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1 Introduction

It is a remarkable fact, although standard, that the images of the maximal geodesics of
the Euclidean sphere are embedded circles, all of them having the same length (2πr for a
sphere of radius r). Of course, this is not only true for S2: in addition to higher-dimensional
Euclidean spheres, other manifolds such as the projective spaces (RPn, CPn and HPn)
and the Cayley projective plane CaP2, with their respective canonical metrics, share this
property.

At first glance, requiring all geodesics to be simple closed curves of the same length
seems too restrictive. In fact, the examples given above are rather special for their rich
geometrical structure, and they are known as the Compact Rank One Symmetric Spaces
(CROSS). Hence, what may have been a plain observation raises an interesting question.
Is a Riemannian manifold all of whose geodesics are simply closed and of the same length
isometric to a CROSS?

As surprisingly as it might sound, the answer is no. Even more astonishing, at the
beginning of the last century, Otto Zoll [Zoll] found the first nontrivial examples of two-
dimensional spheres of revolution with this property. Due to his contributions, we now call
a Riemannian manifold a Zoll Manifold when all its geodesics are simple closed curves of
the same length.

Zoll’s discovery opened the door to further explorations. Not long after his examples, Funk
[Fun] tried to construct one-parameter families g(t) of Zoll metrics starting at the canonical
metric can = g(0) on the sphere, and found a necessary condition for such a family to exist.
His method, however, was based on the computation of Taylor series expansions, and he
could not prove that his condition was also sufficient, since there was no guarantee that the
series would converge. More than fifty years passed until Guillemin [Gui] was finally able
to answer affirmatively Funk’s sufficiency problem. His proof relied on an implicit function
theorem of Nash-Moser type, a result not available at the moment of Funk’s works.

Both constructions given by Zoll and Guillemin have a crucial aspect in common: they
are intimately related to odd functions. As we are going to see in Chapter 3, in cylindrical
coordinates (r, θ) ∈ [−1, 1]× [0, 2π], a metric of the form

g = [1 + h(cos r)]2dr2 + sin2 rdθ2 (1.1)

is a Zoll metric on S2 if and only if h : [−1, 1] → (−1, 1) is a smooth odd function that
maps 1 to 0. Moreover, any Zoll metric of revolution can be written as in the formula
above. On the other hand, Guillemin’s theorem states that, for any smooth odd function
f : S2 → R, there exists a smooth one parameter family of C∞-functions ρt such that
ρ0 = 0, (dρt/dt)|t=0 = f and eρt · can is a Zoll metric for all t sufficiently small.
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1 Introduction

As a consequence, none of those examples gives us nontrivial Zoll metrics on the real
projective plane, since they are not invariant under the antipodal map. In fact, although
there is a great variety of Zoll spheres (many of them with trivial isometry group — see
[Bes], Chapter 4, Corollary 4.71), no nontrivial example exists on RP2. This was first shown
by L. Green [Gre].

Green’s proof relied on a kind of “area comparison”. The idea is the following: One proves
that, if g is a Zoll metric on RP2 all of whose geodesics have length π, then Area(RP2, g) ≥
2π, with equality holding if and only if g = can. Then the argument ends by showing that
we must have Area(RP2, g) = 2π.

Actually, Green did not work with (RP2, g), but with the Riemannian covering (S2, g̃) →
(RP2, g) instead — the only difference is that we change 2π by 4π. When we do not consider
the normalized case, in which the length of the geodesics is π, the result can be stated as

Green’s Theorem. Any Zoll metric on RP2 is isometric to a constant multiple of the
canonical metric.

In the early 2000s, C. LeBrun and L. Mason [LM1] introduced new ideas to the study of
Zoll surfaces by applying methods from Twistor Theory. Their approach yielded another
proof of Green’s theorem, which relies on the rigidity of a duality between points and lines
— something that actually precedes the given metric. What they observed is that a Zoll
metric on RP2 has a special property: through any two distinct points passes a unique
geodesic, and any two distinct geodesics intersect at exactly one point. This is quite similar
to what one has when working with plane projective geometry. In fact, LeBrun and Mason
were able to prove Green’s Theorem by exploring this analogy.

The main aim of this work is to explain this new approach in detail.

We now summarise what will be discussed throughout the text. In Chapter 2, we define
Zoll metrics and Zoll projective structures — the latter being a generalization of the former.
These two notions are closely related and impose important topological restrictions on the
manifold. One could, in fact, spend many pages discussing the topological implications
of the existence of such structures (see [Bes], Chapter 7), but we content ourselves with
two simple results. First, we describe the fundamental group of such manifolds: a striking
property of Zoll manifolds (and manifolds equipped with Zoll projective structures, more
generaly) is that their fundamental groups cannot have order greater than two. Then we
move on to the two-dimensional case, and give a fairly precise description of the number of
intersections between any two distinct geodesics.

All the main results we present in this text are about Zoll surfaces. The emphasis on
dimension two starts at the end of Chapter 2, and prevails through all Chapter 3. There
we give the complete characterization of the Zoll metrics of revolution on the sphere. In
particular, formula (1.1) is derived.

The heart of this monograph is Chapter 4. In it, we give a complete proof of Green’s
Theorem from the perspective of LeBrun and Mason’s ideas. The argument will be divided
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in three parts, each explained in a section. In our presentation, all the important calculations
were done in detail, for we believe that, by doing so, the construction becomes clearer and
more concrete.
We conclude the text with a more informal discussion in Chapter 5. There, we briefly

talk about possible further directions one can go, and state some results not proved here
that complement the exposition.

Notations and conventions

Throughout this monograph, some conventions were made. For example, manifolds are
always connected and of class C∞, except when explicitly stated otherwise. The word
smooth is to be understood as C∞, and we will assume smoothness whenever possible. For
the absence of a priori differentiability (and even of continuity), we use the adjective rough.
This becomes clearer in the context of a vector bundle π : E → M . In this case, a rough
section s :M → E is a not necessarily continuous function s :M → E such that π◦s = idM .
Geodesics will be denoted, in most cases, by the letter γ, while c will be used for other

parametrized curves. The image of a maximal geodesic γ : R →M will often be written as
C = γ(R).
Finally, Einstein’s summation convention is used in many parts of the text. This is to

say that when we have equal upper and lower indices together, they are to be implicitly
summed. For example, if v1, ..., vn is a basis for a real vector space V and a1, ..., an are real
numbers, then aivi is written instead of

∑n
i=1 a

ivi.
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2 Different notions of Zoll structures

2.1 Zoll manifolds as special types of Riemannian manifolds

Let (M, g) be a Riemannian manifold. A curve γ in M is a periodic geodesic with period l
provided that γ is a geodesic of M that is periodic as a map from R to M (parametrized
by arc length), with least period l. The number l is the length of the periodic geodesic, and
we use the terminologies “periodic geodesic with period l”, “periodic geodesic of length l”,
and “l-periodic geodesic” interchangeably. For our purposes, we will say that a geodesic γ
is simply closed if it is l-periodic for some period l > 0 and if the function γ : [0, l] →M is a
simple closed parametrized curve, in the sense that if 0 ≤ t1 < t2 ≤ l satisfy γ(t1) = γ(t2),
then t1 = 0 and t2 = l. In other words, γ is simply closed when γ(R) is an embedded circle.

Definition 2.1. A Zoll metric is a Riemannian metric all of whose geodesics are simply
closed and have the same length. A Zoll manifold is a Riemannian manifold whose metric
is Zoll.

For simplicity, we will say that a Riemannian manifold (M, g) is a Zl-manifold whenever
it is a Zoll manifold and its geodesics are l-periodic. In this case, we write g ∈ Zl, or
g ∈ Z(M, l) if we want to emphasize the manifold and the length. We will also denote by
Z(M) =

⋃
l>0Z(M, l) the set of all Zoll metrics on a given manifold M .

As to be expected, the existence of a Zoll metric on a manifold is quite restrictive. For
example, if (M, g) is a Zl-manifold, then since all geodesics are periodic, they are defined for
all values of time, i.e. (M, g) is geodesically complete. Thus, by the Hopf-Rinow Theorem,
(M, g) is complete as a metric space, and through any two points p, q ∈ M passes some
minimizing geodesic γ. In particular, diam(M, g) ≤ l/2 and M is compact.

Way more can be said about the topology ofM (see Chapter 7 of [Bes]), but fairly simple
methods are sufficient to give us the following result.

Lemma 2.2. Suppose (M, g) is a Zl-manifold. Then diam(M, g) ≤ l/2, both M and its

universal cover M̃ are compact, and the pull-back metric g̃ = π∗g of g by the cover map
π : M̃ → M is a Zoll metric on M̃ . Moreover, π : (M̃, g̃) → (M, g) is either an isometry

or a Riemannian double cover, and g̃ ∈ Z(M̃, 2l) in the second case. In particular, π1(M)
is either trivial or isomorphic to Z2.

Proof. We already proved that M is compact, and that diam(M, g) ≤ l/2. Let us now
present another argument that does not rely on the Hopf-Rinow Theorem.
Fix a point p ∈ M , let B(0p, l/2) = {v ∈ TpM : |v| ≤ l/2}, and consider the restriction

expp : B(0p, l/2) →M of the exponential map to this ball. This map is not injective because
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2 Different notions of Zoll structures

all geodesics passing through p are periodic with period l, hence expp(v) = expp(−v) for
all v ∈ S(0p, l/2) = {u ∈ TpM : |u| = l/2}. One way to overcome this problem is to
define X := B(0p, l/2)/ ∼, where u ∼ v if and only if u, v ∈ S(0p, l/2) and u = ±v.
Then X ≈ RPn, where n = dimM , and there is a smooth map ρ : X → M that factors
expp : B(0p, l/2) →M through the canonical projection B(0p, l/2) → X.

It is important to note, however, that this construction does not solve the lack of injec-
tivity of expp : B(0p, l/2) → M . Indeed, there is no guarantee that the map ρ : X → M
is one-to-one, since there could be two distinct geodesics starting at p that meet at a point
q ̸= p. This is the case of (S2, can), for any two linearly independent vectors u, v ∈ S(0p, π)
represent distinct points of X, and are both mapped to the antipodal point −p via the
exponential map.

Nonetheless, we argue that this possible lack of injectivity causes no harm, because the
pair (X, ρ) satisfies the following properties:

(i) X is a closed manifold (i.e. compact and without boundary);

(ii) ρ−1(p) = {0p} (here we think of 0p as the image of 0p ∈ TpM under the projection
B(0p, l/2) → X), because l is the least period of the geodesics passing through p; and

(iii) ρ∗,0p : T0pX → TpM is an isomorphism, because ρ is modeled by the exponential map
near 0p.

Thus the proper map ρ : X → M has mod-2 degree 1 ∈ Z2, which implies that ρ is onto.
Since X is compact, we conclude that M is also compact. In particular, for any point
q ∈M , there is a geodesic starting at p that passes through q. Furthermore, because p was
chosen arbitrarily, through any two points of (M, g) passes some geodesic.

Assume we are given any two normalized geodesics γ0 and γ1 in M with γ0(0) = p0,
γ1(0) = p1, γ

′
0(0) = v0 and γ′1(0) = v1. We can then take a smooth curve c : [0, 1] → M

which goes from p0 to p1, and write Pt : TpM → Tc(t)M for the parallel transport along
c from c(0) = p0 to c(t). Since the parallel transport is an isometry, |Pt(v0)| = 1 for all
t ∈ [0, 1], so that there is a smooth one-parameter family O(t) in SO(Tp1M, gp1) such that
O(0) = Id and O(1)P1(v0) = v1. After concatenating t 7→ Pt(v0) with t 7→ O(t)P1(v0), we
get a path v(t) : [0, 1] → UM along the unit tangent bundle UM = {w ∈ TM : |w|g = 1}
from v(0) = v0 to v(1) = v1. This induces a (free) homotopy H : [0, 1]× R/lZ →M , given
by

H(s, t) = γv(s)(t) = exp(tv(s)),

between γ0 = H(0, ·) and γ1 = H(1, ·).
In other words, in a Zoll manifold M , all geodesics are freely homotopic. Even more, the

homotopy can be given along a fixed point p if both p0 = p1 = p — for we can take c to be
constant in this case. In particular, any geodesic is homotopic to the reverse orientation of
itself, and this implies that the homotopy class of any geodesic of M has order less than or
equal to two. Moreover, this order must be the same for every geodesic. Therefore, if we
denote by π : (M̃, g̃) → (M, g) the universal Riemannian cover of M , then the restriction
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2.2 Zoll projective structures

π : γ̃(R) → γ(R) is either a diffeomorphism for the lift γ̃ in M̃ of every geodesic γ of M , or

a double cover for all γ. In both cases, (M̃, g̃) is also a Zoll manifold.
Now fix p ∈M . It is well known that any homotopy class α ∈ π1(M,p) can be represented

by a geodesic loop γ : [0, 1] →M at p— this is true for any complete Riemannian manifold,
but γ′(0) ̸= γ′(1) in general, i.e. γ does not need to be periodic. (See, for instance, the
argument presented in the proof of Theorem 2.2 of Chapter XII in [doC], which can easily
be changed to give the desired result.) But since M is Zoll, γ must extend periodically, so
that γ′(0) = γ′(1). Thus either π1(M,p) is trivial, or a non-trivial element α ∈ π1(M,p)
is the homotopy class of a geodesic of M passing through p. This second case implies
π1(M,p) = Z2, for all geodesics passing through p are homotopic.

In the proofs of most of the assertions in Lemma 2.2, we did not use the hypothesis that
(M, g) is Zoll to all its extent. Indeed, the arguments assumed only that all the geodesics
passing through some point p ∈ M were periodic and of the same length. More generally,
we can consider the following:

Definition 2.3. Let (M, g) be a Riemannian manifold and let p be some fixed point of M .
We say that (M, g) is a Zoll manifold at p (or a Zp-manifold) if all normalized geodesics
passing through p are simply closed with the same length. When it happens, and the length
of those geodesics is l, we say that (M, g) is a Zp

l -manifold, and write g ∈ Z(M, l, p).

Example 2.4. An ellipsoid of revolution is a Zp-manifold, where p is one of its poles. By
the symmetries of its construction, this induces a metric on RP2 which is Z [p], where [p]
is the class containg the poles. It is not true, however, that both the ellipsoid, and the
induced (RP2, g) are Z-manifolds in general.

We point out that such manifolds have most of the properties stated in Lemma 2.2.

Lemma 2.5. Suppose (M, g) is a Zp
l -manifold for some point p ∈ M . Then both M and

its universal cover M̃ are compact, and diam(M, g) ≤ l. Moreover, the pull-back metric

g̃ = π∗g by the cover map π : M̃ → M is a Z p̃-metric for any p̃ ∈ π−1(p) on M̃ , and

π : (M̃, g̃) → (M, g) is either an isometry or a Riemannian double cover. When π is 2-1,

g̃ ∈ Z(M̃, 2l, p̃). In particular, π1(M,p) is trivial or isomorphic to Z2.

Proof. Everything was already proved except for the estimate on the diameter of (M, g).
But this is a simple use of the triangle inequality after noting that, for every point q ∈M ,
there is a geodesic passing through p and q. Since all geodesics passing through p are
periodic of length l, dist(p, q) ≤ l/2 for all q ∈M .

2.2 Zoll projective structures

The Hopf-Rinow Theorem is about Riemannian metrics g and the distance functions induced
by them on the underlying space (see Chapter VII of [doC], or Chapter 5, Section 5.7.1 of
[Pe]). On the other hand, we did not need to use this result in the proof of Lemma 2.2.
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2 Different notions of Zoll structures

Our argument was based on the existence of the exponential map (which is determined
by the Levi-Civita connection ∇g of g), the periodicity assumption on the geodesics, and
degree theory. The metric had a more subtle influence on the proof: it was needed when
we considered balls B(0p, r) ⊂ TpM , and on the construction of the homotopy between
geodesics (but only to make sure that γv(t), viewed as a map from R to M , had the same
period for all t). If not pointed out explicitly, the metric g could almost be forgotten and
overshadowed by the rest of the argument.

The topological techniques used in Lemma 2.2 are not only a choice of different methods,
but also a hint that it might be possible to work with Zoll manifolds in some kind of
generalized setting. As it is well known, there are two distinct approaches when dealing
with geodesics. The first is to consider them as solutions of a variational problem: they
are the paths that locally minimize length. The second is a dynamical one: geodesics are
curves with zero acceleration. Hence, if we look at our problem only through the lens of
dynamical systems, we need only a connection to be able to determine the geodesics — not
a Riemannian metric. It then makes sense to work with the following:

Definition 2.6. A Zoll connection on a manifoldM is a connection ∇ for which the images
of all its maximal geodesics are embedded circles.

The point, however, is that we are not concerned with geodesics viewed as maps from an
interval to the manifold, but rather as embedded circles C ⊂ M , where C = γ(R) for some
maximal geodesic γ : R → M . In particular, we should also not be concerned with their
parametrization. Therefore, a specific Zoll connection contains, in a sense, more information
than what we actually need. Different connections that have the same geodesics — viewed
as unparametrized curves — should not be distinguishable for our purposes.

Definition 2.7. Two connections ∇1 and ∇2 on a manifold M are projectively equivalent
— written as ∇1 ∼ ∇2 — when all their geodesics are the same, as unparametrized curves.
A projective structure [∇] on a manifold M is an equivalent class of connections on M for
the relation of being projectively equivalent.

This is to say that two connections ∇1 and ∇2 are projectively equivalent if and only
if, for every geodesic γ : I → M of ∇1, there is an interval J ⊂ R and a diffeomorphism
ϕ : J → I such that γ ◦ ϕ : J →M is a geodesic of ∇2.
In this context, Definition 2.6 can be replaced by:

Definition 2.8. A Zoll projective structure on a manifold M is a projective structure [∇]
of Zoll connections on M .

Whenever [∇] is a projective structure represented by a connection ∇, there is no loss
to assume that ∇ is torsion-free. Indeed, in any coordinate chart (U ;x1, ..., xn) of M , the
connection ∇ is completely characterized by its Christoffel symbols Γkij = dxk(∇∂i∂j), and
any geodesic γ : I →M satisfies the system of equations

γ̈k + γ̇iγ̇jΓkij = 0, k = 1, ..., n.
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2.2 Zoll projective structures

We can replace Γkij by their symmetrization 1
2(Γ

k
ij+Γkji) and obtain a torsion-free connection

∇̂ such that

γ̈k + γ̇iγ̇j
1

2
(Γkij + Γkji) = γ̈k + γ̇iγ̇jΓkij = 0

for all geodesics γ of ∇. Hence both ∇ and ∇̂ have the same parametrized geodesics, so
they are projectively equivalent.
For some purposes, when dealing with a manifold equipped with a projective structure

[∇], it is easier to fix a connection ∇ ∈ [∇] so that computations can be carried over. If we
want to return to the projective structure, however, it is important to keep in mind what is
invariant under changes of a representative ∇. The following result tells us how it can be
done, and will be important later on.

Lemma 2.9. Two torsion-free connections ∇1 and ∇2 are projectively equivalent if and
only if there is a 1-form ω ∈ Ω1(M) such that

∇1
XY = ∇2

XY + ω(X)Y + ω(Y )X (2.1)

for all X,Y ∈ X(M).

Proof. Suppose ∇1 and ∇2 are projectively equivalent. Since both connections are torsion-
free, the difference ∇1 − ∇2 is a symmetric (1,2)-tensor, so we can think of ∇1 − ∇2 as a
symmetric bilinear function TM ⊕ TM → TM .
Now fix p ∈M , a nonzero tangent vector Xp ∈ TpM , and let γ : I →M , I = (−ε, ε), be

the ∇1-geodesic passing through p at time zero with velocity Xp (i.e. γ(0) = p, γ′(0) = Xp,
and ∇1

d
dt

γ′ ≡ 0). Since ∇2 has the same unparametrized geodesics of ∇1, there is some

interval J = (−δ, δ) and an embedding ϕ : J → I such that γ ◦ ϕ is a ∇2-geodesic with
initial values γ ◦ ϕ(0) = p and (γ ◦ ϕ)′(0) = Xp. (In particular, ϕ(0) = 0 and ϕ′(0) = 1.) If
we denote by s the standard coordinate on J , and by t the standard coordinate on I, then
we get

0 = ∇2
d
ds

(γ ◦ ϕ)′ = ∇2
d
ds

[
ϕ′ · (γ′ ◦ ϕ)

]
= ϕ′′ · (γ′ ◦ ϕ) + ϕ′ · ∇2

d
ds

(γ′ ◦ ϕ)

= ϕ′′ · (γ′ ◦ ϕ) + ϕ′ ·
[(

∇2
ϕ′· d

dt

γ′
)
◦ ϕ
]

= ϕ′′ · (γ′ ◦ ϕ) + (ϕ′)2 ·
[(

∇2
d
dt

γ′
)
◦ ϕ
]
,

hence
∇1
Xp
Xp −∇2

Xp
Xp = ϕ′′(0)Xp.

Of course the expression ∇i
Xp
Xp, i = 1, 2, does not make any sense, but we think of

∇1
Xp
Xp −∇2

Xp
Xp as the tensor ∇1 −∇2 evaluated on the pair (Xp, Xp).

By the uniqueness and smooth dependence of solutions of ordinary differential equations,
the function ϕ = ϕp,Xp is uniquely determined by, and depends smoothly on p and Xp. This
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2 Different notions of Zoll structures

means that, for any (p,Xp) ∈ TM , there is a neighborhood U of (p,Xp) and an open interval
J = (−δ, δ) such that ϕq,Yq is defined on J , and the map (q, Yq, t) ∈ U × J 7→ ϕq,Yq(t) ∈ R
is smooth. Moreover, since the geodesic equation is homogeneous, ϕp,Xp(λt) = λϕp,λXp(t)
for all λ ∈ R \ {0} and all |t| sufficiently small. (The only case remaining is when Xp = 0,
which is trivial.)

