:

Each tn is finite since for all n ⩾ n0 both Gn.1/ and Hn.1/ are not equal to one.
Moreover we claim that:

inf
n⩾n0

˚ˇ̌
Gn.1/ � 1

ˇ̌	
> 0 and inf

n⩾n0

˚ˇ̌
Hn.1/ � 1

ˇ̌	
> 0 :

Indeed, since we have
ˇ̌
Hn.1/ � Gn.1/

ˇ̌
⩽ C�n for all n ⩾ n0, is enough to

prove that infn⩾n0

˚ˇ̌
Gn.1/ � 1

ˇ̌	
> 0, and this follows by Lemma 13.6 since

1 D Pn.0/ and Gn.1/ D Pn.�1/ for all n ⩾ n0. In particular, again usingˇ̌
Hn.1/ � Gn.1/

ˇ̌
⩽ C�n for all n ⩾ n0, we see that jtnj ⩽ C�n for all n ⩾ n0.

From the explicit formula

Mn.z/ D
.2i � tn/z C tn
.2i C tn/ � tnz

D

0
@
z �

�
tn

tn�2i

�

1 �
�

tn
tnC2i

�
z

1
A
�
2i � tn
2i C tn

�
for all n ⩾ n0,

we see that the pole of each Mn is at the point zn D 1 C i.2=tn/, and since
jtnj ⩽ C�n for all n ⩾ n0, we can take n0 so large that zn 2 C n B.0; 2R/,
where R D supn⩾n0

fRng < C1 is given by Lemma 13.8. A straightforward
computation gives

�
Mn � Id

�
.z/ D tn.z � 1/2

.2i C tn/ � tnz
for all n ⩾ n0,
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and therefore Mn � Id

C0.AR/

⩽ C�n for all n ⩾ n0.

In particular, for any fixed � 2 .1; r/ we can choose n0 so large as to have A� �
Mn.Ar/ for all n ⩾ n0. Moreover given any z 2 A� we have

�
Mn ıHn ıM�1

n �Gn
�
.z/ D .Mn � Id/

�
.Hn ıM�1

n /.z/
�

C .Hn �Gn/ .z/C
�
Hn

�
M�1
n .z/

�
�Hn.z/

�
:

From this it follows that
Mn ıHn ıM�1

n �Gn

C0.A�/

⩽ kMn � IdkC0.Hn.Ar //

C kHn �GnkC0.A�/
C kHnkC1.Ar /

M�1
n � Id


C0.A�/

:

SinceHn.Ar/ � AR and A� � Ar � AR, each of the three terms

kMn � Idk
C0
�
Hn.Ar /

� ; kHn �GnkC0.A�/
and

M�1
n � Id


C0.A�/

is less than or equal to C�n for all n ⩾ n0.
Finally, since each Hn is holomorphic and we have Ar � Ar and Hn.Ar/ ��

Gn ıPn
�� bTn

�
� ARn

� AR for all n ⩾ n0, we obtain from Cauchy’s derivative
estimate that

sup
n⩾n0

nHn

C1.Ar /

o
<1 ;

and therefore
Mn ıHn ıM�1

n �Gn

C0.A�/

⩽ C�n for all n ⩾ n0.

With Lemma 13.14 at hand we are done since
�
Mn ıHn ıM�1

n

�
.1/ D Gn.1/.

We have finished the proof of Proposition 13.4.

13.1.5 The shadowing sequence
We are about to finish Section 13.1. Let us recall what we have done: in Sec-
tion 13.1.3 we constructed a suitable sequence fGngn⩾n0

of S1-symmetric C 3

extensions of C 3 critical circle maps gn to some annulus Pn
� bTn

�
. When lifted
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with the corresponding projectionPn (also constructed in Section 13.1.3), each gn
gives rise to a C 3 critical commuting pair

�
b�n;b�n

�
exponentially close to Rn.f /

and having the same combinatorics at each step (moreover, with complex exten-
sionsC 0-exponentially close to the ones of Rn.f / produced in Theorem 13.5; see
Proposition 13.3 above for more properties).

In Section 13.1.4 we perturbed each Gn in a definite annulus Ar , in order
to obtain a sequence of real-analytic critical circle maps, each of them having
the same combinatorics as the corresponding Rn.f /, that extend to holomorphic
maps Hn exponentially close to Gn in Ar (see Proposition 13.4 above for more
properties). Both the critical point and the critical value of eachHn coincide with
the ones of the corresponding Gn. More precisely, the critical point of eachHn is
at Pn.0/ D 1 2 Pn

�
V1.n/

�
\ S1, and its critical value is at Hn.1/ D Gn.1/ 2

Pn.V / \ S1 D Pn
�
Bn.V /

�
\ S1. Recall also that Hn.Ar/ � Pn.Tn/ for all

n ⩾ n0.
In this section we lift each Hn W Ar ! ARn

via the holomorphic projection
Pn W Tn ! ARn

in the canonical way: let ˛ > 0 such that for all n ⩾ n0 we have
that

N˛
�
Œ�1; 0�

�
[N˛

�
Œ0;b�n.0/�

�
� bTn ;

and that Pn
�
N˛
�
Œ�1; 0�

�
[N˛

�
Œ0;b�n.0/�

��
is an annulus contained in Ar and con-

taining the unit circle (the existence of such ˛ is guaranteed by Lemmas 13.4
and 13.6). Let us use the more compact notation Z1.n/ D N˛

�
Œ�1; 0�

�
and

Z2.n/ D N˛
�
Œ0;b�n.0/�

�
. For each n ⩾ n0 let e�n W Z2.n/ ! Tn be the R-

preserving holomorphic map defined by the following two conditions:

Hn ı Pn D Pn ıe�n in Z2.n/, and e�n.0/ D �1 :
In the same way let e�n W Z1.n/ ! Tn be the R-preserving holomorphic map
defined by the two conditions

Hn ı Pn D Pn ıe�n in Z1.n/, and e�n.0/ Db�n.0/ :
Thus, we have the following commutative diagram:

Z1.n/ [Z2.n/ � Tn Tn

Ar � ARn
ARn

✲.e�n;e�n/

❄

Pn

❄

Pn

✲Hn
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In the next proposition we summarize the main properties of this lift, which
are all straightforward.

Proposition 13.5 (The shadowing sequence). For each n ⩾ n0 the pair fn D
.e�n;e�n/ restricts to a real-analytic critical commuting pair with domains I

�e�n
�
D�

e�n.0/; 0
�
D Œ�1; 0� and I

�
e�n
�
D
�
0;e�n.0/

�
D
�
0;b�n.0/

�
, and such that �.fn/ D

�
�
b�n;b�n

�
D �

�
Rn.f /

�
2 R n Q. Moreover e�n and e�n extend to holomorphic

maps in Z1.n/ and Z2.n/ respectively where we have:

• e�n has a unique critical point in Z1.n/, which is at the origin and of cubic
type;

• e�n has a unique critical point in Z2.n/, which is at the origin and of cubic
type;

•
e�n �b�n


C0
�
Z1.n/\˚n. bX1.n//

� ⩽ C�n;

• ke�n �b�nkC0
�
Z2.n/\˚n. bX2.n//

� ⩽ C�n.

With Proposition 13.5 at hand, Theorem 13.4 follows directly from the follow-
ing consequence of Montel’s theorem.

Lemma 13.15. Let ˛ be a constant in .0; 1/ and let V be an R-symmetric bounded
topological disk such that Œ�1; ˛�1� � V . Let W1 and W2 be topological disks
whose closure is contained in V and such that Œ�1; 0� � W1 and Œ0; ˛�1� � W2.
Denote by K the set of all normalized real-analytic critical commuting pairs � D
.�; �/ satisfying the following three conditions.

• �.0/ D �1 and �.0/ 2 Œ˛; ˛�1�;

• ˛
ˇ̌
�
�
Œ0; �.0/�

�ˇ̌
⩽
ˇ̌
�
�
Œ�1; 0�

�ˇ̌
⩽ ˛�1ˇ̌�

�
Œ0; �.0/�

�ˇ̌
;

• Both � and � extend to holomorphic maps (with a unique cubic critical point
at the origin) defined in W1 and W2 respectively, where we have

1. N˛
�
�
�
Œ�1; 0�

��
� �.W1/;

2. N˛
�
�
�
Œ0; �.0/�

��
� �.W2/;

3. �.W1/ [ �.W2/ � V .

Then K is C!-compact.
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13.2 Bounding the C r�1 metric

In the previous section we have proved the C 0 version of Theorem 13.4. The de-
tails required to bootstrap this estimate to theC r�1metric can be found in Guarino,
Martens, and de Melo [2018, Section 11]. Here we just want to mention that the
key point for such bootstrapping argument is the following general fact from com-
plex analysis.

Proposition 13.6. Let I be a compact interval in the real line with non-empty
interior, and let U be an open set in the complex plane containing I . Fix some
M > 0, and consider the family

F D
˚
f W U ! C holomorphic: kf kC0.U / ⩽M

	
:

Then for any k 2 N and any ˛ 2 .0; 1/, there exists L D L.k; ˛;M/ > 0 such
that

kf kCk.I / ⩽ L
�
kf kC0.I /

�˛ for all f 2 F ,

where, as usual,
kf kCk.I / D sup

z2I
n2f0;1;:::;kg

˚ˇ̌
f .n/.z/

ˇ̌	
:

In the proof of Proposition 13.6 below, we follow the exposition of Lyubich
[1999, Lem. 11.5].

Proof. Let V be a bounded Jordan domain containing the interval I , and com-
pactly contained inU (as usual, a Jordan domain is an open, connected and simply
connected set of the complex plane, whose boundary is a Jordan curve).

Consider a continuous function h W V ! Œ0; 1� satisfying

• h is harmonic and positive in the annulus V nI ,

• h � 0 on @V and h � 1 on I .

The existence of such a function h is a particular case of Dirichlet’s problem.
To begin the proof, suppose first that M D 1, and let f W U ! C be a

holomorphic function such that
ˇ̌
f .z/

ˇ̌
⩽ 1 for all z 2 U . Let " D kf kC0.I / ⩽ 1,

and note that
log jf j ⩽ h log " (13.2)

on @.V nI / D I [ @V . Since f is holomorphic, log jf j is harmonic where f ¤ 0
and subharmonic in the whole domain V , and since h is harmonic in V nI , we get
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from the maximum principle that inequality (13.2) also holds inside the annulus
V nI , that is,

ˇ̌
f .z/

ˇ̌
⩽ "h.z/ for all z 2 V . Given ˛ 2 .0; 1/, let W D

˚
z 2

V W h.z/ 2 .˛; 1�
	
, and note that W is a Jordan domain containing I , compactly

contained in V , and such that h.z/ D ˛ for all z 2 @W . Since " 2 Œ0; 1�, we haveˇ̌
f .z/

ˇ̌
⩽ "h.z/ ⩽ "˛ for all z 2 W , that is,

kf kC0.W / ⩽
�
kf kC0.I /

�˛
:

The next step is just the standard application of Cauchy’s integral formulas. Indeed,
let ı 2 .0; 1/ be such that B.z; ı/ � W for all z 2 I . Then for any z 2 I and any
n 2 f0; 1; :::; kg, we have

ˇ̌
f .n/.z/

ˇ̌
D
ˇ̌
ˇ̌ nŠ
2�i

Z

@B.z;ı/

f .w/

.w � z/nC1 dw

ˇ̌
ˇ̌ D nŠ

2�

ˇ̌
ˇ̌
ˇ

Z 2�

0

f .z C ıei� /
.ıei� /nC1 iıei� d�

ˇ̌
ˇ̌
ˇ

⩽
nŠ

2�

1

ın

Z 2�

0

ˇ̌
ˇf .z C ıei� /

ˇ̌
ˇ d� ⩽

nŠ

ın

 
sup

w2@B.z;ı/

˚ˇ̌
f .w/

ˇ̌	
!
:

Defining L1 D kŠ=ık , we obtain

kf kCk.I / ⩽ L1 kf kC0.W / ⩽ L1
�
kf kC0.I /

�˛
:

Therefore, Proposition 13.6 is true for the caseM D 1. For the general case, note
that for any f 2 F we have

kf kCk.I / DM kf=MkCk.I /

⩽M L1
�
kf=MkC0.I /

�˛ DM 1�˛ L1
�
kf kC0.I /

�˛
;

and therefore it is enough to consider L DM 1�˛L1.

13.3 Proof of the exponential convergence

In this section we briefly explain how to combine Theorems 12.2, 13.1 and 13.4
in order to obtain Theorem 13.3 (the proof of Theorem 13.2, given in Guarino
and de Melo [2017, Section 4], is a little bit easier by the bounded combinatorics
condition).
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Sketch of the proof of Theorem 13.3. Letf andg be twoC 4 unicritical circle maps
with the same irrational rotation number �.f / D �.g/ D Œa0; a1; : : :� and with the
same odd integer criticality. By Theorem 13.4 (the shadowing theorem), there exist
a C!-compact set K of real analytic unicritical commuting pairs, two constants
�0 2 .0; 1/ and C0 > 1, and two sequences ffmgm2N and fgmgm2N contained
in K such that for all m 2 N we have �.fm/ D �.gm/ D Œam; amC1; : : :� and
moreover,

d3
�
R
m.f /; fm

�
⩽ C0 �

m
0 and d3

�
R
m.g/; gm

�
⩽ C0 �

m
0 : (13.3)

With this, Proposition 6.2 and Theorem 12.1 at hand, it is not difficult to prove
that the commuting pairs RjCm.f /, RjCm.g/, Rj .fm/ and Rj .gm/ are K-
controlled and have negative Schwarzian for some constant K > 1, for m suffi-
ciently large (say, m > m0 for some m0 2 N) and for all j 2 N. Note that at this
point we need the C 4 smoothness required in the statement of Theorem 13.3, to be
able to obtain C 3-bounds for renormalization (see Guarino, Martens, and de Melo
[2018, Section 12] for the details).

Let L D L.K/ > 1 be given by Theorem 12.2. Let ı 2 .0; 1/ be sufficiently
close to one (to be determined in the course of the argument), and for each n 2 N

let m D m.n/ 2 N be given by m D bınc. Combining Theorem 12.2 with (13.3)
we obtain for all m > m0 that

d2
�
R
n.f /;Rn�m.fm/

�
⩽ Ln�m d2

�
R
m.f /; fm

�
(13.4)

⩽ C0L
n�m�m0 ⩽

�
LC0

�0

� �
L1�ı�ı0

�n

for all n 2 N such that m D bınc > m0. Let C1 D LC0=�0 and �1 D L1�ı�ı0,
and note that �1 belongs to .0; 1/ for ı sufficiently close to one. Replacing f with
g, we also get

d2
�
R
n.g/;Rn�m.gm/

�
⩽ C1 �

n
1 (13.5)

for all n 2 N such that m D bınc > m0.
By Theorem 13.1, there exist constants C2 > 1 and �2 2 .0; 1/ (both uniform

in K ) such that

d2
�
R
n�m.fm/;Rn�m.gm/

�
⩽ C2�

n�m
2 ⩽ C2.�

1�ı
2 /n (13.6)

for all n 2 N and m 2 N. Finally, define � D maxf�1; �1�ı
2 g 2 .0; 1/ and

C D 2C1 C C2 > 1. Combining (13.4), (13.5) and (13.6) we obtain
d2
�
R
n.f /;Rn.g/

�
⩽ C�n for all n 2 N such that m D bınc > m0.

See Guarino, Martens, and de Melo [ibid., Section 12] for more details.
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13.4 The attractor of renormalization
As we have seen in Section 10.2 (recall (10.1)), the action of the renormalization
operator on the continued fraction expansion of the rotation number is given by
a left shift, that we denote by � as customary. More precisely, given a critical
commuting pair � with rotation number �.�/ D Œa0; a1; a2; : : : � we have that

�
�
R.�/

�
D �

�
Œa0; a1; a2; : : : �

�
D Œa1; a2 : : : � : (13.7)

For real-analytic critical circle maps with a single critical point of some odd
integer criticality, Yampolsky [2001, Th. A] was able to establish the existence
of a horseshoe-like attractor for renormalization. More precisely, he proved the
following result.

Theorem 13.6 (Horseshoe-like attractor). There exists a pre-compact R-invariant
set �, which is homeomorphic to NZ, consisting of real-analytic unicritical com-
muting pairs with irrational rotation number, such that the action of Rj� is topo-
logically conjugate to the two-sided shift � acting on NZ (the action being taken
over the continued fraction expansion of the rotation number, as in (13.7) above).
Moreover, any given real-analytic pair with irrational rotation number converges
to the closure of �.

As we have seen along this chapter (see also Chapter 14), such convergence
is geometric, and it holds for C 4 pairs, not necessarily real-analytic (and for C 3
pairs with bounded combinatorics as well). For the proof of Theorem 13.6 we refer
the reader to the original paper by Yampolsky [ibid.].

Exercises

Exercise 13.1. Prove the existence of two diffeomorphisms h1 and h2, as stated at
the beginning of Section 13.1.1 (Hint: see Guarino and de Melo [2017, Lem. 6.2]).
Exercise 13.2. Show that the sum or product of asymptotically holomorphic maps
is also asymptotically holomorphic. The inverse of an asymptotically holomorphic
diffeomorphism is asymptotically holomorphic. Composition of asymptotically
holomorphic maps is asymptotically holomorphic.
Exercise 13.3. Let I be a compact interval in the real line and let h W I ! R

be a C 1 map. Let U be a neighborhood of I in C and let H W U ! C be
an asymptotically holomorphic extension of h of order 1 (as in Definition 13.1).
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Show that @H.z/ D h0.z/ for every z 2 I , and then the Jacobian of H at z 2 I
equals

ˇ̌
h0.z/

ˇ̌2 (recall the identity (11.2)).
Exercise 13.4. In the upper half-plane H D fz 2 C W Im z > 0g consider the
vertical geodesic  of equation fRe z D 0g. Given " > 0, show that the set of
points in H whose hyperbolic distance to  is less than " is given by the cone

�
z 2 H W Re z

Im z
< tan˛

�
;

where the Euclidean angle ˛ is related to " by the formula

" D 1

2
log

�
1C sin˛
1 � sin˛

�
:

Exercise 13.5. For I D .�1; 1/, show that � W H! C.I / given by

�.z/ D z2 C 1
z2 � 1

is a biholomorphism between the upper half-plane H and C.I /, that maps the
vertical geodesic  of equation fRe z D 0g onto I (Hint: Note that � can be
written as the composition

E2 ı T1=2 ı I ı T�1 ıQ ;

where Q.z/ D z2, and the remaining four maps are the Möbius transformations
T�1.z/ D z � 1, I.z/ D 1=z, T1=2.z/ D z C 1=2 and E2.z/ D 2z).
Exercise 13.6. Let I be a bounded open interval in the real line. For any given
� 2 .0; �/ consider ".�/ D log tan

�
�=2 � �=4

�
2 .0;C1/. Show that the

Poincaré disk D� .I / coincides with the set of points in C.I / whose hyperbolic
distance to I is less than " (Hint: Note first that it is enough to deal with the
case I D .�1; 1/. Indeed, given a < b, the map z 7!

�
.b � a/z C a C b

�
=2

is an isometry between C.�1; 1/ and C.a; b/, that preserves Euclidean angles.
Note that the cone of Exercise 13.4 is mapped under the biholomorphism � of
Exercise 13.5 onto a Poincaré disk. Relate the Euclidean angle of the cone with
the one of the corresponding Poincaré disk).



14 Renormalization:
Holomorphic

Methods

In this final chapter we will survey some of the complex-analytic ideas that play
a decisive role in the theory of (multi)critical circle maps. Since these ideas are
quite deep, the narrative to follow is by necessity very sketchy. However, we pro-
vide a complete proof of a fundamental theorem in this area: the complex bounds
(Theorem 14.4).

The use of holomorphic methods in the study of renormalization and rigidity
of one-dimensional dynamical systems was started by Sullivan in the mid-eighties
(see Sullivan [1992]). Since the theory for circle maps follows in parallel with the
corresponding theory for unimodal maps, and borrows substantially from it, we
need to talk a bit about the latter first.

For the general theory of complex dynamics we refer the reader to the books
Carleson and Gamelin [1993], de Faria and de Melo [2008], McMullen [1994],
and Milnor [2006].
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14.1 Sullivan’s program

We have already mentioned the general ansatz relating renormalization conver-
gence and rigidity. If we are given two topologically conjugate one-dimensional
maps f and g which are infinitely renormalizable (say with some restrictions on
their combinatorics), and if we know that the C r distances between their succes-
sive renormalizations contract to zero at an exponential rate, then the conjugacy
between f and g should actually be smooth (for critical circle maps, recall here
Theorems 10.4 and 10.5). Hence the goal becomes to establish exponential con-
traction of renormalizations. The strategy laid down by Sullivan [1992] (and ex-
plained in greater detail in de Melo and van Strien [1993, Ch. VI]) to achieve this
goal can be roughly described as follows.

1. First get geometric bounds on the orbits of the critical points of the (real)
one-dimensional systems. These so-called real a priori bounds should be
robust enough that, even if we start with maps which have only a mild, finite
degree of smoothness, their successive renormalizations will converge C 0
exponentially fast to the subspace consisting of real-analytic maps.

2. Use such real a priori bounds to show that the topological conjugacy be-
tween the two systems has slightly more geometric regularity than being
merely continuous: it is actually quasisymmetric (at least when restricted to
the post-critical sets of both systems).

3. Complexify the given real dynamical systems (when they are real-analytic),
in other words, find suitable complex-analytic extensions of these systems.

4. Using the real bounds in (1) and the mild geometric control in (2), get com-
plex a priori bounds for the complexified systems. These bounds are usually
bounds on the moduli of certain annuli (typically fundamental domains for
the complexified systems). Such bounds yield a strong form of compact-
ness.

5. Extend the renormalization operator to the complexified dynamical systems.
This operator will, in a suitable domain, be a compact operator due to step (4).

6. Use the bounds and compactness in (3) and a suitable infinite-dimensional
version of Schwarz’s lemma to establish the desired contraction property of
the underlying renormalization operator.
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In the context of (real-analytic) unimodal maps of the interval, Sullivan re-
alized that the relevant complex-analytic dynamical systems are quadratic-like
maps (or more generally polynomial-like maps), and was therefore able to use the
theory developed by Douady and Hubbard [1985] for such maps. Recall that a
quadratic-like map is a proper, degree two holomorphic branched covering map
F W U ! V between two topological disks U; V � C with U compactly con-
tained in V , branched at a unique critical point c 2 U . The modulus ofF is by defi-
nition the conformal modulus of the annulus V nU . The set KF D

T
n⩾0 F

�n.V /
is called the filled-in Julia set of F . It is a totally invariant set under the dynamics,
and it is compact due to the fact that F is proper. Every point in U nKF has a
finite orbit that eventually lands in the outer annulus V n U . This annulus there-
fore works as a fundamental domain for the dynamics outside the filled-in Julia set.
A central fact about quadratic-like maps is the straightening theorem of Douady
and Hubbard [ibid.]: every quadratic like map is quasiconformally conjugate to
an actual quadratic polynomial map.

A quadratic-like map F W U ! V is said to be renormalizable if one can
find a sub-disk D � U compactly contained in U and containing c and an inte-
ger p ⩾ 2 such that F pjD W D ! F p.D/ � V is well-defined, and again a
quadratic-like map. This new map, with p smallest possible and suitably rescaled
(via a complex affine map), is called the first renormalization of F , and denoted
RF . The number p is called the renormalization period of F , denoted p.F /. If
all successive renormalizations R2F D R.RF /; : : : ;RnF D R.Rn�1F /; : : :
are well-defined, then we say that F is infinitely renormalizable. If in addition all
periods pn D p.RnF / form a bounded sequence, we say that F infinitely renor-
malizable of bounded type. The complex bounds proved by Sullivan guarantee that
if one starts with a real-analytic, infinitely renormalizable quadratic unimodal map
f of bounded type on the real line, then after a finite number N of iterations, the
renormalized unimodal maps Rnf will be restrictions of quadratic-like maps Fn
with FnC1 D RFn for all n ⩾ N , and moreover the moduli mod.RnF / (n ⩾ N )
will be bounded from below. In particular, the sequence .RnF /n⩾N will be a
pre-compact family (in the topology of uniform convergence on compacta), and
every limit of such renormalization sequence will be a quadratic-like map. Here
and throughout, all holomorphic maps considered commute with complex conju-
gation, i.e., are symmetric about the real axis.

The crucial feature of quadratic-like maps in this theory, very closely related
to the straightening theorem, is that they are amenable to what Sullivan calls a
pull-back argument. If Fi W Ui ! Vi , i D 0; 1, are two symmetric, topologically
conjugate quadratic-like maps, and if h is a quasisymmetric homeomorphism of
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the real line which sends the post-critical set of F0 to the post-critical set of F1,
then F0 and F1 are quasiconformally conjugate. More precisely, there exists a
quasiconformal homeomorphism H W V0 ! V1 such that H ı F0 D F1 ı H ;
in addition, the quasiconformal dilatation of H depends only on the conformal
moduli mod.Vi n Ui / (i D 0; 1) and on the quasisymmetric distortion of h.