Thus there is a well defined 1-form ω ∈ Ω1(M) given by ω(X)(p) = 1
2ϕ

′′
p,Xp

(0) if Xp ̸= 0,

and ω(X)(p) = 0 if Xp = 0, for all X ∈ X(M). This form satisfies the identity

∇1
XX −∇2

XX = 2ω(X)X, X ∈ X(M),

and the bilinearity of ∇1 −∇2 then implies the desired result:

∇1
XY −∇2

XY =
1

2

[(
∇1
X+Y (X + Y )−∇2

X+Y (X + Y )
)

−
(
∇1
XX −∇2

XX
)
−
(
∇1
Y Y −∇2

Y Y
)]

= ω(X)Y + ω(Y )X.

Conversely, assume that ∇1 and ∇2 are related by formula (2.1). Then a geodesic γ of
∇1 defined on an open interval I = (−ε, ε) satisfies the equation

∇2
d
ds

(γ ◦ ϕ)′ = [2(ϕ′)2ω(γ′ ◦ ϕ)− ϕ′′] · (γ′ ◦ ϕ)

for any reparametrization ϕ. By the existence and uniqueness of solutions of ordinary
differential equations, there is an interval J = (−δ, δ) and a unique smooth function ϕ :
J → I that solves the initial value problem{

ϕ′′ = 2(ϕ′)2ω(γ′ ◦ ϕ),
ϕ(0) = 0, ϕ′(0) = 1.

Since ϕ′(0) > 0, after restricting I and J if necessary, we may assume that ϕ : J → I
is a diffeomorphism — hence a reparametrization. By construction, the curve γ ◦ ϕ is a
geodesic for the connection ∇2 that passes through γ(0) at time zero with velocity γ′(0).
This finishes the proof, since γ was chosen arbitrarily.

In order to avoid an ambiguity, a Zoll manifold will always be understood as a Rieman-
nian manifold (M, g) whose metric is Zoll. Whenever [∇] is a Zoll projective structure
on a manifold M , we will call the pair (M, [∇]) a manifold equipped with a Zoll projective
structure.

Before we move on, there is still one problem to deal with. A Zoll projective structure is
far from the notion of Zoll metrics — at least further than is to be desired for our purposes.
Indeed, there are many examples of Zoll projective structures that do not quite fit in what
we expect. All the maximal geodesics of a lens space (S3/Zp, can) are simply closed, but
not all of them have the same length when p ≥ 3. Thus, except for (RP3, can), lens spaces
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2.2 Zoll projective structures

are examples of a Riemannian manifolds whose metrics are not Zoll, but have canonical
Zoll projective structures (see [Bes] for more examples). Moreover, S3/Zp does not admit
a Zoll metric when p ≥ 3, because its fundamental group has order greater than two (see
Lemma 2.2).

What we want is a structure slightly more general than a Zoll metric, but not so much.
For example, we would like to impose a restriction on the Zoll projective structures here
considered so that Lemma 2.2 is still valid. This is what we do next.
Given an immersed curve c : [a, b] ↬M , the class [c′(t)] is a well defined element of

PTM := (TM − 0M )/R×,

since c′(t) ∈ Tc(t)M does not vanish at any time t ∈ [a, b]. The canonical lift of c along
the canonical projection µ : PTM → M is the map ĉ : t 7→ [c′(t)]. Observe that the image
ĉ([a, b]) ⊂ PTM does not depend on the parametrization of the curve. Hence any geodesic
C of a given Zoll projective structure [∇] can be canonically lifted to an embedded circle
Ĉ ⊂ PTM , and the set of all these lifted circles is a foliation of PTM , which will be denoted
by F .

The next lemma suggests what is the extra piece of structure we are looking for.

Lemma 2.10. If (M, g) is a n-dimensional Zoll manifold, then the induced foliation of
PTM by lifted geodesics is locally trivial, in the sense that each leaf has a neighborhood
which is diffeomorphic to S1 × R2n−2 in such a way that every leaf corresponds to a circle
of the form S1 × {pt}.

Proof. Assume first that M is orientable. Let γ : [0, 1] → M be a geodesic loop of length
l ≡ |γ′(t)|, and denote by C = γ([0, 1]) its image. The orientability of M and C tells us
that the normal bundle T⊥C is trivial, i.e. there is an orthonormal frame e1(t), ..., en−1(t)
of T⊥C along γ such that ei(0) = ei(1) for all i = 1, ..., n− 1. Moreover for some ε > 0 the
map

R/Z× Rn−1 →M

(t, r1, ..., rn−1) 7→ expγ(t)(r
iei(t))

(2.2)

induces a diffeomorphism between the cylinder R/Z×B(0, ε), B(0, ε) ⊂ Rn−1, and a tubu-
lar neighbourhood U = B(C, ε) of C — this allows us to denote any point p ∈ U by
(t, r1, ..., rn−1). After taking ε > 0 sufficiently small, we may assume that any curve in U
of the form t ∈ [0, 1] 7→ (t mod 1, r(t)) has length greater than 3l/4.

By the smooth dependence of solutions of ordinary differential equations, we can get an
open set V ⊂ TM satisfying:

(i) γ′(s) ∈ V for all t ∈ [0, 1];

(ii) |v| ∈ (l/2, 3l/2) for all v ∈ V ; and

(iii) for any v ∈ V , the geodesic γv with initial condition γ′v(0) = v stays inside U = B(C, ε)
for any time |s| ≤ 3/2, i.e. γv(s) ∈ U whenever s ∈ [−3/2, 3/2].

11



2 Different notions of Zoll structures

Properties (i), (ii) and (iii) together with the fact that all geodesics have the same length
imply that all γv : R → M , v ∈ V , stay inside U for all s ∈ R. Hence any geodesic γv can
be written as s ∈ R 7→ (tv(s), rv(s)) in U . Furthermore, the derivative dtv/ds cannot vanish
at any time: on the contrary, γv would pass through C with velocity normal to TC, and so
would eventually move out of U .
What we have so far is that any geodesic C[v] = γv(R), v ∈ V , is completely inside of U ,

and can be locally parametrized by s ∈ R 7→ (tv(s), rv(s)) with dtv/ds > 0. The retraction
(t, r) 7→ (t, 0) induces a local diffeomorphism C[v] → C, which is a covering map, since
C[v] is compact. The cover C[v] → C must be a diffeomorphism: otherwise C[v] could be
parametrized as s ∈ [0, k] 7→ (s mod 1, r(s)) for some integer k > 1, and some smooth
periodic function r with least period k. But this implies that the length of C[v] is greater
than 3kl/4 > l, which contradicts the assumption that (M, g) is a Zoll manifold.
Now let W be the image of V under the canonical projection TM − 0M → PTM , and

consider the set A = {(t, r) ∈ U : t ≡ 0 mod 1}. Since any geodesic C[v], [v] ∈ W , passes
through A at some point p[v] = (0, r([v])) with direction

Tp[v]C[v] =

[(
∂

∂t
+ ξi([v])

∂

∂ri

)∣∣∣∣
p[v]

]
, (2.3)

any [v] ∈W is uniquely described as (t([v]), r1([v]), ..., rn−1([v]), ξ1([v]), ..., ξn−1([v])), where
r([v]) and ξ([v]) are the ones described in formula (2.3), while t([v]) = t(µ([v])) is given by
the cylindrical coordinates in (2.2). This identifies W with an open set of R/Z × R2n−2,
and induces the desired diffeomorphism by restricting W , if necessary.

Finally, assume M is not orientable. In this case, Lemma 2.2 tells us that π1(M) = Z2

and that the homotopy class of a geodesic loop γ : [0, 1] → M is not the identity element.
Hence the normal bundle T⊥C of C = γ([0, 1]) is nontrivial, and we cannot construct
global cylindrical coordinates as in (2.2). There is still a sufficiently small ε > 0 for which
U = B(C, ε) ≈ T⊥C is a tubular neighborhood of C = γ([0, 1]), though, and we have a
well defined map t : U → R/Z given by the composition of the retraction U → C with the
diffeomorphism C ≈ R/Z that identifies a point p ∈ C with t ∈ R/Z if p = γ(t).

By choosing ε sufficiently small, we may assume that any curve c : (a, b) → U for which
the composition t ◦ c : (a, b) → R/Z is onto has length greater than 3l/4. We can then
obtain an open set V ⊂ TM with properties (i), (ii) and (iii) as before, and consider W as
its image via TM − 0M → PTM . Similarly to the orientable case, (i)—(iii) imply that any
geodesic C[v], [v] ∈W , is contained in U .

Even though global cylindrical coordinates do not exist, we can take local coordinates on
U of the form (t, r) ∈ (a, b)×B(0, ε), for b− a < 1, induced by the map

(a, b)× Rn−1 →M

(t, r1, ..., rn−1) 7→ expγ(t)(r
iei(t))

(2.4)

(here we think of γ as a 1-periodic function defined for all values in R). Just like in the
orientable case, the geodesics C[v], for [v] ∈ W , are contained in U , and the restriction
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2.2 Zoll projective structures

of t to C[v] induces a diffeomorphism C[v] → C. Indeed, in the coordinates (2.4) any local
parametrization γv(s) = (t(s), r(s)), v ∈ V , of C[v] has dt/ds > 0: on the contrary, C[v] would
pass through C with direction normal to TC, and so would eventually move out of U . Since
C[v] → C is an immersion and both C and C[v] are circles, C[v] → C is a covering map. But
C[v] → C is, in fact, a diffeomorphism: otherwise the length of C[v] would be greater than l,
which contradicts the assumption that (M, g) is Zoll. By taking −1/2 < a < 0 < b < 1/2 in
(2.4), we can define A = {(0, r) ∈ U} and put coordinates (t, r, ξ) on W by t([v]) = t(µ([v]))
and r([v]), ξ([v]) as in (2.3).

Definition 2.11 ([LM1], Definition 2.5). Let [∇] be a Zoll projective structure on a n-
dimensional manifold M . We say that [∇] is tame if the induced foliation of PTM by
lifted geodesics is locally trivial, in the sense that each leaf has a neighbourhood which is
diffeomorphic to S1×R2n−2 in such a way that every leaf corresponds to a circle of the form
S1 × {pt}.

Lemma 2.10 tells us that a Zoll metric induces a tame Zoll projective structure. The next
result goes the other way around. This, in a sense, justifies the hypothesis of tameness as
the right generalization.

Lemma 2.12. Let M be a manifold equipped with a tame Zoll projective structure [∇]. If
[∇] is represented by the Levi-Civita connection of some metric g, then g is Zoll.

Proof. The geodesics of g are, by assumption, simply closed, and it only remains to prove
that every one of them has the same length.

For a fixed unparametrized geodesic C of M , there is a trivializing neighborhood V of its
canonical lift Ĉ ⊂ PTM , in the sense that there is a diffeomorphism ϕ : S1 × R2n−2 ≈−→ V ,
where the lifted geodesics in V are identified with S1 × {pt}. In particular,

cr : S1 →M

t 7→ µ(ϕ(t, r))

is a smooth (2n− 2)-parameter family of loops on M , so that the length

L(cr) =

∫
S1
|c′r(t)|dt

depends smoothly on r ∈ R2n−2. Thus we can construct a smooth (2n − 2)-parameter
family of affinely parametrized geodesic loops γr : S1 → M by requiring that γr is the
unique geodesic that passes through cr(0) at time zero with velocity (L(cr)/|c′r(0)|) · c′r(0)
(here we think of t ∈ S1 as a number in [0, 1)). Of course γr is a reparametrization of cr,
but the point is that now each γr is a critical point for the energy functional (see [doC] or
[Pe])

E(γr) =

∫
S1
|γ′r(t)|2dt.
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2 Different notions of Zoll structures

Since r 7→ γr is a smooth (2n− 2)-parameter family of critical points, the energy does not
depend on r, i.e. the map r 7→ E(γr) is constant. This implies that the length L(γr) = L(cr)
is also constant as a function of r.
Finally, for any two directions [v0], [v1] ∈ PTM , there is a path α : [0, 1] → PTM ,

α(t) = [vt], that starts at [v0] and ends at [v1]. Denote by Ct the geodesic of M whose
lift Ĉt ⊂ PTM passes through [vt]. Then the previous argument showed that the length
L(t) = L(Ct) of Ct is a smooth locally constant function of t ∈ [0, 1]. Hence L(t) is constant,
and L(C0) = L(C1). Since [v0], [v1] ∈ PTM where chosen arbitrarily, this proves that all
geodesics have the same length.

As a consequence of Definition 2.11, if [∇] is a tame Zoll projective structure on a manifold
Mn, then the leaf space N := PTM/F , called the space of unparametrized geodesics of
(M, [∇]), is a connected manifold of dimension 2n − 2, and the canonical projection ν :
PTM → N is an S1-bundle. Moreover, as seen in the argument used in the proof of the
previous lemma, all geodesics of (M [∇]) are freely homotopic to each other. The picture
can then be put together to form the following double fibration:

M N ,

PTM
µ ν

(2.5)

and the tangent spaces to the fibers of µ and ν are linear independent everywhere, i.e.
(kerµ∗) ∩ (ker ν∗) = 0.

Another space of importance is the sphere tangent bundle:

STM := (TM − 0M )/R+.

When c : [a, b] ↬ M is an immersed curve, its class R+c′(t) = {λc′(t) : λ > 0} is a well
defined element for all t ∈ [a, b], and R+c′ : t 7→ R+c′(t) lifts c to STM along the canonical
projection STM → M . The image R+c′([a, b]) is invariant under orientation-preserving
reparametrizations, in the sense that, if ϕ : [a′, b′] → [a, b] is a orientation-preserving dif-
feomorphism, then R+c′([a, b]) = R+(c ◦ ϕ)′([a′, b′]). When ϕ reverses orientation, however,
R+c′(ϕ(t)) ̸= R+[c′(ϕ(t))ϕ′(t)], so that R+c′([a, b]) ∩ R+(c ◦ ϕ)′([a′, b′]) = ∅.

As a consequence, a geodesic C of (M, [∇]) lifts to STM in two possible ways Ĉ+ and
Ĉ−. These lifts give us a foliation F̃ on STM , which is ‘locally trivial’ in the sense of
Definition 2.11 when [∇] is tame, for there is a canonical double cover STM → PTM . The
leaf space Ñ = STM/F̃ is then a connected manifold, called the space of directed geodesics
of (M, [∇]), and there is a canonical nontrivial double cover Ñ → N .
Our goal now is to understand the topological restrictions shared by manifolds equipped

with a tame Zoll projective structure. The approach is similar to that of Section 2.1.

Lemma 2.13. Let (M, [∇]) be a n-dimensional manifold equipped with a tame Zoll pro-

jective structure, and let π : M̃ → M be its universal cover. Then [π∗∇] is a tame Zoll

projective structure on M̃ .
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2.2 Zoll projective structures

Proof. There is nothing to prove when M is simply connected. So we can assume that this
is not the case.

Since any two geodesics of M that pass through a given point are homotopic, every
parametrized geodesic of M is homotopic to its reverse parametrization. Hence the homo-
topy class of any geodesic of M has order no greater than two. Moreover, because any
two geodesics of M are freely homotopic, this order is the same for all homotopy classes of
geodesics, independent of a chosen fixed point. Thus the restriction π : C̃ → C is either a
double cover for any component C̃ of π−1(C) of any geodesic C ⊂ M , or a diffeomorphism

for every C̃ and every C. This shows that the geodesics of (M̃, [π∗∇]) are embedded circles,
since they are the components of the pre-images of geodesics of M . Equivalently, [π∗∇] is

a Zoll projective structure on M̃ .

The tameness is then proved in a simple manner. Assume [∇] is tame. Fix any geodesic C

of M , and let C̃ ⊂ π−1(C) be a geodesic of M̃ . Then, the tameness of [∇] tells us that there
is a neighbourhood U ⊂ PTM that contains the canonical lift of C, and is diffeomorphic
to R/Z × R2n−2 in such a way that the lifted geodesics of M correspond to the circles

R/Z×{pt}. At the same time, π : M̃ →M induces a covering map π̂ : PTM̃ → PTM such

that the components of the pre-images of lifted geodesics of M are lifted geodesics of M̃ .
Hence the component Ũ ⊂ π̂−1(U) containing the lift of C̃ is diffeomorphic to R/kZ×R2n−2,
for k ∈ {1, 2} independent of the choice of C̃ and C, in such a way that the lifted geodesics
ofM correspond to the circles R/kZ×{pt}. The arbitrary choice of C and C̃ then concludes
the proof of the tameness of [π∗∇].

Lemma 2.14. If (M, [∇]) is a manifold equipped with a tame Zoll projective structure,
then M is compact, and has finite fundamental group. Furthermore any two points of M
are connected by a geodesic.

Proof. Fix a point p in M . Since (kerµ∗) ∩ (ker ν∗) = 0, the set

X̂ := ν−1[ν(µ−1(p))]

is a closed submanifold of PTM , and the projection µ : PTM → M restricts to a smooth
map µ : X̂ →M . Observe that X̂ can be identified with the set of pairs (q, TqC), where q is
a point of a geodesic C that passes through p. With this identification, we see that µ−1(p) is
diffeomorphic to an RPn−1 whose normal bundle is the tautological line bundle. Hence we
can blow-down X̂ at µ−1(p) to obtain a manifold X, and a smooth map ρ : X →M . (This
is the analogous construction to that in the proof of Lemma 2.2.) Let x ∈ X be the image
of µ−1(p) by the blowing-down map X̂ → X. The pair (X, ρ) has the following properties:

(i) X is a closed manifold;

(ii) ρ−1(p) = {x}; and

(iii) ρ∗,x : TxX → TpM is an isomorphism, because ρ is modeled by the exponential map
near x.
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2 Different notions of Zoll structures

Thus p is a regular value of ρ, and the proper map ρ : X → M has mod-2 degree 1 ∈ Z2,
which implies that ρ is surjective. This proves that M is compact, and that any two points
of M can be joined by a geodesic, since p was arbitrary.

For the finiteness of the fundamental group, observe that Lemma 2.13 tells us that the
universal cover M̃ has a tame Zoll projective structure. Hence M̃ is compact by the above
argument, which implies that the fundamental group of M is finite.

Remark. It can be shown that X, defined in the above proof, is diffeomorphic to RPn.
To see this, let g be a Riemannian metric on M . By the same reasoning as in the proof
of Lemma 2.12, there is a smooth function Lg : N → (0,∞) that assigns to each y ∈ N
the length of the geodesic Cy = µ(ν−1(y)) (in terms of the metric g). Pulling back Lg
via the composition UgM → PTM ν−→ N , where UgM = {u ∈ TM : g(u, u) = 1} and
UgM → PTM is the projection u 7→ [u], we get a smooth function Lg : U

gM → (0,∞).
Now let

Bg := {λu ∈ TpM : u ∈ UgpM, 0 ≤ λ ≤ Lg(u)/2},

and define a smooth application f : Bg → M in the following way. For each u ∈ UgpM ,

there is a unique parametrization cu : R/Z ≈−→ Cν([u]) such that c′u(0) = Lg(u)u and |c′u(t)| ≡
Lg(u), and cu depends smoothly on u. We then put f(λu) = cu(λ/Lg(u)) for λ > 0, and
f(0p) = p. Since Lg(u) = Lg(ν([u])) = Lg(−u), and since cu(t) = c−u(1 − t), the map f
factors through the quotient Bg → Y = Bg/ ∼, where v ∼ w if and only if v = −w =
(L(u)/2)u for some u ∈ UgpM .

Of course Y ≈ RPn, but we also claim that Y is canonically identified with X. Indeed,
f induces a smooth function F : Bg → X, given by F (v) = (f(v), Tf(v)Cν([v])) when v ̸= 0,
and F (0p) = x. Moreover, since F ((Lg(u)/2)u) = F (−(Lg(−u)/2)u), it factors through
Bg → Y , so that we get a smooth map G : Y → X. Observe that G is injective because
f(v) = f(w) if and only if v = w or v = −w = (Lg(u)/2)u for some u ∈ UgpM — this is
because cu(λ1) ̸= c−u(λ2) for all λ1, λ2 ∈ (0, 1/2), and all u ∈ UgpM . Furthermore, any point
of X not equal to x can be written as a pair (q, TqC) for some point q contained in a geodesic
C that passes through p, so that G is also onto. In particular, G is a homemorphism, for it
is a bijective continuous map between compact manifolds.

In fact, G is actually a diffeomorphism. This follows from the tameness of [∇] and the
very construction of cu, which imply that, for any u0 ∈ UgpM , there is a neighborhood U of
u0 such that the map U×R/Z ∋ (u, t) 7→ [c′u(t)] ∈ PTM is a diffeomorphism onto its image,
which lies in X̂. Since cu(t) = c−u(1− t), this implies that G is a local diffeomorphism, and
hence a diffeomorphism. The picture we get is the commutative diagram drawn below.

M

X

Y
Bg

G ≈
F

f

ρ

TpM ⊃
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Corollary 2.15. If [∇] is a tame Zoll projective structure on a manifold M , then π1(M)
is either trivial or isomorphic to Z2. In the second case, the homotopy class of any geodesic
is the nontrivial element of π1(M).

Proof. We may assume that M has nontrivial fundamental group. We already know that
the order of the homotopy class of a geodesic does not depend on the choice of geodesic and
of the fixed point for the homotopy, since all geodesics are freely homotopic to each other.
Moreover, this order is no greater than two, for a parametrized geodesic is homotopic to
itself with the reverse parametrization.