The existence of such a conjugacy already allows us to speak of the quasicon-
formal or Teichmüller distance between F0 and F1, defined as

dT .F0; F1/ D inf
�

log
1C k��k1
1 � k��k1

; (14.1)

the infimum being taken over all quasiconformal conjugacies� betweenF0 andF1.
This is in fact a pseudo-distance: its value will be zero whenever the two maps are
conformally conjugate. It turns out that the Julia set of an (symmetric) infinitely
renormalizable quadratic-like map carries no invariant line fields (equivalently,
no non-zero invariant Beltrami differentials). This is another consequence of the
straightening theorem. Thus, for every quasiconformal conjugacy � as above we
have that �� vanishes a.e. on the (filled-in) Julia set of F0. In particular, when
calculating k��k1 in the right-hand side of (14.1), we only need to look at the
values of ��.z/ for z 2 V0.

It is immediate from the definition that the Teichmüller distance is weakly
contracted under renormalization: any conjugacy between F0 and F1 restricts to
a conjugacy between R.F0/ and R.F1/.

Now, let H be a quasiconformal conjugacy between F0 and F1, say the one
constructed via the pull-back argument. Its Beltrami differential �H D @H=@H

is invariant under F0, and therefore it can be used to generate a path of (pairwise
qc-conjugate) quadratic-like maps joining F0 to F1. To see this, define �t D t�H
for all t 2 C such that jt j < k�Hk�11 then integrate each �t using the measurable
Riemann mapping theorem to get a (normalized) quasiconformal homeomorphism
Ht , and then define Ft D Ht ı F0 ıH�1

t . Such a path is called a Beltrami path
joining F0 to F1.

As one can see from the definitions given so far, renormalization maps Bel-
trami paths to Beltrami paths. Some Beltrami paths are more efficient than others,
in the sense that they are close to being “geodesics” in the Teichmüller metric. It
will usually be the case that a very efficient Beltrami path joining F0 to F1 will be
mapped to an inefficient Beltrami path joining R.F0/ to R.F1/: the image path
“coils”. It turns out that one can put this coiling property into more quantitative
terms, and the result is a form of Schwarz’s lemma in infinite dimensions.1

1However, we warn the reader that the renormalization “operator” is not a complex-analytic
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There are some difficulties with carrying out the details of this approach. One
is the fact that the domain and range of a quadratic-like map vary with the map
itself, so it is hard to set up the renormalization procedure as an actual operator
on a space of maps defined over a fixed domain. Another difficulty is the fact
that, if we are given two quadratic-like maps and they both restrict to the same
quadratic unimodal map on the line, then they should be regarded as essentially
the same dynamical system; however, their Teichmüller distance, according to
the definition given above, will not be zero! Sullivan soon realized that a way
to circumvent these difficulties is to take an inverse limit of the dynamics off the
filled-in Julia set. To wit, if F W U ! V is the given quadratic-like map, one
considers the inverse system

� � � ! F�.nC1/.V nKF /! F�n.V nKF /! � � �F�1.V nKF /! V nKF ;

where each map, being a restriction of F , is an unbranched 2-to-1 holomorphic
covering. The inverse limit of this system, denoted L .F /, is a Riemann surface
lamination in a natural way. This object is locally homeomorphic to the product of
a disk by a Cantor set, and the chart transitions are holomorphic on the leaves. The
construction is canonical in the sense that, if F varies (but stays in the same topo-
logical conjugacy class), then topologically L .F / does not change at all. Only
its conformal structure changes. Moreover, a quasiconformal conjugacy between
two such maps induces a homeomorphism between the two corresponding lamina-
tions which is quasiconformal on each leaf. Hence, one can speak of the (moduli
space or) Teichmüller space of such lamination. It then follows that renormaliza-
tion induces an operator on such Teichmüller space.

Using these ideas, Sullivan was able to carry out the strategy outlined in steps
(1)-(6) above almost completely in the bounded-type case. We say “almost” be-
cause in step (6) he was forced to settle for something less than exponential contrac-
tion. Sullivan made an ingenious use of the theory of Riemann surface laminations,
and used the Teichmüller theory of such objects (which he largely developed on the
fly) to prove a (non-uniform) version of Schwarz’s lemma in this context, which
in turn allowed him to prove renormalization convergence without a rate. The ex-
ponential convergence of renormalizations for bounded type infinitely renormal-
izable maps was finally achieved by McMullen [1994, 1996] by a different route,
using his theory of rigidity of towers.
Remark 14.1. The theory of Riemann surface laminations is a beautiful subject in
its own right. See Ghys [1999] for a nice exposition.
operator.
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14.2 Holomorphic commuting pairs
In his PhD thesis, de Faria [1992] took up the task of carrying out as much as possi-
ble of Sullivan’s program in the context of critical circle maps with a single critical
point of cubic type. Steps (1) and (2) of Sullivan’s strategy were already in place
due to the works of Herman and Świątek (Theorem 6.3) and Yoccoz (Theorem 7.2
in the unicritical case).

The key to the remaining steps is an analogue of the quadratic-like maps of
Douady and Hubbard, a holomorphic dynamical system that somehow extends
the real commuting pairs arising as successive renormalizations of a critical circle
map. This is the central contribution of de Faria [ibid.] and of the subsequent paper
de Faria [1999]. Here are the relevant definitions, taken almost verbatim from de
Faria and de Melo [2000, p. 346].

Definition 14.1. By a bowtiewemean a 4-tuple .O� ;O�;O� ;V / of simply-connec-
ted domains in the complex plane such that:

(a) Each O is a Jordan domain whose closure is contained in V ;

(b) We have O� \ O� D f0g � O�;

(c) The sets O�nO� , O�nO� , O�nO� and O�nO� are non-empty and connected.

Definition 14.2. Let .O� ;O�;O� ;V / be a bowtie. A holomorphic commuting pair
� with domain U D O� [ O� [ O� and co-domain V is the dynamical system
generated by three holomorphic maps � W O� ! C, � W O� ! C and � W O� ! C

satisfying the following conditions (see Figure 14.1).

H1 Both � and � are univalent onto V \ C.�.J�// and V \ C.�.J�// respec-
tively, where J� D O� \ R and J� D O� \ R. (Notation: C.I / D
.C nR/ [ I .)

H2 The map � is a 3-fold branched cover onto V \ C.�.J�//, where J� D
O� \R, with a unique critical point at 0.

H3 We have O� 3 �.0/ < 0 < �.0/ 2 O�, and the restrictions �jŒ�.0/; 0� and
�jŒ0; �.0/� constitute a critical commuting pair.

H4 Both � and � extend holomorphically to a neighborhood of zero, and we
have � ı �.z/ D � ı �.z/ D �.z/ for all z in that neighborhood.
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0

a b�.0/ �.0/

�

�

�

O�
O�O�

V

Re.z/

Figure 14.1: A holomorphic commuting pair.

H5 There exists an integer m ⩾ 1, called the height of � , such that �m.a/ D
�.0/, where a is the left endpoint of J� ; moreover, �.b/ D �.0/, where b is
the right endpoint of J�.

The relevant dynamical system here, which we will still denote by � , is the
pseudo-semigroup generated by the three maps �; �; �. The interval J D Œa; b�

is called the long dynamical interval of � , whereas � D Œ�.0/; �.0/� is the short
dynamical interval of � . They are both forward invariant under the dynamics, as
the reader can easily check. The rotation number of � is by definition the rotation
number of the critical commuting pair of � obtained by restriction to the real line
(condition H3). We say that the holomorphic commuting pair � has geometric
boundaries if @U and @V are quasicircles2.
Remark 14.2. Examples of holomorphic commuting pairs with arbitrary rotation
number and arbitrary heights can be constructed directly from the Arnold family.
This is carefully done in de Faria [1999, §4], and the construction will be repro-
duced in Section 14.4. We should also point out that there is nothing special about

2A quasicircle, we recall, is the boundary of a quasidisk, which in turn is the image of a round
disk under a quasiconformal homeomorphism of the plane.
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cubic critical points. Holomorphic commuting pairs can be defined so as to have
a critical point with any odd-power criticality whatever. To see how this is done,
the reader should consult the thesis by Vieira [2015] (see also Yampolsky [2017]).

It turns out that the holomorphic pair � can be renormalized: the first renor-
malization of the critical commuting pair of � extends in a natural way to a holo-
morphic pair R.� / with the same co-domain V . See Prop. 2.3 in de Faria [1999]
for the detailed construction of R.� /. Renormalization is defined in such a way
that the restriction of the renormalized holomorphic pair R.� / to the real line
is the critical commuting pair that represents the renormalization of the critical
commuting pair .�jŒ�.0/;0� ; �jŒ0;�.0/�/.

14.3 Pull-back argument

The first main result in de Faria [1992] (or de Faria [1999]) is the following ana-
logue of Sullivan’s pull-back argument.

Theorem 14.1 (Pull-back Argument). Let � and � 0 be holomorphic pairs with
geometric boundaries and let h W J ! J 0 be a quasisymmetric conjugacy between
the restrictions of � and � 0 to their respective long dynamical intervals J and J 0.
Then there exists a quasiconformal conjugacy H W V ! V 0 between � and � 0

which is an extension of h.

The proof is more involved than that of the original pull-back argument, for the
following reason. In the quadratic-like case, we know by the straightening theorem
of Douady–Hubbard that every quadratic-like map is quasiconformally conjugate
to a quadratic polynomial, and the latter does not have wandering domains (due to
Sullivan’s no-wandering-domains theorem, see Sullivan [1985]). Hence quadratic-
like maps do not have wandering domains. By contrast, holomorphic pairs could
in principle have wandering domains. To deal with their putative existence, one
needs to use a form of quasiconformal surgery (something called the qc-sewing
lemma of L. Bers, see de Faria [1999, Lem. 3.2]). Wandering domains are only
ruled out a posteriori, combining Theorem 14.1 with the fact that holomorphic
pairs constructed from the Arnold family do not carry such domains (see de Faria
[ibid., Th. 4.2]).
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14.4 Existence and limit-set qc-rigidity
We have defined holomorphic commuting pairs as complex dynamical systems
satisfying certain axioms (see Definition 14.2), but it is not clear at this point in
our narrative whether such objects exist. Hence we take the time to construct
explicit examples with arbitrary rotation numbers and arbitrary heights. The con-
struction presented below is taken almost verbatim fromde Faria [1999, §4]. When
combined with the pull-back argument, these examples also yield two important
properties of holomorphic commuting pairs: a no-wandering-domains theorem for
such objects and the absence of invariant line fields in their limit (or Julia) sets.

Construction of examples

The examples are extracted from our old friend, the complex Arnold family. For
each 0 ⩽ � < 1, let E� W C ! C be the entire mapping given by E� .z/ D
z C � � 1

2�
sin.2�z/. Such maps indeed belong to the Arnold family; in fact, we

have E� D F�;1 in the notation introduced in Chapter 6.
Since E� ı T D T ı E� , where T is the translation z 7! z C 1, E� is the lift

to the complex plane of a holomorphic self-mapping of the cylinder, f� W C=Z Š
C�  -. Moreover, the restriction E� jR maps the real axis onto itself and satisfies
E 0
�
.x/ ⩾ 0 for all x 2 R, and equality holds iff x 2 Z (these constitute all the

critical points of E� ). Therefore the restriction f� jS1 is a critical circle homeo-
morphism with rotation number, say, �.�/. We have already seen in Chapter 4
that � 7! �.�/ is a continuous, non-decreasing map of Œ0; 1/ onto itself such that
the interval ��1.t/ � Œ0; 1/ degenerates to a point whenever t is irrational.

With the family fE�g at hand we will construct examples of holomorphic com-
muting pairs with arbitrary rotation number and arbitrary height. More precisely,
we shall prove the following theorem.

Theorem 14.2. For each n ⩾ 0 and each � such that �.�/ has a continued
fraction expansion of length at least n C 1, the real commuting pair determined
by .f qn

�
; f

qnC1

�
/ extends to a holomorphic commuting pair �n;� with geometric

boundaries. The family f�n;�g runs through all possible pairs of combinatorial
invariants at least once, and for each .m; �/ 2 N � Œ0; 1/ with m ⩾ 2 there ex-
ist countably many .n; �/ 2 N � Œ0; 1/ such that �n;� has height m and rotation
number �.

The main analytic tool to be used in the proof of Theorem 14.2 is the following
growth estimate.
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Lemma 14.1. There exist a positive constant C0 and a positive monotone non-
decreasing function '.s/ defined for s ⩾ 0 such that if jyj ⩾ '.jxj/ then jE� .xC
iy/j ⩾ C0 exp.�jyj/.

Proof. When � D 0, a straightforward computation yields

jE0.x C iy/j2 D
1

4�2
cosh2 .2�y/C

�
x2 C y2 � 1

4�2
cos2 .2�x/

�

� 1

�
Œx sin .2�x/ cosh .2�y/C y cos .2�x/ sinh .2�y/� :

The first expression between brackets is positive as soon as, say, jyj ⩾ 1, while
the second is dominated by .jxj C jyj/ cosh .2�y/. Thus, if jyj ⩾ 1 we have

jE0.x C iy/j2 ⩾
1

4�2
Œcosh .2�y/ � 4�.jxj C jyj/� cosh .2�y/ : (14.2)

Now, let

".t/ D 1

4�
cosh .2�t/ � t � 1 :

This is a strictly convex function that reaches a minimum value at a certain t0 > 0
such that ".t0/ < 0. Hence for each s ⩾ 0 there exists a unique '.s/ > t0 such that
".'.s// D s. Since ".t/ is strictly increasing for t ⩾ t0, so is '.s/ for s ⩾ 0, and
t ⩾ '.s/ implies ".t/ ⩾ s. Setting '.s/ D maxf1; '.s/g and observing that the
expression between brackets in (14.2) is equal to 4�Œ".jyj/C 1� jxj�, we deduce
that if jyj ⩾ '.jxj/ then

jE0.x C iy/j2 ⩾
1

�
cosh.2�jyj/ ⩾ 1

2�
exp.2�jyj/ : (14.3)

On the other hand, when 0 < � < 1 we have E� .z/ D E0.z/ C � , so that
jE� .z/j ⩾ j1� jE0.z/j�1j:jE0.z/j. Therefore, if jyj ⩾ '.jxj/, we have by (14.3)

jE� .x C iy/j ⩾
1p
2�

h
1 � e��p2�

i
exp.�jyj/ ;

so the desired inequality is proved in all cases if we takeC0 D 1p
2�

h
1 � e��p2�

i
.
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We divide the work required to prove Theorem 14.2 into a few steps. Let
us fix � for the time being and write �.�/ D Œa0; a1; : : : ; an; : : :�. We conform
with the notation established in earlier chapters, so that, in its irreducible form,
pn

qn
D Œa0; a1; : : : ; an�1� satisfies p0 D 0, q0 D 1; p1 D 1, q1 D a0 and, for

n ⩾ 1, pnC1 D anpn C pn�1, qnC1 D anqn C qn�1.
We need a brief geometric description of the map E� . The pre-image of the

real axis under E� consists of R itself together with the family of analytic curves

S
.k/
˙ W x D k ˙ 1

2�
arccos

� �2�jyj
sinh .2�y/

�
;

where k 2 Z, arising as solutions to ImE� .x C iy/ D 0. For each k 2 Z, the
curves S

.k/
C and S .k/

� meet at the critical point ck D k, and are both asymptotic
to the vertical lines x D k˙ 1

4
. Notice that each ck is a critical point of cubic type.

In the upper half-plane CC, let Vk be the simply-connected region bounded by the
arcs S

.k�1/
C \CC and S .k/

� \CC and the interval Œk � 1; k� � R. Then E� jVk
is univalent onto CC; we let �k W CC ! Vk denote the corresponding inverse.
Similarly, letWk � CC be the simply-connected region bounded by S .k/

� \C
C

and S
.k/
C \CC, observe thatE� jWk is univalent onto C� and let k W C� ! Wk

be the corresponding inverse.
Now let An � CC be the unique connected component of .Eqn

�
/�1.CC/

whose closure contains the point T �pnC1 ı EqnC1

�
.0/ 2 R. Similarly, let Bn �

CC be the unique connected component of .EqnC1

�
/�1.CC/ such that T �pn ı

E
qn

�
.0/ 2 Bn. We have either An � V0 and Bn � V1 or An � V1 and Bn � V0,

depending on whether n is even or odd, respectively (Figure 14.2 illustrates the
even case).

Lemma14.2. For eachn ⩾ 0 there exists a unique qn-tuple .k1; k2; : : : ; kqn
/with

0 D k1 ⩽ k2 ⩽ � � � ⩽ kqn
⩽ pn C 1 such that An D �k1

ı �k2
ı � � � ı �kqn

.CC/.
A similar statement holds for Bn.

Proof. This is an easy consequence of the fact that 0 ⩽ E
j

�
.0/ < pn C 1 for

j D 0; 1; : : : ; qn, for all n ⩾ 0, which in turn follows from the very definitions of
pn; qn.

Lemma 14.3. Let f be a circle homeomorphism with �.f / D Œa0, a1, : : :, an, : : :�,
let c 2 S1, and for each n ⩾ 1 let Jn � S1 be the closed interval of endpoints c
and f qn�1�qn.c/ containing f qn�1.c/. If j < qn is such that f �j .c/ belongs to
Jn, then j ⩽ 0.
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Proof. This reduces to a purely combinatorial statement about rigid rotations, and
is left as an exercise for the reader.

Let us use the notation h˛; ˇi to represent a closed interval on the line with
endpoints ˛ and ˇ, irrespective of order.

Lemma 14.4. For each n ⩾ 0 we have An \R D h˛n; 0i and Bn\R D h0; ˇni,
where ˛0 D �1, ˇ0 D ˛1 and for n ⩾ 1 the points ˛n; ˇn 2 R are uniquely
determined by the requirements: T �pn ı Eqn

�
.˛n/ D T �pn�1 ı Eqn�1

�
.0/ and

T �pnC1 ıEqnC1

�
.ˇn/ D T �pn ıEqn

�
.0/.

Proof. Considerf D f� and take c to be the critical point off� . Then Lemma 14.3
says that there can be no critical points for f qn

�
in the interior of Jn, for by the

chain rule these are precisely the pre-images f �j
�
.c/ with 0 ⩽ j < qn. The result

follows.

Given R > 0, let DR D fz W jzj < Rg and let An;R be the unique con-
nected component of .T �pn ı Eqn

�
/�1.DC

R / contained in An. Let Bn;R be simi-
larly defined. If R is sufficiently large (R > pn C 1 is good enough) we see that
An;R \R D An \ R and Bn;R \R D Bn \ R for n ⩾ 0. It is clear that both
An;R and Bn;R are Jordan domains, in fact quasidisks, and that they are mapped
respectively by T �pn ıEqn

�
and T �pnC1 ıEqnC1

�
bijectively onto D

C
R .

Lemma 14.5. For every sufficiently large R we have An;R � DR \ CC and
Bn;R � DR \CC.

Proof. For s; R positive numbers, let

ı.s; R/ D '.s/C 1

�
logC.C�1

0 R/ ;

where ' and C0 are given by Lemma 14.1. Then jyj ⩾ ı.jxj; R/ implies jE� .xC
iy/j ⩾ R, which in turn means that E� .x C iy/ 2 C n DR. Therefore, for each
k 2 Z we have

�k.D
C
R / � V k \ fx C iy W y ⩽ ı.jxj; R/g :

Let Vk;R denote this last intersection. Since ı.s; R/ has logarithmic growth in R,
every sufficiently largeR satisfies the inequalityR > pnC1Cı.pnC1; 2R/; for
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a givenR as such, if 0 ⩽ k ⩽ pnC1 and z is any point in Vk;2R with z D xC iy,
then

jzj ⩽ jxj C ı.jxj; 2R/ ⩽ pn C 1C ı.pn C 1; 2R/ < R ;

and so it follows that z 2 DR \ CC. Thus, if 0 ⩽ k ⩽ pn C 1 then �k.DC
2R/ �

DR\CC � D
C
2R. Since T pn.DC

R / � D
C
2R, taking the qn-tuple .k1; k2; : : : ; kqn

/

as in Lemma 14.2 we deduce that

An;R D �k1
ı�k2
ı� � �ı�kqn

.T pnD
C
R / � �k1

ı�k2
ı� � �ı�kqn

.DC
2R/ � DR\CC :

This proves the first inclusion; the second is proved in similar fashion.

Remark 14.3. Observe that if we define Un;R D �k2
ı �k3

ı � � � ı �kqn
.DC
R /

and set A0
n;R D �1.Un;R/ and A00

n;R D  0
�
�.Un;R/

�
, where � W C ! C is

complex conjugation, then the above argument applies mutatis mutandis to yield
A0
n;R � DR \CC, A00

n;R � DR \CC as well, for every sufficiently large R and
all n ⩾ 0.

Proof of Theorem 14.2. Given n ⩾ 0, let Rn > 0 be large enough for the con-
clusion of Lemma 14.5 to hold. Let �n D T �pn ı Eqn

�
and �n D T �pnC1 ı

E
qnC1

�
and let O�n

;O�n
� C be the symmetric Jordan domains (quasidisks) such

that O
C
�n
D An;Rn

;OC
�n
D Bn;Rn

. Then �n and �n commute, and O�n
;O�n

�
DRn

, by Lemma 14.5. The restrictions �njO�n
and �njO�n

are univalent and onto
their images, which by Lemma 14.3 are DRn

\ C.h�n.˛n/; �n.0/i/ and DRn
\

C.h�n.0/; �n.ˇn/i/, respectively. Also, let O�n
� C be the connected compo-

nent of ��1
n .O�n

/ containing the origin and let �n D �n ı �n. Then the restriction
�njO�n

is a holomorphic 3-fold branched covering map onto its image, �n.O�n
/ D

DRn
\ C.h�n.0/; �n.0/i/. Moreover, by the remark following Lemma 14.5, we

have
O

C
�n
� An;R [ A0

n;R [ A00
n;R � DRn

\CC ;

and so O�n
� DRn

. It follows at once that .O�n
;O�n

;O�n
;DRn

/ is a bowtie.
Now we claim that this bowtie together with the maps �n; �n; �n determine

a holomorphic commuting pair �n;� with geometric boundaries, up to orienta-
tion, with rotation number �.�n;� / D ŒanC1 C 1; anC2; : : :� and height given
by m.�0;� / D a0 when n D 0, and by m.�n;� / D an C 1 when n > 0. We have
indirectly checked all conditions in Definition 14.2, except perhaps condition H5.
We check it for n > 0; the case n D 0 is just as easy. Using the commutativity
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of T with E� , Lemma 14.2 and the recurrence relations defining pnC1 and qnC1,
we get

�anC1
n .˛n/ D .T �pn ıEqn

�
/an.T �pn ıEqn

�
.˛n//

D T �pnC1 ıEqnC1

�
.0/ D �n.0/ :

Similarly, we have �n.ˇn/ D �n.0/. Thus condition H5 is satisfied too, and m D
an C 1 is the height of �n;� . The statement on rotation numbers is clear.

pn

yDı.jxj;2R/

� � � V0 V1 VpnC1� � �

� � � � � �

0

An;R

1

D
C
R

Re z

Bn;R

�1 ˛n ˇn

Figure 14.2: Building holomorphic pairs.

Remark 14.4. Because holomorphic commuting pairs can be renormalized, once
R0 is chosen so that the above construction works for n D 0, we may take Rn D
R0 thereafter. If this is done then, for each n ⩾ 0, �nC1;� becomes the first
renormalization of �n;� up to linear rescaling.

Limit set qc-rigidity

When combined with the results of the previous section, Theorem 14.2 yields two
crucial properties of holomorphic commuting pairs, which we express as follows.
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Theorem 14.3. Let � be a holomorphic commuting pair with geometric bound-
aries and irrational rotation number. Then � has no wandering domains and ad-
mits no non-trivial, symmetric, invariant Beltrami differentials entirely supported
in its limit set.

This theorem allows holomorphic commuting pairs to be parametrized by con-
formal structures supported on the outer annulus of a fixed model. The properties
of holomorphic commuting pairs stated in this theorem are extracted from corre-
sponding ones found naturally in the family ff�g of self-maps of the cylinder C�

introduced before.

Proof of Theorem 14.3. Combining Theorem 14.1 with Theorem 14.2, we know
that � is conjugate to �0;� for some � by a quasiconformal homeomorphism H .
Let � be a � -invariant Beltrami differential with support in J� . Then �0 D H��
is �0;� -invariant. Spreading �0 through the entire complex plane via the map-
pings defining �0;� we get a Beltrami differential � invariant under both E� and
T �1 ı Ea0

�
, and therefore invariant under T also. Thus � projects down to a Bel-

trami differential on the cylinder which is f� -invariant and supported in Jf�
. By

Theorem 11.3, this Beltrami differential must vanish almost everywhere, and so
� � 0 a.e. also. A similar argument, which we leave as an exercise, rules out
wandering domains.

14.5 Complex bounds
Another important fact about holomorphic commuting pairs is that the class of such
objects contains all limits of successive renormalizations of a critical circle map (or
critical commuting pair). Moreover, we have complex bounds for renormalization,
in the following sense.

Theorem 14.4 (Complex Bounds). Let f W S1 ! S1 be a real-analytic criti-
cal circle map with arbitrary irrational rotation number. Then there exists n0 D
n0.f / such that for all n ⩾ n0 the n-th renormalization of f extends to a holomor-
phic pair with geometric boundaries whose fundamental annulus has conformal
modulus bounded from below by a universal constant.

This theorem establishes Step (4) of Sullivan’s strategy described at the begin-
ning of this chapter. It also provides another proof of existence of holomorphic
commuting pairs, independent of the explicit constructions we performed in Sec-
tion 14.4.
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Remark 14.5. It is important to observe that, in Theorem 14.4, although the bound
on the fundamental annulus of the holomorphic pair corresponding to a deep renor-
malization of f is bounded from below by a universal constant, the geometric
boundaries can become very bad (i.e., they are quasi-circles with qc-distortion
constant that can go to infinity with n) – unless the rotation number is of bounded
type, in which case the bounds in question depend only on the least upper bound
on the coefficients of the continued fraction development of �.f /. When �.f /
is a number of unbounded type, the limits of renormalization will contain maps
with parabolic fixed points, and the proper study of renormalization in these cases
requires the notion of cylinder renormalization introduced by Yampolsky (see for
instance Yampolsky [2002]).

We think of the unit circle S1 D R=Z as embedded in the infinite cylinder
C=Z, and we use on latter the conformal metric induced from the standard Eu-
clidean metric jdzj of the complex plane via the exponential map exp.z/ D e2�iz .
Note that Im z is well-defined for every z 2 C=Z (it is simply the imaginary part
of any one of its pre-images under the exponential).

The main step in the proof of Theorem 14.4 is to establish a geometric estimate
showing that, for all sufficiently large n, the appropriate inverse branch of f qnC1

maps a sufficiently large disk around the n-th renormalization domain In [ InC1
well within itself. Here, “sufficiently large” means large with respect to the size
of In [ InC1. For each m ⩾ 1, let Dm � C=Z denote the disk having as one of
its diameters the interval Œf qmC1.c/; f qm�qmC1.c/� � S1 containing the critical
point c. Note3 that diam.Dm/ is comparable with jImj: this follows from the
real a priori bounds (Theorem 6.3). The geometric estimate is the following (the
statement is taken almost verbatim from de Faria and de Melo [2000, Prop. 3.2]).

Proposition 14.1. There exist universal constants B1 and B2 and for eachN ⩾ 1

there exists n.N / such that for all n ⩾ n.N / the inverse branch f �qnC1C1 taking
f qnC1.In/ back to f .In/ is well-defined over˝n;N D .Dn�N nS1/[f qnC1.In/

and it is univalent there, and for all z 2 ˝n;N we have

dist
�
f �qnC1C1.z/; f .In/

�

jf .In/j
⩽ B1

�
dist .z; In/
jInj

�
C B2 : (14.4)

As stated, Theorem 14.4 was proved in de Faria and de Melo [ibid., §3]. But
the story behind it is a bit more involved. The first version of the complex bounds
in the present context was proved in de Faria [1992] (also de Faria [1999]) under
two further assumptions on f , namely

3It is easy to see that Œf qmC1.c/; f qm�qmC1.c/� � Im [ ImC1.
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(i) the rotation number of f is of bounded type;

(ii) f is an Epstein map.

We say that a real analytic circle map is Epstein if its lift to the real line has a
holomorphic extension F to a neighborhood of the real axis in the complex plane
in such a way that F has inverse branches which are globally defined in the upper
(or lower) half-plane. The main examples of Epstein circle maps are the maps in
the Arnold family introduced earlier (see Section 6.1.2). The proof presented in
de Faria [1992, 1999] makes use of the so-called sector theorem of Sullivan (see
Sullivan [1992]; the version used in the circle case is in fact the one proved in de
Faria [1998]). However, the sector theorem can only be used under the bounded
type assumption (i).

That assumption was removed by Yampolsky [1999], using a special case of
Proposition 14.1. Assuming that the map f is Epstein, he exploits in full the
idea of Poincaré neighborhood trapping, already explained in Section 13.1.2 and
that we briefly recall now. Let J � R be a bounded open interval, and write
C.J / D C n .R n J /. If � W C.J /! C.�.J // is a real-symmetric holomorphic
map, then � maps each Poincaré disk D� .J / D fz W angle.z; J / ⩾ �g into a
corresponding Poincaré neighborhood D� .�.J // with the same angle � . Here,
0 < � < � and angle.z; J / denotes the angle at z under which z views the
interval J . This simple but fundamental fact is easily seen to be a consequence of
Schwarz’s lemma.

The Poincaré neighborhood trapping idea used in Yampolsky’s approach works
because he is assuming that f is Epstein. But if we abandon the latter hypothesis,
then this tool is no longer directly applicable. In order to prove Theorem 14.4, one
needs the following “relaxed” version of Poincaré neighborhood trapping. The
statement is taken almost verbatim from de Faria and de Melo [2000, Lem. 3.3]),
but with an important modification introduced by Yampolsky [2019, Lem. 4.4].

Lemma 14.6. For every small a > 0, there exists �.a/ > 0 satisfying �.a/! 0

and a=�.a/! 0 as a! 0, such that the following holds. LetF W D\C.Œ0; a�/!
C be univalent and symmetric about the real axis, and assume F.0/ D 0, F.a/ D
a. Then for all � ⩾ �.a/ we have F .D� ..0; a/// � D.1�a1Cı/� ..0; a//, where
0 < ı < 1 is an absolute constant.

This lemma is applicable to other situations – see for example Clark, van Strien,
and Trejo [2017]. It is a precursor to the more general almost Schwarz inclusion
lemma for asymptotically holomorphic maps due to Graczyk, Sands, and Świątek
[2005, Prop. 2], stated in the previous chapter (Proposition 13.2).



14.5. Complex bounds 409

We will derive Lemma 14.6 as a consequence of an elegantly simple result due
to Gaidashev and Gorbovickis [2021] which is an improvement over Yampolsky’s
aforementioned version. In what follows, we will employ the following additional
notation. For each � > 0, we will write !.�/ D 2 arctan � . We also let D.J /

denote the doubly-slit disk obtained by intersecting C.J / with the open disk of
radius 1 centered at the midpoint of J .

At this point it is convenient to restate the Poincaré neighborhood trapping
idea as the following Schwarzian inclusion principle. We have already seen this
principle in Section 13.1.2.

Lemma 14.7. If  W C.J / ! C.J / is a real-symmetric holomorphic map, then
for each � we have  .D� .J // � D� .J /.

Now, the Gaidashev–Gorbovickis version of the almost Schwarzian inclusion
principle can be stated as follows.

Lemma 14.8. Let J be a bounded open interval on the real line, let b D jJ j=2
be such that b < 1, and let � W D.J / ! C.J / be a real-symmetric holomorphic
map. Then for each � > 0 such thatD!.�/.J / � D.J /, we have

�.D!.�/.J // � D!.��/.J / ; (14.5)

where

�� D
�2 � b2
�.1C b2/ :

Proof. We first note that every such map � can be factored as � D  ıG, where
G maps D.J / univalently onto C.J / and  D � ı G�1 maps C.J / into itself.
The rough idea of the proof is to choose G suitably so that it maps every set of the
form D� .J / contained in D.J / into a slightly larger set D� 0.J / (with � 0 slightly
smaller than � ), which will then be mapped into itself by  , by Lemma 14.7.

We may assume, without loss of generality, that J is symmetric about the ori-
gin, i.e., J D .�b; b/. The map G that does the job is given by

G.z/ D .b2 C 1/z
z2 C 1 :

As the reader may easily check as an exercise, G is indeed real-symmetric and
univalent in D.J /, it fixes the (boundary) points b and �b, and maps D.J / onto
C.J /.



410 14. Renormalization: Holomorphic Methods

Now, given � > 0 such that D!.�/.J / � D.J /, let us look for the smallest
Poincaré neighborhood D� .J / that contains G.D!.�/.J //. This is tantamount to
finding the smallest angle under which a point on @G.D!.�/.J // views the interval
J D .�b; b/. Given any z 2 C n R, the angle under which z views the interval
.�b; b/ is arg.R.z//, where

R.z/ D z � b
z C b :

Now, an easy calculation shows that R.F.z// D �R.z/R.b2z/, so that

arg.R.F.z/// D arg.�R.z//C arg.R.b2z// : (14.6)

For every z 2 @D!.�/.J /, we have arg.R.z// D !.�/ (which means in particular
that arg.�R.z// is constant). Hence, for such boundary points, the left-hand side
of (14.6) will be smallest when arg.R.b2z/// is minimal. This occurs at the points
˙z� D ˙ib=� 2 @D!.�/.J / (see Figure 14.3). But

G.z� / D
.b2 C 1/z�
z2� C 1

D ib�.b2 C 1/
�2 � b2 2 iR :

Thus, the pointG.z� / sits vertically above the origin, on the imaginary axis. Hence
the angle � under which this point views the interval .�b; b/ is twice the angle
under which it views the interval .0; b/, and the latter has tangent equal to

�� D
b

Im .G.z� //
D �2 � b2
�.1C b2/ ;

Therefore � D 2 arctan �� D !.��/. This establishes (14.5) and finishes the proof.

With this lemma at hand, we are now in a position to give a detailed proof of
Lemma 14.6.

Proof of Lemma 14.6. We apply Lemma 14.8 with J D .0; a/, so that here b D
a=2, and with � D F . Given � > 0 such that D� .J / � D.J /, let � D tan .�=2/
– hence, in the notation introduced above, we have � D !.�/. Note that we must
have � > a for this inclusion to hold. We may assume also that � < 1. According
to Lemma 14.8, we have F.D� .J // � D��

.J /, where �� D !.��/ and

�� D
4�2 � a2
�.4C a2/ :
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�b b

z�

b2z�

!.�/

!.�/�b3 b3

Im z

Re z

D!.�/.J /

�z�

�b2z�

Figure 14.3: The minimum value of arg.R.b2z// for z 2 @D!.�/.J / is attained
at the points˙z� D ˙ib=� .

Now we have
��
�
D 1 �

�a
�

�2 �2 C 1
4C a2 > 1 �

1

2

�a
�

�2
:

Thus, if � ⩾ a1=3 then
��
�
> 1 � 1

2
a4=3 : (14.7)

So now we know how to bound �� from below in terms of � , but we need to
translate this into a bound for �� in terms of � . At this point, we simply observe
that the function h.x/ D arctan.x/=x is monotone decreasing for x > 0 (a calculus
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exercise). Hence we have

��
�
D !.��/

!.�/
D arctan.��/

arctan.�/
D ��

�

h.��/
h.�/

>
��
�
:

Combining this with (14.7), we deduce that

�� >
�
1 � 1

2
a4=3

�
� : (14.8)

This estimate holds provided � ⩾ a1=3, that is to say, provided � ⩾ �.a/, where

�.a/ D 2 arctan 3
p
a :

The latter function clearly satisfies �.a/ ! 0 and a=�.a/ ! 0 as a ! 0. In
summary, we have just established what we wanted, namely, that if � ⩾ �.a/,
then

F.D� ..0; a/// � D.1�a1Cı/� ..0; a// ;

where ı D 1=3. This completes the proof of Lemma 14.6.

We will also need to know some general facts about complex analytic maps
that are very close to maps with a parabolic fixed-point. In other words, complex-
analytic versions of the almost parabolic maps we encountered before.

Definition 14.3. Let J � R be an interval, and let � > 0. A holomorphic univa-
lent map � W D� .J / ! C is called almost parabolic if the following conditions
are satisfied.

(a) � is symmetric about the real axis.

(b) �jJ is monotone without fixed points.

(c) � has positive Schwarzian derivative on J .

(d) J \ �.J / is non-empty.

If�� is the interval J n�.J /, the largest a D a.�/ > 0 such that �a�1.��/ � J
is called the length of �.
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For our purposes, the most important example of a complex almost parabolic
map is the inverse branch of a high first return f qn of a critical circle map f (or
one of its renormalizations), in the situation where an is large, that is, the rotation
number is “almost rational”.

In the notation just introduced, the fundamental inequality of Yoccoz proved
in Chapter 7 (see Lemma 7.3) can be restated as follows.

Lemma 14.9 (Yoccoz). There exists C� > 1 such that for each � 2 F� and for
each 0 ⩽ j ⩽ a � 1 we have

1

C�m.j /2
⩽ j�j .��/j ⩽

C�

m.j /2
;

where m.j / D minfj C 1; a � j g.

Given 0 < � < 1, we denote by F� the family of all complex almost parabolic
maps � such that j�� j ⩾ � jJ j and j�a�1.��/j ⩾ � jJ j, and also normalized so
that

Œ0; 1� D �� [ �.��/ [ � � � [ �a�1.��/ :

Every element of the family F� whose length is sufficiently large has two fixed
points, symmetric about the real axis. These fixed points are necessarily attracting,
due to the positive Schwarzian property of the maps in F� . More precisely, we
have the following fact. Let us denote by H the upper half-plane.

Lemma 14.10. Given 0 < � < 1, there exist C > 0 and a0 > 0 such that, if
� 2 F� has length a D a.�/ > a0, then there exist two attracting fixed points
zC 2 H \ dom.�/ and z� D zC with

1

Ca
⩽ ImzC ⩽

C

a
:

Moreover, if jz � zCj ⩽ C=a then jz � �.z/j ⩽ C=a2.

Proof. The proof follows from Yoccoz’s Lemma, the saddle-node bifurcation and
a normality argument.

The family F� is normal in the sense of Montel, and every limit map not in F�

is a map with a parabolic (indifferent) fixed point on the real axis, whose multiplier
is necessarily equal to one.
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Lemma 14.11. Given a compact set W � H and an open set D � Œ0; 1� in the
plane, there exist N� > 0, �� > 0 and a� > 0 with the following property. For
each � 2 F� such that a.�/ ⩾ a� and �.�/ < ��, the domain of � contains W ,
and for each z 2 W there exists n < N� such that �n.z/ 2 D.

Proof. If the statement is false, we find sequences Nk ! 1, ak ! 1 and
�k ! 0, maps �k 2 F� with �.�k/ D �k and a.�k/ D ak (whose domains
contain W ), and points zk 2 W such that �n

k
.zk/, whenever defined, does not

belong to D for all n ⩽ Nk . Since F� is normal and W is compact, we may
assume that the sequence �k converges uniformly on compact subsets of H to a
map � W H ! H and that zk ! z 2 W . Applying Lemma 2.4 to each �k ,
we deduce that � has a fixed-point x0 2 Œ0; 1�. By the Denjoy–Wolff theorem,
�n.z/ ! x0 as n ! 1. Hence there exists N such that �N .z/ 2 D. But then
�N
k
.zk/ 2 D also, for all sufficiently large k, a contradiction.

In what follows, we will fix f W S1 ! S1 as in the statement of Theorem 14.4.
We will assume wherever necessary that f is normalized so that its critical point is
c D 1 2 S1. Since f is real-analytic, it extends to a holomorphic map f W AR !
C=Z, where AR is the annulus fz 2 C=Z W jIm zj < Rg. Making R smaller if
necessary, we may assume that f has no critical points outside S1. Using again
Koebe’s distortion theorem, it is easy to see that there exists R0 > 0 such that,
if z 2 S1 and f .z/ is at a distance > R0 from the critical value of f , then the
inverse branch f �1 which maps f .z/ back to z is well-defined and univalent on
the diskD.f .z/; R0/.

On an intuitive level, the key to the proof of Theorem 14.4 is to show that
for all sufficiently large n the n-th renormalization of f satisfies an inequality of
the form jRn.f /.z/j ⩾ C jzj3 on a neighborhood of the origin, where C is a
universal constant. Thus, the relevant inverse branches of Rn.f / behave as cube
roots, mapping a large disk about the origin well within itself, giving rise to a
holomorphic pair. The proof depends on Proposition 14.1 stated above.

For our purposes, the main consequence of Lemma 14.6 is the following.

Lemma 14.12. For each n ⩾ 1 there existKn ⩾ 1 and �n > 0, withKn ! 1 and
�n ! 0 as n ! 1, such that for all � ⩾ �n and all 1 ⩽ j ⩽ qnC1 the inverse
branch f �jC1 mapping f j .In/ back to f .In/ is well-defined overD� .f j .In//
and maps this neighborhood univalently intoD�=Kn

.f .In//.

Proof. Let dn D max1⩽j⩽qnC1
jf j .In/j; from the real bounds, these numbers go

to zero exponentially with n. Take ı > 0 as in Lemma 14.6, and let Kn be given
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by

K�1
n D

qnC1Y

jD1

�
1 � jf j .In/j1Cı

�
:

Then define �n D Kn�.dn/, where �.�/ is the function in Lemma 14.6. Note that

logKn ⩽ C

qnC1X

jD1
jf j .In/j1Cı ⩽ Cd ın :

Therefore Kn ! 1 and �n ! 0 as required. Also, dn=�n ! 0.
Now fix j as in the statement and suppose � ⩾ �n. Define inductively #0 D �

and #iC1 D .1�jf j�i .In/j1Cı/#i for i D 0; 1; : : : ; j �2, and note that #j�1 ⩾
�=Kn. Moreover,

diam
�
D#i

�
f j�i .In/

��
⩽ 2

jf j�i .In/j
sin#i

⩽
C 0dn
�.dn/

<< R0 :

Therefore f �1 is well-defined and univalent over D#i
.f j�i .In//, and by

Lemma 14.6 we have the inclusionf �1.D#i
.f j�i .In/// � D#iC1

.f j�i�1.In//.
This completes the proof.

Remark 14.6. The same result holds if we replace In by any interval J � In such
that the map f qnC1�1 W f .J /! f qnC1.J / is a diffeomorphism.

We will need four lemmas concerning the sequence fDmg introduced earlier.
The first is an easy consequence of Lemma 14.12 and the above remark.

Lemma 14.13. There exists m0 ⩾ 1 such that for all m ⩾ m0 the inverse branch
f �qmC1 taking f qm.Im/ back to f .Im/ is well-defined and univalent inDm, and

diam.f �qmC1.Dm//
jImj

⩽ C
diam.f .Dm//
jf .Im/j

:

The second is the analogue of Yampolsky [1999, Lem. 4.1].

Lemma 14.14. There exist "1 > 0 and m1 ⩾ m0 such that for all m ⩾ m1 and
eachw 2 f �qmC1.Dm/nDm we have (a) dist .w; Im/ ⩽ C jImj and (b) for each
x 2 Im, "1 < j arg .w � x/j < � � "1.

Proof. The same proof given in Yampolsky [ibid.] applies here. Invariance of
Poincaré neighborhoods is replaced by quasiinvariance, using Lemma 14.12.
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The third is the analogue of Yampolsky [1999, Lem. 4.4]. It provides us with
the tools we need for the inductive step in the proof of Proposition 14.1. The
situation is depicted in Figure 14.4.

Lemma 14.15. There exist "2 > 0 and m2 ⩾ m0 such that the following holds
for all m ⩾ m2. Let � 2 Dm n DmC1 be a point not on the circle, and let
�0 D f �qm.�/ and �00 D f �qmC2.�0/. Then we have either �00 2 DmC1, or else
dist .�00; ImC1/ ⩽ C jImj and "2 < arg .�00 � x/ < � � "2 for all x 2 Im [ ImC1.

Proof. Once again, the proof given by Yampolsky [ibid., Lem. 4.4] can be repeated
here, mutatis mutandis.

�00

�

Dm

DmC1

c

f qm�qmC1.c/

Im

ImC1ImC2 f qmC1�qmC2.c/

Figure 14.4: Poincaré-neighborhood trapping in action.

Notation. Given a point � 2 C and an interval J D .a; b/ � R, we denote by
angle .�; J / the smallest of the angles � � arg .� � a/ and arg .� � b/.

The fourth is a consequence of de Faria and de Melo [2000, Lem. 2.5].

Lemma 14.16. There exist universal constants N� > 0 and a� > 0 and some
m3 > 0 with the following property. For all m ⩾ m3 such that amC1 > a� and
each w 2 Vm D f �qmC1.Dm/ n Dm, there exists 1 < i < N� such that the
iterate .f �qmC1/i .w/ is well-defined and belongs toDm.
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Proof. Lift f �qmC1 to the real line and normalize it so that ImnImC2 becomes the
interval Œ0; 1� to get an almost parabolic map �m. Note that �m belongs to the nor-
mal family F� introduced earlier, for some � depending only on the real bounds.
LetWm be the image of Vm under such normalization. It is an easy matter to check
that f �qmC1.Dm/ \ S1 � Dm \ S1, so that Vm does not intersect S1, and that
W C
m D Wm \H is compactly contained in H. Therefore, by Lemma 14.14, there

exists a fixed compact setW � H such thatW C
m � W for all sufficiently largem.

Similarly, the normalized copies ofDm contain a fixed open setD � Œ0; 1� for all
sufficiently largem. Hence we can takeN� and a� as given by Lemma 14.11.

Proof of Proposition 14.1. We will start with a point z in the diskDn�N . For the
argument to work, n will have to be sufficiently large. We start taking n > N C
maxfm1; m2; m3g, wherem1,m2 andm3 are given respectively by Lemmas 14.14
to 14.16. Let us denote by J�i the interval f qnC1�i .In/. Also, given z, let z�i D
f �i .z/ be the corresponding pre-images of z.

The proof runs by finite induction in the range n �N ⩽ m ⩽ n. Let m be the
largest with the property that z 2 Dm, and keep in mind that dist .z; In/ � jImj.
Consider those moments i1 < i2 < � � � < i` in the backward orbit fJ�ig before
the first return to ImC1 such that J�ik � Im. Then, there are two possibilities.

The first possibility is that z�i` … Dm. In this case there exists a smallest k ⩽ `

such that z�is … Dm for s D k; kC 1; : : : ; `. We claim that jJ�ik j � jInj. This is
clear from the real bounds if ` D amC1 ⩽ a�, where a� is given by Lemma 14.16.
If on the other hand ` > a�, then again by Lemma 14.16 we must have `�k < N�,
and the claim follows from Exercise 6.3 (or the original result in de Faria and de
Melo [ibid., Lem. 2.2]). Therefore, by Lemma 14.14,

dist .z�ik ; J�ik /
jJ�ik j

⩽ C
jImj
jJ�ik j

⩽ C 0 dist .z; In/
jInj

: (14.9)

Moreover, angle .z�ik ; J�ik / ⩾ "1, so there exists � D �."1; N / such that z�ik 2
D� .J�ik /. Now, if n is sufficiently large, �n < � and we can use Lemma 14.12 to
get that z�qnC1C1 2 D�=Kn

.f .In//. This gives us

dist .z�qnC1C1; f .In//

jf .In/j
⩽ C 00Kn

dist .z�ik ; J�ik /
jJ�ik j

; (14.10)

and this together with (14.9) yields the proposition in this case.
The second possibility is that � D z�i` 2 Dm, and we can assume that

� … DmC1 (otherwise the induction step is complete). In this case, consider
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�0 D f �qm.�/ and �00 D f �qmC2.�0/ and the corresponding interval J 00 D
f �qm�qmC2.J�i`/, and apply Lemma 14.15. Then either �00 2 DmC1, in which
case the induction step is complete, or else dist .�00; ImC1/ ⩽ C jImj and
angle .�00; J 00/ ⩾ "1, in which case we can apply the same argument leading to
(14.9) and (14.10).

If the backward orbit survives all the steps of the induction, this means that
in the end z�qnC1Cqn�1

2 Dn�1. By Lemma 14.13, the image of Dn�1 under
f �qn�1C1 has diameter comparable to jf .In/j, so the first member of (14.10) is
simply bounded by an absolute constant. So in any case we have (14.4).

Proof of Theorem 14.4. First we remark that, since f is a cubic critical circle map,
there exists a neighborhood ˝ of the critical point of f such that the restriction
f W ˝ ! f .˝/ is of the form f D  ıQ ı� where  and � are univalent maps
with universally bounded distortion, with �.0/ D 0, andQ is the map z 7! z3.