Now fix p in M , let π : M̃ → M be the universal cover, and consider the induced
tame Zoll projective structure [π∗∇] by Lemma 2.13. Choose a nontrivial homotopy class

α ∈ π1(M,p), represented by a loop c : [0, 1] → M at p, and take a lift c̃ : [0, 1] → M̃ of c

to M̃ . Since α ̸= 1, we have c̃(0) ̸= c̃(1). By Lemma 2.14, there is a geodesic C̃ ⊂ M̃ that
passes through q0 = c̃(0) and q1 = c̃(1). Hence its image C = π(C̃), viewed as an embedded
circle in M , is then a geodesic that represents a nontrivial homotopy class β ∈ π1(M,p).
Also, since π−1(p) ∩ C̃ contains q0 and q1, the induced projection π : C̃ → C is a k-sheeted
covering for some integer k > 1. On the other hand, β2 = 1, so k ≤ 2 and π : C̃ → C is,
in fact, a double cover. But then a parametrization γ : R/Z ≈−→ C can be lifted to a curve

γ̃ : [0, 1] → M̃ in a unique way such that γ̃(0) = q0 and γ̃(1) = q1. This shows that α = β,
and thus π1(M,p) = {1, α}, where α is a nontrivial element of order two represented by
any geodesic of M that passes through p.

Remark. From Lemmas 2.13 and 2.14 together with Corollary 2.15, we see that a manifold
equipped with a tame Zoll projective structure also has the same topological restrictions as
those stated in Lemma 2.2 for Zoll manifolds.

2.3 The two-dimensional case

We now turn to the study of the topological properties of Zoll structures on surfaces. In
this case, there are only two possible manifolds for which a Zoll metric or a tame Zoll
projective structure can exist: S2 and RP2. All the other compact surfaces have nontrivial
fundamental groups of order greater than two, so they are ruled out by Corollary 2.15.

Let us start by unraveling the spaces present in the double fibration (2.5). The discussion
here follows the one in [LM1].

Lemma 2.16. The order of π1(PTM) is 4 when M ≈ S2, and is 8 when M ≈ RP2. In
particular, PTM has finite fundamental group whenever (M2, [∇]) is a surface equipped with
a tame Zoll projective structure.

Proof. Viewing S2 ⊂ R3, we can identify its unit bundle US2 = {(p, v) ∈ TS : |v| = 1}
with SO(3) in the following way. Any element (p, v) ∈ US2 (where p ∈ S2 and v ∈ UpS2)
corresponds to a unique orthogonal matrix O = O(p, v) whose first and second columns
are p and v, respectively, and whose third column is the unique unit vector w = w(p, v)
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2 Different notions of Zoll structures

perpendicular to both p and v, and satisfying the condition det(O) = 1. This let us identify
PTS2 with SO(3)/Z2, where the nontrivial element of Z2 acts on SO(3) by [p v w] 7→
[p − v − w]. Thus |π1(PTS2)| = 2|π1(SO(3))| = 4 (see [Bre]).

When M ≈ RP2 one only needs to notice that the double cover S2 → RP2 induces a
double cover SO(3) = UTS2 → UTRP2 = SO(3)/Z2, where the action of the nontrivial
element of Z2 maps [p v w] to [−p −v w] (this is the action induced by the antipodal map).
From this we get a double cover PTS2 → PTRP2, and we conclude that |π1(PTRP2)| =
2|π1(PTS2)| = 8.

Lemma 2.17. If (M, [∇]) is a compact surface with a tame Zoll projective structure, then
the space N of its uparametrized geodesics is diffeomorphic to RP2.

Proof. Since M is compact and has dimension two, both PTM and N are compact, and
have dimensions three and two, respectively. Moreover, the induced homomorphism

ν# : π1(PTM) → π1(N)

is onto, since each fiber of ν is path connected. Thus N is a compact surface with finite
fundamental group, so it must be diffeomorphic either to S2 or to RP2. On the other hand,
we know that N has a double cover Ñ , the space of directed geodesics of M . Hence N is
diffeomorphic to RP2.

Now our goal is to study the following problem: Given a surface M2 equipped with a
tame Zoll projective structure [∇], how many times two distinct geodesics intersect each
other? It is not hard to obtain rough estimates, as we will see in the following two results.

Lemma 2.18. Assume (M, [∇]) is a orientable surface, equipped with a tame Zoll projective
structure. Then the number of intersections of any two distinct geodesics is even.

Proof. Since M is orientable and [∇] is tame, M ≈ S2. Hence a geodesic C, being a smooth
simple closed curve, divides M in two regions diffeomorphic to discs. The desired result
then follows, because any other geodesic C′ is simply closed, and any possible intersection
between C and C′ is transversal.

Lemma 2.19. Assume (M, [∇]) is a nonorientable surface, equipped with a tame Zoll pro-
jective structure. Then any two distinct geodesics intersect at least once.

Proof. Let C1 and C2 be two distinct geodesics ofM . Since [∇], we know that the homotopy
class of C1 is nontrivial and has order equal to two. In particular, the normal bundle
NC1 = TM |C1/TC1 is a Möbius band and a tubular neighborhood V ≈ NC1 of C1 divides
M ≈ RP2 in two parts: the open set V , and the closed set M − V , which is diffeomorphic
to a disc. If C1 and C2 did not intersect, then V ∩ C2 = ∅ for some tubular neighborhood
V of C1, so that C2 ⊂ M − V . But this would imply that C2 is homotopic to a constant.
However, C2 is homotopically nontrivial, so that C1 and C2 intersect each other at least
once.
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If we want to obtain finer results, however, we will need to combine these observations
with a local analysis. In the Riemannian case, we have an answer for an infinitesimal version
of the question: Given two points p, q ∈M , and given a geodesic γ : I ↬M passing through
p and q, if p and q are conjugate along γ — i.e. if all Jacobi fields along γ that vanish
at p also vanish at q —, then all geodesics infinitesimally close to γ pass through p and q.
We can also give a similar answer to the case in which we have only a tame Zoll projective
structure [∇], but it will require some generalizations.
Given a manifold M equipped with a torsion-free connection ∇, a variation of geodesics

by geodesics is a map F : I×(−ε, ε) →M such that the curves γs : t 7→ F (t, s) are geodesics
for each s ∈ (−ε, ε). The variational field of F (at zero) is the vector field along γ0 given by

J(t) :=
d

ds

∣∣∣∣
s=0

F (t, s),

and is called a Jacobi field. As in the Riemannian setting, a Jacobi field J along a geodesic
γ of M satisfies the Jacobi equation:

J ′′ +R(J, γ′)γ′ = 0,

where R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z, for X,Y, Z ∈ X(M). More generally, a
Jacobi field is any vector field along some geodesic of M that satisfies the above equation.
It can be shown that, if J is a Jacobi field along a geodesic γ : (a, b) ↬ M , then for
any t0 ∈ (a, b) there are a < α < t0 < β < b, and a variation of geodesics by geodesics
F : [α, β]× (−ε, ε) →M such that F (·, 0) = γ|[α,β], and (dF/ds)(·, 0) = J |[α,β].
The problem with the definition of Jacobi fields given above is that it depends on the given

connection∇, since we considered geodesics as parametrized curves. On the other hand, if ∇̂
is a torsion-free connection projectively equivalent to∇, then a variation F : I×(−ε, ε) →M
of geodesics by geodesics with respect to ∇ can be changed into a variation of geodesics by
geodesics with respect to ∇̂ by taking a reparametrization of the form F (ϕs(t), s). In other
words, the map (t, s) 7→ F (ϕs(t), s) is such that the curves t 7→ F (ϕs(t), s) are geodesics
of ∇̂ for all s. A careful analysis of the proof of Lemma 2.9 shows that the family of
reparametrizations ϕs can be taken by varying smoothly with respect to s, in the sense that
(t, s) 7→ ϕs(t) is smooth. We may further assume that, for a fixed point t0 ∈ I, ϕs(t0) = t0
and ϕ′s(t0) = 1 for all s. With this, we know that J(t) = (dF/ds)(t, 0) is a Jacobi field along
γ(t) = F (t, 0) with respect to ∇, while

Ĵ(t) :=
d

ds

∣∣∣∣
s=0

[F (ϕs(t), s)]

is a Jacobi field along γ̂ := γ ◦ ϕ0 for ∇̂. By observing that

Ĵ =

(
d

ds

∣∣∣∣
s=0

ϕs

)
γ′ ◦ ϕ0 + J ◦ ϕ0,

we see that J ◦ ϕ0 and Ĵ represent the same class in the normal bundle NC = TM |C/TC,
where C = γ(I) is the unparametrized geodesic.
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2 Different notions of Zoll structures

Definition 2.20. Let M be a manifold equipped with a projective structure [∇], and let
C↬ M be an unparametrized geodesic of M . A Jacobi class along C is a section J of the
normal bundle NC = TM |C/TC that locally is the class of a Jacobi field along C.

In other words, for any point p ∈ C, and for any chosen connection ∇ ∈ [∇] there is an
affine parametrization γ : (−ε, ε) → C passing through p at time zero, and a Jacobi field J
along γ such that

J ≡ J mod TC.

Definition 2.21. Let M be a manifold equipped with a projective structure [∇], and let
C↬M be an unparametrized geodesic of M . Two points p, q ∈ C are conjugate along C if
and only if there exists some nontrivial Jacobi class along C that vanishes at both p and q.

Let us move back to our case of interest: a surface M2 equipped with a tame Zoll
projective structure. Fix a geodesic C ⊂M and a connection ∇ ∈ [∇], so that we can get a
local affine parametrization γ : (a, b) ↪→ C. Since the pullback bundle γ∗(TM |C) is trivial,
and since ∇ induces a section on γ∗(TM |C), there is a parallel section e ∈ Γ(γ∗(TM |C))
along γ such that {γ′, e} is a frame of γ∗(TM |C), i.e. {γ′(t), e(t)} is a basis for Tγ(t)M for
each t ∈ (a, b). This implies that the class [e] ∈ Γ(γ∗NC) trivializes γ∗NC. A Jacobi field
J along γ can then be written as J = xγ′ + ye, for some x, y : (a, b) → R, and the Jacobi
equation becomes

0 = ∇ d
dt
∇ d

dt
J +R(J, γ′)γ′ =

d2x

dt2
γ′ +

d2y

dt2
e+ yR(e, γ′)γ′.

Writing R(e, γ′)γ′ = αγ′ + κe, we see from the equation above that a section J ∈ Γ(NC) is
a Jacobi class if and only if it can be written locally as J = [ye] for y : (a, b) → R a solution
of

d2y

dt2
+ κy = 0, (2.6)

and for every local affine parametrization γ : (a, b) ↪→ C.
Observe that equation (2.6) is a linear ordinary differential equation of second order, so

its solutions form a two-dimensional vector space, and we can fix a basis y1, y2 : (a, b) → R
for this space. Now consider the Wronskian of {y1, y2}, which is the function

W (t) =

∣∣∣∣y1(t) y′1(t)
y2(t) y′2(t)

∣∣∣∣ = y1(t)y
′
2(t)− y′1(t)y2(t).

Since

W ′ = y′1y
′
2 + y1y

′′
2 − y′′1y2 − y′1y

′
2

= −y1κy2 + κy1y2

= 0,

we see that W is constant, and since (y1, y
′
1) and (y2, y

′
2) are linearly independent (by the

fact that y1 and y2 form a basis of solutions of equation (2.6), W ̸= 0.
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2.3 The two-dimensional case

Thus there is a well defined map ϕ : (a, b) → RP1 given by ϕ(t) = [y1(t) : y2(t)], which is
an immersion, since

d

dt

(
y1
y2

)
=
W

y22
and

d

dt

(
y2
y1

)
= −W

y21

are never zero. The idea is that we interpret ϕ(t) as the set of Jacobi classes that vanish
at γ(t) ∈ C. Indeed, if ϕ(t) = [λ1 : λ2], the Jacobi class that is locally written as t 7→
[(λ2y1(t) − λ1y2(t))e(t)] is a nontrivial Jacobi class that vanishes at γ(t). Since the set of
Jacobi classes that vanish at γ(t) is a one-dimensional vector space, any such Jacobi class
is locally written as t 7→ [λ(λ2y1(t)− λ1y2(t))e(t)] near the point γ(t) for some λ ∈ R.

Consequently, two points p = γ(t1) and q = γ(t2) are conjugate along C if and only
if ϕ(t1) = ϕ(t2). Moreover, since a Jacobi class depends only on the projective structure
[∇], but not on a connection ∇ ∈ [∇], so does the map ϕ. This means that the value
ϕ(t) depends only on the point γ(t) = p and the geodesic C, but not on the specific local
parametrization γ : (a, b) ↪→ C, so that we can glue the functions ϕ : (a, b) → RP1 obtained
from different choices of parametrizations γ, and get a smooth map ϕ : C → RP1. This
new ϕ : C → RP1 is a covering map because it is a local diffeomorphism — for it is an
immersion between curves —, and because C is compact. The order of the cover ϕ is called
the conjugacy number of the geodesic C.

We can now start to answer the question posed about the number of intersections of two
geodesics. When (M2, [∇]) is a surface equipped with a tame Zoll projective structure we
have a double fibration of the form

M N ,

PTM
µ ν

and such that kerµ∗ ∩ ker ν∗ = 0. For any point p and any geodesic C passing through p, a
Jacobi class J along C that vanishes at p can be obtained by a variation of C by geodesics
in such a way that all geodesics of the variation contain p. But since a geodesic of M is
identified with an element of N , a variation of geodesics by geodesics can be viewed as a
curve c : (−ε, ε) → N , and the Jacobi class of the variation corresponds to the tangent
vector c′(0). In other words, a point y ∈ N is thought of as a geodesic Cy ↪→ M in such a
way that the tangent vectors to y become the Jacobi classes along Cy.

With this identification, the set of geodesics passing through a fixed point p ∈ M corre-
sponds to the circle ℓp := ν(µ−1(p)) in N , and the tangent space Tyℓp of an element y ∈ ℓp
may be viewed as the set of Jacobi classes along Cy = µ[ν−1(y)]. A curve c : (−ε, ε) → ℓp
starting at y induces a variation Cc(s) of Cy by geodesics, and by taking their canonical lifts

Ĉc(s) ⊂ PTM we obtain a curve α : s 7→ (p, TpĈc(s)) ⊂ PTM . Observe that α′(0) ∈ kerµ∗,z
where z = (p, TpC) because µ(α(s)) = p for all s ∈ (−ε, ε). Moreover, c′(0) = ν∗,z(α

′(0))
since ν(α(s)) = c(s) by construction.
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2 Different notions of Zoll structures

Thus ν∗(kerµ∗,z) = Tyℓp is identified with the set of all Jacobi classes along Cν(z) that
vanish at the point p = µ(z). That is, the map

φ : PTM → PTN
z 7→ ν∗,z(kerµ∗,z),

(2.7)

when restricted to a lifted geodesic Ĉ ⊂ PTM , is modeled as the map ϕ : C→ RP1 defined
above. Furthermore, there is a commutative diagram

M N ,

PTM PTN
µ ν π

φ

(2.8)

where π : PTN → N is the canonical projection.

Proposition 2.22 ([LM1], Proposition 2.14). Let (M2, [∇]) be a surface equipped with a
tame Zoll projective structure. Then the map φ : PTM → PTN defined as in (2.7) is a
covering map, and its order is the conjugacy number of any geodesic of M . In particular,
all geodesics of M have the same conjugacy number.

Proof. We first prove that φ is an immersion. Observe that the tangent space of a fixed
point z ∈ PTM can be written as TzPTM = kerµ∗,z⊕ker ν∗,z⊕L for some one-dimensional
subspace L ⊂ TzPTM , so that the commutativity of diagram (2.8) implies that the im-
age φ∗,z(kerµ∗,z ⊕ L) is a two-dimensional subspace of Tφ(z)PTN . This is true because
π∗,φ(z)(φ∗,z(kerµ∗,z ⊕ L)) = ν∗,z(kerµ∗,z ⊕ Lz) = Tν(z)N . On the other hand, there is a

unique lifted geodesic Ĉz that passes through z, and the map φ restricted to Ĉz is modeled
by ϕ : Cz → RP1, which is an immersion. Hence φ∗,z(v) is a nonzero vector in kerπ∗,φ(z)
for any 0 ̸= v ∈ ker ν∗,z. Since z ∈ PTM was chosen arbitrarily, this proves that φ is
an immersion. In particular, φ is a local diffeomorphism. But because [∇] is tame, M is
compact, so that PTM is also compact. Thus φ is a covering map.

Let k be the order of the covering φ, fix z ∈ PTM and write φ−1(φ(z)) = {z1, ..., zk},
where z = z1. Since all zi are mapped to the same image φ(z) ∈ PTN , and since π ◦φ = ν,
they are all points contained in the unique lifted geodesic Ĉz passing through z. Restricted
to Ĉz, the map φ is modeled by the cover map ϕ : Cz → RP1 — because φ(z) is identified
with the set of Jacobi classes along Cz that vanish at µ(z). Hence k is precisely equal to
the order of the covering ϕ, which is the conjugacy number of Cz.

Definition 2.23. Let (M2, [∇]) be a surface equipped with a tame Zoll projective structure.
The order of the covering φ defined in (2.7) is called the conjugacy number of (M, [∇]).

We are now ready to prove the main results of this section.

22



2.3 The two-dimensional case

Theorem 2.24 ([LM1], Theorem 2.15). If [∇] is a tame Zoll projective structure on a
surface M2 diffeomorphic to S2, then the conjugacy number of (M, [∇]) is 2, and the cover
φ : PTM → PTN can be lifted to a diffeomorphism φ̂ : PTM → STN in such a way
that ν : PTM → N is the composition of φ̂ with the canonical projection STN → N .
Furthermore, the real line bundle kerµ∗ → PTM is trivial.

Proof. Lemma 2.16 tells us that the covering φ has order

|π1(PTN)|
|π1(PTM)|

=
|π1(PTRP2)|
|π1(PTS2)|

=
8

4
= 2,

i.e. φ is a double cover. This proves that (M, [∇]) has conjugacy number equal to two.

Remember that, viewing S2 ⊂ R3, the unit bundle US = {(p, u) ∈ TS2 : |u| = 1} is
identified with STS2, and that SO(3) acts freely and transitively on US2 by O · (p, u) =
(Op,Ou) — here p and u are orthonormal vectors on R3. This action preserves the line
bundle ker µ̃∗ → US2 induced by the canonical projection µ̃ : US2 → S2, in the sense that
O∗w ∈ ker µ̃∗,(Op,Ou) whenever w ∈ ker µ̃∗,(p,u). Indeed, any curve t 7→ (p, u(t)) in µ̃−1(p)
is mapped to a curve t 7→ (Op,Ou(t)) in µ̃−1(Op). Hence, if we start with some element
(p0, u0) ∈ US2 and take a nonzero vector w0 ∈ ker µ̃∗,(p0,u0), we obtain a nonvanishing
section W ∈ Γ(ker µ̃∗) defined by W(Op0,Ou0) := O∗w0. This proves that the line bundle
ker µ̃∗ → US2 is trivial.

Now PTS2 = US2/⟨σ⟩, where σ acts on US2 by σ(p, u) = (p,−u), and the action of SO(3)
on US2 commutes with σ, in the sense thatO(σ(p, u)) = (Op,−Ou) = σ(O(p, u)). Hence the
action of SO(3) on US2 induces an action on PTS2. Moreover, given (p, u) = (Op0, Ou0) ∈
US2, there is a unique element T ∈ SO(3) such that (Tp, Tv) = (p,−v) = σ(p, v) for all
(p, v) ∈ µ̃−1(p). Writing w0 = c′(0) for some curve c : t 7→ (p0, u(t)) ∈ µ̃−1(p0), we obtain

σ∗,(p,u)W(p,u) = σ∗O∗c
′(0)

= (σ ◦O)∗c
′(0)

=
d

dt

∣∣∣∣
t=0

(p,−Ou(t))

=
d

dt

∣∣∣∣
t=0

(TOp0, TOu(t))

= (TO)∗c
′(0)

= (TO)∗w0

=W(p,−u).

Thus W induces a nonvanishing section V ∈ Γ(kerµ∗), i.e. the line bundle kerµ∗ → PTS2
is trivial.

Finally, the double cover φ : PTM → PTN can be lifted via the projection STN → PTN
to a diffeomorphism φ̃ : PTM → STN by taking a nonvanishing section V ∈ Γ(kerµ∗), and
defining φ̃(z) = R+ν∗,z(Vz) = {λν∗,z(Vz) : λ > 0}. Indeed, the fact that the composition
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2 Different notions of Zoll structures

PTM φ̃−→ STN → PTN equals φ implies that φ̃ is a local diffeomorphism, so that it is a
covering map since PTM is compact. Furthermore, the fundamental groups of PTM ≈
PTS2 and STN ≈ STRP2 both have the same order, so that φ̃ is actually a diffeomorphism.

Theorem 2.25 ([LM1], Theorem 2.17). If [∇] is a tame Zoll projective structure on a
surface M2 diffeomorphic to RP2, then the conjugacy number of (M, [∇]) is 1, and the
cover φ : PTM → PTN is a diffeomorphism such that ν : PTM → N is the composition
of φ with the canonical projection π : PTN → N , and the line bundle kerµ∗ → PTM is
isomorphically mapped to the ‘tautological’ real line bundle L→ PTN .

Proof. Lemma 2.16 tells us that the covering φ has order

|π1(PTN)|
|π1(PTM)|

=
|π1(PTRP2)|
|π1(PTRP2)|

= 1,

i.e. φ is a diffeomorphism. The ‘tautological’ line bundle L → PTN is the bundle whose
points can be represented as a pair (y, v), where y ∈ PTN , and v ∈ y. Similarly, we can
represent an element of the bundle kerµ∗ → PTM as a pair (z, u), where z ∈ PTM , and
u ∈ kerµ∗,z. With these identifications, we see that the map φ induces a vector bundle
isomorphism φ̃ : kerµ∗ → L given by φ̃(z, u) = (ν∗,z(kerµ∗,z), ν∗,z(u)) — and this implies
that φ∗L = kerµ∗, as desired.