Let B1; B2 be the constants of Proposition 14.1 and let us fix a large integer
N . How large N must be will be determined in the course of the argument. By
Proposition 14.1, if n ⩾ n.N / then inequality (14.4) holds for all z 2 ˝n;N .
Making n larger still if necessary, we have f �qnC1C1.Dn�N / � f .˝/. By the
above remark, the branch of f �1 mapping f .In/ back to In is the composition of
three maps: a univalent map fixing zero, a cube root, and another univalent map
with bounded distortion. Using this fact and inequality (14.4), we have

diam.f �qnC1.Dn�N //
jInj

⩽ C 3

s
B1

diam.Dn�N /
jInj

C B2 ; (14.11)

for some universal constant C > 0.
Now, as we know from the real bounds (Theorem 6.3), there exist universal

constants K2 > K1 > 1 such that, for all sufficiently large n,

KN1 ⩽
diam.Dn�N /
jInj

⩽ KN2 : (14.12)

If N ⩾ 1 is the smallest integer greater than 3 log .2C 3
p
B1 C B2/=2 logK1, we

can check from (14.11) and the first inequality in (14.12) that

diam.f �qnC1.Dn�N //
jInj

<
1

2

diam.Dn�N /
jInj

:

Note that N depends only on B1; B2; K1; C , and is therefore universal. From
these facts, we see at once that for all sufficiently large n the topological disk
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f �qnC1.Dn�N / is compactly contained inDn�N , and moreover

mod .Dn�N n f �qnC1.Dn�N // ⩾ � ; (14.13)

where � > 0 is a universal constant. With these basic geometric bounds at hand,
we can easily construct the holomorphic pair to which Rn.f / extends, in the fol-
lowing way. For more details on this construction, see de Faria [1999, Section 4].

First, let Of be the standard lift of f to the real line. For each n, let �n D
T �pn ı Of qn.0/ and denote by �n the linear map x 7! �nx. Take the topological
disks eVn D Dn�N and eO�n

D f �qnC1.Dn�N / in the cylinder and consider their
lifted and normalized copies in C, namely Vn D ��1

n .exp�1. eVn// and O�n
D

��1
n .exp�1.eO�n

// (here, exp�1 denotes the inverse branch of the exponential that
maps the critical point c D 1 2 S1 of f to the origin). Then consider the map

�n D ��1
n ı T �pnC1 ı Of qnC1 ı�n W O�n

! C :

The geometric estimates proved above show that O�n
is compactly contained in Vn,

while �n.O�n
/ � Vn holds by construction. We define the domains O�n

;O�n
and

the maps �n W O�n
! C; �n W O�n

! C in a similar way. We obtain in this fashion
a holomorphic pair �n whose underlying critical commuting pair is precisely the n-
th renormalization Rn.f /. In addition, (14.13) shows that the conformal modulus
of�n is bounded from below by�. Finally, it is straightforward to check that all the
above topological disks have piecewise analytic boundaries, consisting of finitely
many analytic arcs meeting at definite angles, so �n has geometric boundaries.
This completes the proof of Theorem 14.4.

14.6 McMullen’s dynamic inflexibility theorem

Let f and g be two real-analytic critical circle maps and let h be a quasisymmet-
ric conjugacy between f and g, mapping the critical point cf of f to the critical
point cg of g. Suppose h is C 1C� at the critical point cf , for some � > 0. Then, it
is not difficult to prove (using the real bounds) that the C 0 distance between Rnf

and Rng converges to zero exponentially fast as n ! 1 (and this, as we have
already seen, at least in the bounded type case leads to C 1 rigidity). Now, one
way to guarantee that h is C 1C� at the critical point is if we know that h extends to
a quasiconformal homeomorphism H (conjugating, say, the holomorphic exten-
sions of f and g on a small neighborhood of their critical points) which happens
to be C 1C˛-conformal at the critical point cf , in the following sense.
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Definition 14.4. We say that a map � W bC ! bC is C 1C˛-conformal at p 2 bC (for
some ˛ > 0) if the complex derivative �0.p/ exists and we have

�.z/ D �.p/C �0.p/.z � p/CO.jz � pj1C˛/

for all z near p.

McMullen [1996] developed a powerful theory that yields in particular a cri-
terion for a conjugacy between two holomorphic dynamical systems to be C 1C˛-
conformal at a point. His definition of holomorphic dynamical system is very
broad, encompassing rational or transcendental maps, Kleinian groups, etc, as well
as all possible geometric limits of such systems.

In order to state McMullen’s criterion, we need some preparatory definitions.
Our exposition here is borrowed from de Faria and de Melo [2000, §7].

Let us denote by V .bC�bC/ the set of all analytic hypersurfaces of bC�bC. We
topologize V .bC � bC/ as follows. If F � bC � bC is a hypersurface, its boundary
@F D F n F is closed in bC � bC. Hence, given F 2 V .bC � bC/ and a sequence
Fi 2 V .bC � bC/, declare Fi ! F if

(a) @Fi ! @F in the Hausdorff metric on closed subsets of bC � bC;

(b) For each open setU � bC�bC there exist f; fi W U ! C such thatU \F D
f �1.0/, U \ Fi D f �1

i .0/, each f; fi vanishes to order one on F;Fi
respectively, and the sequence fi converges uniformly to f on compact
subsets of U .

Define a set to be closed in V .bC � bC/ if it contains the limits of all its con-
vergent sequences. As McMullen shows in McMullen [1996, Ch. 9], the space
V .bC � bC/ with this topology is separable and metrizable.

Definition 14.5. A holomorphic dynamical system is a subset F � V .bC � bC/.
The elements of F are its holomorphic relations.

One is primarily interested in closed holomorphic dynamical systems, in other
words, those which are closed subsets of V .bC � bC/. The geometric topology
on the space of all closed holomorphic dynamical systems is by definition the
Hausdorff topology on the space of closed subsets of V .bC � bC/. As proved in
McMullen [ibid., Ch. 9], the geometric topology is typically non-Hausdorff (hence
non-metrizable), but it is always sequentially compact.

We also need the following notions introduced by McMullen.



14.6. McMullen’s dynamic inflexibility theorem 421

1. Deep point Given a compact set � � C and a positive number ı, we say
that a point p 2 � is a ı-deep point of � if for every r > 0 the largest disk
contained inD.p; r/ which does not intersect � has radius ⩽ r1Cı .

2. Saturation Given a holomorphic dynamical system F , we define its satura-
tion F sat to be the closure in V .bC � bC/ of the set whose elements are the
intersections F \ U , where F 2 F and U � bC � bC is open.

3. Nonlinearity A holomorphic dynamical system F � V .bC � bC/ is said to
be non-linear if it does not leave invariant a parabolic line field in bC.

4. Twisting A (closed) holomorphic dynamical system F � V .bC � bC/ is
said to be twisting if every holomorphic dynamical system quasiconformally
conjugate to F is non-linear.

5. Uniform twisting A family fF˛g of holomorphic dynamical systems is said
to be uniformly twisting if every geometric limit of the family of saturations
fF sat

˛ g is a twisting dynamical system.

6. The family .F ; �/ Given F � V .bC � bC/ and a compact set � in the
Riemann sphere, we define a family .F ; �/ of holomorphic dynamical sys-
tems in the following way. For each baseframe ! in the convex-hull ch.�/
of � in hyperbolic 3-space, let T! be the fractional linear transformation
that sends ! onto the standard baseframe !0 at .0; 1/ 2 C � RC � H3.
Define .F ; !/ to be the dynamical system T �

! .F /, the pull-back of F by
T! . Then let .F ; �/ be the family of all .F ; !/ as ! ranges through the
baseframes in ch.�/.

Now we have everything we need to state McMullen’s dynamic inflexibility
theorem. The proof is given in McMullen [ibid., p. 166].

Theorem 14.5 (Dynamic Inflexibility). Let F � V .bC � bC/ be a holomorphic
dynamical system and let � � bC be a compact set. If .F ; �/ is uniformly twist-
ing and � W bC ! bC is a K-quasiconformal conjugacy between F and another
holomorphic dynamical system F 0, then for each ı-deep point p 2 � the map �
is C 1C˛ conformal at p, for some ˛ > 0.
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14.7 Proof of exponential convergence

With McMullen’s dynamic inflexibility theorem at hand, we prove Theorem 13.1.
By the complex bounds, every sufficiently high renormalization of a real-analytic
critical commuting pair extends to a holomorphic commuting pair with good geo-
metric control. Moreover, a quasisymmetric conjugacy between two such renor-
malized critical commuting pairs (mapping critical point to critical point) extends
to a quasiconformal conjugacy between the corresponding renormalized holomor-
phic commuting pairs, by the pull-back argument. All one has to do, then, is to
prove two things: (a) that the critical point of a holomorphic commuting pair is
ı-deep for some ı > 0; and (b) that the full holomorphic dynamical system gener-
ated by a holomorphic commuting pair is uniformly twisting in its limit set. The
precise statements – modulo the notion of good geometric control, which we do
not define here – are as follows.

Theorem 14.6 (Deep Critical Point). Let � be a holomorphic pair with arbitrary
rotation number and limit set K� . Then there exists ı > 0 such that the critical
point of � is a ı-deep point of K� .

Theorem 14.7 (Small Limit Sets Everywhere). Let � be a holomorphic pair with
good geometric control and irrational rotation number of bounded type, and let
K� be its limit set. Then for each z0 2 K� and each r > 0 there exists a
pointed domain .U; y/ with jz0 � yj � r and diam.U / � r , and there exist some
iterate of� mapping .U; y/ onto a pointed domain .V; 0/ univalently with bounded
distortion. In particular, U contains a conformal copy of some renormalization of
� whose limit set has size commensurable with r .

These results are exact analogues of results obtained by McMullen in the con-
text of (bounded-type, infinitely renormalizable) quadratic-like maps. Used in
combination with Theorem 14.5, they yield the exponential convergence of renor-
malizations of Theorem 13.1 in the bounded type case. Theorem 14.6 was proved
in de Faria and de Melo [2000] as stated here, without any assumption on the ro-
tation number (other than being irrational). In that same paper, Theorem 14.7
is stated and proved under the assumption that the rotation number is an irra-
tional of bounded combinatorial type. This assumption was removed by Khmelev
and Yampolsky [2006]. When the sequence of partial quotients of the continued-
fraction development of the rotation number is unbounded, renormalization or-
bits may accumulate on commuting pairs having a fixed point (being in particular
non-renormalizable). Such fixed point is necessarily parabolic (with multiplier
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one), since the limiting pair is accumulated by pairs with no fixed points. Roughly
speaking, the idea developed by Khmelev and Yampolsky was to apply the theory
of parabolic bifurcations (see Douady [1994] and Shishikura [1998, 2000] and
references therein) to holomorphic commuting pairs, in order to understand the
geometry of the domain of definition of pairs with arbitrarily small rotation num-
ber. With this at hand, the authors were able in the end to adapt, to the unbounded
type case, the proof of Theorem 13.1 for the bounded type case explained above,
see Khmelev and Yampolsky [2006, secs. 6 and 7].

14.8 Hyperbolicity of renormalization

In the previous section we have finally established Theorem 13.1, which assures
exponential convergence of renormalization of real-analytic critical commuting
pairs with the same irrational rotation number and the same odd type at the criti-
cal point. As explained in Chapter 13, this dynamical picture can be promoted to
critical commuting pairs with a finite degree of smoothness, as in Theorems 13.2
and 13.3. These two results can be regarded as the state of the art concerning expo-
nential convergence of renormalization of critical circle maps (with a single critical
point). As explained in Chapter 10, they imply the rigidity results Theorems 10.1
and 10.2.

At this point, one would like to discuss the hyperbolicity of renormalization
(in the sense of Smale, i.e., uniform contraction/expansion on the tangent bundle).
To give a meaning to this problem, one first needs to endow the phase-space of the
renormalization operator with a smooth structure (a Banach manifold structure)
on which R is (Fréchet) differentiable. As it turns out, this is a difficult problem
that obstructs the hyperbolicity discussion directly in the space of critical com-
muting pairs. To overcome this problem, at least for real-analytic pairs, a crucial
idea in this area was developed by Yampolsky [2002, 2003]. Roughly speaking,
Yampolsky’s idea was to replace the renormalization operator R, acting on the
space of commuting pairs, with an analytic operator, the cylinder renormalization
operator, defined on a complex-analytic Banach manifold. This operator was con-
structed in Yampolsky [2002, Section 7], while hyperbolicity of periodic orbits and
the construction of the corresponding stable manifolds were given in Yampolsky
[ibid., secs. 8 and 9]. Finally, hyperbolicity of the whole horseshoe-like attractor
for the cylinder renormalization operator was obtained in Yampolsky [2003] and
re-obtained in Khmelev and Yampolsky [2006, Section 8].

It would take us too far afield to discuss the aforementioned hyperbolicity in
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any real depth. Therefore, in the discussion to follow, we will merely describe
the two main renormalization schemes used by Yampolsky: cylindrical renormal-
ization (roughly described above) and parabolic renormalization. The latter is
required to treat the unbounded type case.

14.8.1 Cylindrical and parabolic renormalizations

We forewarn the reader that what follows is a simplified description of the tools
introduced by Yampolsky in the study of renormalization of critical circle maps
covering the unbounded type case. In this short subsection we can hardly do justice
to the wealth of ideas involved, and no details are given. Indeed, in order to make
the discussion complete, we would need to go way beyond the scope of this book.
For the most part, we conform with the notation used by Yampolsky in his papers.

As we have seen earlier in this book, the process of renormalizing a circle
map around a given point p requires us to cut the circle at two consecutive closest
returns of the orbit of p to p and then consider the first return map to the result-
ing interval. If we try to glue the interval in question to get a new smooth circle
and a new circle map, we find that the there is no canonical way of identifying
such smooth boundaryless one-dimensional manifold with the standard affine unit
circle S1 D R=Z. Hence, by using this approach, we are not able to define the
renormalization operator on a space of circle maps, but have instead to deal with
commuting pairs.

A different, clever procedure was introduced by Yampolsky [2002] to circum-
vent this difficulty in the analytic case. This procedure is called cylinder renormal-
ization, and the rough idea is as follows. An analytic critical circle map f has a
holomorphic extension to a neighborhood of S1 inside the cylinder C=Z. A suf-
ficiently deep renormalization (without rescaling) of f around its critical point c
is given by a pair of the form .f qn ; f qnC1/ which extends to a holomorphic com-
muting pair .�; �/ in a small neighborhood of c. If the partial quotient anC1 of the
continued fraction expansion of �.f / is very large, then � is an almost parabolic
map, and as such it has two repelling fixed points, symmetric about the unit circle.
Joining then by a simple smooth arc `, we look at the “crescent” region bounded
by the closed curve `[ �.`/ and consider the first return map to this region. Glue-
ing the two arcs by �, we get a new cylinder Cf bi-holomorphically equivalent
to C=Z, and through this equivalence the first return map to Cf becomes a new
analytic map defined on a new neighborhood of S1 inside C=Z. What makes this
procedure work is the fact that the conformal identification of Cf with the stan-
dard cylinder C=Z ' C� is unique up to post-composition with a linear map of
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the form z 7! �z (a conformal automorphism of C�); it is therefore unique once
we normalize one point – say, by sending c to 1 2 S1). In this way, we get a renor-
malization operator acting directly on cylinder maps (rather than on holomorphic
commuting pairs).

However, even with the cylinder renormalization operator in place, we still
have problems when trying to use, say, compactness arguments. When the rota-
tion number is of unbounded type, holomorphic pairs arising as limits along a sub-
sequence of renormalizations will develop parabolic fixed points, and these limits
are not renormalizable in the sense we defined. To circumvent this difficulty, Yam-
polsky borrowed the idea of parabolic renormalization from the works of Douady
[1987] and Shishikura [1998, 2000], adapting it to the context of critical circle
maps. Parabolic renormalization can be viewed as a limiting case of cylindrical
renormalization. Conversely, and perhaps more surprisingly, cylindrical renormal-
ization can be thought of as a natural unfolding of parabolic renormalization as one
goes through a parabolic bifurcation (say in a one-parameter family of maps). Due
to this, it is more convenient to first describe parabolic renormalization, and this
is what we will do next.

Parabolic renormalization: Fatou coordinates

In order to define parabolic renormalization, we first need to introduce a few facts
concerning the local structure of a holomorphic map in a neighborhood of a par-
abolic fixed point. Rather than doing this in full generality, we only examine the
case of specific interest to us.

Let � W W ! C be a holomorphic univalent map defined on a topological
disk symmetric about the real axis, and suppose � is a Epstein map, so that �
mapsW C D W \CC (respectivelyW � D W \C� onto CC (respectively C�).
We assume that � has a parabolic fixed point p 2 R, so that locally around p the
map � can be written as �.z/ D zCa.z�p/CO..z�p/2/. Then one can show
(see Yampolsky [2001, p. 554]) the following:

(i) There exist symmetric topological disks UA; UR � C with UA \ UR D
fpg such that UA [ UR is a punctured neighborhood of p and we have

�.UA/ � UA [ fpg ; ��1.UR/ � UR [ fpg ;

as well as 1\

jD0
�j .UA/ D fpg D

1\

jD0
��j .UR/ :
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(ii) There exist holomorphic univalent maps ˚A W UA ! C and ˚R W UR !
C such that

˚A.�.z// D ˚A.z/C 1 ; for all z 2 UA ;
as well as

˚R.�.z// D ˚R.z/ � 1 ; for all z 2 UR :

(iii) The quotient Riemann surfaces CA D UA=� and CR D UR=� are both
conformally equivalent to C=Z.

The regionUA is called an attracting petal for �, and the regionUR is called a
repelling petal for �. The maps ˚A and ˚R conjugate the dynamics of �jUA and
�jUR , respectively, to translations, and are unique up to post-composition with
translations. They are called Fatou coordinates for �. The cylinders CA and CR
are called Écalle–Voronin cylinders of �.

Now, let �A W UA ! CA and �R W UR ! CA be the natural projections.
Note that the cylinders CA and CR both have natural equators, namely the quo-
tients EA D .UA \R/=� and ER D .UR \R/=�. They also each have a north
pole and a south pole. Fix a base point zA 2 EA and identify CA with C=Z via
the unique bi-holomorphic map CA ! C=Z that sends EA onto R=Z and maps
zA to 0 (and north pole to north pole and south pole to south pole). Likewise, fix
a base point zR 2 ER and identify CR with C=Z via the unique bi-holomorphic
map CR ! C=Z that sendsER onto R=Z and maps zR to 0 (and again preserves
north and south poles). By a transfer isomorphism we mean a bi-holomorphic map
� W CA ! CR which sends EA onto ER, preserving the natural orientation of
these circles provided by the identifications just described. Thus � corresponds to
a unique rotation of the cylinder C=Z by an angle � 2 R=Z. Accordingly, we
write � D �� .

We are now ready to define the parabolic renormalization of a holomorphic
pair � D .�; �/ in which the map � D � has a parabolic fixed point. The procedure
will produce a one-parameter family of holomorphic pairs, one for each choice
of � 2 R=Z. Let us fix inverse branches ��1

A and ��1
R of both projections. Let

N ⩾ 1 be such that �N ı �.0/ 2 ��1
A .CA/, and letM ⩾ 1 be the smallest integer

with the property that

�M ı ��1
R ı �� ı �A ı �N ı �.0/ 2 Œ�.0/; 0� � R :

Thus, we have the situation depicted in Figure 14.5. Therefore consider the com-
position

 D �M ı ��1
R ı �� ı �A ı �N ı � :
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�R �A

CR CA
��

0�.0/ �.0/

��

�

�

�

�

Figure 14.5: Parabolic renormalization. Here, �� D ��1
R ı �� ı �A.

It is possible to prove that  has a well-defined extension to a neighborhood of
the interval Œ�.0/; 0� which is independent of the choices of inverse branches ��1

A

, ��1
R . The parabolic renormalization of � D .�; �/ corresponding to � is defined

to be the normalized commuting pair

P�� D
�

˜ jŒ�.0/;0� ; ˜�jŒ0;.0/�
�
:

At this point we may ask: What is the connection between parabolic renormal-
ization as just described and the notion of renormalization of holomorphic com-
muting pairs previously defined? One answer is provided by Proposition 14.2
below.

Douady coordinates

Let us now fix a map �0 2 E in the Epstein class. We consider here small
perturbations4 of �0 in E . We assume to start with that �0 is a parabolic map, i.e.,

4The topology on E is taken to be the Carathéodory topology. See for instance McMullen [1996,
p. 75].
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�0 has a unique parabolic fixed point p 2 R with multiplier equal to 1. Then for
every sufficiently small perturbation � of �0 in E the parabolic fixed point p of
�0 splits into a pair of repelling fixed points for �, say pC

� 2 CC and p�
� 2 C�,

symmetric about the real axis (p�
� D pC

� ). Let �C
� and ��

� be the multipliers
of pC

� and p�
� , respectively. Then we have �˙

� ! 1 as � ! �0. Some simple
considerations involving the notion of holomorphic index of a fixed point (see
Exercise 14.5) imply that

1

1 � �C
�

C 1

1 � ��
�

! 0 ; as �! �0 : (14.14)

Taken together, these facts imply that arg.1��˙
� /! 0 as �! �0. One can show

that there exists a neighborhood U .�0/ � E with the following property. For
every � 2 U .�0/ with j arg.1��˙

� /j ⩽ �=4 there exist topological disks UA� and
UR� such thatUA� [UR� is a neighborhood ofp, and univalentmaps˚A� W UA� ! C

and ˚R� W UR� ! C (unique up to post-composition with translations) which
conjugate the dynamics of � with translations by �1 and C1 respectively, that is
to say

˚A� .�.z// D ˚A� .z/C 1 and ˚R� .�.z// D ˚R� .z/ � 1 :
As before, the quotient Riemann surfacesCA� D UA� =� andCR� D UR� =� are both
bi-infinite cylinders, i.e. conformally equivalent to the standard cylinder C=Z.
The maps ˚A� and ˚R� are called the Douady coordinates for �.

It is possible to prove that, as � ! �0 (in the Carathéodory topology), one
has ˚A� ! ˚A and ˚R� ! ˚R uniformly on compact subsets of UA and UR,
respectively – in other words, the Douady coordinates of � converge to the Fatou
coordinates of �0. This form of continuity implies the following result.
Proposition 14.2. Let �k D .�k; �k/, k ⩾ 1, be a sequence of renormalizable
commuting pairs in the Epstein class, and let � D .�; �/ be a parabolic commuting
pair such that �k ! � as k ! 1 (in particular, the rotation numbers �.�k/
converge to 0). Suppose also that the renormalizations R�k converge to another
commuting pair �. Then there exists � 2 R=Z such that P�� D �.

This proposition establishes the desired connection between the standard no-
tion of renormalization and the notion of parabolic renormalization. Putting the
two renormalization schemes together is a sort of ”compactification´´ of the renor-
malization operator, and with this at hand one can adapt McMullen’s theory to the
context of critical circle maps through the use of towers of holomorphic commut-
ing pairs.
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Cylindrical renormalization

We close this chapter with some brief words about the cylinder renormalization
operator introduced by Yampolsky [2002]. As we saw in Section 10.2, a commut-
ing pair represents a whole conjugacy class of critical circle maps, and therefore
the renormalization operator acts on such classes. The concept introduced by Yam-
polsky has two main advantages. First, the cylinder renormalization operator acts
directly on maps, rather than on their conjugacy classes. Second, it extends to
an analytic operator in the Banach manifold BV of analytic critical circle maps
defined in some equatorial neighborhood V of the circle R=Z inside the cylinder
C=Z.

Let us be a bit more formal. By a cylinder map we mean a map f W V ! C=Z,
where V � C=Z is an equatorial neighborhood, which is holomorphic, has a
unique (cubic) critical point at 0 2 R=Z, and is such that the restriction f jR=Z
maps the equator R=Z homeomorphically onto its image f .R=Z/. The space of
all cylinder maps with domain V is denoted BV . With the help of the implicit
function theorem, this can be shown to be a complex Banach manifold – whose
real slice BR

V , consisting of those f 2 BV which preserve the equator, is precisely
the space of real-analytic critical circle maps having a complex analytic extension
to V . See Yampolsky [ibid., pp. 23–24] for details.

We say that a cylinder map f 2 BV is cylinder renormalizable if there exist
q > 1 and an equatorial neighborhoodW � C=Z if the following holds:

(1) There exist two f -periodic points p1; p2 2 V of period q and a simple arc `
joining them such that f q.`/ is also a simple arc and f q.`/\` D fp1; p2g.

(2) The union ` [ f q.`/ bounds a simply connected region Cf � V on which
f q is univalent – called a fundamental crescent for f – and the inverse
f �qjf q.Cf / extends to Cf as a univalent map.

(3) The quotient of Cf .p1; p2/ D Cf [ f q.Cf / n fp1; p2g by the action of
f q is a Riemann surface conformally equivalent to the bi-infinite cylinder
C=Z, i.e., there exists a bi-holomorphism  W Cf .p1; p2/! C=Z.

(4) If z 2 Cf nfp1; p2g and its positive orbit ff j .z/ W j ⩾ 1g intersectsCf , let
n.z/ D minfj ⩾ 1 W f j .z/ 2 Cf g, and let Vf D fz 2 Cf W n.z/ < 1g.
Then set RCf

W Vf ! Cf by RCf
.z/ D f n.z/.z/ (note that this is a first

return map).
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(5) Let zVf D Vf =f q � Cf .p1; p2/ and zRCf
D RCf

=f q (the quotient space
and quotient map, respectively).

(6) Putting Wf D  . zVf / � C=Z and letting Of W Wf ! C=Z be defined so
that the diagram

zVf Cf .p1; p2/

Wf C=Z

✲
zRCf

❄

 

❄

 

✲
Of

commutes, then W � Wf and Of is a cylinder map belonging to BW .

The map Of jW 2 BW thus defined is called a cylinder renormalization of f of
period q. What is the relationship between the notion of cylinder renormalization
and the standard notion of renormalization previously introduced in this book? An
answer to this question is provided by the following result. Let us agree to call a
cylinder map an analytic critical circle map if it preserves the equator R=Z and
its restriction to the equator is a critical circle map.

Proposition 14.3. Let f 2 BV be an analytic critical circle map, and suppose
that its rotation number �.f / is irrational. If f is cylinder renormalizable with
period q D qn (where qn is a return time for f ), then the corresponding cylinder
renormalization Of is also a critical circle map, with rotation number Gn.�.f //
(where G is the Gauss map). Moreover, its renormalization R Of is analytically
conjugate to RnC1f .

Note that a given cylinder map f 2 BV can be cylinder renormalized in sev-
eral different ways. However, if we fix the period q and the equatorial neigh-
borhood W , then every g 2 BV sufficiently close to f will also be cylinder
renormalizable with period q, and Og 2 BW . In fact, using the theory of holo-
morphic motions, Yampolsky shows that Og depends holomorphically on g. The
cylinder renormalization procedure just described can also be defined for holo-
morphic commuting pairs � D .�; �/ in the Epstein class, and in this context it can
be made more canonical because the natural periodic points to use are the (symmet-
ric) fixed points p˙

� of the maps �. This is the basis for obtaining a well-defined,
Fréchet differentiable cylinder renormalization operator Rcyl whose hyperbolicity
properties can then be studied.
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There would be much more to be said, but we choose to stop here.

Final remarks

There is a large literature on parabolic bifurcations, on both their local and global
aspects, and on parabolic renormalization. The reader interested in delving deeper
into this subject may start with Milnor [2006] for the basic local theory and then
consult Shishikura [2000], as well as the book by Lanford and Yampolsky [2014]
for global aspects. The theory of parabolic renormalization was used by Shishikura
in his celebrated proof that the boundary of the Mandelbrot set has Hausdorff di-
mension equal to 2 – see Shishikura [1998] – and more recently by Buff and Chéri-
tat in their construction of Julia sets of positive measure – see Buff and Chéritat
[2012].

Exercises

Exercise 14.1. Prove Lemma 14.3.

Exercise 14.2. Complete the proof of Theorem 14.3 by showing that holomorphic
commuting pairs have no wandering domains (see Section 11.2).

Exercise 14.3. Prove Lemma 14.13.

Exercise 14.4. Prove that the family F� of complex almost parabolic maps intro-
duced in Section 14.5 is a normal family in the sense of Montel.

Exercise 14.5. Let f W U ! C be a holomorphic map and suppose z0 2 U is an
isolated fixed point of f . We define the holomorphic index of f at z0 to be the
integral

i.f I z0/ D
1

2�i

Z

C

dz

z � f .z/ ;

where C is any simple closed curve containing z0 in its interior, and no other fixed
point of f , oriented in the counterclockwise direction.

(i) Show that i.f I z0/ varies continuously with f (in an appropriate sense).

(ii) Let � D f 0.z0/ be the multiplier of the fixed point z0. Show that (a) if
� ¤ 1, then i.f I z0/ D .1 � �/�1; and (b) if � D 1, then i.f I z0/ D 0.
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(iii) Let D be a closed topological disk contained in U , and suppose f has ex-
actly N fixed points insideD, say z0; z1; : : : ; zN�1. Show that

1

2�i

Z

@D

dz

z � f .z/ D
N�1X

jD0
i.f I zj / :

(iv) Use items (i),(ii) and (iii) to prove (14.14).



Epilogue

We end this book with some remarks, conjectures and open questions on multicrit-
ical circle maps.

1. Recall that in Chapter 6 we introduced the notion of signature of a multi-
critical circle map (see Definition 6.2). We may re-state Question 10.1 as
follows. Let f; g W S1 ! S1 be two C 3 multicritical circle maps with the
same signature, and let h W S1 ! S1 be a conjugacy between f and g such
that hmaps each critical point of f to a corresponding critical point of g. Is
h a C 1 diffeomorphism? Are there conditions on the rotation number that
make h better than C 1? To the best of our knowledge, no rigidity results
are available for maps with N ⩾ 3 critical points5. As mentioned in Sec-
tion 6.1.1 (see Remark 6.1), a construction similar to the one developed by
Zakeri, in order to prove Theorem 6.1, could be useful as a starting point.

2. What about (multi)critical circle maps with non-integer criticalities? Not
even the existence of periodic orbits (for renormalization) in the unicriti-
cal case has been established yet in full generality (for real-analytic uni-
critical circle maps with bounded combinatorics, Gorbovickis and Yampol-
sky [2020] were able to establish both existence and hyperbolicity of the
horseshoe-like attractor (recall Section 13.4), but only allowing criticalities
close enough to an odd integer). For unimodal maps, this problem has been
completely solved by Martens [1998] (see also Gorbovickis and Yampolsky

5A recent preprint by Gorbovickis and Yampolsky [2021] contains a proof of the C 1C˛ rigidity
problem for real-analytic maps with bounded combinatorics.
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[2018]), but it is unclear to us whether his methods can be adapted to the
circle case.

3. As already mentioned, the full Lebesgue measure set A � .0; 1/ of rotation
numbers considered in Definition 10.4, for which C 1C˛ rigidity holds, was
originally defined in de Faria and de Melo [1999, §4.4]. A natural question
is: Are these conditions optimal? In other words, is A the largest set of
rotation numbers for which statement (3) in Theorem 10.1 is true?

4. Another way to approach the previous question is to look at the complement
of the set A. In Section 10.5, a saddle-node surgery technique was used
to build C1 counterexamples to C 1C˛ rigidity for each rotation number
� D Œa0; a1; a2; : : :� satisfying an ⩾ 2 for all n and

lim sup
n!1

1

n
log an D1 :

Can such counterexamples be built for every rotation number not in A? An
analogous question can be asked in the analytic category. In Avila [2013] (re-
call Theorem 10.6), using parabolic surgery, Avila constructed real-analytic
counterexamples toC 1C˛ rigidity for each rotation number in another set of
rotation numbers (still properly contained in the complement of A). What
is the optimal class of rotation numbers in this case? Is it still the whole
complement of A?

5. The problem of global hyperbolicity of the renormalization operator for
C r unimodal maps was solved in de Faria, de Melo, and Pinto [2006],
through a combination of the deep holomorphic results obtained by Lyu-
bich [1999] (later improved by Avila and Lyubich [2011]) with certain tech-
niques of non-linear functional analysis borrowed from the work of Davie
[1996]. Can these ideas be adapted to the study of the renormalization of
C r (multi)critical circle maps? There are several difficulties to overcome
here, such as to provide a suitable definition of a manifold structure directly
in the space of real analytic critical commuting pairs. If this space can be en-
dowed with a Banach manifold structure under which the renormalization
operator is hyperbolic, then it is not too difficult to push such hyperbolic-
ity to the space of C r critical commuting pairs (see Voutaz [2006]). Re-
call, however, that the space of cylinder maps defined by Yampolsky (see
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Section 14.8) does have a complex Banach manifold structure, and that, in
somewhat imprecise terms, the cylinder renormalization operator does act
as a holomorphic map in this space. So perhaps an alternative approach to
C r hyperbolicity exists which avoids commuting pairs altogether.

6. Is it possible to prove Theorem 13.2 and Theorem 13.3 without appeal to
holomorphic methods? Although quite powerful, the use of holomorphic
methods limits the discussion to maps all of whose critical points have inte-
ger criticalities. See problem (2) above.

7. Is Theorem 10.1 still true if the maps f and g are only C 3?

8. Rigidity in the space of C 2 maps is most likely false. Can one construct
explicit examples? What about rigidity in the space of C 2C˛ maps?

9. Let f W S1 ! S1 be a C1 multicritical circle map, all of whose critical
points are non-flat. As we know from Section 2.3, f is uniquely ergodic.
Is f distributionally uniquely ergodic? More precisely, is it true that, for
each k 2 N, the linear space D 0

k
.f / is one-dimensional? As mentioned

in Section 8.4, this is true for k D 1 (see Theorem 8.9). Recall also that
every C1 diffeomorphism of the circle with irrational rotation number is
distributionally uniquely ergodic (Theorem 3.13).

10. Finally, one topic that we did not touch at all in this book is what is com-
monly referred to by physicists as mode locking universality. In a typical
(monotone) one-parameter family of (uni)critical circle maps, such as the
Arnold family, the set of parameters for which the rotation number is ir-
rational constitutes a Cantor set (see Figure 6.2), called the mode-locking
Cantor set. It is conjectured that the Hausdorff dimension of this Cantor
set is a universal number – which has been numerically computed to be ap-
proximately 0:870 : : :, see Cvitanović, Gunaratne, and Vinson [1990]. It
has been shown by Graczyk and Świątek [1996] that this dimension indeed
lies strictly between zero and one. In particular, the Cantor set in question
has zero Lebesgue measure. This is in sharp contrast with what happens
in typical one-parameter families of circle diffeomorphisms: in such cases,
Herman [1988] had already shown in the seventies that the corresponding
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Cantor set has positive measure. Universality of the Hausdorff dimension
in the critical case would follow from a careful study of the holonomy of the
lamination determined by the stable manifolds of the renormalization oper-
ator (acting on a suitable space of critical commuting pairs), presumably in
a similar manner as in the corresponding study of holonomy carried out for
C r unimodal maps in de Faria, de Melo, and Pinto [2006]. For more on the
empirical study of the scaling geometry of the mode-locking Cantor set, see
the work by Cvitanović, Shraiman, and Söderberg [1985].



A Ergodic Theory of
Continued
Fractions

In this appendix we briefly discuss the relationship between continued fraction
expansions and the ergodic theory of the Gauss map. The reader can find much
more about this beautiful subject in the books Billingsley [1965], Cornfeld, Fomin,
and Sinaĭ [1982], and Iosifescu and Kraaikamp [2002]. Here we content ourselves
to providing a proof of the fact that the set A � .0; 1/ given by Definition 10.4
has full Lebesgue measure (see Corollary A.1 and Lemma A.3 below).

A.1 Expansions as itineraries

For any real number x denote by bxc the integer part of x, that is, the greatest
integer less than or equal to x. Also, denote by fxg the fractional part of x : fxg D
x � bxc 2 Œ0; 1/. Recall from Chapter 1 that the Gauss map G W Œ0; 1�! Œ0; 1� is
given by

G.�/ D
�
1

�

�
for � ¤ 0 , and G.0/ D 0.

Note that both Q\ Œ0; 1� and Œ0; 1�nQ areG-invariant. Under the action ofG, all
rational numbers in Œ0; 1� eventually land on the fixed point at the origin (see Ex-
ercise A.6). On the other hand, the positive orbit of any irrational number remains



438 A. Ergodic Theory of Continued Fractions

in the open set
S
k⩾1Mk , where Mk D

�
1
kC1 ;

1
k

�
. In this appendix, we briefly

discuss the following dynamical definition of continued fraction expansions.

Definition A.1. The continued fraction expansion of an irrational number in Œ0; 1�
is the sequence given by its itinerary underG, according to the partition

S
k⩾1Mk .

More precisely, we identify each irrational number � in Œ0; 1�with the sequence
Œa0; a1; : : :� defined by Gn.�/ 2 Man

for all n 2 N. In other words, for any
� 2 .0; 1/ n Q and any n 2 N we have that Gn.�/ 2

�
1
kC1 ;

1
k

�
if, and only if,

an D k. It is easy to see that this definition coincides with the one used along the
book. Indeed, if

� D
1

a0 C
1

a1 C
1

: : :

belongs to
�
1=.k C 1/; 1=k

�
, then a0 D

j
1
�

k
D k and G.�/ D

1

a1 C
1

a2 C
1

: : :

,

since

1=� D a0 C
1

a1 C
1

a2 C
1

: : :

:

In particular, the Gauss map acts as a left shift on the continued fraction ex-
pansion of �. Indeed, since for each k ⩾ 1 the restriction GjMk

is an expanding
diffeomorphism onto .0; 1/, it can be proved (see Exercise A.7) that the map h
from Œ0; 1� nQ to NN identifying each irrational number to its itinerary under G
is a homeomorphism (endowing NN with the product topology). Therefore, the
action ofG on Œ0; 1�nQ is topologically conjugate to the left shift � W NN ! NN
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mapping Œa0; a1; : : :� to Œa1; a2; : : :� :

Œ0; 1� nQ Œ0; 1� nQ

NN NN

✲G

❄
h

❄
h

✲�

A.2 The Gauss measure and almost surely properties
As we have seen in the fourth part of the present monograph, irrational numbers of
bounded type play a major role in the rigidity theory of multicritical circle maps.
Let us recall here their definition.

Definition A.2. An irrational number � 2 Œ0; 1� is of bounded type if there exists
a constant K > 0 such that an < K for all n 2 N.

The set of numbers of bounded type is dense in .0; 1/. Indeed, as it is not
difficult to prove (see Exercise A.3), the set of periodic orbits of � is dense in NN ,
which implies that irrational numbers with periodic continued fraction expansion1

are dense in .0; 1/. On the other hand, from the measure-theoretical viewpoint, we
have the following result.

Lemma A.1. The set of numbers of bounded type has zero Lebesgue measure.

As it is well known (see for instance Mañé [1987]), the map G admits an
invariant ergodic Borel measure � (called the Gauss measure) given by

�.A/ D 1

log 2

Z

A

d�

1C � for any Borel set A � Œ0; 1�.

Note that �.0; �/ D log.1C �/= log 2 for any � 2 Œ0; 1�, so the coefficient 1= log 2
turns � into a probability measure on the unit interval. If we denote by m the

1It is worth mentioning here that the set of irrational numbers with periodic (or eventually peri-
odic) continued fraction expansion coincides with the set of quadratic algebraic numbers, i.e., the
set of roots of all quadratic polynomials with integer coefficients (a proof of this result, due to La-
grange, can be found in Khinchin [1997, Section 10], see also Exercise A.5). Algebraic numbers
of higher degree are also interesting from the continued fraction expansion viewpoint, see Khinchin
[ibid., Section 9] and also Appendix A.3 below.
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Lebesgue measure on Œ0; 1�, we immediately have

1

2 log 2
m.A/ ⩽ �.A/ ⩽

1

log 2
m.A/

for any Borel set A � Œ0; 1�. In particular, the Gauss measure � is equivalent to
the Lebesgue measure on Œ0; 1� (i.e., they share the same null sets).

Proof of Lemma A.1. Consider the increasing sequence fKmgm2N of subsets of
Œ0; 1� defined by

Km D
˚
� 2 Œ0; 1� nQ W � D Œa0; a1; : : :� with an < m for all n 2 N

	
:

Note that each Km is a Cantor set, homeomorphic to f1; 2; : : : ; m � 1gN . The
union

S
m2N Km coincides with the set of numbers of bounded type. Since the

Gauss measure is equivalent to Lebesgue, it is enough to prove that �
�
Km

�
D 0

for each m 2 N. But this follows at once from the ergodicity of � under G, since
each Km is a G-invariant set contained in the interval .1=m; 1/.

For the classical proof of Lemma A.1, with no dynamical arguments, we refer
the reader to Khinchin [1997, Section 13]. A much more precise statement can be
obtained from Birkhoff’s Ergodic Theorem.

Proposition A.1. For Lebesgue almost every � in Œ0; 1� we have that every integer
k ⩾ 1 must appear infinitely many times in the continued fraction expansion of
� D

�
a0; a1; : : :

�
. Moreover, if we define

�n.�; k/ D
1

n
#
˚
0 ⩽ j < n W aj D k

	
;

we have that
˚
�n.�; k/

	
n2N

converges to the positive value

1

log 2
log

�
1C 1

k.k C 2/

�
;

that only depends on k.

Proof. Since

�n.�; k/ D
1

n
#
˚
0 ⩽ j < n W Gj .�/ 2Mk

	
;



A.2. The Gauss measure and almost surely properties 441

we deduce from Birkhoff’s Ergodic Theorem that

lim
n!C1

�n.�; k/ D �.Mk/ D
1

log 2
log

�
1C 1

k.k C 2/

�

for � almost every � (and then the same holds for Lebesgue almost every �).

Since the asymptotic frequency given by Proposition A.1 is strictly decreas-
ing in k, one should expect that typical numbers, even having unbounded partial
quotients, have slow growth. This is explicitly formulated in the following lemma.

Lemma A.2. Let fbngn2N be any given increasing sequence of positive numbers
such that

P
n2N 1=bn < 1. For Lebesgue almost every � D

�
a0; a1; : : :

�
in

Œ0; 1� we have an < bn for all n large enough.

Proof. For each n 2 N consider the sets Un D
˚
� W an > bn

	
and Vn D

˚
� W

a0 > bn
	
. We want to prove that

�

�
lim sup
n!C1

Un

�
D �

0
@\

k2N

[

n⩾k

Un

1
A D 0 : (A.1)

Since G�n.Vn/ D Un and Vn �
�
0; 1=bn

�
, we have that

�.Un/ ⩽ �
�
0; 1=bn

�
D 1

log 2
log

�
1C 1

bn

�
⩽

1

log 2
1

bn

for n large enough. In particular,
P
n2N �.Un/ <1 and then (A.1) follows from

the Borel–Cantelli Lemma.

Corollary A.1. For Lebesgue almost every � in Œ0; 1� we have

lim
n!1

1

n
log an D 0 and lim sup

n!1

1

n

nX

jD1
log aj <1:

Lemma A.3. For Lebesgue almost every � in Œ0; 1� we have

1

n

kCnX

jDkC1
log aj ⩽ C

�
�
� �
1C log

k

n

�
for all 0 < n ⩽ k; (A.2)

where C
�
�
�
> 0 depends on �.
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As mentioned in Chapter 10 (see Definition 10.4), the set of numbers satis-
fying both Corollary A.1 and Lemma A.3 simultaneously was first considered in
de Faria and de Melo [1999, Section 4.4]. Corollary A.1 follows straightforward
from Lemma A.2 by taking, say, bn D n1C" for any " > 0. We proceed now to
prove Lemma A.3, following de Faria and de Melo [ibid., App. C].

We remark that all probabilistic estimates below will be done for the Gauss
measure �. Note first that the probability pk that the n-th partial quotient an.�/
be equal to a given integer k ⩾ 1 is

pk D �
�
G�n.Mk/

�
D �.Mk/ D

1

log 2
log

�
1C 1

k.k C 2/

�
<

2

k2
:

(A.3)
From this, we see that the probability that an.�/ be at least k is smaller than 4=k.

We shall now prove Lemma A.3, which establishes Condition (3) in Defini-
tion 10.4 for almost all numbers � 2 Œ0; 1� with !.t/ D C.�/.1 � log t /, where
C.�/ > 0.

Proof. Let E � .0; 1/ be the full Lebesgue measure set of irrational numbers
satisfying Lemma A.2 with bn D n2. In attempting to prove the inequality (A.2)
for a given � 2 E, we may assume that k is so large that aj .�/ < j 2 for all j ⩾ k.
The remaining cases, corresponding to the remaining finitely many pairs .n; k/,
are taken care of by a suitable choice of the constant C.�/.

Given .n; k/, there are two possibilities to consider. The first possibility is that
n2 < k. In this case we simply observe that

1

n

kCnX

jDkC1
log aj .�/ ⩽ 2 log .k C n/ < 5 log

k

n
;

for all sufficiently large k.
The second possibility is that n ⩽ k ⩽ n2. Here, we shall prove that with

probability one the left-hand side of (A.2) is bounded by 10. For this purpose, let
us consider the following pathologies.

(a) For a givenm ⩾ 1, there are more than 2npm partial quotients akCi .�/with
1 ⩽ i ⩽ n such that akCi .�/ D m (where pm is as defined in (A.3)). By an
elementary combinatorial argument, we see that this occurs with probability
at most

nX

jDd2npme

 
n

j

!
pjm .1 � pm/n�j <

�e
4

�npm

:
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The probability that this happens for some m in the range 1 ⩽ m ⩽ n1=3 is
therefore smaller than

n1=3
�e
4

�2n1=3

<
1

n4

if n is sufficiently large.

(b) There are more than n2=3 partial quotients akCi .�/ with 1 ⩽ i ⩽ n such
that akCi .�/ > n1=3. By a similar reasoning to the one used in (a), we see
that this occurs with probability smaller than

�e
4

�n1=3

<
1

n4

if n is sufficiently large.

Therefore, fixing n sufficiently large, the probability that there exists k in the
range n ⩽ k ⩽ n2 such that one of the above pathologies occurs for .n; k/ is
certainly less than n2�.2=n4/ D 2=n2. Since the series

P
2=n2 converges, again

by Borel–Cantelli we deduce that with probability one there are no pathologies for
.n; k/ if k (and hence n) is sufficiently large.

Now, if there are no pathologies for .n; k/, and noting that for 1 ⩽ i ⩽ n we
have

akCi .�/ < .k C i/2 ⩽ .n2 C n/2 ⩽ 4n4

if k is sufficiently large, we deduce that

1

n

kCnX

jDkC1
log aj .�/ ⩽

1

n

bn1=3cX

mD1
.2npm/ logm C n2=3

n
log .4n4/

<

bn1=3cX

mD1

4 logm
m2

C 1

n1=3
.2 log 2C 4 logn/ ;

which is less than 10 if n is sufficiently large. This completes the proof.

We have proved that the set A from Definition 10.4 has full Lebesgue measure
in .0; 1/.



444 A. Ergodic Theory of Continued Fractions

A.3 Diophantine approximations revisited
We finish this appendix by recalling the definition and basic properties of Diophan-
tine and Liouville numbers.

Definition A.3. An irrational number in Œ0; 1� is said to be Diophantine if there
exist constants C > 0 and ı ⩾ 0 such that:

ˇ̌
ˇ̌� � p

q

ˇ̌
ˇ̌ ⩾ C

q2Cı ;

for any natural numbers p and q ¤ 0. Irrational numbers which are not Diophan-
tine are called Liouville numbers.

A famous theorem, due to Liouville, asserts that any given algebraic number
of degree n ⩾ 2 (i.e., the root of a degree n polynomial with integer coefficients)
is Diophantine, with exponent ı D n � 2 (see Khinchin [1997, Section 9]). From
a dynamical viewpoint, Diophantine numbers will reappear in Appendix B, where
we will prove that sufficiently smooth circle diffeomorphisms with Diophantine
rotation number are smoothly linearizable (more precisely, we will prove Theo-
rem 4.11: if f belongs to Diff2C˛.S1/ and has rotation number � which is Dio-
phantine of order ı, then any topological conjugacy between f and the rigid rota-
tion of angle � is a C 1C˛�ı diffeomorphism, provided 0 ⩽ ı < ˛ < 1).

As we saw in Chapter 4 (see Exercise 4.11), an irrational number is of bounded
type if it satisfies Definition A.3 for ı D 0, that is, � in Œ0; 1� is of bounded type if
there exists C > 0 such that

ˇ̌
ˇ̌� � p

q

ˇ̌
ˇ̌ ⩾ C

q2
;

for any natural numbers p and q ¤ 0. Recall from Lemma A.1 that, despite being
uncountable and dense in the unit interval, the set of numbers of bounded type has
zero Lebesgue measure. The following lemma says that for any small ı > 0 in
Definition A.3 we capture almost every number.

Lemma A.4. For any given ı > 0, the set

Dı D
�
� 2 Œ0; 1� W 9 C > 0 such that

ˇ̌
ˇ̌� � p

q

ˇ̌
ˇ̌ ⩾ C

q2Cı 8 p; q 2 N

�

has full Lebesgue measure in Œ0; 1�.
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In particular, the set of Liouville numbers has zero Lebesgue measure (as it
turns out, its Hausdorff dimension is also equal to zero, seeMilnor [2006, Lem. C.7]).