Corollary 2.26. If [∇] is a tame Zoll projective structure on RP2, then any two distinct
geodesics of (RP2, [∇]) intersect at exactly one point.

Proof. Fix a point p ∈ RP2, and let X be defined as in Lemma 2.14. In other words, X is
obtained blowing down the manifold X̂ = ν−1[ν(µ−1(p))] at µ−1(p). The remark following
Lemma 2.14 shows that X is diffeomorphic to RP2, and Theorem 2.25 tells us that, for
any geodesic C containing p, a nonconstant Jacobi class along C that is zero at p cannot
vanish at any other point. This implies that the map ρ : X → RP2 is an immersion by
our construction of X and ρ. In particular, ρ is a covering map, and since ρ−1(p) = {x},
it is actually a diffeomorphism. But this is equivalent to saying that through any point
q ̸= p of RP2 passes a unique geodesic containing p. Since p was arbitrary, this finishes the
proof.

In every part of this section, the assumption of tameness was always made. This does
not seem to cause much trouble, since, as argued in Lemma 2.10, the projective class of
the Levi-Civita connection of a Zoll metric is always a tame Zoll projective structure. In
this sense, we are not losing much if we assume the extra tameness condition. On the
other hand, we do loose something making this choice. As previously observed, lens spaces
are examples of manifolds whose canonical metrics are not Zoll in general, but have Zoll
projective structures. As a consequence of Lemma 2.12, their Zoll projective structures
are not tame, at least for most of them. This raises the question if it is possible to find
examples of non-tame Zoll projective structures in dimension two. The answer turns out to
be negative, and so the tameness assumption here considered is innocuous.
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Theorem 2.27 ([LM1], Theorem 2.16). Any Zoll projective structure on a compact surface
is tame.

We will not prove this theorem here. The proof for the case of a compact orientable
manifold uses results from the theory of foliations, specially a result in [Eps]. The nonori-
entable case, however, is proved with the results on the conjugacy number here studied.
The complete proof can be found in [LM1], Proposition 2.6 and Theorem 2.16.

Throughout this chapter, we have encountered different notions of Zoll structures. Zoll
manifolds are special types of Riemannian manifolds, while Zoll projective structures do
not depend on a metric. In the first two sections, we showed that many basic topological
properties are the same in both cases, and the last section proved some consequences for
the two-dimensional case.
At first, it might be unreasonable to consider Zoll projective structures instead of Zoll

metrics. What would be the need for a generalization for the sake of generalization? How-
ever, our argument is that to highlight this distinction makes things more transparent.
In the next chapter, we construct nontrivial examples of Zoll metrics on the sphere, and

classify all of the Zoll spheres of revolution. This is done exploring heavily the properties
of the metric itself, specially its representation on certain cylindrical coordinates. On the
other hand, Zoll projective structures will play a prominent role in the proof of Green’s
theorem presented in Chapter 4. The argument will rely on a kind of point-line duality,
and almost nothing specific to a Riemannian metric will be used.
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3 Examples of Zoll Manifolds

In this chapter, we construct examples of Zoll surfaces which were first discovered by [Zoll]
at the beginning of last century. The presentation here follows that done in Section 4.B of
[Bes].
As shown in the previous chapter (see Lemma 2.2), the fundamental group of a Zoll

surface (M, g) is either 1 or Z2, hence it must be diffeomorphic to S2 or to RP2 by the
classification of compact surfaces. Furthermore, we know that any Zoll metric on RP2

determines a Zoll metric on S2, so there is no loss if we assume that M ≈ S2 when studying
examples of Zoll metrics.
One further simplification we impose is that the metric g on S2 is a metric of revolution.

This is to say there is an effective action of S1 on (S2, g) by isometries. The reason we
consider this type of metric is because its geodesic flow is integrable. Moreover, it already has
a family of simply closed geodesics: the ones passing through the poles (see the discussion
below), called meridians. In fact, a rotationally symmetric sphere (S2, g) is a Zp

l -manifold
for at least two points p ∈ S2, and some l > 0 (see Definition 2.3). Our goal is to determine
when g is Zoll.

Let us explain this in more detail. It is a well known fact from topology (see [Bre], ch.
IV, Corollary 6.14) that any continuous vector field on the sphere vanishes at some point.
As a consequence, if we denote by θ ∈ S1 7→ Fθ ∈ Isom(S2, g) the group action, and let
X = dFθ/dθ be its infinitesimal isometry, then Xp = 0 for at least one p ∈ S2. Any such
point necessarily is a fixed point for all isometries Fθ. From this we obtain an S1-action on
(TpS2, gp) by isometries, given by θ 7→ DFθ(p), and all of them are orientation preserving,
since DF0(p) = Id. (Here we think of θ as a number in [0, 2π).) If DFθ(p)Yp = Yp for
some nonzero vector Yp ∈ TpS2, then DFθ(p) would be an orientation preserving isometry
of TpS2 ≃ R2 that fixes the line span{Yp} — hence DFθ(p) = Id. But this implies that
Fθ = Id, and so θ = 0, for the action is effective by assumption. In particular, θ 7→ DFθ(p)
is a Lie group isomorphism between S1 and SO(2), and p is an isolated singularity of X of
index 1.
We are then in position to use a theorem by Hopf (see [Bre], ch. VI, Theorem 12.11 and

Proposition 12.12) which asserts that the Euler characteristic of a compact manifold can be
written as the sum of the indices at the zeros of any vector field with isolated singularities.
Since χ(S2) = 2, we conclude that X vanishes at precisely two distinct points of S2, called
the north and south poles of g, and denoted by N and S, respectively.
Now fix a normalized geodesic segment γ0 : [0, L] → S2 from N to S (i.e. dist(N,S) = L),

and denote by γθ := Fθ ◦ γ0, for θ ∈ S1. Thanks to the effectiveness of the action, we know
that all points p ∈M can be written uniquely as p = γθ(t) for some t ∈ [0, L] and θ ∈ [0, 2π),
except for p = N or S. In other words, after identifying θ with a number in the interval
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3 Examples of Zoll Manifolds

[0, 2π), we get cylindrical coordinates (t, θ) on U = M \ {N,S}. We will also consider the
open sets with coordinates

UN :={N} ∪ {(t, θ) ∈ U : t < L/2}
(t, θ) 7→(x = t cos θ, y = t sin θ),

N 7→(0, 0),

and

US :={S} ∪ {(t, θ) ∈ U : t > L/2}
(t, θ) 7→(x = (L− t) cos θ, y = (L− t) sin θ),

S 7→(0, 0).

On the one hand, γθ is a normalized segment from N to S, and θ 7→ γθ is a variation of
geodesics by geodesics all of them passing through N , so ∂/∂t := γ′θ and ∂/∂θ := dγθ/dθ
are orthogonal vector fields on U , and |∂/∂t| = 1. (This is a standard result about Jacobi
fields along geodesics, and can be found in [doC], Chapter V.) Hence the metric g can be
written as

g = dt2 + ρ2(t)dθ2 (3.1)

on U , for some smooth function ρ : (0, L) → (0,∞). This is a special case of the general
form of rotationally symmetric metrics (see [Pe] Chapters 1 and 4 for more examples).

On the other hand, given a smooth function ρ : (0, L) → (0,∞), it is natural to ask when
a metric on U given by formula (3.1) extends to a metric on the whole sphere S2.

Lemma 3.1. Suppose ρ : (0, L) → (0,∞) is a smooth function, and let g be the metric on
U = S2 \ {N,S} given by equation (3.1). Then g extends to a Riemannian metric on S2 if
and only if ρ extends to a smooth function ρ : [0, L] → [0,∞) such that ρ(0) = ρ(L) = 0,
ρ′(0) = 1, ρ′(L) = −1, and ρ(2k)(0) = ρ(2k)(L) = 0 for all k ≥ 1.

Proof. In UN ∩ U , the equations

x = t cos θ, y = t sin θ

imply

x2 + y2 = t2,

and

dx = cos θdt− t sin θdθ, dy = sin θdt+ t cos θdθ.

In particular, we have

dx2 + dy2 = dt2 + t2dθ2 (3.2)

and

tdt = xdx+ ydy. (3.3)
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From (3.2) and (3.3), we obtain

dt =
xdx+ ydy

t
, (3.4)

and

dθ2 =
1

t2

[
dx2 + dy2 − 1

t2

(
x2dx2 + xydx⊗ dy + xydy ⊗ dx+ y2dy2

)]
. (3.5)

We then apply equations (3.2), (3.4), and (3.5) in the formula (3.1), and obtain

dt2+ρ2(t)dθ2 =
t2 − ρ2(t)

t4
(
x2dx2+xydx⊗dy+xydy⊗dx+y2dy2

)
+
ρ2(t)

t2
(
dx2+dy2

)
. (3.6)

Thus the metric g given by (3.1) on U extends to a metric on U ∪ UN = S2 \ {S} if and
only if the functions

t2 − ρ2(t)

t4
and

ρ2(t)

t2

extend smoothly to 0. We have to be careful, however, because t =
√
x2 + y2 is not smooth

at the origin as a function of x and y. First observe that for

ρ2(t)

t2

to extend smoothly to 0, it is necessary that ρ(t) extends smoothly to 0, with ρ(0) = 0.
Similarly, for the function

t2 − ρ2(t)

t4
=

1

t2
− ρ2

t4

to be smooth a 0, it is necessary for ρ(t) to be smooth at 0, and ρ′(0) = 1. Indeed, we write
ρ(t) =

∑k
i=1 ait

i +O(tk+1) for some k > 1, and compute

t2 − ρ2(t)

t4
=
t2 −

(∑k
i=1 ait

i +O(tk+1)
)2

t4

=
(1− a21)t

2 − 2a1a2t
3

t4
−

k+1∑
i=4

bit
i−4 +O(tk−2),

(3.7)

where bj =
∑j

i=1 aiaj−i. From (3.7), observe that the limit

lim
t→0+

t2 − ρ2(t)

t4

exists if and only if a1 = ρ′(0) = 1 and a2 = ρ′′(0) = 0 (it is not possible to have a1 = −1,
because ρ(t) > 0 for t ∈ (0, L)). Applying this to the function ρ2(t)/t2, we obtain the Taylor
expansion:

ρ2(t)

t2
=

k+1∑
i=2

bit
i−2 +O(tk). (3.8)
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Since t is not smooth at 0, but t2 is, as functions of x and y, we need that bi = 0 for
every i odd in order to (3.8) to be k-times differentiable on x and y at the origin. Using
induction on the coefficients, we conclude that the smoothness of ρ2(t)/t2 is equivalent to
a2i = ρ(2i)(0) = 0 for all i ≥ 1.

This shows that the conditions stated in the Lemma are necessary. The sufficiency comes
from the fact that both functions ρ2(t)/t2 and (t2 − ρ2(t))/t4 have expansions of the form

ρ2(t)

t2
=

k+1∑
i=1

b2it
2i−2 +O(t2k),

and

t2 − ρ2(t)

t4
=

k+1∑
i=2

b2it
2i−4 +O(t2k−2)

for k ≥ 2, and both are smooth in the variables x and y at the origin.
The computations for the case in which g extends to S are analogous.

From now on, we will assume that g is given by formula (3.1) for some smooth function ρ
that satisfies the conditions of Lemma 3.1. Our goal is to study the behavior of the geodesics
of g. For this, recall that a geodesic γ, written in coordinates as γ(s) = (t(s), θ(s)) on U , is
a solution of the system of equations

d2t
ds2

+
(
dt
ds

)2
Γttt + 2

dt
ds
dθ
dsΓ

t
tθ +

(
dθ
ds

)2
Γtθθ = 0,

d2θ
ds2

+
(
dt
ds

)2
Γθtt + 2

dt
ds
dθ
dsΓ

θ
tθ +

(
dθ
ds

)2
Γθθθ = 0,

where Γkij , i, j, k ∈ {t, θ}, are the Christoffel symbols of the Levi-Civita connection of g.
These symbols are given by the formula

Γkij =
1

2
glk
(
∂jgil + ∂igjl − ∂lgij

)
,

where gij = g(∂i, ∂j), and [gij ] = [gij ]
−1. Hence, after a few computations, we have

Γθtθ =
ρ′(t)

ρ(t)
, Γtθθ = −ρ′(t)ρ(t),

and all the other symbols are zero. This means that the system of equations satisfied by
the geodesics of M on U is: 

d2t
ds2

− ρ′(t)ρ(t)
(
dθ
ds

)2
= 0,

d2θ
ds2

+ 2
ρ′(t)
ρ(t)

dt
ds
dθ
ds = 0.

(3.9)
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Lemma 3.2 (Clairaut’s First Integral). Suppose we have the parametrization {UN , US , U}
on S2 as described above, together with cylindrical coordinates (t, θ) on U . Let g be a
Riemannian metric of revolution on S2, written as g = dt2 + ρ2(t)dθ2 on U , where ρ :
(0, L) → (0,∞) is a smooth function satisfying the hypotheses of Lemma 3.1. Then

(i) the segments γθ (called meridians) extend to simply closed geodesics passing through
N and S, and they are the only geodesics that pass through one of these points — i.e.
any other geodesic must be entirely contained in U ;

(ii) if a geodesic γ(s) = (t(s), θ(s)) is not a meridian, then there are numbers 0 < t1 ≤
t2 < L such that ρ(t1) = ρ(t2) and t(s) ∈ [t1, t2] for all values of s.

Proof. Statement (i) follows from the effectiveness of the S1 action, together with the local
uniqueness of geodesics: these guarantee that every normalized geodesic passing through N
or S is a meridian γθ. Concatenating γθ and γθ+π (with the reverse parametrization), we
get a simply closed geodesic through N and S of length 2L.
For the second statement, consider a normalized geodesic γ(s) = (t(s), θ(s)) which is not

a meridian. Multiply both sides of the second equation of (2.9) to get

0 = ρ2(t)
d2θ

ds2
+ 2ρ′(t)ρ(t)

dt

ds

dθ

ds
=

d

ds

(
ρ2(t)

dθ

ds

)
,

i.e.

ρ2(t)
dθ

ds
= c

along γ for some constant c. Also, since γ is a normalized geodesic, we have

|γ′(t)|2 =
(
dt

ds

)2

+ ρ2(t)

(
dθ

ds

)2

= 1.

We then multiply both sides of the equation by ρ2(t), and obtain the inequality

c2 = ρ4(t)

(
dθ

ds

)2

≤ ρ2(t);

hence |c| ≤ ρ(t). Since γ is not a meridian, dθ/ds ̸= 0 for all s. (If not, then γ′(s) =
γ′θ(s)(t(s)) for some s ∈ R, and this would imply γ = γθ(s) by the uniqueness of geodesics.)

Thus dθ/ds is either strictly positive or strictly negative, and |c| > 0. Because ρ is continuous
and ρ(0) = ρ(L) = 0, there must be 0 < t1 ≤ t2 < L such that ρ(t1) = ρ(t2) = |c|, and
ρ(t) < |c| whenever t < t1 or t > t2. Since ρ(t(s)) ≥ |c| for all s, we conclude that
t(s) ∈ [t1, t2].

Looking at the system of equations (3.9), we see that, if γ(s) = (t(s), θ(s)) is a geodesic
that passes through a point γ(s0) = (t0, θ0) with ρ′(t0) = 0 and t′(s0) = 0, then t(s) = t0
for all s, and γ is a closed geodesic of length 2πρ(t0). Indeed, in this case the curve

γ(s) =

(
t0, θ0 +

s− s0
ρ(t0)

)
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is the (unique) solution of (2.9) with initial condition

γ(s0) = (t0, θ0) and γ
′(s0) = (0, 1/ρ(t0)),

and is parametrized by arc length. Inversely, if γ(s0) = (t0, θ0), but ρ
′(t0) ̸= 0, then the

parallel t = t0 is not a geodesic.

Now, suppose g ∈ Z(S2, 2π). Then L = π, and ρ(t0) = 1 for any point t0 ∈ [0, π] satisfying
ρ′(t0) = 0 — because the parallel t = t0 is a closed geodesic of length 2πρ(t0) = 2π. Since
the point t0 at which ρ attains its maximum is such a point, we conclude that ρ maps (0, π)
onto (0, 1]. Furthermore, any Jacobi field J along a geodesic γ such that J(0) = 0 is a
(2π-)periodic solution of the equation

J ′′ − ρ′′(t(γ))

ρ(t(γ))
J = 0;

this is simply the fact that the Gaussian curvature of a rotationally symmetric metric on
the sphere does not depend on θ, and is given by

κ(t) = −ρ
′′(t)

ρ(t)

(see [Pe], ch. 4). When γ is the parallel t = t0, for t0 ∈ (0, π) with ρ′(t0) = 0, the Jacobi
equation assumes the form:

J ′′ − ρ′′(t0)J = 0,

which admits periodic solutions if and only if ρ′′(t0) < 0. Thus any critical point t0 of ρ
must be a local maximum, and so ρ has only one such point.

Lemma 3.3. Let g be a Z2π-metric of revolution on S2 equipped with the parametrization
{U,UN , US}, and the coordinates (t, θ) on U for which g is written as g = dt2 + ρ2(t)dθ2.
Then, by setting ρ(t) = sin r, it is possible to obtain new coordinates (r, θ) on U in such a
way that the metric g is written as

g = [f(cos r)]2dr2 + sin2 rdθ2, (3.10)

for some smooth function f : (−1, 1) → (0,∞) that extends smoothly to [−1, 1], and satisfies
f(1) = 1 = f(−1).

Remark. Observe that r = t when g = can (since the function ρ(t) = sin t), and g =
dr2 + sin2 rdθ2, so f ≡ 1. The passage from (t, θ) to (r, θ) is justified, in a sense, by the
desire to force the geodesic parallel t = t0 (t0 being the only critical point of ρ) to be placed
on the equator r = π/2.

Proof. Our characterization of the function ρ : [0, π] → [0, 1] is quite similar to the char-
acterization of sin on [0, π]. Indeed, ρ(0) = 0 = ρ(π), ρ′(0) = 1 = −ρ′(π), and ρ has only
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one critical point: its maximum, say t0, for which the critical value is 1. Hence ρ is strictly
increasing between 0 and t0, and strictly decreasing between t0 and π. Thus the function

r =

{
arcsin ρ(t), for t ∈ (0, t0],

π − arcsin ρ(t), for t ∈ [t0, π).

is smooth, and (r, θ) are the desired coordinates on U .
What remains to be proved is the existence of a smooth function f : (−1, 1) → (0,∞) for

which g may be written as (3.10). For this, observe that the equality ρ(t) = sin r implies

ρ′(t)dt = cos rdr;

hence what we seek is a function η(x) satisfying η(cos r) = t. Indeed, such η allows the
definition of f as

f(x) =
x

ρ′(η(x))
,

so that g can be written as (3.10) on U . Define

ξ(t) =

{√
1− ρ2(t), for t ∈ (0, t0],

−
√
1− ρ2(t), for t ∈ [t0, π),

and η := ξ−1. Since

ξ′(t) =


− ρ(t)ρ′(t)√

1−ρ2(t)
, for t ∈ (0, t0),

ρ(t)ρ′(t)√
1−ρ2(t)

, for t ∈ (t0, π),

and since ρ′(t) > 0 for t < t0, ρ
′(t) < 0 for t > t0, and ρ(t) < 1 for t ̸= t0, we see that ξ is a

strictly decreasing smooth function with non-vanishing derivative for all t ̸= t0. Moreover,
ξ is also smooth at t0, since ρ

′(t0) = 0, and ρ′′(t0) < 0 — for the first derivative, write

ρ(t) = 1 +
1

2
ρ′′(t0)(t− t0)

2 +O((t− t0)
3)

to see that

ξ′(t)2 = −ρ
′′(t0)

2(t− t0)
2 +O((t− t0)

3)

ρ′′(t0)(t− t0)2 +O((t− t0)3)
−−−→
t→t0

−ρ′′(t0);

hence ξ is differentiable at t0 and ξ′(t0) = −
√
−ρ′′(t0). What this shows is that ξ maps

(0, π) diffeomorphically on (−1, 1) reversing the orientation; thus its inverse η = ξ−1 :
(−1, 1) → (0, π) exists, is smooth, and satisfies η(cos r) = t. Indeed, ξ was chosen so that
ρ2(t) + ξ2(t) = 1, and since sin r = ρ(t), we see that ξ(t) = cos r.

Finally, the function f defined as

f(x) =

{
x

ρ′(η(x))
, for x ̸= 0,

1, for x = 0,
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is smooth — including at 0, because ρ′(η(x)) = x+O(x2); maps (−1, 1) to (0,∞), because
η((−1, 0]) = [t0, π), where ρ

′ is nonpositive, and η([0, 1)) = (0, t0], where ρ
′ is nonnegative;

and extends smoothly to [−1, 1] by f(−1) = f(1) = 1, because ξ extends to a reverse
orientation diffeomorphism from [0, π] to [−1, 1], sending t0 to 0 — this is a consequence of
the properties of ρ stated in Lemma 3.1. Actually, all the necessary and sufficient conditions
on ρ stated in Lemma 3.1, for a metric given by (3.1) on U to extend to S2, are replaced
by the condition of f(−1) = f(1) = 1. The condition of ρ(0) = ρ(π) = 0 is replaced by
the possibility of extending ξ (and so η) to [0, π]. The condition on the first derivatives
ρ′(0) = 1 and ρ′(π) = −1 is replaced by f(−1) = f(1) = 1, because f(−1) = −1/ρ′(π),
f(1) = 1/ρ′(0). The restriction on the even derivatives ρ(2k)(0) = ρ(2k)(π) = 0 is also
replaced by f(−1) = f(1) = 1 — this can be seen by applying the chain rule on the identity

ρ′(t) =

√
1− ρ2(t)

f
(√

1− ρ2(t)
) .

We are now able to state and prove the two main results of this section.

Theorem 3.4 (Darboux). Let N and S be two distinct points of S2, let U := S2\{N,S}, and
consider cylindrical coordinates (r, θ) : U → (0, π)×[0, 2π). Let g be a Riemannian metric on
S2, and suppose g is written as in (3.10) on U for some smooth function f : [−1, 1] → (0,∞)
such that f(−1) = f(1) = f(0) = 1. A necessary and sufficient condition for all geodesics
of (S2, g) to be closed is that, for every α ∈ (0, π/2), one has∫ π−α

α

f(cos r) sinα

sin r
√
sin2 r − sin2 α

dr =
p

q
π, (3.11)

for some co-prime integers p and q. In this case, apart from the equator — which is simply
closed and of length 2π —, every geodesic γ in U has length 2q · dist(N,S), turns p times,
and consists of 2q geodesic segments between two consecutive points of contact with the
parallels r = α and r = π − α.

Proof. Similarly to the proof of Lemma 3.2, we study the geodesic equations. For this,
observe that the Christoffel’s symbols of the for the metric g on U are

Γrrr = −f
′(cos r) sin r

f(cos r)
, Γrθθ = − sin r cos r

[f(cos r)]2
, Γθrθ = cot r,

and all the others are zero. Hence a geodesic γ(s) = (r(s), θ(s)) in U is a solution of the
system of equations

d2r
ds2

− f ′(cos r) sin r
f(cos r)

(
dr
ds

)2
− sin r cos r
f2(cos r)

(
dθ
ds

)2
= 0,

d2θ
ds2

+ 2 cot rdθ
ds
dr
ds

= 0.
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Multiplying both sides of the second equation by sin2 r, we see that

d

ds

(
sin2 r

dθ

ds

)
= 0.

This shows that

sin2 r
dθ

ds
= c. (3.12)

for some constant c ∈ R. (This is, of course, the same equation already known, since
ρ2(t) = sin2 r when we changed the variables.) Taking γ to be a normalized geodesic, we
also have the equation

f(cos r)2
(
dr

ds

)2

+ sin2 r

(
dθ

ds

)2

= 1,

which, after multiplying both sides by sin2 r, gives us[
f(cos r) sin r

(
dr

ds

)]2
+ c2 = sin2 r.

In particular, we see that |c| ≤ sin r ≤ 1, so that we can write |c| = sinα for some (unique)
α ∈ (0, π/2] and r(s) ∈ [α, π − α] for all s. Also, we get

f(cos r) sin r
dr

ds
= εr

√
sin2 r − sin2 α, (3.13)

for εr = ±1. Thus, equations (3.12) and (3.13) tell us that, when the geodesic γ is not the
parallel s 7→ (π/2, θ0 ± s), it is a solution of the system

dθ
ds = εθ

sinα
sin2 r

ds
dr = εr

f(cos r) sin r√
sin2 r−sin2 α

=⇒ dθ

dr
= εθεr

f(cos r) sinα

sin r
√
sin2 r − sin2 α

, (3.14)

where both εr, εθ ∈ {−1, 1}. The number εθ is the sign of dθ/ds; whereas εr is 1 if γ is
moving from the parallel r = α towards r = π−α, and is −1 if γ is moving from the parallel
r = π − α towards r = α — i.e. εr is the sign of dr/ds.

The angle between two consecutive points of contact with the parallels r = α and r = π−α
is

θ̂(α) =

∫ π−α

α

dθ

dr
dr = εθεr

∫ π−α

α

f(cos r) sinα

sin r
√
sin2 r − sin2 α

dr.

The geodesic is then closed if and only if θ(α) is a rational multiple of π, say

εrεθθ̂(α) =
p(α)

q(α)
π,
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for p(α), q(α) co-prime integers. Furthermore, it closes at the angle 2p(α)π and, since γ is
parametrized by arc length, has length equal to 2q(α)εrl(α), where εrl(α) is the interval of
time required for γ to move from the parallel r = α to r = π − α:

εrl(α) = εr

∫ π−α

α

ds

dr
dr =

∫ π−α

α

f(cos r) sin r√
sin2 r − sin2 α

dr.

Given α ∈ (0, π/2), the normalized geodesic γα(s) = (rα(s), θα(s)) passing through (α, 0)
at time zero with (drα/ds)(0) = 0 and (dθ/ds) > 0 is the unique geodesic — modulo the
S1 action, and reversing the parametrization — such that rα ∈ [α, π − α] and touches the
extreme parallels r = α and r = π − α. Thus, the application α ∈ (0, π/2) 7→ εrεθθ̂(α) ∈ R
is well defined, and is continuous, because of the smoothness of the exponential map. In
particular, if all geodesics are closed, then εθεrθ̂ : (0, π/2) → R is a continuous map with
range in πQ. Hence θ̂ must be constant, and p(α) = p, q(α) = q for all α.

The function α ∈ (0, π/2) 7→ εrα l(α) is also well defined, continuous, and tends to
dist(N,S) when α → 0 — since γα, restricted to [0, l(α)], is approaching a meridian in
this case. Using the continuity of εrα l(α), we can construct a (free) homotopy between any
two geodesics γα1 and γα2 via geodesics of the form γα, parametrized in such a way that
they all close at time 1. Since every geodesic is a critical point for the energy functional,
the homotopy gives a path between two critical points via critical points. Hence the energy
must be constant, and also the length; this shows that εrl(α) must be constant equal to
dist(N,S).
The only remaining case is when γ is the equator, but then γ is simply closed and has

length ∫ 2π

0
f(0)dθ = 2πf(0) = 2π.

Characterization of Zoll surfaces of revolution. A rotationally symmetric metric g
on S2 is a Z2π-metric if and only if, on the cylindrical coordinate chart (U ; r, θ), g is written
as

g = [1 + h(cos r)]2dr2 + sin2 rdθ2, (3.15)

where h : [−1, 1] → (−1, 1) is a smooth odd function mapping 1 to 0.

Proof. First, observe that, since (S2, can) is a Z2π-surface of revolution, Theorem 3.4 tells
us that ∫ π−α

α

sinα

sin r
√
sin2 r − sin2 α

dr = π

for every real number α ∈ (0, π/2). Theorem 3.4 and Lemma 3.3 also tell us that a metric
of revolution g is Z2π only if g can be written as in (3.10) for some smooth function
f : [−1, 1] → (0,∞) satisfying the condition (3.11), and such that f(−1) = f(0) = f(1) = 1.
Define

h(x) := f(x)− 1.
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Our claim is that ∫ π−α

α

h(cos r) sinα

sin r
√
sin2 r − sin2 α

dr = 0 ∀α ∈ (0, π/2] (3.16)

if and only if h is odd. For this, define he(x) := (h(x) + h(−x))/2,

H(α) :=

∫ π
2

α

he(cos r)

sin r
√

sin2 r − sin2 α
dr, α ∈ (0, π/2],

and notice that ∫ π−α

α

h(cos r) sinα

sin r
√

sin2 r − sin2 α
dr = 2 sin(α)H(α),

because ∫ π−α

α

h(cos r)

sin r
√
sin2 r − sin2 α

dr =

∫ π
2

α

h(cos r)

sin r
√
sin2 r − sin2 α

dr

+

∫ π−α

π
2

h(cos r)

sin r
√

sin2 r − sin2 α
dr

=

∫ π
2

α

h(cos r)

sin r
√
sin2 r − sin2 α

dr

+

∫ π
2

α

h(− cos r)

sin r
√
sin2 r − sin2 α

dr

=

∫ π
2

α

2he(cos r)

sin r
√
sin2 r − sin2 α

dr

= 2H(α).

In particular, h is odd if and only if he ≡ 0, which implies H ≡ 0, and so (3.16) is satisfied.
For the converse, consider the function

I(β) :=

∫ π
2

β

sin(β) cos(β)H(α)√
sin2 α− sin2 β

dα, β ∈ (0, π/2].

Observe that, for each β ∈ (0, π/2], the function

(r, α) 7→ 1√
(sin2 r − sin2 α)(sin2 α− sin2 β)

is integrable on {(r, α) : r ∈ [β, π/2], α ∈ [β, π/2], α ≤ r}, and Fubini’s theorem tells us that

I(β) =

∫ π
2

β

he(cos r)

sin r

(∫ r

β

sinα · cosα√
(sin2 r − sin2 α)(sin2 α− sin2 β)

dα

)
dr

=

∫ π
2

β

he(cos r)

sin r

(∫ ∞

0

dx

1 + x2

)
dr,

(3.17)
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where we used the change of variables

x =

√
sin2 α− sin2 β

sin2 r − sin2 α
.

If H ≡ 0, then I ≡ 0, which implies, by formula (3.17), he ≡ 0 — equivalently, h is odd.
Also, since f maps [−1, 1] to (0,∞), the assumption of h = f − 1 being odd implies that

h maps [−1, 1] to (−1, 1). Otherwise, there would be some x ∈ [−1, 1] with h(x) ≥ 1, and
so f(−x) = 1− h(x) ≤ 0, which is absurd.
Thus, by Theorem 3.4, we conclude that, if a metric g is given by formula (3.15) for some

smooth odd function h : [−1, 1] → (−1, 1) such that h(1) = 0, then its geodesics are all
simply closed, and — except possibly for the meridians — of length 2π. Since the length
of a meridian is ∫ π

0
(1 + h(cos r))dr = π

by the oddness of h, we conclude that g is a Zoll metric. On the other hand, if g ∈ Z(S2, 2π),
then the argument above together with Lemma 3.3 and Theorem 3.4 imply that g may be
written as in formula (3.15) for some smooth odd function h : [−1, 1] → (−1, 1) such that
h(1) = 0.

Remark. Although we considered only the case of Zoll spheres of revolution in dimension
two, it is interesting to mention that the construction done here can be extended to spheres
of arbitrary dimension. This was done by Weinstein, and is exposed in [Bes], Chapter 4,
Section 4.E. Guillemin also proved that there are many other interesting examples on the
sphere. We state his result below.

Theorem 3.5 (Guillemin — see [Gui]). For every odd function ρ̇ on S2, there exists a
smooth one-parameter family of C∞-functions ρ(t) on the sphere such that ρ(0) = 0, ρ′(0) =
ρ̇ and e2ρ(t) · can is a Zoll metric for small t.
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4 Point-line duality and Green’s Theorem

Our main goal for this chapter is to prove the following result:

Theorem 4.1 (Green’s Theorem). If g is a Zoll metric on the real projective plane RP2,
then g is isometric to a constant multiple of the canonical metric.

When Green first proved this theorem (see [Gre] and also Chapter 5 of [Bes]), the ideas
and methods used were entirely in a Riemannian geometric setting. However, the argument
we will present here, due to LeBrun and Mason [LM1], goes on a different way: it explores
a duality between points and lines that arises from Corollary 2.26. Let g be a Zoll metric
on M ≈ RP2, and denote by ∇ = ∇g its Levi-Civita connection. We now know that the
projective connection [∇] is a (tame) Zoll projective structure (see Lemma 2.10), and that
such structure on RP2 implies that any two geodesics of M intersect at exactly one point
(see Corollary 2.26). In particular, a point p ∈ M determines a circle ℓp = ν[µ−1(p)] in
the manifold N of unparametrized geodesics of M , and any two distinct ℓp and ℓq ⊂ N
intersect at precisely one point — the point of N representing the unique geodesic that
passes through both p and q. In this sense, M becomes the moduli space of the curves
{ℓp}p∈M in N .

One could argue, however, that such a general viewpoint does not give us much in-
formation. Indeed, how could we possibly hope to distinguish the curves of the family
{ℓp : p ∈ M}? The point is that this situation is analogous to the projective duality
known in algebraic geometry between the projective plane KP2 and the dual projective
plane KP2∗ = P(K3∗) for any field K (see [Ful]). Even more, what we will argue is that
the data we have is not only ‘analogous to’, but actually ‘is’ the projective duality, in some
sense. To make our argument more transparent, let us work with the following definition.

Definition 4.2. Let K be either R or C, and let M be a (complex, when K = C) surface.
A point-line dual structure on M is a collection C of subsets of M satisfying the following
properties:

(i) the elements of C are non-singular embedded (complex, when K = C) curves of M ,
all of them diffeomorphic (biholomorphic, when K = C) to KP1, and are called the
lines of M ;

(ii) for every point p ∈ M , and for every K-subspace ℓ ⊂ TpM of K-dimension one there
is a unique line C = C(p,ℓ) ∈ C passing through p with TpC = ℓ;

(iii) any two distinct lines C1 and C2 intersect at exactly one point; and
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(iv) the foliation F of the lifted lines of M on PKTM = (TM − 0M )/K× is locally trivial,
in the sense that every lifted line Ĉ ⊂ PTM has a neighborhood diffeomorphic (bi-
holomorphic, when K = C) to KP1 ×K2 in such a way that the lifted lines contained
in this neighborhood correspond to the projective lines KP1 × {pt}.

Of course the main examples of these structures are RP2 and CP2 with their canonical
projective lines. What we proved in Section 2.3 is that any (tame) Zoll projective structure
on a manifold M ≈ RP2 induces a point-line dual structure on M .

When M is equipped with a point-line dual structure C , then C is canonically identified
with the leaf space N = PKTM/F , which is a connected K-surface called the dual of M ,
and the canonical projection ν : PKTM → N is a KP1-fiber bundle. For each point p ∈M ,
there is a corresponding dual line ℓp = ν[µ−1(p)] in N — the set of lines of M passing
through p—, and property (iii) tells us that two distinct points p, q ∈M determine distinct
dual lines ℓp and ℓq. Using properties (i), (ii) and (iv), we can prove, with almost the
same argument as the one given in Lemma 2.14, that any two distinct points p, q ∈ M
are contained in some line C, which is unique by property (iii). In particular, M must be
compact, and any two dual lines ℓp and ℓq intersect at a unique point of N . When M is a
real surface, arguments similar to the proofs of the first lemmas of Section 3.1 tell us that
M must be either S2 or RP2, and that N ≈ RP2. In fact, M cannot be S2, since property
(iii) cannot be satisfied in this case; hence M ≈ RP2.

When C comes from a Zoll projective structure on a compact real surface M , we will
show that C ∗ := {ℓp : p ∈ M} is a point-line dual structure on N , and that the dual of
(N,C ∗) is (M,C ).

The most important observation, however, is that this kind of structure is unique when
M ≈ CP2, as the following lemma states.

Lemma 4.3. Let S be a simply connected compact complex surface, equipped with a fixed
class α ∈ H2(S,Z) such that α ·α = 1. Suppose also that there is a family C of nonsingular
embedded complex curves of genus 0 in S, all of them with homology class α, and such
that, for every point p ∈ S, there is at least one C ∈ C passing through p. Then S is
biholomorphic to CP2, in such a way that all of the given curves of the family C become
projective lines. Furthermore, if there is an embedded real surface S ↪→ S, together with an
anti-holomorphic involution σ : S → S with fixed set S, and such that all the curves of C
are invariant under σ, then the biholomorphism F : S → CP2 can be chosen in a way that
σ becomes the standard complex conjugation [z0 : z1 : z2] 7→ [z0 : z1 : z2], S is identified
with RP2 = {[z0 : z1 : z2] ∈ CP2 : z0, z1, z2 ∈ R}, and the complex curves C ∈ C with the
complex projective lines CP1 ⊂ CP2 which are invariant under complex conjugation.

We will not prove this lemma (see Lemma 3.3 and Theorem 3.4 of [LM1]), but the point
is that the result makes us ask if point-line dual structures on RP2 are also unique. As we
will see, the answer is affirmative when the point-line dual structure comes from a tame
Zoll projective structure.
The proof we give will be done in three parts. First, we construct a four-dimensional

manifold N containing N . Then we will show that there is a complex structure on N , and
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4.1 Embedding the manifold of unparametrized geodesics

that all hypotheses of Lemma 4.3 are satisfied. Finally, we identify N with CP2 in such a
manner that the lines ℓp are the real part of the projective curves ax + by + cz = 0, for
a, b, c ∈ R, and identify M with (RP2)∗ ⊂ (CP2)∗. This identification will be proved to be
conformal, and a last simple computation will show that, when this duality arises from a
metric g, we obtain an isometry between (M, g) and RP2 equipped with a constant multiple
of its canonical metric.

4.1 Embedding the manifold of unparametrized geodesics

For now, fix a point-line dual structure C on a manifold M ≈ RP2. As we explained above,
a point-line dual structure on M induces a diagram as given in (2.5), and we can also
construct a map φ : PTM → PTN given by φ(z) = ν∗(kerµ∗,z). We will impose an extra
restriction on the point-line dual structure C :

(v) the map φ : PTM → PTN is a diffeomorphism, such that the submersion ν : PTM →
N becomes the canonical projection PTN → N , and the line bundle kerµ∗ → PTM
becomes the tautological real line bundle L→ PTN .

In other words, we assume that the conclusion of Theorem 2.25 holds.

We want to construct N in such a way that N is embedded in N , and that the dual lines
ℓp, p ∈M , become embedded circles inside projective curves Σp ↪→ N , Σp ≈ CP1. For this
purpose, notice that the dual lines ℓp are the images of µ−1(p) ≈ RP1 under the map ν, so
that, by considering the complexification

PTCM := (C⊗ PTM − 0M )/C×,

and denoting by µ̂ : PTCM →M the canonical projection, it would be reasonable to require
that there is a map Ψ : PTCM → N satisfying the following conditions:

(1) Ψ is a submersion, and its restriction to PTM ⊂ PTCM is the map ν;

(2) the projective lines Σp are the sets Ψ[µ̂−1(p)].

The construction of the manifold N is then done with the following procedure. First,
observe that there is a complex structure J || on the fibers of PTCM , since those fibers are
complex projective lines. In particular, the line bundle J || kerµ∗ → PTM can be identified
with the normal bundle of the inclusion PTM ↪→ PTCM . Next, fix a tubular neighborhood
V̂ ⊂ PTCM of PTM , and fix a diffeomorphism V̂ ≈ J || kerµ∗. Then by identifying V̂ with

the tautological line bundle L→ PTN via the compositions V̂ ≈ J || kerµ∗
−J ||
−−−→ kerµ∗

φ̃−→ L,
where φ̃(z, u) = (φ(z), ν∗,zu) (see the proof of Theorem 2.25), we get a map ψ : V̂ → TN
induced by the blowing-down map β : L → TN , β(y, v) = v. Having done this, denote by
U = PTCM − PTM , V = TN , and define

N := U ∪ψ V. (4.1)
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4 Point-line duality and Green’s Theorem

Lemma 4.4. Suppose C is a real point-line dual projective structure on a surface M ≈ RP2

that satisfies the extra condition (v). Then there is a real compact simply connected four-
dimensional manifold N , together with a submersion Ψ : PTCM → N , in such a manner
that N is smoothly embedded in N , the restriction of Ψ to PTM is the map ν, and each
dual line ℓp, p ∈ M , is contained in a smooth closed real surface Σp := Ψ[µ̂−1(p)] of genus
zero.

Proof. We define N as in (4.1). The canonical map Ψ : PTCM → N is taken to be the
identity on U , and the ‘blowing-down’ map ψ : V̂ → V on V̂. The topology on N is the
weakest for which the function Ψ is a continuous open map, and N is embedded in N as
the zero section of TN = V. Now observe that the blowing-down map β : L → TN = V
is a diffeomorphism away from the zero section PTN , where it restricts to the canonical
projection PTN → N . Also, since the submersion ν : PTM → N is identified with the
canonical projection PTN → N under the diffeomorphism φ : PTM → PTN , the restriction
of Ψ to PTM is the map ν. Hence there is a unique differentiable structure on N for which
the map Ψ is a smooth submersion and induces a diffeomorphism between U and N −N ,
and the open set V = Ψ(V̂) is a tubular neighborhood of N ↪→ N .
For a point y ∈ N −N , a coordinate chart (U ′, χ′) around Ψ−1(y), with U ⊂ U , induces

a chart (U, χ) = (Ψ(U ′), χ′ ◦ (Ψ|U ′)−1) around y. For the other case, when y ∈ N , we can
take a coordinate chart (W ; y1, y2) of N around y, and consider the induced coordinates
(y1, y2, c1, c2) on TN |W given by

(y1, y2, c1, c2) ↔ c1
∂

∂y1

∣∣∣∣
(y1,y2)

+ c2
∂

∂y2

∣∣∣∣
(y1,y2)

.