Proof. Fix some decreasing sequence f"ngn2N � .0; 1=2/ such that "n ! 0 as
n goes to infinity. For each n 2 N and each rational number p=q 2 Œ0; 1� let
In.p=q/ be the open interval centered at p=q with radius "n=q2Cı , and let Un be
the union of these intervals over all rational numbers, i.e.,

Un D
[

p=q2Œ0;1�\Q

In.p=q/

D
�
� 2 Œ0; 1� W 9 p; q 2 N such that

ˇ̌
ˇ̌� � p

q

ˇ̌
ˇ̌ < "n

q2Cı

�
:

Note that each Un is open and dense in the unit interval, and that the sequence
fUngn2N is a nested sequence. Since

\

n2N

Un D Œ0; 1� nDı ;

it is enough to prove that limn m.Un/ D 0. With this purpose, fix some n 2 N

and consider, for any positive integer q, the set

Un.q/ D
�
� 2 Œ0; 1� W 9 p 2 f0; 1; : : : ; q � 1; qg such that

ˇ̌
ˇ̌� � p

q

ˇ̌
ˇ̌ < "n

q2Cı

�
:

From
Un D

[

q2Nnf0g
Un.q/ and m

�
Un.q/

�
D 2 "n

q1Cı ;

we obtain
m.Un/ ⩽ 2 "n

X

q⩾1

1

q1Cı ;

which converges to zero as n goes to infinity (recall that ı is assumed to be strictly
positive!).

Incidentally we have proved that Œ0; 1� n Dı is a residual set, in the sense of
Baire, since each Un is open and dense. With minor adaptations, this implies the
following fact.

Lemma A.5. The set of Liouville numbers is residual in Œ0; 1�, in the sense of Baire.
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Exercises

Exercise A.1. Show that, when restricted to each intervalMk D
�
1=.kC1/; 1=k

�
,

the Gauss map has a unique fixed point, given by �k D
�p

k2 C 4 � k
�
=2. In

particular, if ' D
�
1C
p
5
�
=2 denotes the famous golden ratio, we have �1 D

' � 1.
Exercise A.2. For each k 2 N, show that the continued fraction expansion of �k
equals Œk; k; k; : : :� (note that, for even integer k, this expansion has been obtained
in Exercise 1.4).
Exercise A.3. Show that the set of periodic points of the Gauss map is dense in
Œ0; 1�.
Exercise A.4. Show that the Gauss map is transitive (in fact, topologically mixing)
in the unit interval.
Exercise A.5. Show that any periodic point of the Gauss map is the root of a
quadratic polynomial with integer coefficients.
Exercise A.6. Show that � 2 .0; 1/ is a rational number if, and only if, there exists
n ⩾ 1 such that Gn.�/ D 0.
Exercise A.7. Prove that the map h from Œ0; 1�nQ to NN identifying each irrational
number to its itinerary under the Gauss map is a homeomorphism.
Exercise A.8. Show that the Gauss measure � is invariant under the Gauss map.
Exercise A.9. Following Chapter 8, the Lyapunov exponent of the Gauss map at a
given point � 2 .0; 1/ nQ is defined as

�G.�/ D lim
n!C1

1

n
log

ˇ̌
DGn.�/

ˇ̌
; (A.4)

whenever the limit exists. For any such �, let f W S1 ! S1 be a circle homeo-
morphism with rotation number � and unique invariant measure �. Using identity
(6.45) from Exercise 6.2, show that for any x 2 S1 and any n 2 N we have

lim
n!C1

log�.In/
n

D � �G.�/
2

;

where In is the interval with endpoints x and f qn.x/ containing f qnC2.x/.
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Exercise A.10. Show that �G.�k/ D log
ˇ̌
DG.�k/

ˇ̌
D �2 log.�k/ for all k 2 N.

In particular, �G.�1/ D 2 log', since �1 D 1='.
Exercise A.11. Let � 2 .0; 1/ be such that the limit in (A.4) exists. Show that
�G.�/ ⩾ �G.�1/, with equality if, and only if, � D �1.
Exercise A.12. Using Birkhoff’s Ergodic Theorem, show that the limit in (A.4)
exists for Lebesgue almost every � 2 .0; 1/, and equals

Z

Œ0;1�

log jDGj d� D �2

6 log 2
:

(Hint: Use integration by parts to deduce that
Z

Œ0;1�

log jDGj d� D 2

log 2

Z 1

0

log.1C �/
�

d� :

Solve this integral using Taylor series, and recall that
PC1
nD1.�1/n�1 1

n2 D �2=12).
Exercise A.13. Let f W S1 ! S1 be a homeomorphism with irrational rotation
number � 2 .0; 1/ and unique invariant measure �. Conclude from Exercises A.9
and A.12 that for Lebesgue almost every � we have

lim
n!C1

log�.In/
n

D ��2
12 log 2

:

In other words, the decay of �.In/ is comparable to exp
� ��2
12 log 2

n

�
for almost

every rotation number �.
Exercise A.14. Following the same ideas, one proves (see for instance Iosifescu
and Kraaikamp [2002, Th. 4.1.26]) that for Lebesgue almost every � we have

lim
n!C1

log qn.�/
n

D �2

12 log 2
:

Conclude from this and Exercise A.13 that for Lebesgue almost every � we have

lim
n!C1

1

n
log

ˇ̌
ˇ̌� � pn.�/

qn.�/

ˇ̌
ˇ̌ D ��2

6 log 2
:

Exercise A.15. Prove Lemma A.5.



B Cohomological
Equations and

Smooth
Conjugacies

In this appendix we provide a proof of Theorem 4.11, following the original work
of Khanin and Teplinsky [2009]. With this purpose, fix ˛ 2 .0; 1/ and let f 2
Diff2C˛.S1/ whose irrational rotation number � 2 .0; 1/ is Diophantine of order
ı ⩾ 0, i.e., there exists a constant C > 0 such that

ˇ̌
ˇ̌� � p

q

ˇ̌
ˇ̌ ⩾ C

q2Cı

for any rational number p=q. We assume, moreover, that ı < ˛.
Besides Chapter 4, we have seen the Diophantine condition several times in the

present book, see Chapter 3, Chapter 7 and Chapter 8. An equivalent definition
can be given as follows: � is Diophantine of order ı if there exists a constant
M > 0 such that qnC1 ⩽M q1Cı

n for all n 2 N (Exercise 4.10), where fqng is the
sequence of return times of �. In particular, note that � is of bounded type if, and
only if, it is Diophantine of order 0 (Exercise 4.11). Recall, finally, that we have
proved in Appendix A that Diophantine numbers in .0; 1/ form a meager set (in
the sense of Baire) with full Lebesgue measure (see Lemma A.4 and Lemma A.5).
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B.1 The cohomological equation

As usual, we denote byC 0.S1/ the space of continuous real functions of the circle,
endowed with the uniform convergence topology. In this space, we consider the
following cohomological equation:

logDf D  �  ı f : (B.1)

Note that if there exists a C 1 diffeomorphism h conjugating f with the rigid
rotation R� (i.e., h ı f D R� ı h), then  D logDh belongs to C 0.S1/ and is a
solution of the cohomological equation (B.1).

Conversely, let us assume for a moment that there is a solution  2 C 0.S1/
of (B.1). Just as we did in Section 4.1, during the proof of Theorem 4.3, we con-
sider � W S1 ! R given by �.x/ D c � e .x/, where the positive constant c is
chosen so that

R
S1 �.x/ dx D 1 (in other words, c D 1=

R
S1 e

 .x/ dx). From the
cohomological equation (B.1), we immediately obtain

�.x/ D �
�
f .x/

�
Df.x/ (B.2)

for all x 2 S1. With this at hand, we fix some point w0 2 S1 and consider
h W S1 ! S1 defined byDh D � and h.w0/ D 1. More precisely,

h.z/ D
Z z

w0

�.x/ dx .mod 1/ :

Since � is continuous, h is of class C 1. Moreover, from our choice of the constant
c above,

R
S1 Dh.x/ dx D 1 which implies that h is a homeomorphism, i.e., it

has topological degree one. Since Dh is strictly positive, the inverse h�1 is also
C 1. Therefore, h 2 Diff1.S1/. Finally, using again that Dh D �, the functional
equation (B.2) implies that Dh D D.h ı f / in the whole circle. Thus, any given
lifts of h and h ı f to the real line differ by a constant. In other words, the C 1
diffeomorphism h conjugates f with a rigid rotation (note, in particular, that the
rotation number � equals

R f .w0/
w0

�.x/ dx).

Summarizing, we have proved that if there exists a solution of the cohomo-
logical equation (B.1) in C 0.S1/, then f is C 1 conjugate to the rigid rotation R�.
Our main task, therefore, is to solve equation (B.1). In the setting of Section 4.1,
this was done by means of the Gottschalk–Hedlund theorem. In this appendix we
will follow a different path, after Khanin and Teplinsky [ibid.].
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B.2 Solving the cohomological equation

Let us fix some point w0 2 S1; recall that its orbit Of .w0/ D
˚
wi D f i .w0/ W

i 2 Z
	

is dense in S1. We define a function  W Of .w0/ ! R by the initial
condition  .w0/ D 0 and the recursive formula

 .wiC1/ D  .wi / � logDf.wi / for all i 2 Z: (B.3)

Our main task to prove Theorem 4.11 is to establish the following fact.

Proposition B.1. The function  defined above is continuous.

Since Of .w0/ is dense in S1, Proposition B.1 allows us to extend  contin-
uously to the whole circle, obtaining in this way a solution of the cohomological
equation (B.1) in C 0.S1/. As it turns out, the estimates we will obtain on our way
to prove Proposition B.1 allow us to also prove that the function � defined above
is Hölder continuous with (positive) exponent ˛ � ı (see Appendix B.6.1), thus
proving Theorem 4.11.
Remark B.1. In the fourth and final part of this book, we have presented renor-
malization methods developed to prove that certain topological conjugacies are in
fact smooth diffeomorphisms. In order to keep this appendix independent of those
tools, we will not mention any renormalization operator here. However, the reader
will not fail to notice the overlap with some of the ideas presented in Chapter 10. In-
deed, after establishing some distortion estimates in Appendix B.3, we will prove
in Appendix B.4 that for any given f 2 Diff2C˛.S1/with irrational rotation num-
ber �, the sequences ff qngn2N and fRqn

� gn2N converge together exponentially
fast in Diff1.S1/, endowed with the standard C 1 metric, where fqngn2N is the
sequence of closest return times of � (both sequences converging, as expected, to
the identity map).

An important remark here is that this exponential convergence holds for any
irrational rotation number. By assuming that � is Diophantine of order ı, with
0 ⩽ ı < ˛, we will be able to prove in Appendix B.5 and Appendix B.6 that such
exponential convergence implies rigidity: any topological conjugacy between f
and R� is a C 1C˛�ı diffeomorphism. Recall from Chapter 4 that this is certainly
not the case without a Diophantine condition (see Section 4.3).

Finally, let us point out that in Appendix B.6.1 we will establish the following
nice estimate. For each n 2 N let �n D jqn � � pnj, and recall from Chapter 1
that f�ng decays to zero exponentially fast (as fast as q�1

nC1, see Theorem 1.2). As
it turns out, if � is Diophantine of order ı, there exists K > 1 such that �1Cı

n ⩽
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K�nC1 for all n 2 N (see Remark B.4 in Appendix B.5 below). With this at
hand, we will prove in Appendix B.6.1 that

f qn �Rqn
�


C1 D O

�
�

˛
1Cı
n

�
for all n 2 N:

Note that the obtained bound �
˛

1Cı
n depends only on � and ˛; it does not depend

on any other data coming from f .

B.3 Distortion estimates
This section is devoted to establish some fundamental distortion estimates that
will be needed in the proof of Theorem 4.11. It is divided in two parts: in Ap-
pendix B.3.1 we deal with diffeomorphisms in the C 1CBV class, extending some
results obtained in Chapter 3, while in Appendix B.3.2 we deal with C 2C˛ diffeo-
morphisms, focusing on cross-ratio distortion estimates (in the same spirit as we
did in the third part of this book).

B.3.1 Distortion estimates in C 1CBV

Just as in Chapter 3, we consider in this subsection a C 1 diffeomorphism f W
S1 ! S1with irrational rotation number such that logDf is a function of bounded
variation, say V D Var.logDf / (we write f 2 C 1CBV). For any given x 2 S1,
let Pn.x/ be the sequence of dynamical partitions constructed in Chapter 6 (see
Section 6.3.1). Recall that In D In.x/ denotes the interval with endpoints x and
f qn.x/ containing f qnC2.x/.

Lemma B.1. For any given f 2 C 1CBV there exist � D �.f / 2 .0; 1/ and
K D K.f / > 1 such that

ˇ̌
InCm.x/

ˇ̌
⩽ K �m

ˇ̌
In.x/

ˇ̌
for any x 2 S1 and any

n;m 2 N.

Proof. As we have seen in Chapter 3, during the proof of Denjoy’s Theorem 3.4,
k logDf qnkC0 ⩽ V for any n 2 N. Let � D �.V / 2 .0; 1/ and K D K.V / > 1
be given by

� D

s
eV

1C eV and K D
q
eV .1C eV / :

Now fix x 2 S1 and n 2 N. By combinatorics, In .InnInC2/[f qnC1.InnInC2/.
Since

ˇ̌
f qnC1.In nInC2/

ˇ̌
⩽ eV jIn nInC2j, we have that jIn nInC2j > jInj=.1C
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eV /. Therefore,

jInC2j D jInj � jIn n InC2j <
�
1 � 1

1C eV
�
jInj D �2 jInj :

With this at hand, an inductive argument proves Lemma B.1 in the case that m is
an even integer. Now, using again k logDf qnk ⩽ V , we have that e�V jInC1j ⩽ˇ̌
f qn.InC1/

ˇ̌
< jInj, since f qn.InC1/ In by combinatorics. From our previous

estimates, we know that jInCmC1j < �m jInC1j for any even integer m, and then
jInCmC1j < �m eV jInj D K �mC1 jInj , since K � D eV . This finishes the
proof.

Definition B.1. For each n 2 N let

`n D `n.f / D kf qn � Id kC0 D max
x2S1

ˇ̌
In.x/

ˇ̌
;

and let �n D `n.R�/ D jqn � � pnj .
Note that, by minimality, `n ! 0. As it easily follows from our previous

lemma, the convergence happens at an exponential rate.

Corollary B.1. For any given f 2 C 1CBV there exist � D �.f / 2 .0; 1/ and
K D K.f / > 1 such that `nCm ⩽ K �m `n for any n;m 2 N.

Proof. Let x 2 S1 be such that
ˇ̌
InCm.x/

ˇ̌
D `nCm. By definition, `n ⩾

ˇ̌
In.x/

ˇ̌

and then Corollary B.1 follows at once from Lemma B.1.

Lemma B.2. We have `n ⩾ �n for any n 2 N.

Proof. On the 2-dimensional torus T2 D S1�S1we consider the product measure
m ��, where � denotes the unique f -invariant Borel probability measure. We
also fix some n 2 N and consider˝n D

˚
.x; y/ 2 T2 W y 2 In.x/

	
. By Fubini’s

Theorem,
�

m ��
�
.˝n/ D

Z

S1

�
�
In.x/

�
dm.x/ D

Z

S1

m

�
In.f

�qn.y//
�
d�.y/ :

Since �
�
In.x/

�
D �n for all x 2 S1, we get

Z

S1

m

�
In.f

�qn.y//
�
d�.y/ D �n:

Since, by definition, m

�
In.f

�qn.y//
�
⩽ `n for all y 2 S1, we obtain the desired

estimate `n ⩾ �n.
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Lemma B.3. For any given f 2 C 1CBV there exists K D K.f / > 1 such that
for any x 2 S1, n;m 2 N and j 2 N with 0 ⩽ j ⩽ qnC1 we have

1

K

ˇ̌
InCm.x/

ˇ̌
ˇ̌
In.x/

ˇ̌ ⩽

ˇ̌
InCm

�
f j .x/

�ˇ̌
ˇ̌
In
�
f j .x/

�ˇ̌ ⩽ K

ˇ̌
InCm.x/

ˇ̌
ˇ̌
In.x/

ˇ̌ :

Proof. This result is a straightforward consequence of Koebe’s distortion prin-
ciple (Lemma 5.2). Indeed, fix some n 2 N and consider the three intervals
Ln D In

�
f �qn.x/

�
n InCm.x/,Mn D In.x/[ InCm.x/ and Rn D In

�
f qn.x/

�
.

Note that if m is an even integer, these intervals are just consecutive fundamental
domains for f qn . In any case, we also consider

Tn D Ln [Mn [Rn D
�
f �qn.x/; f 2qn.x/

�
:

By combinatorics, the trajectory
˚
Tn; f .Tn/; : : : ; f

qnC1�1.Tn/
	

has multiplicity
of intersection equal to 3. Moreover, for any 0 ⩽ j ⩽ qnC1, the space of f j .Mn/

inside f j .Tn/ is bounded from below, as it follows from k logDf qnk ⩽ V and
the fact that

ˇ̌
InCm.x/

ˇ̌
⩽ K�m

ˇ̌
In.x/

ˇ̌
(recall Lemma B.1). With this at hand,

Lemma 5.2 immediately implies Lemma B.3.

Lemma B.4. For any given f 2 C 1CBV there exists K D K.f / > 1 such thatˇ̌
InCm.w0/

ˇ̌
=
ˇ̌
In.w0/

ˇ̌
⩽ K `nCm=`n for all n;m 2 N.

Proof. Fix n 2 N and let x 2 S1 be such that
ˇ̌
In.x/

ˇ̌
D `n. Let i 2 f0; 1; : : : ;

qnC1 C qn � 1g be such that

In.x/ � In.wi / [ In.wiCqn
/:

Say that
ˇ̌
In.wi /

ˇ̌
⩾ `n=2. Then

ˇ̌
InCm.wi /

ˇ̌
ˇ̌
In.wi /

ˇ̌ ⩽
2 `nCm
`n

:

By our previous result (Lemma B.3), the same estimate holds for i D 0, up to
a multiplicative constant depending only on f . Indeed, note that Lemma B.3
is applied at most three times, since qnC1 C 2qn < 3qnC1 . Finally, note that
if
ˇ̌
In.wi /

ˇ̌
< `n=2, we must have

ˇ̌
In.wiCqn

/
ˇ̌
⩾ `n=2, but then

ˇ̌
In.wi /

ˇ̌
⩾

e�V ˇ̌In.wiCqn
/
ˇ̌
⩾ `n=2e

V , where V D Var.logDf /, and the proof goes in the
same way.
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B.3.2 Distortion estimates in C 2C˛

From now on, we assume that f 2 Diff2C˛.S1/ for some ˛ 2 .0; 1/. Following
Khanin and Teplinsky [2009], the cross-ratio distortion of f with respect to four
pairwise distinct points x1; x2; x3; x4 will be written in this appendix as

CrD.f I x1; x2; x3; x4/ D

f .x1/ � f .x2/
x1 � x2

f .x3/ � f .x4/
x3 � x4

f .x2/ � f .x3/
x2 � x3

f .x4/ � f .x1/
x4 � x1

;

independently of the order of these points. Note that in the particular case x2 <
x1 < x3 < x4, this definition coincides with the one used along the book (namely,
the b-cross-ratio), whereas the configuration x1 < x4 < x3 < x2 provides the
a-cross-ratio (recall Chapter 5). Note also that the previous definition can be ex-
tended to the case of points not necessarily distinct, by simply replacing a ratio
like

�
f .xi / � f .xi /

�
=.xi � xi / byDf.xi /.

Remark B.2. In order to simplify some of the formulas below, we shall use the
notation �f Œx; y� D .f .x/ � f .y//=.x � y/ wherever convenient.

Lemma B.5. For any given f 2 Diff2C˛.S1/ there exists a constant K D
K.f / > 1with the following property. Given n 2 N and four points x1; x2; x3; x4
in In.w0/ we have

ˇ̌
logCrD.f qnC1 I x1; x2; x3; x4/

ˇ̌
⩽ K `˛n :

In the same way,
ˇ̌
logCrD.f qn I x1; x2; x3; x4/

ˇ̌
⩽ K `˛nC1 :

for any given x1; x2; x3; x4 in InC1.w0/.

Remark B.3. As it turns out, the second estimate in Lemma B.5 above also holds
for points x1; x2; x3; x4 in In�1.w0/. See Khanin and Teplinsky [ibid., Lem. 6].

The proof of Lemma B.5, to be given below, will be a combination of the chain
rule for the cross-ratio distortion and the following estimate on the distortion of a
single iterate.

Lemma B.6. For any given f 2 Diff2C˛.S1/ there exists a constant K D
K.f / > 1 such that given an interval I � S1 and four points x1; x2; x3; x4 2 I
we have

jlogCrD.f I x1; x2; x3; x4/j ⩽ K jI j1C˛: (B.4)



B.3. Distortion estimates 455

Proof. Fix some point a 2 I , let p be the second-order Taylor polynomial of f
around a and let r be its remainder term. In other words, f .x/ D p.x/C r.x/ for
all x 2 I , where p.x/ D f .a/ C f 0.a/ .x � a/ C 1

2
f 00.a/ .x � a/2. For each

i 2 f1; : : : ; 4g let di D xi � a, and consider

�i;j D
di C dj
2

N f .a/C 1

f 0.a/
r.xi / � r.xj /
xi � xj

;

for any i ¤ j in f1; : : : ; 4g, where N f denotes the non-linearity of f (recall
Chapter 3 and Chapter 5). A straightforward computation gives

�f Œxi ; xj � D
f .xi / � f .xj /

xi � xj
D f 0.a/

�
1C �i;j

�
;

for any i ¤ j in f1; : : : ; 4g. We claim that there exists K D K.f / > 1 such that
j�i;j j ⩽ K jI j. Indeed, on one hand, using that r 00 is ˛-Hölder continuous on I
and that r 0.a/ D r 00.a/ D 0, it is not difficult to deduce that

ˇ̌
�rŒxi ; xj �

ˇ̌
D
ˇ̌
ˇ̌r.xi / � r.xj /

xi � xj

ˇ̌
ˇ̌ ⩽ K jI j1C˛ : (B.5)

On the other hand, since f belongs to Diff2C˛.S1/, both N f .a/ and 1=f 0.a/ are
bounded, and since we obviously have jdi j ⩽ jI j, we deduce that j�i;j j ⩽ K jI j
for any i ¤ j in f1; : : : ; 4g, as claimed. Now we write
ˇ̌
logCrD.f I x1; x2; x3; x4/

ˇ̌
D

D jlog�f Œx1; x2� � log�f Œx2; x3�C log�f Œx3; x4� � log�f Œx4; x1�j

D
ˇ̌
ˇ̌log

�f Œx1; x2�

f 0.a/
� log

�f Œx2; x3�

f 0.a/
C log

�f Œx3; x4�

f 0.a/
� log

�f Œx4; x1�

f 0.a/

ˇ̌
ˇ̌

D jlog.1C �1;2/ � log.1C �2;3/C log.1C �3;4/ � log.1C �4;1/j :
Using that j�i;j j ⩽ K jI j and that � 7! log.1C �/ is tangent to the identity at the
origin, we deduce that
ˇ̌
logCrD.f I x1; x2; x3; x4/

ˇ̌

D jlog.1C �1;2/ � log.1C �2;3/C log.1C �3;4/ � log.1C �4;1/j
⩽ j�1;2 � �2;3 C �3;4 � �4;1j CK jI j2

D 1

f 0.a/
j�rŒx1; x2� ��rŒx2; x3�C�rŒx3; x4� ��rŒx4; x1�j CK jI j2 :

Combined with (B.5), this finishes the proof of Lemma B.6.



456 B. Smooth conjugacies

With estimate (B.4) at hand, we are ready to prove Lemma B.5.

Proof of Lemma B.5. We will prove the first estimate in the statement, the proof
of the second being exactly the same. By Lemma B.6 and the chain rule for the
cross-ratio distortion (recall Lemma 5.3),

ˇ̌
logCrD.f qnC1 I x1; x2; x3; x4/

ˇ̌

⩽

qnC1�1X

jD0

ˇ̌
logCrD.f I f j .x1/; f j .x2/; f j .x3/; f j .x4//

ˇ̌

⩽ K

qnC1�1X

jD0

ˇ̌
In.wj /

ˇ̌1C˛

⩽ K `˛n

qnC1�1X

jD0

ˇ̌
In.wj /

ˇ̌
⩽ K `˛n ;

since the intervals
˚
In.wj /

	qnC1�1
jD0 are pairwise disjoint (recall Section 6.3.1).

To establish further estimates, we define for each n 2 N and x 2 S1,

Mn.x/ D
wqnC1

� f qnC1.x/

w0 � x

�
f qnC1.x/ � wqnC1Cqn

x � wqn

and
Kn.x/ D

wqn
� f qn.x/

w0 � x

�
f qn.x/ � wqnC1Cqn

x � wqnC1

:

Note that
Mn.x/

Mn.y/
D CrD.f qnC1 I w0; x; wqn

; y/ (B.6)

and
Kn.x/

Kn.y/
D CrD.f qn I w0; x; wqnC1

; y/

for any x; y in S1. Thus, by Lemma B.5 we have

Mn.x/

Mn.y/
D 1CO.`˛n/ (B.7)
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for any x; y in In.w0/. Analogously,

Kn.x/

Kn.y/
D 1CO.`˛nC1/

for any x; y in InC1.w0/.