Since V = TN |W is an open set of V = TN ⊂ N (and since V is open in N ), (V, ϑ), where
ϑ = (y1, y2, c1, c2), is a coordinate chart around y in N . Coordinate transitions between two
charts of the form (U, χ) are smooth because U is, in itself, a smooth manifold. The same is
true for coordinate transitions between two charts of type (V, ϑ), by the very differentiable
structure of TN . The only nontrivial case is when we consider transitions between charts
of type (U, χ) and (V, ϑ). But by our construction, ϑ ◦ χ−1 is the map ψ restricted to an
open set of U ∩ V̂. Thus ϑ ◦ χ−1 is a diffeomorphism, for ψ is a diffeomorphism away from
PTM . The collection of all charts of type (U, χ) and (V, ϑ) is then the C∞ atlas of N .
We define Σp := Ψ(µ̂−1(p)) for each p ∈ M . Because the restriction of Ψ∗,z to the

tangent space Tzµ̂
−1(p) is injective for each z ∈ µ̂−1(p) and each p, the sets Σp are real

closed surfaces, and Ψ induces a diffeomorphism between µ̂−1(p) ≈ CP1 and Σp.
It only remains to prove that N is simply connected. For this, observe that U can

be viewed as the set of point-wise complex structures on M . Indeed, an element [v] ∈
PTC,pM − PTpM induces a decomposition

TC,pM = spanC{v} ⊕ spanC{v}

for which we associate the complex structure I[v] : TC,pM → TC,pM acting as

I[v] =

[
−i 0
0 +i

]
.
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4.2 The complex structure

On the other hand, the (−i)-eigenspace of a complex structure I : TC,pM → TC,pM can
be viewed as an element of PTCM − PTM . (Our convention for the choice of (+i)- and
(−i)-eigenspaces follows the discussion done in the next section.) But the set of point-wise
complex structures on M can be identified with the set of pairs ([gp],Op), where [gp] is
a conformal class of a inner product gp on TpM ≈ R2, and Op is a choice of orientation
for TpM . Since the space of inner products is a convex cone, U deform retracts to the

orientation covering M̃ ≈ S2 of M .
We can thus finish our proof. By construction, N = U ∪ V. On the one hand, U deform

retracts to S2, and V ≈ TN deform retracts to N . On the other hand, the inclusion
ı : U ∩ V ↪→ V is homotopic to the bundle projection π : TN − 0N → N . Since U is simply
connected and U ∩ V is connected, the Seifert-van Kampen Theorem tells us that

π1(N ) =
π1(V)

ı#(π1(U ∩ V))
=

π1(N)

π#(π1(TN − 0N ))
.

At the same time, the fibers of π : TN−0N → N are path connected, so π# : π1(TN−0N ) →
π1(N) is onto. Thus N is simply connected.

4.2 The complex structure

Now that we have constructed the four-dimensional manifold N , we want to prove that it
is the complex projective plane. For that we will construct a complex structure J on N ,
and verify that all conditions stated in Lemma 4.3 are satisfied. This is the point of the
argument where the Zoll projective structure [∇] plays a prominent role: it determines a
special decomposition of TPTCM as the direct sum of two vector sub-bundles.
Fix K to be either R or C, and consider a manifold M of dimension n, together with an

affine K-vector bundle (E,∇) →M , and denote by µ : PE →M , PE = E/K×, the induced
projective bundle. When K = C, assume that ∇ is complex linear, i.e. ∇(is) = i∇s for
every section s ∈ Γ(E). Then the connection ∇ induces a decomposition TPE = H ⊕V,
where H and V are called the horizontal and the vertical bundles respectively, in such a
manner that µ∗ : H → µ∗TM is an isomorphism. The vertical bundle is simply taken
to be V = kerµ∗, while the horizontal bundle is defined as follows: For a given point
p, and a class [e] in the fiber PEp, H[e] is generated by vectors of the form σ′(0), where
σ = [s] : (−ε, ε) → PE is a section of PE along a smooth curve c : (−ε, ε) →M , starting at
p = c(0), that can be represented by a parallel section s of E along c, satisfying the initial
condition s(0) = e ∈ [e].
Turning back to our case of interest, we have a compact surface M2, equipped with a

Zoll projective structure [∇] of conjugacy number equal to one, and we fix a torsion-free
connection ∇ ∈ [∇]. The vector bundle here considered is TCM , which we turn into an
affine bundle by extending ∇ to be complex linear. Then ∇ decomposes TPTCM as a direct
sum H⊕V, that can be complexified as

TCPTCM = HC ⊕VC.
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4 Point-line duality and Green’s Theorem

On the one hand, V = ker µ̂∗ is tangent to the fibers of PTCM → M , and since all of
them are copies of CP1, there is a fiber-wise complex structure J || : V → V, (J ||)2 = −1.
In particular, we can consider the (−i)-eigenspace of J ||:

L1 := V0,1

J || ⊂ VC. (4.2)

On the other hand, µ̂∗ : HC → TCM is an isomorphism, so there is a ‘tautological’ line
sub-bundle L2 ⊂ HC given by

(L2)[v] := (µ̂∗,[v])
−1
(
spanC{v}

)
. (4.3)

We then define

D := L1 ⊕ L2. (4.4)

The idea behind this construction is that determining a complex structure J on N is
the same as defining an involutive complex distribution D ⊂ TCN , having dimCDy = 2,

and Dy ∩ Dy = {0} for all y ∈ N . Indeed, for a given J , we define D = T 0,1
J N ; while a

sub-bundle D with those properties induces an almost complex structure J having D as its
(−i)-eigenspace, and D as its i-eigenspace. In the second case, the integrability of J follows
from D being involutive, because for any two X,Y ∈ Γ(D), the Nijenhuis tensor is

τ(X,Y ) = [X,Y ]− [JX, JY ] + J [X, JY ] + J [JX, Y ]

= [X,Y ]− (−i)2[X,Y ] + (−i)J [X,Y ] + (−i)J [X,Y ]

= 2[X,Y ]− 2[X,Y ] = 0.

Of course we could interchange the roles of D and its conjugate D, but this would only act
as a change of orientation.

Lemma 4.5. Let (M, [∇]) be a surface diffeomorphic to RP2, equipped with a Zoll projective
structure. Then the distribution D defined in (4.4) is an involutive two-dimensional complex
sub-bundle of TCPTCM , and

dimC(Dz ∩Dz) =

{
0, for z /∈ PTM
1, for z ∈ PTM.

Furthermore, D does not depend on the choice of the torsion-free connection ∇ representing
the class [∇].

Proof. D is a complex two-dimensional vector sub-bundle of TCPTCM by definition. The
other assertions are proved by local computations. Let z = (p, [v]) ∈ PTCM , consider a
smooth path c : (−ε, ε) → M starting at p, and fix a section σ = [X] : (−ε, ε) → PTM
along c, passing through z at time zero, and represented by a parallel complex vector field
X(t) along c. Choose a coordinate chart (U ;x1, x2) of M around p, in such a way that
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4.2 The complex structure

X(0) = ∂1|p + ζ∂2|p, and denote by (x1, x2, ζ) : µ̂−1(U) → R2 × C the induced coordinates
on µ̂−1(U) ⊂ PTCM , given by

(x1, x2, ζ) ↔
[(

∂

∂x1
+ ζ

∂

∂x2

)∣∣∣∣
(x1,x2)

]
.

We can then write, on U and on µ̂−1(U), c(t) = (c1(t), c2(t)), X(t) = a1(t)(∂1◦c)+a2(t)(∂2◦
c), and σ(t) = (c1(t), c2(t), a2(t)/a1(t)), where a1(t), a2(t) ∈ C, and a1(t) ̸= 0 for all t. In
particular,

σ′(0) = ċ1(0)
∂

∂x1
+ ċ2(0)

∂

∂x2
+

[
d

dt

∣∣∣∣
t=0

(
a2/a1

)] ∂
∂ζ

+

[
d

dt

∣∣∣∣
t=0

(
a2/a1

)] ∂
∂ζ

= ċ1(0)
∂

∂x1
+ ċ2(0)

∂

∂x2
+
(
ȧ2(0)− ζȧ1(0)

) ∂
∂ζ

+
(
ȧ2(0)− ζȧ1(0)

) ∂
∂ζ
.

(4.5)

Since X is parallel by assumption, we have

0 = ∇ d
dt
X = ∇ d

dt

[
aj
(

∂

∂xj
◦ c
)]

= ȧl
(
∂

∂xl
◦ c
)
+ aj∇ d

dt

(
∂

∂xj
◦ c
)

=
[
ȧl + aj ċk(Γljk ◦ c)

]( ∂

∂xl
◦ c
)
,

where Γljk are the Christoffel symbols of ∇ with respect to the coordinates (x1, x2); hence

ȧl(0) = −aj(0)ċk(0)Γljk(p), l = 1, 2. (4.6)

After substituting equations (4.6) on (4.5), we obtain

σ′(0) =

2∑
j=1

ċj(0)

{
∂

∂xj

∣∣∣∣
z

+
[
ζ
(
Γ1
j1(p) + ζΓ1

j2(p)
)
− Γ2

j1(p)− ζΓ2
j2(p)

] ∂
∂ζ

∣∣∣∣
z

+
[
ζ
(
Γ1
j1(p) + ζΓ1

j2(p)
)
− Γ2

j1(p)− ζΓ2
j2(p)

] ∂
∂ζ

∣∣∣∣
z

}
.

By the definition of horizontal bundle, what all these computations show us is that HC,z,
z = (x1, x2, ζ), is the complex vector space spanned (over C) by

∂

∂xj

∣∣∣∣
z

+ Pj(x
1, x2, ζ)

∂

∂ζ

∣∣∣∣
z

+ Pj(x
1, x2, ζ)

∂

∂ζ

∣∣∣∣
z

, j = 1, 2,

where

Pj(x
1, x2, ζ) = −Γ2

j1 + ζ
(
Γ1
j1 − Γ2

j2

)
+ ζ2Γ1

j2.
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4 Point-line duality and Green’s Theorem

Observe that the calculations done here also prove that µ̂∗ : HC → µ̂∗TCM is an isomor-
phism.
Now we see that, in the chart (µ̂−1(U);x1, x2, ζ), the complex line bundle L1 is generated

by ∂/∂ζ, while the fiber of L2 on a point z = (x1, x2, ζ) is the complex vector space spanned
by

(µ̂∗,z)
−1

(
∂

∂x1
+ ζ

∂

∂x2

)
=

∂

∂x1

∣∣∣∣
z

+ ζ
∂

∂x2

∣∣∣∣
z

+
(
P1(x

1, x2, ζ) + ζP2(x
1, x2, ζ)

) ∂
∂ζ

∣∣∣∣
z

+
(
P1(x

1, x2, ζ) + ζP2(x
1, x2, ζ)

) ∂
∂ζ

∣∣∣∣
z

=
∂

∂x1

∣∣∣∣
z

+ ζ
∂

∂x2

∣∣∣∣
z

+Q(x, ζ, ζ)
∂

∂ζ

∣∣∣∣
z

+Q(x, ζ, ζ)
∂

∂ζ

∣∣∣∣
z

=: Ξ0,z,

(4.7)

here we use the notation

Q(x, u, v) = −Γ2
11 + vΓ1

11 − (u+ v)Γ2
12 + v(u+ v)Γ1

12 − uvΓ2
22 + uv2Γ1

22.

Thus locally we have

D = spanC

{
∂

∂ζ
,Ξ

}
,

where

Ξ = Ξ0 −Q(x, ζ, ζ)
∂

∂ζ

=
∂

∂x1
+ ζ

∂

∂x2
+ Q̃(x, ζ)

∂

∂ζ
,

(4.8)

for Q̃(x, ζ) := Q(x, ζ, ζ). Since ∂ζ/∂ζ = 0 and ∂Q̃/∂ζ = 0, we see that[
∂

∂ζ
,Ξ

]
= 0,

which implies that D is, in fact, involutive.
Observe that a change of torsion-free connection ∇ in [∇] is characterized, on local

coordinates, as a replacement of Γljk by Γljk + δljωk + ωjδ
l
k. Any such substitution leaves

Q̃(x, ζ) = −Γ2
11 +

(
Γ1
11 − 2Γ2

12

)
ζ +

(
2Γ1

12 − Γ2
22

)
ζ2 + Γ1

22ζ
3

unchanged, so that Ξ does not depend on the choice of ∇ ∈ [∇]. Also, the sub-bundle L1

was defined independently of the projective structure. Thus D is projectively invariant,
since it is locally spanned by ∂/∂ζ and Ξ, which do not depend on the choice of ∇ ∈ [∇].

Finally, it comes from the definition that
(
L1 ∩ L1

)
z
= {0} for all z ∈ PTCM — in our

coordinate representation, we see that L1 = spanC{∂/∂ζ} = V1,0

J || . On the other hand,
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4.2 The complex structure

notice that formula (4.7) tells us that the imaginary part of Ξ0 does not vanish when z
is not real — i.e. z /∈ PTM — while Ξ0 is real for z ∈ PTM . This is because, writing
ζ = ξ + iη, we know that PTM is locally the set of points for which η = 0, so that Ξ0 on
PTM is

Ξ0 =
∂

∂x1
+ ξ

∂

∂x2
+ Q̃(x, ξ)

(
∂

∂ζ
+

∂

∂ζ

)
=

∂

∂x1
+ ξ

∂

∂x2
+ Q̃(x, ξ)

∂

∂ξ

As a conclusion, we have

dim(Dz ∩Dz) = dim(L2,z ∩ L2,z) =

{
0, for z /∈ PTM
1, for z ∈ PTM.

Our goal is to prove that Ψ∗D induces a unique complex structure on N . The next
lemma is an important step in this direction.

Lemma 4.6. Let (M, [∇]) be a surface diffeomorphic to RP2, equipped with a Zoll projective
structure. Then

Ψ∗,zDz ∩Ψ∗,zDz = 0

for every z ∈ PTCM . Moreover, if z0, z1 ∈ PTM are two distinct points such that Ψ(z0) =
Ψ(z1) = y, then

Ψ∗,z0Vz0 ⊕Ψ∗,z1Vz1 = TyN .

Proof. The construction of the manifold N was done by gluing U = PTCM − PTM and
V = TN via a ‘blowing-down’ map from a tubular neighborhood of PTM to V. On U ,
Lemma 4.5 tells us that D induces a complex structure, as discussed previously. At the
same time, the restriction of L2 to PTM is the line-bundle generated by the directions
tangent to the geodesics ofM , and Ψ restricts to PTM as the submersion ν, which collapses
all lifted geodesics into points. Consequently, Ψ∗L2,z = 0 whenever z ∈ PTM , so that

Ψ∗,zDz∩Ψ∗,zDz = (Ψ∗,zL1,z+Ψ∗,zL2,z)∩(Ψ∗,zL1,z +Ψ∗,zL2,z) = Ψ∗,zL1,z∩Ψ∗,zL1,z. (4.9)

Our goal is to prove that

Ψ∗,zL1,z ∩Ψ∗,zL1,z = 0.

To better understand this, fix a direction [v] ∈ PTM , and let C be the unique geodesic
passing through µ([v]) with Tµ([v])C = [v]. Choose a representative connection ∇ ∈ [∇],
and consider an affine parametrization γ : (−ε, ε) → M starting at µ([v]). Because t 7→
γ′(t) ∈ TM is a parallel vector field along γ, the section σ : t 7→ [γ′(t)] ∈ PTM induces a
nonzero element σ′(0) ∈ HC,[v]. Actually we have more: σ′(t) ∈ HC,σ(t) for all t. But σ

′(0)
is contained in L2, for the equality µ̂ ◦ σ = γ implies σ′(t) = (µ̂∗|HC)

−1(γ′(t)) ∈ (L2)[γ′(t)].
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4 Point-line duality and Green’s Theorem

Since L2 is a line-bundle, and by the arbitrary choice of [v] ∈ PTM , our conclusion is what
was said above: that L2 on PTM is formed by the lines tangent to the geodesics of M .

It remains to examine what happens to L1 under the map Ψ∗, when considered on
the restriction of TCPTCM to PTM . We proceed by constructing local coordinates (r, θ),
(y1, y2) and (y1, y2, θ) on M , N and PTM , respectively, in such a way that the projections
µ : PTM →M and ν : PTM → N are locally expressed as

µ(y1, y2, θ) = (r(y1, y2, θ), θ) and ν(y1, y2, θ) = (y1, y2).

Let z0 ∈ PTM be an arbitrary point, and denote by p0 = µ(z0) ∈M and by Ĉ = Ĉz0 the
unique lifted geodesic passing through z0. Take a neighborhood Û of Ĉ diffeomorphic to
R2×S1, in a way that the geodesics contained in Û correspond to the circles {pt}×S1, and
Ĉ becomes {0} × S1. Denote the ‘trivializing’ diffeomorphism Û ≈ R2 × S1 by (y1, y2, t).
(Here we think of t as varying in the interval (−π, π], and as being zero on z0.) By taking Û
sufficiently small, we may assume that U = µ(Û) is contained in a tubular neighborhood of
C ⊂ M . In particular, there is a smooth retraction f : U → C which induces a submersion
θ : U → S1, by identifying C ≈ Ĉ ≈ S1 via the coordinate t. Then the function θ̂ := µ∗θ :
Û → S1 is also a submersion, and both t and θ̂ coincide on Ĉ from the construction of
θ. Therefore, by restricting Û once more, if necessary, we can assume that dθ̂/dt never
vanishes, so that (y1, y2, θ̂) is a ‘cylindrical’ coordinate system on Û .

The problem is that U is a Möbius band, which does not allow us to work with global
coordinates. Fortunately, this can be easily overcome if we fix some number ε ∈ (0, π] and

consider Uε := {p ∈ U : |θ(p)| < ε} and Ûε := {z ∈ Û : |̂θ(z)| < ε}. Now Uε and Ûε
are neighborhoods of p0 and z0, respectively, and Uε is the image of Ûε under the map µ.
Moreover, Ûε is diffeomorphic to R2×(−ε, ε) via the coordinate system (y1, y2, θ̂), and there
is a parametrization (r, θ) : Uε ≈ R × (−ε, ε), because the line C ∩ Uε ≈ (−ε, ε) has trivial
normal bundle. From now on we use θ to denote both coordinates θ on Uε and θ̂ on Ûε.

For these coordinates, the canonical projection µ : PTM →M takes the form (y1, y2, θ) 7→
(r(y1, y2, θ), θ), so that

kerµ∗ = spanR

{
∂r

∂y2
∂

∂y1
− ∂r

∂y1
∂

∂y2

}
on Ûε. Observe that ∂r/∂y1 and ∂r/∂y2 cannot vanish at the same time, for µ is a sub-
mersion. Next, write

X :=
∂r

∂y2
∂

∂y1
− ∂r

∂y1
∂

∂y2
.

Then J || kerµ∗ becomes the bundle spanned by J ||X (over the reals), and we parametrize
J || kerµ∗ as

(y1, y2, θ, λ) ↔ λJ ||X(y1,y2,θ).

We now turn to the local description of the quotient map ν : PTM → N . Since ν collapses
the lifted geodesics, we can give V = ν(Û) = ν(Ûε) coordinates (y1, y2) in such a manner
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that ν becomes the projection (y1, y2, θ) 7→ (y1, y2). As a consequence, we have

ν∗,zXz =
∂r

∂y2
∂

∂y1

∣∣∣∣
ν(z)

− ∂r

∂y1
∂

∂y2

∣∣∣∣
ν(z)

for all z ∈ Ûε. Similarly to what was done in the proof of Lemma 4.5, the system (y1, y2)
induces local parametrizations of the form (y1, y2, c1, c2), (y1, y2, ξ), and (y1, y2, ξ, η) on TN ,
PTN , and on the ‘tautological’ bundle L→ PTN , respectively. The identifications are:

(y1, y2, c1, c2) ↔ c1
∂

∂y1

∣∣∣∣
(y1,y2)

+ c2
∂

∂y2

∣∣∣∣
(y1,y2)

,

(y1, y2, ξ) ↔

[(
∂

∂y1
+ ξ

∂

∂y2

)∣∣∣∣
(y1,y2)

]
,

(y1, y2, ξ, η) ↔ η

(
∂

∂y1
+ ξ

∂

∂y2

)∣∣∣∣
(y1,y2)

.

This allows us to represent the projection L → PTN as (y1, y2, ξ, η) 7→ (y1, y2, ξ/η), and
the blowing-down map β : L→ TN as (y1, y2, ξ, η) 7→ (y1, y2, η, ξη).

On the other hand, interchanging y1 and y2, and taking ε smaller, if necessary, we may
assume that ∂r/∂y2 does not vanish. Hence φ : PTM → PTN is locally written as

φ(y1, y2, θ) =

(
y1, y2,−∂r/∂y

1

∂r/∂y2

)
, (4.10)

while the composition β ◦ φ̃ ◦ (−J ||) : J || kerµ∗ → TN becomes

(y1, y2, θ, λ) 7→

(
y1, y2, λ

∂r

∂y2

∣∣∣∣
(y1,y2,θ)

,−λ ∂r
∂y1

∣∣∣∣
(y1,y2,θ)

)
. (4.11)

Moreover, we also know that
∂

∂θ

∣∣∣∣
(y1,y2,θ)

(
∂r/∂y1

∂r/∂y2

)
never vanishes, for the map φ is a diffeomorphism.
The point of all these computations is that, in our construction of N , we fixed a tubular

neighborhood V̂ of PTM , together with a diffeomorphism V̂ ≈ J || kerµ∗. In other words,
we view the coordinates (y1, y2, θ, λ) as local parametrizations of V̂, and the composition
β ◦ φ̃ ◦ (−J ||) : J || kerµ∗ → TN as the map Ψ.
For these coordinate systems, the canonical projection µ̂ : PTCM → M is locally ex-

pressed as
µ̂(y1, y2, θ, λ) = (r(y1, y2, θ), θ).

Hence the vertical bundle V = ker µ̂∗ is generated by

X =
∂r

∂y2
∂

∂y1
− ∂r

∂y1
∂

∂y2
and

∂

∂λ
.
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4 Point-line duality and Green’s Theorem

But observe that PTM is locally the hypersurface λ = 0, and that

∂

∂λ

∣∣∣∣
(y1,y2,θ,0)

=
d

ds

∣∣∣∣
s=0

(y1, y2, θ, s) =
d

ds

∣∣∣∣
s=0

sJ ||X(y1,y2,θ,0) = J ||X(y1,y2,θ,0). (4.12)

Thus the line bundle L1, restricted to PTM , is spanned (over C) by

1

2
(X + iJ ||X) =

1

2

(
X + i

∂

∂λ

)
on a neighborhood of z0 in PTCM .

Our conclusion is: from formulas (4.11) and (4.12), we have

Ψ∗,z0(Xz0 + iJ ||Xz0) =
∂r

∂y2

∣∣∣∣
(0,0,0)

(
∂

∂y1
+ i

∂

∂c1

)∣∣∣∣
Ψ(z0)

− ∂r

∂y1

∣∣∣∣
(0,0,0)

(
∂

∂y2
+ i

∂

∂c2

)∣∣∣∣
Ψ(z0)

so that Ψ∗,z0(L1,z0) ∩ Ψ∗,z0(L1,z0) = 0. We then apply formula (4.9) to obtain the desired
result:

Ψ∗D ∩Ψ∗D = 0,

since z0 ∈ PTM was arbitrary.
Furthermore, if z1 is another point in Ûε contained in the lifted geodesic Ĉ, then z1 =

(0, 0, θ1, 0), with θ1 ̸= 0, in our coordinate system on a neighborhood of z0 in PTCM . Since
φ : PTM → PTN is a diffeomorphism, formula (4.10) tells us that

∂r/∂y1

∂r/∂y2

∣∣∣∣
(0,0,θ1)

̸= ∂r/∂y1

∂r/∂y2

∣∣∣∣
(0,0,0)

.

Hence we have

Ψ∗,z0

(
∂

∂λ

∣∣∣∣
z0

)
=

∂r

∂y2

∣∣∣∣
(0,0,0)

∂

∂c1

∣∣∣∣
y

− ∂r

∂y1

∣∣∣∣
(0,0,0)

∂

∂c2

∣∣∣∣
y

̸= ∂r

∂y2

∣∣∣∣
(0,0,θ1)

∂

∂c1

∣∣∣∣
y

− ∂r

∂y1

∣∣∣∣
(0,0,θ1)

∂

∂c2

∣∣∣∣
y

= Ψ∗,z1

(
∂

∂λ

∣∣∣∣
z1

)
,

(4.13)

and

Ψ∗,z0(Xz0) =
∂r

∂y2

∣∣∣∣
(0,0,0)

∂

∂y1

∣∣∣∣
y

− ∂r

∂y1

∣∣∣∣
(0,0,0)

∂

∂y2

∣∣∣∣
y

̸= ∂r

∂y2

∣∣∣∣
(0,0,θ1)

∂

∂y1

∣∣∣∣
y

− ∂r

∂y1

∣∣∣∣
(0,0,θ1)

∂

∂y2

∣∣∣∣
y

= Ψ∗,z1(Xz1),

(4.14)
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where y = Ψ(z0) = Ψ(z1). Since V = ker µ̂∗ is locally spanned by X and ∂/∂λ, formulas
(4.13) and (4.14) also imply

Ψ∗,z0Vz0 ⊕Ψ∗,z1Vz1 = TyN

whenever z0, z1 ∈ PTM are two distinct points contained in the same lifted geodesic, and
y = Ψ(z0) = Ψ(z1), for Ψ∗(Xz0), Ψ∗(Xz1), Ψ∗(∂/∂λ|z0) and Ψ∗(∂/∂λ|z1) are all linearly
independent.

The next proposition is the key technical result in [LM1] (compare [LM1], Proposition
3.1).

Proposition 4.7. Let (M, [∇]) be a surface diffeomorphic to RP2, equipped with a Zoll
projective structure. Then there is a unique complex structure J on N such that

Ψ∗D ⊂ T 0,1(N , J). (4.15)

Proof. Since the proof is long, we divide it in three parts as follows:

Claim 1. There is a unique rough almost complex structure J on N that satisfies equation
(4.15).

Recall that this means that there is a not necessarily continuous section J of End(TN ),
such that J2 = −Id.

Proof of Claim 1. On N − N = Ψ(PTCM − PTM) ≈ PTCM − PTM , there is only one
choice of J : since

TC,yN = Ψ∗,zDz ⊕Ψ∗,zDz (4.16)

whenever y ∈ N −N and z = Ψ−1(y), J must be the only almost complex structure whose
(−i)-eingenspace and i-eigenspace are Ψ∗,zDz and Ψ∗,zDz, respectively. In terms of the
decomposition (4.16),

J =

[
−i 0
0 i

]
on N −N .
It remains to define J on N . For this, observe that

V = ker µ̂∗ = kerµ∗ ⊕ J || kerµ∗,

so that, according to this decomposition, J || acts on V as

J || =

[
0 −1
1 0

]
.

At the same time, Ψ restricts to PTM as the map ν — hence kerµ∗ is mapped to the
tangent bundle of N under Ψ∗, while the image of J || kerµ∗ lies in the normal bundle of N ,
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4 Point-line duality and Green’s Theorem

viewed as an embedded submanifold of TN = V. This shows that the natural choice of J
on N is the following: For a point y ∈ N , any choice of coordinate chart (V ; y1, y2) around
y induces a parametrization (y1, y2, c1, c2) on TN |V , given by

(y1, y2, c1, c2) ↔ c1
∂

∂y1

∣∣∣∣
(y1,y2)

+ c2
∂

∂y2

∣∣∣∣
(y1,y2)

.

In particular, we can decompose TV|V as

TN |V ⊕ T⊥N |V , (4.17)

where TN |V is spanned by ∂/∂y1 and ∂/∂y1, while T⊥N |V is spanned by ∂/∂c1 and ∂/∂c2

fiber-wise. Since any other choice of coordinates (ŷ1, ŷ2) around y produces a local trivial-
ization (ŷ1, ŷ2, ĉ1, ĉ2) on TN in such a way that

∂

∂ŷi
=
∂yj

∂ŷi
∂

∂yj
and

∂

∂ĉi
=
∂yj

∂ŷi
∂

∂cj
,

we see that decomposition (4.17) is invariant under change of local coordinates (y1, y2) on
N . As a consequence, we can write

TV|N = TN ⊕ T⊥N,

and define

J =

[
0 −1
1 0

]
on N , according to this decomposition.

Although it is not at all obvious that J is even continuous on N , we claim that J is the
unique rough almost complex structure for which the identity Ψ∗ ◦ J || = J ◦ Ψ∗ holds. In
particular, this will imply that Ψ∗D ⊂ T 0,1(N , J). Indeed, when we consider coordinates
(y1, y2, θ, λ) on PTCM and (y1, y2, c1, c2) on N as before, the vertical bundle V is seen to
be locally generated by

X =
∂r

∂y2
∂

∂y1
− ∂r

∂y1
∂

∂y2
and

∂

∂λ
,

while the map Ψ : PTCM → N is written as in (4.11):

Ψ(y1, y2, θ, λ) =

(
y1, y2, λ

∂r

∂y2
,−λ ∂r

∂y1

)
.

We also have
∂

∂λ

∣∣∣∣
(y1,y2,θ,0)

= J ||X(y1,y2,θ,0)

from (4.12), and for any two points z0 = (y1, y2, θ0, 0) and z1 = (y1, y2, θ1, 0) of PTM ,
the tangent space TyN of y = Ψ(z0) = Ψ(z1) is spanned by Ψ∗,z0(Xz0), Ψ∗,z1(Xz1),
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4.2 The complex structure

Ψ∗,z0(∂/∂λ|z0) and Ψ∗,z1(∂/∂λ|z1) — see (4.13) and (4.14). Hence, equality Ψ∗◦J || = J ◦Ψ∗
is satisfied on N if and only if

JΨ∗,zj (Xzj ) = Ψ∗,zj (∂/∂λ|zj ), and JΨ∗,zj (∂/∂λ|zj ) = −Ψ∗,zj (Xzj ).

But this is equivalent to

J

(
∂

∂yj

)
=

∂

∂cj
and J

(
∂

∂cj

)
= − ∂

∂yj
,

because

Ψ∗,zj

(
∂

∂λ

∣∣∣∣
zj

)
=

∂r

∂y2

∣∣∣∣
(y1,y2,θj)

∂

∂c1

∣∣∣∣
y

− ∂r

∂y1

∣∣∣∣
(y1,y2,θj)

∂

∂c2

∣∣∣∣
y

and

Ψ∗,zj (Xzj ) =
∂r

∂y2

∣∣∣∣
(y1,y2,θj)

∂

∂y1

∣∣∣∣
y

− ∂r

∂y1

∣∣∣∣
(y1,y2,θj)

∂

∂y2

∣∣∣∣
y

.

On N −N , the identity Ψ∗ ◦J || = J ◦Ψ∗ is trivially true. Moreover, all these computations
show that such almost complex structure must be the unique satisfying (4.15).

Claim 2. If J is smooth, then J is integrable.

Proof of Claim 2. Assume for a moment that J is of class C∞. Then the properties of the
distribution D stated in Lemma 4.5, together with the fact that Ψ is a diffeomorphism
between PTCM − PTM and N − N imply that J is a complex structure away from N .
Since N is a closed two-dimensional submanifold of N , the smoothness of J tells us that
its Nijenhuis tensor vanishes everywhere, because it is continuous on N and vanishes in the
dense open set N −N .

Claim 3. J is smooth.

Proof of Claim 3. Observe that J is smooth if and only if the bundle T 0,1(N , J) is of class
C∞. With this in mind, we will prove that T 0,1(N , J) is of class Ck for every integer k > 0.
The approach will be to construct Ck local frames for T 0,1(N , J) for any k > 0.

Let k be a positive integer greater than 1, fix a coordinate chart (V ; y1, y2) on N , and
denote by zj = ν∗yj : ν−1(V ) → R. Consider also a coordinate system (x1, x2, ζ) on PTM
as the one used in Lemma 4.5, i.e. (x1, x2) is a local parametrization of M and

(x1, x2, ζ) ↔

[(
∂

∂x1
+ ζ

∂

∂x2

)∣∣∣∣
(x1,x2)

]
.

Construct smooth complex-valued functions z1, z2 on an open set of PTCM by requiring
that zj(x1, x2, ζ) = zj(x1, x2, ξ) + O(η) and ∂zj/∂ζ = O(ηk), where ζ = ξ + iη. (Observe
that, in the coordinates (x1, x2, ζ), PTM is parametrized by η = 0. In other words, we
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4 Point-line duality and Green’s Theorem

require that zj = zj and that ∂zj/∂ζ = 0 to the kth order in η on PTM .) This implies that
zj is locally written as

zj(x1, x2, ζ) =
k∑
r=0

ir

r!
ηr
∂rzj

∂ξr

∣∣∣∣
(x1,x2,ξ)

+O(ηk+1), (4.18)

in term of the coordinates (x1, x2, ζ), where ζ = ξ + iη. This is seen by observing that

∂zj

∂ζ
=

1

2

(
∂

∂ξ
+ i

∂

∂η

)( k∑
r=0

ir

r!
ηr
∂rzj

∂ξr
+O(ηk+1)

)

=
1

2

k∑
r=0

ir

r!
ηr
∂r+1zj

∂ξr+1
+
i

2

k−1∑
r=0

ir+1

r!
ηr
∂r+1zj

∂ξr+1
+O(ηk)

=
ik

2k!
ηk
∂k+1zj

∂ξk+1
+O(ηk)

= O(ηk),

and since the cancellation is done term by term, uniqueness of the Taylor expansion is guar-
anteed. In particular, the functions zj are independent of the choice of given parametrization
(x1, x2, ζ), so that they can be glued together on the intersection of two charts, giving us
complex-valued maps on a neighborhood of ν−1(V ), viewed as a subset of PTCM .

On the one hand, the complex functions zj are constant along the lifted geodesics of
PTM , so that they can be viewed as maps on some neighborhood of V in N . On the
other hand, since J is smooth when restricted to TN|N , we can construct smooth complex-
valued coordinates (̃z1, z̃2) around V by requiring that both z̃j = yj and d̃zj(Y ) = 0 on V
for any Y ∈ T 0,1(N , J)|N . By the uniqueness of the Taylor expansion (4.18), and since
∂Ψ∗z̃j/∂ζ = 0 on ν−1(V ), we see that

Ψ∗z̃j = zj +O(η2).

Thus (z1, z2) may be viewed both as functions on some open set of PTCM , or as a smooth
complex-valued coordinate system on N . In particular, the map Ψ is then represented as
(x1, x2, ζ) = (x1, x2, ξ, η) 7→ (z1, z2).
The point of all this is that we want to express T 0,1(N , J) in terms of the coordinates

(z1, z2). With this in mind, first notice that

T 0,1(N , J)|Im(zj)=0 = spanC{∂/∂z1, ∂/∂z2}.

Indeed, the points where Im(zj) is zero for j = 1, 2 are the points in N , and there we have

Ψ∗,(x1,x2,ξ,0)

(
∂

∂ζ

)
=

[
Ψ∗,(x1,x2,ξ,0)

(
∂

∂ζ

)
zj
]
∂

∂zj
+

[
Ψ∗,(x1,x2,ξ,0)

(
∂

∂ζ

)
zj
]
∂

∂zj

=
∂zj

∂ζ

∣∣∣∣
(x1,x2,ξ,0)

∂

∂zj
+
∂zj

∂ζ

∣∣∣∣
(x1,x2,ξ,0)

∂

∂zj

=
∂zj

∂ζ

∣∣∣∣
(x1,x2,ξ,0)

∂

∂zj
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by construction. Since Ψ∗(Ξ0) vanishes along PTM (see (4.7) for the definition of Ξ0),
and since T 0,1(N , J) is generated by the image of D under Ψ∗ (this is a consequence of
Lemma 4.6), we get the inclusion T 0,1(N , J) ⊂ spanC{∂/∂z1, ∂/∂z2} on N . The equality
then follows because both sides have complex dimension two point-wise. In particular, we
see that Ξzj ≡ 0 when η = 0 (see (4.8) for the definition of Ξ).

Elsewhere, we have

T 0,1(N , J)|N−N = spanC{Ψ∗(∂/∂ζ),Ψ∗(Ξ)}.

Hence, by writing

Ψ∗(Ξ) = (Ξzj)
∂

∂zj
+ (Ξzj)

∂

∂zj
and Ψ∗

(
∂

∂ζ

)
=
∂zj

∂ζ

∂

∂zj
+
∂zj

∂ζ

∂

∂zj
,

we see that

T 0,1(N , J)|∪j{Im(zj )̸=0} = spanC

{
∂

∂zj
− alj

∂

∂zl

}
j=1,2

,

where alj are the solutions of

[
a11 a12
a21 a22

]Ξz1 ∂z1

∂ζ

Ξz2 ∂z2

∂ζ

 = −

Ξz1 ∂z1

∂ζ

Ξz2 ∂z2

∂ζ

 . (4.19)

(This is a simple Linear Algebra result — see Lemma 4.8 below.)

Our goal then is to analyse what happens to the coefficients alj when Im(zj) → 0. In

order to do so, notice that, because [Ξ, ∂/∂ζ] = 0, the function Ξzj satisfies

∂l

∂ζ
l
Ξzj = Ξ

∂l

∂ζ
l
zj = ΞO(ηk−l+1) = O(ηk−l).

At the same time, Ξzj = 0 along η = 0, so that

∂l

∂ηl
(Ξzj)

∣∣∣∣
η=0

≡ 0

for l = 0, ..., k − 1. Hence

Ξzj = O(ηk).

The other terms of equation (4.19) are estimated as follows:

∂

∂ζ
zj =

∂

∂ζ

(
− iη

∂zj

∂ξ

∣∣∣∣
η=0

+O(η2)

)
=
∂zj

∂ξ
+O(η),
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and

Ξ(zj) = Ξ

(
− iη

∂zj

∂ξ

∣∣∣∣
η=0

+O(η2)

)
= −iη

[
Ξ,

∂

∂ξ

]∣∣∣∣
η=0

zj +O(η)

= iη

(
∂zj

∂x2
+ Q̃′(ξ)

∂zj

∂ξ

)
+O(η).

Combining everything, we obtain∣∣∣∣∣∣Ξz
1 ∂z1

∂ζ

Ξz2 ∂z2

∂ζ

∣∣∣∣∣∣ = iη

∣∣∣∣∣ ∂z
1

∂x2
+ Q̃′(ξ)∂z

1

∂ξ
∂z1

∂ξ
∂z2

∂x2
+ Q̃′(ξ)∂z

1

∂ξ
∂z2

∂ξ

∣∣∣∣∣+O(η2) = iη
∂(z1, z2)

∂(x2, ξ)
+O(η2)

Also, ∂(z1, z2)/∂(x2, ξ) ̸= 0 everywhere, because Ξ is linearly independent from both ∂/∂x2

and ∂/∂ξ. Thus

[
a11 a12
a21 a22

]
= −

Ξz1 ∂z1

∂ζ

Ξz2 ∂z2

∂ζ

Ξz1 ∂z1

∂ζ

Ξz2 ∂z2

∂ζ

−1

=

[
O(ηk) O(ηk)
O(ηk) O(ηk)

]
1

iη

(
∂(x2, ξ)

∂(z1, z2)
+O(η)

)[ ∂z2

∂ζ
−∂z1

∂ζ

−Ξz2 Ξz1

]

=

(
∂(x2, ξ)

∂(z1, z2)
+O(η)

)[
O(ηk−1) O(ηk−1)
O(ηk−1) O(ηk−1)

] [
O(1) O(1)
O(η) O(η)

]
= O(ηk−1)

What all those computations tell us is that, when we take (x1, x2, ξ, η) in any compact
set, there is a constant C satisfying

|alj | ≤ C|η|k−1.

Passing to N , what we see is that

|alj | ≤ C ′|Im(z)|k−1,

where z = (z1, z2), at least on the image under Ψ of the compact set where the coordinates
(x1, x2, ξ, η) are defined. Furthermore, Ψ is proper, so that we can cover the pre-image of
any compact subset of N by a finite number of compact coordinate charts on PTCM , and
obtain the estimate

|alj | ≤ C ′′|Im(z)|k−1,

whenever (z1, z2) lie in a fixed compact set.

56



4.2 The complex structure

We have checked that the coefficients alj are smooth away from N and can be extended

to N as zero, in such a way that we obtain Ck−2 functions. In other words, J is, at least,
of class Ck−2. Since k was chosen arbitrarily, we conclude that J is thus smooth as we
claimed.

This ends the proof of Proposition 4.7.

Lemma 4.8. Let {v1, v2} and {w1, w2} be two pairs of linearly independent vectors of C4,
in such a way that V ∩ V = W ∩W = {0}, for V = span{v1, v2} and W = span{w1, w2}.
In particular C4 = V ⊕ V =W ⊕W , and we can write

wj = akj vk + bkjwk.

We write

A =

[
a11 a12
a21 a22

]
and B =

[
b11 b12
b21 b22

]
,

and assume that A is invertible. Then W = span
{
vj − ckj vk

}
j=1,2

, where

C =

[
c11 c12
c21 c22

]
.

is a solution of the matrix equation

CA = −B. (4.20)

Proof. The linear transformation T defined by Twj = 0 and Twj = wj is determined, in
terms of the basis {v1, v2, v1, v2}, by the system of equations

T (akj vk + bkj vj) = 0 and T (b
k
j vk + akj vj) = b

k
j vk + akj vj ,

which is written in matrix notation as

T

[
A B

B A

]
=

[
0 B

0 A

]
,

or equivalently

T =

[
0 B

0 A

] [
A B

B A

]−1

=

[
0 B

0 A

] [
A−1 +A−1B(A−BA−1B)−1BA−1 −A−1B(A−BA−1B)−1

−(A−BA−1B)−1BA−1 (A−BA−1B)−1

]
=

[
−B(A−BA−1B)−1BA−1 B(A−BA−1B)−1

−A(A−BA−1B)−1BA−1 A(A−BA−1B)−1

]
.

57



4 Point-line duality and Green’s Theorem

We want to find a matrix

C =

[
c11 c12
c21 c22

]
.

in a way that W = span
{
vj − ckj vk

}
j=1,2

. That is, we want to determine the coeficients ckj
in such a way that

T (vj − ckj vk) = 0, j = 1, 2.

In matrix notation, these equations are

0 = T

[
Id
−C

]
=

[
−B(A−BA−1B)−1(BA−1 + C)

−A(A−BA−1B)−1(BA−1 + C)

]
.

Thus C = −BA−1 is a solution, and the invertibility of A guarantees its existence. Rewriting
this equation, we conclude that C must satisfy the desired equation

CA = −B.

Remark. In the specific case dealt in Claim 3 above, vj = ∂/∂zj , w1 = Ξ and w2 = ∂/∂ζ,
and (4.20) becomes equation (4.19).

Proposition 4.9. Let (M, [∇]) be a surface diffeomorphic to RP2, equipped with a Zoll
projective structure, and denote by N its space of unparametrized geodesics. Then there is
a compact simply connected complex surface N , together with an embedding N ↪→ N , such
that

(1) there is an anti-holomorphic involution σ : N → N with fixed-point set N ;

(2) for all p ∈M , there is a complex curve Σp ⊂ N , Σp ≈ CP1, in a manner that

ℓp = Σp ∩N ;

(3) the surfaces Σp, p ∈M , represent the same element of π2(N ); and

(4) if p1 and p2 are two distinct points ofM , then Σp1 and Σp2 are transverse and intersect
exactly at one point.