Lemma B.7. We have Mn.x/ D 1 C O.`˛n/ for all x 2 In.w0/, and Kn.x/ D
1CO.`˛nC1/ for all x 2 InC1.w0/.

Proof. Note first that from e�V ⩽
ˇ̌
Df qn.x/

ˇ̌
⩽ eV , we deduce at once e�2V ⩽ˇ̌

Mn.x/
ˇ̌
⩽ e2V (and a similar bound for Kn). Now for each n 2 N let

mn D
q
Mn.w0/Mn.wqn

/ ;

and note that

mn D
q
Kn.w0/Kn.wqnC1

/ D
s

Df qn.w0/

Df qn.wqnC1
/
D
s
Df qnC1.w0/

Df qnC1.wqn
/
;

sincewe obviously haveDf qn.wqnC1
/Df qnC1.w0/ D Df qnC1.wqn

/Df qn.w0/

by the chain rule. We remark that

Mn.x/ D mn CO.`˛n/ for all x 2 In.w0/ ; (B.8)

and
Kn.x/ D mn CO.`˛nC1/ for all x 2 InC1.w0/ : (B.9)

For instance, (B.8) follows at once from (B.6), (B.7) and the following identity:

Mn.x/ D mn C
M 2
n .x/

Mn.x/Cmn

�
1 � Mn.w0/

Mn.x/

Mn.wqn
/

Mn.x/

�
:

Now we claim that
mn � 1 D O.`˛nC1/ :

Indeed, by combining Lemma B.4, (B.8) and (B.9) with the following formula
(which is left to the reader as an exercise)

KnC1.wqn
/ � 1 D

ˇ̌
InC2.w0/

ˇ̌
ˇ̌
In.w0/

ˇ̌ �
Mn.wqnC2

/ � 1
�
;
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we deduce

mnC1 � 1 D
ˇ̌
InC2.w0/

ˇ̌
ˇ̌
In.w0/

ˇ̌ .mn � 1/CO.`˛nC2/ ; (B.10)

where we have used estimate KnC1.x/ D mnC1 CO.`˛nC2/ for x D wqn
(recall

Remark B.3). By induction on (B.10), we obtain

mn � 1 D
ˇ̌
InC1.w0/

ˇ̌ ˇ̌
In.w0/

ˇ̌
ˇ̌
I1.w0/

ˇ̌ ˇ̌
I0.w0/

ˇ̌ .m0 � 1/ C
jDnX

jD1

ˇ̌
InC1.w0/

ˇ̌ ˇ̌
In.w0/

ˇ̌
ˇ̌
IjC1.w0/

ˇ̌ ˇ̌
Ij .w0/

ˇ̌ O.`˛jC1/

for all n ⩾ 2. Using again Lemma B.4 and also Corollary B.1, we finally obtain

jmn � 1j ⩽ K

0
@`nC1 `n C `˛nC1

n�1X

jD0
.�2�˛/j

1
A ;

which implies the claim, and finishes the proof of Lemma B.7.

B.4 C 1 exponential convergence

As before, let f 2 Diff2C˛.S1/ with irrational rotation number. As we know
from Chapter 3, f is topologically conjugate to a rigid rotation (recall Denjoy’s
Theorem 3.4). This implies, in particular, that the sequence of circle diffeomor-
phisms ff qngn2N converges uniformly (i.e., in the C 0 metric) to the identity map.
In this section we will prove that such converge actually holds in the C 1 metric,
at an exponential rate. With this purpose, for each n 2 N consider

"n D `˛n�1 C
`n

`n�1
`˛n�2 C

`n

`n�2
`˛n�3 C � � � C

`n

`1
`˛0 C

`n

`0
;

where the sequence f`ng comes from Definition B.1. In particular,

"nC1 D `˛n C
`nC1
`n

"n : (B.11)

Proposition B.2. There exists a constant K D K.f / > 0 such that

1 �K "n ⩽
ˇ̌
Df qn.x/

ˇ̌
⩽ 1CK "n

for all n 2 N and x 2 S1.
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In other words, logDf qn.x/ D O."n/ for all x 2 S1 and n 2 N. An imme-
diate consequence of Proposition B.2 is that

f qn � Id

C1 D O."n/:

Moreover, note that by Corollary B.1 we have "n D O.�˛.n�1//, and then the
sequence f"ng goes to zero exponentially fast (see also Lemma B.9 below).

Proof of Proposition B.2. Note first the identities

Df qnC1.w0/

Mn.w0/
D
ˇ̌
In.wqnC1

/
ˇ̌

ˇ̌
In.w0/

ˇ̌ and
Df qn.w0/

Kn.w0/
D
ˇ̌
InC1.wqn

/
ˇ̌

ˇ̌
InC1.w0/

ˇ̌ :

Since we obviously have
ˇ̌
In.wqnC1

/
ˇ̌
C
ˇ̌
InC1.wqn

/
ˇ̌
D
ˇ̌
In.w0/

ˇ̌
C
ˇ̌
InC1.w0/

ˇ̌
,

we obtain

Df qnC1.w0/

Mn.w0/
� 1 D

ˇ̌
InC1.w0/

ˇ̌
ˇ̌
In.w0/

ˇ̌
�
1 � Df

qn.w0/

Kn.w0/

�
:

In other words,

Df qnC1.w0/ �Mn.w0/ D
ˇ̌
InC1.w0/

ˇ̌
ˇ̌
In.w0/

ˇ̌ Mn.w0/

Kn.w0/

�
Kn.w0/ �Df qn.w0/

�
:

By Lemma B.7,

Df qnC1.w0/ � 1 D
ˇ̌
InC1.w0/

ˇ̌
ˇ̌
In.w0/

ˇ̌ �1 �Df qn.w0/
�
CO.`˛n/:

By induction,

Df qn.w0/ � 1 D

.�1/n
ˇ̌
In.w0/

ˇ̌
ˇ̌
I0.w0/

ˇ̌ �Df.w0/ � 1
�
C
n�1X

jD0
.�1/nCj�1

ˇ̌
In.w0/

ˇ̌
ˇ̌
IjC1.w0/

ˇ̌ O.`˛j / :

When combined with Lemma B.4, our last estimate implies Proposition B.2 for
x D w0. Since w0 is an arbitrary point in S1, this finishes the proof of Proposi-
tion B.2.
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B.4.1 Further distortion estimates
Fix some large n 2 N, and for each m 2 N consider the set

C .nCm; n/ D
˚
i 2 f0; 1; : : : ; qnCmC1 � 1g W InCm.wi / � In.w0/

	

and the number c.nCm; n/ D # C .nCm; n/ . Note that c.n; n/ D 1, c.nC1; n/ D
anC1 and that

c.nCmC 1; n/ D anCmC1 c.nCm; n/C c.nCm � 1; n/

for all m ⩾ 2. We also remark that, by induction on m, it is not difficult to prove
that

�n D c.nCm; n/�nCm C c.nCm � 1; n/�nCmC1 : (B.12)

Corollary B.2. Let K D K.f / > 0 be given by Proposition B.2. Then we have

`n

`nCm
⩾ c.nCm; n/

 
1 �K

nCm�1X

kDn
akC1 "kC1

!

for all n;m 2 N.

Proof. Fix n;m 2 N and let i; j 2 C .nCm; n/with, say, i < j . By Lemma 10.4
we know that for each k 2 fn; : : : ; n C m � 1g there exists an integer bkC1 2
f0; : : : ; akC1g such that

j D i C
nCm�1X

kDn
bkC1 qkC1 :

By Proposition B.2 we have

ˇ̌
InCm.wj /

ˇ̌
⩾
ˇ̌
InCm.wi /

ˇ̌
 
1 �K

nCm�1X

kDn
bkC1 "kC1

!

⩾
ˇ̌
InCm.wi /

ˇ̌
 
1 �K

nCm�1X

kDn
akC1 "kC1

!
:

Now, from the definition of the set C .nCm; n/ we have the obvious estimate
ˇ̌
In.w0/

ˇ̌
⩾

X

i2C .nCm;n/

ˇ̌
InCm.wi /

ˇ̌
:



B.5. The Diophantine condition 461

Thus, fixed i 2 C .nCm; n/ we have

ˇ̌
In.w0/

ˇ̌
⩾ c.nCm; n/

ˇ̌
InCm.wi /

ˇ̌
 
1 �K

nCm�1X

kDn
akC1 "kC1

!
:

Now let w0 2 S1 be such that `nCm D
ˇ̌
InCm.wi /

ˇ̌
. Then

`n ⩾
ˇ̌
In.w0/

ˇ̌
⩾ c.nCm; n/ `nCm

 
1 �K

nCm�1X

kDn
akC1 "kC1

!
:

This finishes the proof of Corollary B.2.

B.5 The Diophantine condition
All previous estimates in this appendix hold for any irrational rotation number. We
will now use the Diophantine condition, in order to establish the following bound.

Proposition B.3. Let � 2 .0; 1/ be given by Lemma B.1. For any given �1 2
.�˛�ı ; 1/ we have

an "n D O.�n1/;

where � D Œa0; a1; : : : � is the rotation number of f .

Remark B.4. Before entering the proof of Proposition B.3, consider the sequence
f�ng given by Definition B.1. We claim that if the rotation number � is Diophan-
tine of order ı ⩾ 0, then there exists a constant K D K.�/ > 0 such that

�1Cı
n ⩽ K�nC1 (B.13)

for all n 2 N. Indeed, recall first that from estimate (1.16) in Theorem 1.2 we have

1

2 qn qnC1
<

ˇ̌
ˇ̌� � pn

qn

ˇ̌
ˇ̌ < 1

qn qnC1

for all n 2 N. In other words,

1

2 qn
< �n�1 <

1

qn
:
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Now, if � is Diophantine of order ı, there exists a constantM D M.�/ > 0 such
that qnC1 ⩽M q1Cı

n for all n 2 N (recall Exercise 4.10), which implies

�1Cı
n�1 <

1

q1Cı
n

⩽
M

qnC1
< 2M�n :

Thus, considering K D 2M we deduce (B.13). This is how the Diophantine con-
dition will be used in this appendix.

B.5.1 Proof of Proposition B.3

A natural number n is a divergent level for f if

anC1 "nC1 > �nC1
1 :

We denote by fnigi2N the sequence of all divergent levels of f . To prove Propo-
sition B.3 we assume, by contradiction, that there exist infinitely many divergent
levels.

Lemma B.8. For all i 2 N we have

`ni

`ni C1
>
�
ni C1
1

2 "ni C1
:

Proof. Fix some i 2 N. Since ni is a divergent level for f , we can choose an in-
teger bni C1 2 f0; 1; : : : ; ani C1g so that bni C1 "ni C1 > �

ni C1
1 but bni C1 "ni C1 ⩽

1=.2K/, where K > 0 is given by Proposition B.2 (recall here that both "n and
�n1 go to zero as n goes to infinity). By Proposition B.2,

ˇ̌
Ini
.w0/

ˇ̌
>

bni C1�1X

jD0

ˇ̌
ˇIni C1.wjqni C1Cqni

/
ˇ̌
ˇ

⩾
ˇ̌
ˇIni C1.wqni

/
ˇ̌
ˇ
bni C1�1X

jD0

�
1 � j K "ni C1

�

>
ˇ̌
ˇIni C1.wqni

/
ˇ̌
ˇ bni C1

�
1 �K "ni C1 bni C1

�
;
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where we have used the elementary estimate
n�1X

jD0
j < n2. Since "ni C1 bni C1 ⩽

1=.2K/, we deduce that

ˇ̌
Ini
.w0/

ˇ̌
>
ˇ̌
ˇIni C1.wqni

/
ˇ̌
ˇ bni C1=2 :

Finally, given i 2 N we choose w0 so that `ni C1 D
ˇ̌
ˇIni C1.wqni

/
ˇ̌
ˇ, to obtain

`ni
⩾
ˇ̌
Ini
.w0/

ˇ̌
> `ni C1 bni C1=2 :

Thus
`ni

`ni C1
> bni C1=2 >

�
ni C1
1

2 "ni C1
;

since bni C1 "ni C1 > �
ni C1
1 . This finishes the proof of Lemma B.8.

We claim now that "ni C1 < `˛ni
for sufficiently large i . Indeed, from (B.11)

we have
`˛ni
D "ni C1 �

`ni C1
`ni

"ni
;

and then

`˛ni
> "ni C1

 
1 � 2 "ni

�
ni C1
1

!

since
`ni C1
`ni

<
2 "ni C1

�
ni C1
1

by Lemma B.8. Now, since "ni
D O.�˛.ni �1// (recall

Appendix B.4) and since �˛ < �1 by definition, the ratio "ni
=�
ni

1 decays expo-
nentially fast. This implies that "ni C1 < `˛ni

for sufficiently large i , as claimed.
With the claim at hand, Lemma B.8 implies that

`ni

`ni C1
>
�
ni C1
1

2 "ni C1
>
�
ni C1
1

2 `˛ni

for sufficiently large i . In other words,

`ni C1 D O
�
`1C˛
ni

=�
ni

1

�
: (B.14)
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On the other hand, by Corollary B.2 we have

`ni C1
`niC1

⩾ c.niC1; ni C 1/

0
@1 �K

niC1�1X

kDni C1
akC1 "kC1

1
A

⩾ c.niC1; ni C 1/

0
@1 �K

niC1�1X

kDni C1
�kC1
1

1
A ;

where we have used that akC1 "kC1 ⩽ �kC1
1 for all k 2 fni C 1; : : : ; niC1 � 1g.

In particular, we have

`niC1
D O

�
`ni C1

c.niC1; ni C 1/

�
: (B.15)

Now, recall that �1 2 .0; 1/ was defined by

0 <
log�1
log�

< ˛ � ı:

We then fix some 0 < � < ˛ � ı � log�1= log�, and note that �˛�ı�� < �1. By
Corollary B.1 we have

`1C˛
ni
D `1CıC�

ni
`˛�ı��
ni

D O
�
`1CıC�
ni

�.˛�ı��/ni
�

and then, by (B.14), we obtain

`ni C1 D O
�
`1CıC�
ni

�.˛�ı��/ni �
�ni

1

�
: (B.16)

But from (B.15) we have

`ni
D O

�
`ni�1C1

c.ni ; ni�1 C 1/

�
;

and since �.˛�ı��/ni �
�ni

1 goes to zero as i goes to infinity (recall that �˛�ı�� <
�1), we deduce from (B.16) that

`ni C1 ⩽
�

`ni�1C1
c.ni ; ni�1 C 1/

�1CıC�
(B.17)
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for sufficiently large i . On the other hand, from (B.12) we have �n ⩽ 2 c.n C
m; n/�nCm and then �ni�1C1 ⩽ 2 c.ni ; ni�1 C 1/�ni

, while from (B.13) we
have �1CıC�=2

ni
⩽ K�ni C1�

�=2
ni

. Therefore,

�ni C1 ⩾
�

�ni�1C1
c.ni ; ni�1 C 1/

�1CıC�=2

for sufficiently large i , since�ni
goes to zero as i goes to infinity. Combining this

estimate with (B.17) we obtain

log `ni C1
log�ni C1

⩾
1C ı C �
1C ı C �=2 �

log `ni�1C1 � log c.ni ; ni�1 C 1/
log�ni�1C1 � log c.ni ; ni�1 C 1/

for large enough i . Note that K D .1 C ı C �/=.1 C ı C �=2/ > 1. Moreover,
from log�ni�1C1 ⩽ log `ni�1C1 < 0 < log c.ni ; ni�1 C 1/ (recall Lemma B.2)
we have

log `ni C1
log�ni C1

⩾ K
log `ni�1C1
log�ni�1C1

for sufficiently large i . Thus, the sequence of positive numbers fıngn2N given by

ın D
log `n
log�n

is unbounded. However, by Lemma B.2, we know that ın 2 .0; 1� for all n 2 N.
This contradiction shows that there exist at most finitely many divergent levels.
In other words, an "n ⩽ �n1 for sufficiently large n, which finishes the proof of
Proposition B.3.

B.6 Proof of Theorem 4.11
With Proposition B.2 and Proposition B.3 at hand, we are ready to establish the
continuity of the function  defined in Appendix B.2.

Proof of Proposition B.1. Fix i 2 Z and some large n 2 N, and let j > i be
such that wj 2 In.wi /. Recall from (B.3) that the function  W Of .w0/! R is
defined by the initial condition  .w0/ D 0 and the recursive formula

 .wiC1/ D  .wi / � logDf.wi / for all i 2 Z:
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In particular,
 .wi / �  .wj / D logDf j�i .wi /:

Now let p 2 N be such that wj 2 PnCp.wi /. By Lemma 10.4, for each k 2
fn; : : : ; nC p � 1g there exists an integer bkC1 2 f0; : : : ; akC1g such that

j D i C qn C
nCp�1X

kDn
bkC1 qkC1 :

Therefore,

 .wi / �  .wj / D logDf qnC
PnCp�1

kDn
bkC1qkC1.wi / :

Using Proposition B.2 and Proposition B.3 we obtain

ˇ̌
 .wi / �  .wj /

ˇ̌
⩽
 logDf qn


C0 C

nCp�1X

kDn

 logDf bkC1qkC1

C0

D O
 
"n C

nCp�1X

kDn
bkC1 "kC1

!
D O

 
"n C

C1X

kDn
akC1 "kC1

!

D O
 
"n C

C1X

kDn
�kC1
1

!
:

Since this last term goes to zero as n goes to infinity, we deduce that  is contin-
uous at wi , and since i was an arbitrary integer, this finishes the proof of Proposi-
tion B.1.

As explained in Appendix B.1, Proposition B.1 implies that W Of .w0/! R

can be continuously extended to the whole circle, and that � W S1 ! R given by
�.x/ D e .x/=

R
e .y/dy is the derivative of a C 1 diffeomorphism that conju-

gates f with the corresponding rotation. Therefore, we have proved the following
result.

Corollary B.3. Let ˛ 2 .0; 1/ and let f 2 Diff2C˛.S1/ such that its rotation
number � is Diophantine of order ı < ˛. Then any topological conjugacy between
f and the rigid rotation of angle � is a C 1 diffeomorphism.
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B.6.1 Hölder continuity of the invariant density

As before, we denote by� the unique Borel probability measure on S1 which is in-
variant under f , and by m the (normalized) Lebesgue measure on S1. Recall from
Section 2.3 that �.A/ D m

�
h.A/

�
for any Borel set A � S1 and any topological

conjugacy h between f and the rigid rotationR�. A straightforward consequence
of Corollary B.3 is that

�.A/ D
Z

A

� dm :

The function � is the density function of the measure �. Note that, since � is con-
tinuous and strictly positive in S1, we have �.A/ � m.A/. In other words, the
�-measure of any given interval is comparable to its Euclidean length1. Therefore,
for smooth diffeomorphisms with Diophantine rotation number, the qualitative no-
tion of minimality can be strengthened to a quantitative one. Indeed, from Birkhoff
Ergodic Theorem we know that given any point x 2 S1 and any interval A � S1

we have

lim
n!C1

1

n
#
˚
j W 0 ⩽ j < n and f j .x/ 2 A

	
D �.A/ � m.A/ :

In other words, the asymptotic frequency with which any given point visits an open
interval is comparable to the Euclidean length of the given interval. These are some
of the statistical aspects of the smooth rigidity being discussed here.

In this final subsection we establish Hölder continuity of the invariant density.
More precisely, we will prove the following fact.

Proposition B.4. The function � is Hölder continuous in the whole circle, with
Hölder exponent ˛ � ı.

Before entering the proof of Proposition B.4, we establish the following esti-
mate, announced at the introduction of this appendix.

Lemma B.9. "n D O.�
˛

1Cı
n /.

Proof. Note first that by combining Corollary B.3 with Lemma B.2 and the Mean
Value Theorem we obtain that for all n 2 N

0 < min
x2S1

˚
�.x/

	
⩽
�n

`n
⩽ 1 : (B.18)

1Recall that this is not the case neither for diffeomorphisms with Liouvillean rotation number
(even real-analytic ones, see Section 4.3) nor for multicritical circle maps (of any combinatorics and
any degree of smoothness, see Section 8.2).
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In other words, `n � �n. Since, by definition,

"n D
`n

`0
C
n�1X

jD0

`n

`jC1
`˛j ;

estimate (B.18) implies that

"n D O

0
@�n C

n�1X

jD0

�n

�jC1
�˛j

1
A :

But by (B.13) �˛j D O
�
�

˛
1Cı

jC1

�
, and then

"n D O

0
@�n C

n�1X

jD0
�n�

˛
1Cı

�1
jC1

1
A D O

0
@�n C�

˛
1Cı
n

n�1X

jD0

�
�n

�jC1

�1� ˛
1Cı

1
A

D O

0
@�n C�

˛
1Cı
n

n�1X

jD0

�
�1� ˛

1Cı
�n�j�1

1
A

by Corollary B.1. Since ˛=.1C ı/ < 1, the sum
n�1X

jD0

�
�1� ˛

1Cı
�n�j�1 is bounded,

which implies Lemma B.9.

Remark B.5. With Lemma B.9 at hand, we can improve some of our previous
estimates. For instance, by combining Lemma B.9 with Proposition B.2 we imme-
diately obtain

f qn � Id

C1 D O

�
�

˛
1Cı
n

�
D O

�
jqn � � pnj

˛
1Cı

�
;

which improves our estimates from Appendix B.4. Moreover, since
ˇ̌
R
qn
� � Id

ˇ̌
is

constant and equal to �n, we deduce that
f qn � Rqn

�


C1 D O

�
�

˛
1Cı
n

�
for all

n 2 N, as announced in Remark B.1.
On the other hand, combining Lemma B.9 with (B.13) (i.e., the Diophantine

condition) we obtain

an "n D O
�
�n�1
�n

�
˛

1Cı
n

�
D O

�
�

1
1Cı

C ˛
1Cı

�1
n

�
D O

�
�

˛�ı
1Cı
n

�
D O

�
�˛�ı
n�1

�
;
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thus improving Proposition B.3.

To prove Proposition B.4 consider two points w and w0 in S1, and recall that
the orbit Of .w0/ D

˚
wi D f i .w0/ W i 2 Z

	
is dense in S1. Let n 2 N be such

that
w 2 In�1.w�qn�1

/ n In.w0/ :
In other words, wqn

⩽ w ⩽ w�qn�1
. Moreover, let j 2 f1; : : : ; ang be such that

wjqn
⩽ w ⩽ w.jC1/qn

.

Lemma B.10. ˇ̌
�.w0/ � �.w/

ˇ̌
D O

�
.j�n/

˛�ı�: (B.19)

We remark that (B.19) implies at once Proposition B.4. Indeed, note first that
ˇ̌
h.w0/ � h.w/

ˇ̌
⩾
ˇ̌
h.w0/ � h.wjqn

/
ˇ̌
D
ˇ̌
Rjqn
�

�
h.w0/

�
� h.w0/

ˇ̌
D j�n :

Therefore
ˇ̌
�.w0/ � �.w/

ˇ̌
D O

�
.j�n/

˛�ı� D O
�ˇ̌
h.w0/ � h.w/

ˇ̌˛�ı�
;

and since, by Corollary B.3, h is certainly bi-Lipschitz, we have
ˇ̌
�.w0/ � �.w/

ˇ̌
D O

�ˇ̌
w0 � w

ˇ̌˛�ı�
:

Thus, (B.19) implies Proposition B.4 as claimed. We finish Appendix B by proving
Lemma B.10.

Proof of Lemma B.10. Continuity of �, combined with the identity �.w0/��.w/
D �.w/

�
e .w0/� .w/ � 1

�
, easily implies that it is enough to prove

ˇ̌
 .w0/ �  .w/

ˇ̌
D O

�
.j�n/

˛�ı�:

With this purpose, we first claim that

ˇ̌
 .w0/ �  .w/

ˇ̌
D O

 
j"n C

C1X

kDn
akC1 "kC1

!
: (B.20)

Indeed, letN 2 N be large enough so thatwN D f N .w0/ is arbitrarily close tow.
Let p 2 N be such that wN 2 PnCp.w0/. Just as in the proof of Corollary B.2



470 B. Smooth conjugacies

and Proposition B.1, for each k 2 fn; : : : ; nC p � 1g let bkC1 2 f0; : : : ; akC1g
be such that

N D jqn C
nCp�1X

kDn
bkC1 qkC1 :

By definition of  we have

 .w0/ �  .wN / D logDf jqnC
PnCp�1

kDn
bkC1qkC1.w0/ ;

and then, just as in the proof of Proposition B.1, we obtain

ˇ̌
 .w0/ �  .wN /

ˇ̌
D O

 
j"n C

C1X

kDn
akC1 "kC1

!
:

The obtained bound is finite by Proposition B.3, and does not depend on N . Thus,
by continuity of  , the same bound applies to

ˇ̌
 .w0/� .w/

ˇ̌
, which establishes

(B.20). It remains to prove that j"n C
P
k⩾n akC1 "kC1 D O

�
.j�n/

˛�ı�.
On one hand, by Lemma B.9, we can write

j "n D O
�
j �

˛
1Cı
n

�
D O

 
.j �n/

˛�ı
�
j �

ı
1Cı
n

�1�.˛�ı/!
:

But j �
ı

1Cı
n is bounded. Indeed, note first that

j �
ı

1Cı
n ⩽ an�

ı
1Cı
n <

�n�1
�n

�
ı

1Cı
n ;

since an D �n�1=�n ��nC1=�n. From (B.13) we have �n�1 D O

�
�

1
1Cı
n

�
,

and then �n�1=�n D O
�
�

�ı
1Cı
n

�
. Thus, j �

ı
1Cı
n is bounded and then

j "n D O
�
.j �n/

˛�ı�: (B.21)

On the other hand,

C1X

kDn
akC1 "kC1 D O

 C1X

kDn

�k

�kC1
�

˛
1Cı

kC1

!
D O

 C1X

kDn
�˛�ı
k �

1�.˛�ı/
k

�
˛

1Cı
�1

kC1

!
:
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Using again (B.13) we obtain�1�.˛�ı/
k

D O
�
�

1�.˛�ı/
1Cı

kC1

�
D O

�
�
1� ˛

1Cı

kC1

�
, and

then
C1X

kDn
akC1 "kC1 D O

 C1X

kDn
�˛�ı
k

!
D O

�
�˛�ı
n

�
:

Combining this last estimate with (B.20) and (B.21) we obtain (B.19). This finishes
the proof of Lemma B.10.

As explained above, Lemma B.10 implies Proposition B.4. Finally, by com-
bining Corollary B.3 with Proposition B.4, we deduce Theorem 4.11 and finish
Appendix B.



C A Skew Product
over the Gauss

Map

In our study of orbit flexibility in Chapter 9, we considered a certain skew product
T W M ! M , where M D .Œ0; 1� nQ/ � Œ�1; 1�. Here, we enlarge it to get a
self-map of the rectangle R D Œ0; 1� � Œ�1; 1�.

Recall the formula defining T overM , namely

T .�; ˛/ D .G.˛/; T�.˛// ; (C.1)

whereG is the Gauss map, and for each (irrational) � the fiber map T� W Œ�1; 1�!
Œ�1; 1� is given by

T�.˛/ D

8
ˆ̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
:

�˛ for ˛ 2
�
� 1; 0

�

� ˛

�G.�/
for ˛ 2

�
0; � G.�/

�

�
1 � ˛
�

�
for ˛ 2

�
�G.�/; 1

�
,

(C.2)

Thus, to extend T to a self-map of the rectangle R, it suffices to define the fiber
maps T� W Œ�1; 1� ! Œ�1; 1� also for rational values of �. When � 2 Œ0; 1� \Q

is not of the form � D 1
n
, we define T� using the same formulas in (C.2). We also
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define T0 � 0, and for each n 2 N, T1=n W Œ�1; 1� ! Œ�1; 1� by T1=n.˛/ D �˛
if ˛ 2 Œ�1; 0� and T1=n.˛/ D fn.1 � ˛/g if ˛ 2 .0; 1�. Once this is done, we
can define the extended skew product, which we still denote by T , by the same
formula (C.1).
Remark C.1. Although the fiber maps T� W Œ�1; 1�! Œ�1; 1� are not (piecewise)
expanding, it is important to observe that the composition of any two of them (with
� ¤ 0) is expanding. This fact will be very useful in our study of the skew product
T .

Our main purpose in this appendix is to examine T from the point of view of
ergodic theory. More precisely, our goal is to prove the following result.
Theorem C.1. The skew product T W R! R admits a unique invariant Borel prob-
ability measure which is absolutely continuous with respect to Lebesgue measure.
This invariant measure is ergodic under T , and its support coincides with R.

C.1 An absolutely continuous invariant measure
For one-dimensional maps, there is a well-known result called the Folklore Theo-
rem (see Mañé [1987, Ch. III, Thm. 1.2] or de Melo and van Strien [1993, Ch. V,
Thm. 2.2]), that in essence asserts that a piecewise smooth expanding map always
admits an absolutely continuous invariant probability measure. In sharp contrast
with this fact, a piecewise smooth two-dimensional expanding map may not admit
an absolutely continuous invariant measure. For such a measure to exist, addi-
tional hypotheses are necessary (see for instance Buzzi [2000] and Tsujii [2001]
and references therein).

Fortunately, in our case the map T is rather special. The fact that T is a skew
product over an expanding map (the Gauss map), combined with the fact that it is a
Markov map (see below) which is even affine on the fibers, allows us to reduce the
problem to an essentially one-dimensional situation. Indeed, we start this appendix
with the following useful property of the family of fiber maps defined above.
Lemma C.1. Given any sequence f�ngn2N � Œ0; 1�nQ consider the sequence of
compositions

˚
	�0��� �n�1

	
n⩾1

in Œ�1; 1� given by

	�0��� �n�1
D T�0

ı T�1
ı � � � ı T�n�1

for all n ⩾ 1.

Then for any given Borel set B � Œ�1; 1�, the sequence
˚
�
�
	�1
�0��� �n�1

.B/
�	
n2N

is
convergent, where � denotes the Lebesgue measure on Œ�1; 1�. Moreover,

�0G.�0/ �.B/ ⩽ lim
n!C1

˚
�
�
	�1
�0��� �n�1

.B/
�	

⩽
�
2 � �0G.�0/

�
�.B/ :
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Proof. From f�ng we build the sequence f�ngn2N � Œ0; 1� given by

�0 D 1; �1 D 0 and �nC2 D �nG.�n/ �nC
�
1��nG.�n/

�
�nC1 ; 8n 2 N:

In other words, �2 D �0G.�0/ and

�n D �0G.�0/C
n�2X

jD1
.�1/j

jY

iD0
�i G.�i / for all n ⩾ 3.

The sequence f�ng clearly converges to some number �1, which satisfies1

0 <
�0G.�0/

2
< �1 < �0G.�0/ <

1

2
:

Given a Borel set B � Œ�1; 1� and n 2 N let `n and rn in Œ0; 1� be given by

`n D �
�
	�1
�0��� �n�1

.B/ \ Œ�1; 0�
�

and rn D �
�
	�1
�0��� �n�1

.B/ \ Œ0; 1�
�
:

By definition of each T� , the following relations hold for all n 2 N:
8
<̂

:̂

`nC1 D rn

rnC1 D �nG.�n/ `n C
�
1

�n

�
�n rn D �nG.�n/ `n C

�
1 � �nG.�n/

�
rn

With this at hand, we easily obtain by induction that for all n 2 N we have
(
`n D �n `0 C .1 � �n/ r0
rn D �nC1 `0 C .1 � �nC1/ r0

In particular, the Lebesgue measure of 	�1
�0��� �n�1

.B/ in Œ�1; 1� is given by

�
�
	�1
�0��� �n�1

.B/
�
D .�n C �nC1/ `0 C

�
2 � .�n C �nC1/

�
r0;

which converges to 2
�
�1 `0 C .1 � �1/ r0

�
as n goes to infinity. This proves

Lemma C.1.

With Lemma C.1 at hand we have the following result.
1Remember here that � G.�/ 2 .0; 1=2/ for any � 2 Œ0; 1� nQ (if � < 1=2 this is obvious since

0 < G.�/ < 1; if � > 1=2, then � G.�/ D 1 � � ).



C.1. An absolutely continuous invariant measure 475

Lemma C.2. The skew product T preserves a probability measure �T on the rect-
angle R which is absolutely continuous (with respect to Lebesgue).

Proof. We only sketch the arguments, as they are quite standard. As before, de-
note by � and � the Gauss measure on Œ0; 1� and the Lebesgue measure on Œ�1; 1�
respectively. Denote by � the absolutely continuous (with respect to Lebesgue)
Borel measure on the rectangle R given by � D � � � . In other words, given a
Borel set A � R we have

�.A/ D
Z

�1.A/

��.A/ d�.�/ ;

where �1 W R! Œ0; 1� is the projection on the first coordinate given by�1.�; ˛/ D
�, and where �� is the Lebesgue measure on the vertical fiber given by �, i.e.,
��.A/ D �

�
A \ .f�g � Œ�1; 1�/

�
for any � 2 Œ0; 1�.

Given n 2 N and open intervals I � Œ0; 1� and J � Œ�1; 1� we label each
point �n�1 of G�n.I / with the n-tuple f�0; : : : ; �n�1g given by G.�0/ 2 I and
G.�i / D �i�1 for all i 2 f1; : : : ; n � 1g. With this notation we can write

T �n.I � J / D
[

f�0;:::;�n�1g
G.�0/2I ;G.�i /D�i�1

˚
�n�1

	
� 	�1

�0::: �n�1
.J / :

From Lemma C.1 we know that

�
�
	�1
�0��� �n�1

.J /
�
⩽ 2 �.J /

holds for any n-tuple, and then

�
�
T �n.I � J /

�
D
Z

G�n.I /

��
�
T �n.I � J /

�
d�.�/ ⩽ 2 �.J /

Z

G�n.I /

d�.�/

D 2 �.J / �
�
G�n.I /

�
D 2 �.J / �.I / D 2�.I � J /:

With this at hand we deduce that
�
T n� �

�
.A/ ⩽ 2�.A/ for any Borel set A � R and any n 2 N. (C.3)

Finally, consider the sequence of Borel measures on the rectangle R given by

�n D
1

n

n�1X

jD0
T
j
� � :
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Since T is a local diffeomorphism around Lebesgue almost every point in R, we
deduce that the push-forward under T of any absolutely continuous measure is also
absolutely continuous and that, when restricted to absolutely continuous measures,
the operator T� acts continuously in the weak* topology. Let ! be any weak*
accumulation point of f�ng (recall that �n.R/ D 2 for all n). By (C.3), !.A/ ⩽
2�.A/ for any Borel set A � R. Therefore, ! is absolutely continuous with
respect to �, and then it is also absolutely continuous with respect to Lebesgue.
In particular, the measure ! is a continuity point of T�, which implies that it is
T -invariant in the usual way. We conclude the proof of Lemma C.2 by taking the
probability measure �T D 1

2
!.

C.2 Markov property

In order to prove Theorem C.1, it remains to prove that the absolutely continuous
invariant probability measure �T given by Lemma C.2 is unique, supported on
the whole rectangle R and ergodic under T (see Corollary C.1 below).

C.2.1 A countable Markov partition

The skew product T admits a countable Markov partition that we presently de-
scribe. The basic (open) Markov atoms of the partition are of three different types
(see Figure C.1):

1. The trapezoids Vk;`, with k 2 N and 0 ⩽ ` ⩽ k � 1, given by

Vk;` D
�
.�; ˛/ 2 R W 1

k C 1 < � <
1

k
; 1 � .`C 1/� < ˛ < 1 � `�

�
I

2. The triangles

Uk D
�
.�; ˛/ 2 R W 1

k C 1 < � <
1

k
; 0 < ˛ < 1 � k�

�
.k 2 N/ I

3. The rectangles

Rk D
�
.�; ˛/ 2 R W 1

k C 1 < � <
1

k
; �1 < ˛ < 0

�
.k 2 N/ :
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˛

�1

1

�1

1
k

1
kC1

Uk

Vk;`

Rk

0

� � �

� � �

Figure C.1: The Markov partition for T has three different types of atoms.

The map T is one-to-one in each of these Markov atoms, mapping them dif-
feomorphically onto either RC D .0; 1/ � .0; 1/ or R� D .0; 1/ � .�1; 0/. More
precisely, we have T .Uk/ D R�, T .Rk/ D RC and T .Vk;`/ D RC, for all k and
all `. The collection P of all such atoms is our Markov partition for T .
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Markov tiles

Let us write
P D fW1;W2; : : : ; Wm; : : :g

for an enumeration of the elements of the Markov partition P . For each m, let
�m W R˙ ! Wm be the inverse branch of T that takes T .Wm/ D R˙ back
onto Wm. Then �m is a smooth diffeomorphism and we have �m ı T D idWm

and
T ı�m D idR˙ . An n-tuple .m1; m2; : : : ; mn/ 2 Nn is said to be admissible if the
composition �m1

ı �m2
ı � � � �mn

is well-defined (as a map ofR˙ intoR). For each
admissible n-tuple .m1; m2; : : : ; mn/ 2 Nn, we consider the region (polygon)

Wm1;m2;:::;mn
D �m1

ı �m2
ı � � � ı �mn

.R˙/ :

Such region is called a Markov n-tile. Note that T .Wm1;m2;:::;mn
/ D Wm2;:::;mn

,
so each Markov n-tile is mapped onto a Markov .n� 1/-tile if n ⩾ 2, or onto R˙

if n D 1.

Lemma C.3. There exist constants C > 0 and 0 < � < 1 such that, for every
Markov n-tile Wm1;m2;:::;mn

, we have

diam.Wm1;m2;:::;mn
/ < C�n :

Proof. This follows at once from the easily verifiable fact that the map T 2 D T ıT
is expanding.

We denote by W the collection of all Markov tiles, and for each n we denote
by W .n/ the collection of all Markov n-tiles, so that W D

S
n2N W .n/. The

following easily proven facts are worth keeping in mind here:

MT1. For each n the elements of W .n/ are pairwise disjoint open subsets of R;

MT2. For each n the complement of
S
W 2W .n/ W in R is a Lebesgue null-set;

MT3. The union
S
W 2W

@W is a Lebesgue null-set;

MT4. For each open subsetA � R, there exists a collection CA � W of pairwise
disjoint Markov tiles such that A n

S
W 2CA

W has zero Lebesgue measure.

Note that Lemma 9.2 follows at once from the fact that any given open set inR
contains the closure of an n-tile (and then it eventually covers the whole rectangle
under iteration of T ).
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C.3 Ergodicity

We are now ready to show that the skew product T is ergodic with respect to the
invariant measure �T .

C.3.1 Bounding Jacobian distortion

One path towards proving that T is ergodic is to show that the Jacobians of all
inverse branches of iterates of T have uniformly bounded distortion. This fol-
lows from Proposition C.1 below. In the proof, we will need the following simple
lemma.

Lemma C.4. Let kj > 0, bj ⩾ 0 (j ⩾ 0) be two sequences of real numbers, and
assume that B D

P1
jD0

p
bj <1. Then for each n 2 N we have

nX

jD0
kj min

n
bn�j ; kj

�2
o
⩽ B : (C.4)

Proof. For each 1 ⩽ j ⩽ n, there are only two possibilities:

(i) k�2
j < bn�j : In this case we have

kj minfbn�j ; k�2
j g D k�1

j <

q
bn�j :

(ii) k�2
j ⩾ bn�j : In this case we have

kj minfbn�j ; k�2
j g D kj bn�j ⩽ .b�1

n�j /
1
2 bn�j D

q
bn�j :

From (i) and (ii) it follows that the sum in the left-hand side of (C.4) is bounded
by
Pn
jD0

p
bn�j ⩽ B .

Proposition C.1. There exists a constantK > 1 for which the following holds for
all n 2 N. If .�0; ˛0/ and .��

0 ; ˛
�
0 / are any two points in the same Markov n-tile,

then
1

K
⩽

ˇ̌
ˇ̌ detDT n.�0; ˛0/
detDT n.��

0 ; ˛
�
0 /

ˇ̌
ˇ̌ ⩽ K : (C.5)
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Proof. First, some preliminary considerations. For definiteness, letWm1;m2;:::;mn

be the Markov n-tile containing the two points .�0; ˛0/ and .��
0 ; ˛

�
0 /. Let us write,

for j D 1; 2; : : :, .�j ; ˛j / D T j .�0; ˛0/ and .��
j ; ˛

�
j / D T j .��

0 ; ˛
�
0 /. From the

definition of our skew product, we see that
�
�j D Gj .�0/

˛j D T�j �1
ı T�j �2

ı � � � ı T�0
.˛0/

(C.6)

and similar formulas hold for ��
j ; ˛

�
j . Note that, for each 0 ⩽ j ⩽ n, we have

.�j ; ˛j /; .�
�
j ; ˛

�
j / 2 Wmj C1;:::;mn

. Hence, by Lemma C.3, for each such j we
have

j�j � ��
j j ⩽ diam.Wmj C1;:::;mn

/ < C�n�j

Next, for each 0 ⩽ j ⩽ n, let kj be the unique natural number such that 1
kj C1 <

�j ; �
�
j <

1
kj

, so that j�j � ��
j j <

1

k2
j

. Combining these two estimates, we can
write

j�j � ��
j j < min

n
C�n�j ; k�2

j

o
: (C.7)

We are now ready to estimate the ratio of determinant Jacobians in (C.5). Using
(C.6) and the chain rule, we see that

DT n.�0; ˛0/ D

2
64

Qn�1
jD0G

0.�j / 0

�
Qn�1
jD0 T

0
�j
.˛j /

3
75 ;

and similarly for DT n.��
0 ; ˛

�
0 /. Hence the ratio of determinant Jacobians at both

points equals

detDT n.�0; ˛0/
detDT n.��

0 ; ˛
�
0 /
D

n�1Y

jD0

G0.�j /
G0.��

j /

n�1Y

jD0

T 0
�j
.˛j /

T 0
��

j

.˛�
j /

(C.8)

We proceed to estimate both products in the right-hand side of (C.8).

(i) Since G0.�/ D �1=�2 wherever G is differentiable, each term in the first
product is positive, equal to .��

j =�j /
2, and thus we have

ˇ̌
ˇ̌
ˇ̌log

n�1Y

jD0

G0.�j /
G0.��

j /

ˇ̌
ˇ̌
ˇ̌ ⩽ 2

n�1X

jD0

ˇ̌
ˇlog �j � log ��

j

ˇ̌
ˇ
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The mean value inequality tells us that
ˇ̌
ˇlog �j � log ��

j

ˇ̌
ˇ ⩽ .kjC1/j�j���

j j,
and therefore, by (C.7), we have

ˇ̌
ˇ̌
ˇ̌log

n�1Y

jD0

G0.�j /
G0.��

j /

ˇ̌
ˇ̌
ˇ̌ ⩽ 4

n�1X

jD0
kj min

n
C�n�j ; k�2

j

o
: (C.9)

(ii) From the formulas defining the fiber maps T� (see Section 9.3.1), we deduce
that there are only three possibilities:

T 0
�j
.˛j /

T 0
��

j

.˛�
j /
D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

1 ; if �1 < ˛j ; ˛�
j < 0

��
j �

�
jC1

�j�jC1
; if 0 < ˛j < 1 � kj�j and 0 < ˛�

j < 1 � kj��
j

��
j

�j
; if 1 � kj�j < ˛j < 1 and 1 � kj��

j < ˛
�
j < 1

Whichever case occurs, we always have
ˇ̌
ˇ̌
ˇ̌log

T 0
�j
.˛j /

T 0
��

j

.˛�
j /

ˇ̌
ˇ̌
ˇ̌ ⩽

ˇ̌
ˇlog �j � log ��

j

ˇ̌
ˇC

ˇ̌
ˇlog �jC1 � log ��

jC1
ˇ̌
ˇ :

This yields
ˇ̌
ˇ̌
ˇ̌log

n�1Y

jD0

T 0
�j
.˛j /

T 0
��

j

.˛�
j /

ˇ̌
ˇ̌
ˇ̌ ⩽ 2

nX

jD0

ˇ̌
ˇlog �j � log ��

j

ˇ̌
ˇ ;

Therefore, using the mean value inequality and (C.7) just as in (i), we deduce
that ˇ̌

ˇ̌
ˇ̌log

n�1Y

jD0

T 0
�j
.˛j /

T 0
��

j

.˛�
j /

ˇ̌
ˇ̌
ˇ̌ ⩽ 4

nX

jD0
kj min

n
C�n�j ; k�2

j

o
: (C.10)

Combining the estimates (C.9) and (C.10), we arrive at
ˇ̌
ˇ̌
ˇ̌log

0
@
n�1Y

jD0

G0.�j /
G0.��

j /

n�1Y

jD0

T 0
�j
.˛j /

T 0
��

j

.˛�
j /

1
A
ˇ̌
ˇ̌
ˇ̌ ⩽ 8

nX

jD0
kj min

n
C�n�j ; k�2

j

o
: (C.11)
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Applying Lemma C.4 with bj D C�j , we deduce that the sum on the right-hand
side of (C.11) is bounded by B D

p
C=

�
1 �
p
�
�
. Thus, exponentiating both

sides of this last inequality, one finally arrives at (C.5), with K D e8B . This
completes the proof of Proposition C.1.

C.3.2 A Lebesgue density argument
In what follows, we denote by meas.A/ the Lebesgue measure of a measurable set
A � R.

Lemma C.5. Let A � R˙ be a set with positive Lebesgue measure. Then there
exists a constant 0 < cA < 1 such that, for every Markov n-tileW with T n.W / D
R˙, we have

meas.W \ T �n.A//
meas.W /

⩾ cA : (C.12)

Proof. Since T n maps W diffeomorphically onto R˙, the change-of-variables
formula tells us that

meas.A/ D
“

W\T�n.A/

jdetDT n.�; ˛/j d�d˛ ;

as well as
1 D meas.R˙/ D

“

W

jdetDT n.�; ˛/j d�d˛ :

Applying the mean-value theorem for double integrals to both integrals above and
using Proposition C.1, we deduce (C.12), with a constant cA that depends only on
meas.A/ (and the constant K in (C.5)).

Lemma C.6. If B � R is a set with positive Lebesgue measure, then

meas

0
@R n

[

n⩾0

T �n.B/

1
A D 0 :

Proof. ReplacingB by T �1.B/ if necessary, we may assume thatBC D B\RC

and B� D B \ R� both have positive measure. Let � D 1
2

minfcBC ; cB�g,
where cB˙ are the constants obtained applying Lemma C.5 to A D B˙.
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We argue by contradiction. Suppose E D R n
S
n⩾0 T

�n.B/ is such that
meas.E/ > 0. Let z 2 E be a Lebesgue density point of E, and choose ı > 0 so
small that the diskD D D.z; ı/ � R satisfies

meas.D \E/
meas.D/

⩾ 1 � � : (C.13)

By fact (MT4) stated right after Lemma C.3, there exists a collection C of pair-
wise disjoint Markov tiles such that D D D� [

S
W 2C

W , where D� has zero
Lebesgue measure. For eachW 2 C , there exists a positive integermK such that
TmK .W / D R˙ � B˙. Thus, by Lemma C.5, we have

meas

0
@W \

[

n⩾0

T �n.B/

1
A ⩾ meas

�
W \ T �mK

�
B˙

��

⩾ cB˙meas.W / ⩾ 2�meas.W / :

Since this is true for every Markov tile in C , we deduce that

meas

0
@D \

[

n⩾0

T �n.B/

1
A ⩾ 2�meas.D/ ;

that is to say,
meas.D \ .R nE//

meas.D/
⩾ 2� : (C.14)

But (C.13) and (C.14) are clearly incompatible. This contradiction shows that
meas.E/ D 0, and the lemma is proved.

Corollary C.1. LetA � R be a Borel set which is T -invariant, i.e., T �1.A/ D A.
IfA has positive Lebesgue measure, then it has full Lebesgue measure in the whole
rectangle R.

Proof. The invariance T �1.A/ D A implies T �n.A/ D A for all n ⩾ 0. Since
meas.A/ > 0, we obtain from Lemma C.6 that

meas.A/ D meas

0
@[

n⩾0

T �n.A/

1
A D meas.R/ :
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C.3.3 End of proof
With this at hand we can finish the proof of Theorem C.1: Corollary C.1 implies at
once that any absolutely continuous probability measure which is invariant under
T , is also ergodic under T . Therefore, the measure �T given by Lemma C.2 is
ergodic. Moreover, since the support of �T is itself a T -invariant subset of R
with positive Lebesgue measure (because it has full �T -measure), Corollary C.1
implies that it must coincide with the whole rectangleR (since it is compact and it
has full measure). In particular,�T is the unique absolutely continuous probability
measure invariant under T , and this concludes the proof of Theorem C.1. We finish
this appendix by proving Proposition 9.4.

Proof of Proposition 9.4. Let B1; B2; : : : ; Bj ; : : : be a basis for the topology of
RC [ R�. For each j ⩾ 1, let B1

j D
S
n⩾0 T

�n.Bj /. Note that each B1
j �

RC [ R� is open, and by Lemma C.6 it has full Lebesgue measure in R (in par-
ticular, it is also dense in R). Therefore G0 D

T
j⩾1B

1
j also has full Lebesgue

measure in R. Moreover, G0 is a dense Gı , hence residual, subset of RC [ R�.
Finally, if z is any point in G0, then its positive orbit fT n.z/ W n ⩾ 0g visits every
basic set Bj , and therefore is dense in R.
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