Proof. We already constructed N , proved that it is a compact simply connected complex
surface, and defined the complex curves Σx := Ψ[µ̂−1(x)]. Now notice that each fiber
µ̂−1(x) is a CP1 with the complex structure J ||, and that Ψ induces a holomorphic map
between µ̂−1(x) and Σx, by the construction of the complex structure J on N . Since Ψ is
a diffeomorphism away from PTM , its holomorphic restriction to µ̂−1(x) must be of degree
one, so that Σx ≈ CP1. Moreover, all Σx are freely homotopic to each other in N , since
this is true for the fibers of PTCM .
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4.3 The final argument

Statement (2) is trivially true by the construction of N , and (4) comes from the fact
that two different fibers of PTCM are disjoint, so that Σx1 ∩ Σx2 = ℓx1 ∩ ℓx2 ⊂ N , for Ψ is
a diffeomorphism on PTCM − PTM . But we already proved that two distinct geodesics of
M intersect transversely at only one point (see Corollary 2.26).
To finish the proof, observe that there is a canonical fiber-wise anti-holomorphic involution

σ̂ : PTCM → PTCM — this is simply the function σ̂([v]) = [v]. Such σ̂ has fixed-point set
PTM , and thus induces a map σ : N → N with fixed-point set N . At the same time,
the complex structure J on N is such that Ψ∗ ◦ J || = J ◦ Ψ∗. Hence σ is, in fact, an
anti-holomorphic involution.

Corollary 4.10. The complex manifold N is biholomorphic to CP2 in such a way that
the antiholomorphic involution σ : N → N becomes the standard complex conjugation
[z0 : z1 : z2] 7→ [z0 : z1 : z2], N is identified with RP2 = {[z0 : z1 : z2] ∈ CP2 : z0, z1, z2 ∈ R},
and the complex curves Σp become projective lines CP1 ⊂ CP2 invariant under complex
conjugation.

Proof. Proposition 4.9 tells us that N and the family {Σp}p∈M satisfy the hypotheses of
Lemma 4.3.

4.3 The final argument

Now that we constructed a complex surface N containing N that is biholomorphically
equivalent to CP2, we are able to prove the ‘rigidity’ of the point-line dual structure on
RP2, at least when it comes from a Zoll projective structure.

Theorem 4.11 (LeBrun and Mason, [LM1] Theorem 3.4). Let [∇] a Zoll projective struc-

ture on a surface M2 diffeomorphic to RP2. Then there is a diffeomorphism Φ :M
≈−→ RP2

such that [∇] = [Φ∗∇can], where ∇can is the Levi-Civita connection of the canonical Rie-
mannian metric can on RP2

Proof. By Corollary 4.10, there is a biholomorphism F : N → CP2 in such a way that
F ◦ σ ◦ F−1 is the standard complex conjugation on CP2, F (N) = RP2 ⊂ CP2, and F (Σp)
is a projective line invariant under complex conjugation for all p ∈ M . Consider now the
dual projective plane CP2∗ = P(C3∗) of CP2, and define the map

Φ0 :M → CP2∗

p 7→ F (Σp)
⊥,

where ⊥ denotes the usual correspondence between lines in CP2 and points in CP2∗, i.e. a
line Σ = {[x : y : z] ∈ CP2 : ax + by + cz = 0} is identified with the element Σ⊥ ∈ CP2∗

represented by the linear functional l : C3 → C given by l(x, y, z) = ax+ by + cz.
The smoothness of Φ0 is proved in the following way. For any given local section s of

µ̂ : U → M , we know that F [Ψ(s(p))] ∈ F [Ψ(µ̂−1(p))] = F (Σp). Since Ψ(s(p)) ∈ N − N

and F (Σp) = F (Σp), we have F [Ψ(s(p))] /∈ F (N) = RP2 ⊂ CP2. Therefore F (Σp) is the
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4 Point-line duality and Green’s Theorem

unique projective line passing through both F [Ψ(s(p))] and F [Ψ(s(p))]. Hence Φ0 is locally
written as

Φ0(p) = F [Ψ(s(p))]× F [Ψ(s(p))],

where × : C3 × C3 → C3∗ is the vector cross-product — in other words, if F [Ψ(s(p))] is
represented by a vector v ∈ C3 −{0}, then F [Ψ(s(p))]×F [Ψ(s(p))] is represented by v× v.
This proves that Φ0 is smooth, for it is locally the composition of smooth maps.

The same argument also shows that Φ0 is an immersion, because F is a biholomorphism,
Ψ is a diffeomorphism on U , and s — being a local section — is an immersion.

With all this said, observe that Φ0(p) is actually an element of RP2∗ ⊂ CP2∗, for it is
invariant under complex conjugation. Thus Φ0 induces a smooth function Φ : M → RP2∗,
which a proper local diffeomorphism since M is compact, Φ0 is an immersion, and both
M and RP2∗ have the same dimension. Hence Φ is a covering map, and because π1(M) ∼=
π1(RP2∗) ∼= Z2, it is in fact a diffeomorphism.

Finally, the function Φ :M
≈−→ RP2∗ can be represented as

p 7→ F (ℓp)
⊥,

and it sends a geodesic Cy, represented by a point y ∈ N , to F (y)⊥, which is the set of all
lines passing through the point F (y) ∈ RP2. In other words, we successfully identified N
with RP2 and M with its dual RP2∗ in such a manner that the geodesics of M become the
geodesics of the canonical metric on RP2∗ ≈ RP2. Thus [∇] = [Φ∗∇can], and the proof is
finished.

Remark. In other words, what Theorem 4.11 proves is the uniqueness of point-line dual
structures on RP2, at least when it comes from a Zoll projective structure. Another con-
sequence is that the collection C ∗ := {ℓp : p ∈ M} gives a point-line dual structure on N ,
that is dual to (M,C ), where C is the collection of geodesics induced by the Zoll projective
structure.

Proof of Theorem 4.1 (Green’s Theorem, see [LM1] Theorem 3.5). Let g be a Zoll metric
on M ≈ RP2. After a possible multiplication by a constant, we may assume that g ∈ Zπ,
i.e. the length of all its geodesics is π.
Extend g to TCM to be complex bi-linear, and define

C = {[v] ∈ PTCM : g(v, v) = 0}.

Notice that, when we consider local coordinates (x1, x2) around a point p ∈M with induced
coordinates

(x1, x2, ζ1, ζ2) ↔ ζ1
∂

∂x1
+ ζ2

∂

∂x2
(ζj = ξj + iηj)

on TCM , the set of vectors v ∈ TCM for which g(v, v) = 0 is seen as the zero locus of a
quadratic homogeneous polynomial in ζ1 and ζ2 that varies smoothly as a function of x1

and x2. Hence C is a smooth curve of PTCM that intersects PTC,pM in two points, counted
with multiplicity. At the same time, g is a positive-definite inner product on TpM that was
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4.3 The final argument

extended to TC,pM to be complex linear, and thus C is invariant under complex conjugation
[v] 7→ [v]. In particular, if C ∩ TC,pM consists of a unique point with multiplicity two, then
it must lie in PTM . But this is impossible, since g(v, v) > 0 for every nonzero v ∈ TpM . By
the arbitrary choice of p ∈ M we conclude that C intersects each fiber of PTCM in exactly
two distinct points, each intersection counted with multiplicity one.
There is an intuitive way to think of C, which also justifies its definition. When we think

of U = PTCM − PTM as the set of point-wise almost complex structures on M , C can be
identified with the set of those structures that are orthogonal transformations with respect
to g. Indeed, as discussed in the proof of Lemma 4.4, an element [v] ∈ PTC,pM − PTpM
induces a decomposition

TC,pM = spanC{v} ⊕ spanC{v}

for which we associate the complex structure I[v] : TC,pM → TC,pM acting (in accordance
with our convention) as

I[v] =

[
−i 0
0 +i

]
.

If [v] ∈ C, we can compute, for any a, b, c, d ∈ C,

g(I[v](av + bv), I[v](cv + dv)) = g(−iav + ibv,−icv + idv)

= −acg(v, v) + (ad+ bc)g(v, v)− bdg(v, v)

= (ad+ bc)g(v, v)

= acg(v, v) + (ad+ bc)g(v, v) + bdg(v, v)

= g(av + bv, cv + dv),

thus proving that I[v] is an orthogonal transformation of (TpM, gp). Of course when we
consider [v] instead of [v], we get the same decomposition of TC,pM , but the complex
structure associated is the only other that also is compatible with gp: the one corresponding
to the opposite choice of orientation on TpM , i.e. I[v] = −I[v]. This observation gives
another proof that C intersects the fibers of TCM in exactly two distinct points, since there
are exactly two distinct ways to orient any tangent space TpM .
This interpretation also has an important implication: that C intersects the fibers of

PTCM transversely. In fact, we claim that C is horizontal with respect to the Levi-Civita
connection ∇ of g. To see this, take a smooth curve c : (−ε, ε) → M , together with two
parallel vector fields Xt and Yt along c. Consider also a nonvanishing complex vector field Vt
along c, in such a way that [Vt] ∈ C for all t ∈ (−ε, ε), and let It = I[Vt] be the corresponding
complex structure along c. As in the previous section, we extend ∇ to TCM to be complex
linear, in the sense that ∇ ◦ i = i ◦ ∇. Since It is an orthogonal transformation and X,Y
are parallel,

g(ItXt, ItYt) = g(Xt, Yt) ≡ g(X0, Y0),

so that, because X and Y were arbitrary, we obtain:

0 = ∇ d
dt
(ItXt) =

(
∇ d

dt
It

)
Xt
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4 Point-line duality and Green’s Theorem

for every parallel vector field X along c, i.e.

∇ d
dt
It ≡ 0.

On the other hand, we may assume that Xt is nonvanishing (for example, we can suppose
|Xt| ≡ 1, since parallel transport preserves the metric), and write X = aV + aV for some
nonvanishing smooth function a : (−ε, ε) → R. Because

0 = ∇ d
dt
X =

da

dt
V +

da

dt
V + a∇ d

dt
V + a∇ d

dt
V

and

0 = ∇ d
dt
(IX) = i

da

dt
V − i

da

dt
V + ia∇ d

dt
V − ia∇ d

dt
V,

we see that

0 =
1

2i

(
i∇ d

dt
X −∇ d

dt
(IX)

)
=
da

dt
V + a∇ d

dt
V = ∇ d

dt
(aV ).

Hence the derivative of the curve t 7→ [Vt] = [a(t)Vt] ∈ C is an element of the horizontal
bundle H ⊂ TPTCM . But any tangent vector of C can be written as the derivative of a
curve of the form t 7→ [a(t)Vt], thus proving that TC ⊂ H. We actually have TC = H|C , for
both sides have dimension two fiber-wise.

As a consequence, the projection µ̂ : PTCM → M restricts to a local diffeomorphism
π : C →M . At the same time, as argued above, a point in C is identified with a point-wise
orthogonal complex structure, which is equivalent to a point-wise choice of orientation on
M . In other words, C is viewed in this way as the orientation double cover of M , which is
diffeomorphic to the sphere, and π : C →M is actually the orientation covering map.

Furthermore, observe that U = PTCM − PTM has a complex structure induced by the
distribution D (this is a consequence of Lemma 4.5), and that C ⊂ U is an embedded
complex curve. Indeed, as our previous computations show,

TCC = HC|C = (L2 ⊕ L2)|C

so that the induced complex structure on U restricts to a complex structure I on C for
which

T 0,1C = L2|C = spanC{Ξ0}

and

T 1,0C = L2|C = spanC
{
Ξ0

}
.

The fact that C is actually a Riemann surface has two important consequences. The first
is that the covering π : C → M is a conformal map from C to the Riemannian manifold
(M, g). This is true because

π∗
[
T 0,1
[v] C

]
= spanC{v} ⊂ TCM
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4.3 The final argument

from the definition of L2, and g(v, v) = 0 — hence the pull-back metric π∗g is compatible
with I, as one can easily see from the following calculation:

π∗g(I(aΞ0 + aΞ0), I(bΞ0 + bΞ0)) = π∗g(−iaΞ0 + iaΞ0,−ibΞ0 + ibΞ0)

= −abg(π∗Ξ0, π∗Ξ0)− abg(π∗Ξ0, π∗Ξ0)

+ (ab+ ab)g(π∗Ξ0, π∗Ξ0)

= (ab+ ab)g(π∗Ξ0, π∗Ξ0)

= π∗g(aΞ0 + aΞ0, bΞ0 + bΞ0).

The second is that Q := Ψ(C) is also a genus zero Riemann surface, for Ψ is a biholomor-
phism from U to N −N .

We now turn to the study of the complex curve Q. By Lemma 4.3, we know that there
is a biholomorphism F : N → CP2 that identifies N with RP2 and the curves Σp with the
complex projective curves invariant under complex conjugation. Consequently, F (Q) is an
embedded Riemann surface of genus zero in CP2. Moreover, it must be either a projective
line or a conic by Chow’s theorem (see [Dem], ch. 2) and the degree-genus formula (see
[Don], ch. 7). At the same time, since C intersects each fiber of PTCM transversely exactly
at two points away from PTM , Q also intersects the curves Σp, p ∈M , transversely precisely
at two points away from N . Hence F (Q) meets certain projective lines transversely in two
points away from RP2. Bézout’s Theorem (see [Ful]) then tells us that F (Q) is a conic, that
is the zero locus of a homogeneous quadratic polynomial

0 = q(z) =

2∑
j,k=0

qjkzjzk.

On the other hand, the fact that C is invariant under fiber-wise complex conjugation on
PTCM implies that Q is invariant under the involution σ, and hence that F (Q) is invariant
under complex conjugation on CP2. Consequently, F (Q) is also the zero locus of

q(z) =

2∑
j,k=0

qjkzjzk.

If we then consider q(z) + q(z) and q(z)− q(z), we see that both

2∑
j,k=0

Re(qjk)zjzk and
2∑

j,k=0

Im(qjk)zjzk

vanish at F (Q), and that at least one of then is non-trivial, since q ̸= 0. In other words,
what we discovered is that F (Q) is, in fact, the zero locus of a real homogeneous quadratic
polynomial, which is completely described by a symmetric 3 × 3 real matrix A. Such a
matrix is similar, over GL(3,R), to a diagonal matrix whose entries are either 1, 0 or −1.
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4 Point-line duality and Green’s Theorem

Because F (Q) does not intersect RP2, A must be definite. Thus, after a suitable real change
of coordinates, we may assume that the biholomorphism F : N → CP2 identifies Q with
the standard conic Q0 ⊂ CP2, given by

z20 + z21 + z22 = 0,

without losing any of the other properties of F .
All these procedures where done for an arbitrary Zπ-manifold (M, g) = (RP2, g), so that

we can repeat them to the particular case of (RP2, can). The diffeomorphism Φ :M → RP2

constructed in Theorem 4.11 is then described by

Φ(p) = p̃ ⇐⇒ F (Σp) = F̃ (Σ̃p̃), (4.21)

where untilded letters are those related to the construction on (M, g), and tilded ones are
from (RP2, can). Indeed, what was actually constructed in Theorem 4.11 was an identi-
fication M → RP2∗ induced by the map p 7→ F (Σp)

⊥, while the same construction on
(RP2, can) gives a diffeomorphism RP2 → RP2∗ from the application p̃ 7→ F̃ (Σ̃p̃)

⊥. Since

we view Φ : M
≈−→ RP2 as the composition of M → RP2∗ with the inverse RP2∗ → RP2, Φ

is then characterized by (4.21). In particular, both curves C and C̃ are mapped biholomor-
phically to Q0, so that

F
(
Ψ
(
π−1(p)

))
= F (Σp) ∩Q0 and F̃

(
Ψ̃
(
π̃−1(p̃)

))
= F̃ (Σ̃p̃) ∩Q0.

Hence the holomorphic map

Φ̂ :=
(
(F̃ ◦ Ψ̃)|C̃

)−1
◦ (F ◦Ψ) : C → C̃

makes the diagram

M RP2

C C̃

π π̃

Φ̂

Φ
(4.22)

commute.
We can now finish the proof. For this, notice that, since both π and π̃ are conformal, and

because Φ̂ is a biholomorphism of Riemann surfaces, the diffeomorphism Φ is also conformal.
In particular, h := Φ∗can = e2ug for some function u ∈ C∞(M). Denote by ∇g and ∇h the
respective Levi-Civita connections of g and h. By the formula relating conformal metrics,
we have

∇g
XY −∇h

XY = du(X)Y + du(Y )X − g(X,Y )gradg(u)

for every X,Y ∈ X(M). Since ∇g and ∇h are projectively equivalent by construction,

∇g
XY −∇h

XY = ω(X)Y + ω(Y )X
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4.3 The final argument

for some 1-form ω. Hence

ω(Xp)Yp + ω(Yp)Xp = du(Xp)Yp + du(Yp)Xp − g(Xp, Yp)gradg(u) (4.23)

for every pair of tangent vectors Xp, Yp ∈ TpM , for any point p ∈ M . Taking Xp, Yp to be
orthonormal and such that ω(Yp) = 0, we then see from (4.23) that

ω(Xp)Yp = du(Xp)Yp + du(Yp)Xp.

Because Xp and Yp are linearly independent, we see that ω(Xp) = du(Xp) and du(Yp) =
0 = ω(Yp). This implies that du = ω, since they are equal on a basis for each tangent space.
Thus (4.23) can be further simplified to

g(Xp, Yp)gradg(u)p = 0, ∀Xp, Yp ∈ TpM, ∀p ∈M.

If we take Xp = Yp ̸= 0, we see that gradg(u) ≡ 0. Consequently, u is constant. Since all
geodesics of (M, g) and (RP2, can) have the same length π, e2u must be identically equal to
1. This proves that Φ : (M, g) → (RP2, can) is an isometry, as desired.
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5 Conclusions and further directions

Our objective was to give a brief introduction to the theory of Zoll manifolds. The scope
was limited to the two-dimensional case, and even so we did not study in depth the Zoll
metrics on the sphere. This chapter tries to give a panorama of what comes next.

5.1 Topological and geometric facts about Zoll manifolds

More can be said about the topology of Zoll manifolds than what we proved in section 2.1.
Perhaps the best result in this direction is the Bott-Samelson Theorem, which can be stated
as follows:

Theorem 5.1 (Bott-Samelson — [Bot], [Sam], see also [Bes], ch. 7). The integral coho-
mology ring of a Zoll manifold is the same as that of a CROSS.

As for the geometric properties of such manifolds, we mention two results. The first is
about their volume. There is an interesting theorem by A. Weinstein relating the volume of
a n-dimensional Zoll manifold to the volume of the n-dimensional sphere with its canonical
metric.

Theorem 5.2 (Weinstein — [Wei], see also [Bes], ch. 2). If (M, g) is a n-dimensional
Zl-manifold, then the ratio

Vol(M, g)

Vol(Sn, can)

(
2π

l

)n
is an integer i(M, g), called the Weinstein integer of the Zoll manifold (M, g). In particular,
if (M, g) is a Z2π-manifold, then the volume of (M, g) is an integral multiple of the volume
of (Sn, can).

The Weinstein integer depends continuously on the metric g, so it stays constant under
continuous deformations. However, we do not know in general if the space Z(M) is con-
nected — this is an open question even for the 2-sphere (see Section 5.4 below). Therefore, a
priori there could be two different Zoll metrics on a given manifold with different Weinstein
integers. Fortunately, this is not the case for the spheres.

Theorem 5.3 (Weinstein and Yang — [Wei], [Yan], see also [Bes], ch. 2). The Weinstein
integer of a Zoll sphere (Sn, g) is 1. In particular, Vol(Sn, g) = Vol(Sn, can) whenever
g ∈ Z(Sn, 2π).

Another interesting property of Zoll manifolds is that their Laplace spectra are asymptot-
ically well behaved. We do not state the result here, but refer the reader to [Bes], Chapter
8, specially to the Duistermaat-Guillemin Theorem in Section 8.B.
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5.2 The Blaschke conjecture

A notion closely related to that of a Zoll surface is that of a Blaschke surface. Put simply,
a Blaschke surface is a Riemannian surface (M2, g) for which the following condition holds:
For every pair of points p, q ∈ M such that q ∈ Cut(p), there are exactly two shortest
normalized geodesics (called segments) γ1, γ2 : [0, l] → M from p to q and γ′1(0) = −γ′2(0).
With a bit of work, it is not hard to show that the Green Theorem proved in Chapter 4 is
equivalent to the result below (see [LM1] or [Bes], ch. 5):

Theorem 5.4 (Green). If (M, g) is a Blaschke surface, then it is isometric either to
(S2, kcan) or to (RP2, kcan) for some constant k > 0.

The definition of a Blaschke surface generalizes, in higher dimensions, to that of a Blaschke
manifold. These are Riemannian manifolds (Mn, g) with the extra condition that, for any
pair of points p, q ∈M with q ∈ Cut(p), the set

{γ′(0) : γ is a segment from p to q} ⊂ TpM

is a whole great sphere of the unit tangent space UpM = {u ∈ TpM : g(u, u) = 1}.
Similarly to the Zoll case, all CROSS’es are Blaschke manifolds. In dimension two, Green’s
theorem tells us that the CROSS’es are the only examples of Blaschke manifolds. In higher
dimensions, however, the question whether every Blaschke manifold is isometric to a CROSS
is, to the author’s knowledge, still widely open.

Blaschke conjecture. Every Blaschke manifold is isometric to a CROSS.

5.3 Other types of Zoll structures

Zoll projective structures are not the only possible generalization of Zoll metrics. As dis-
cussed at the beginning of Section 2.2, geodesics can be interpreted in two different way:
as solutions of a variational problem, or as curves with zero acceleration. The notion of
Zoll projective structures emerged from this second viewpoint, but from the first is derived
another possible perspective. While in dimension one geodesics are critical points for the
length functional, in higher dimensions minimal submanifolds are critical points for the
area functional. Hence, if we substitute the word “geodesic” with the expression “minimal
submanifold”, what we get is an entirely new definition:

Definition 5.5. Let Σk be a closed k-dimensional manifold. A Σ-Zoll manifold is a Rieman-
nian manifold (M, g) of dimension n > k, together with a family Z of embedded minimal
submanifolds Z in (M, g) that satisfies:

1) every Z ∈ Z is diffeomorphic to Σ;

2) for every p ∈M and every k-dimensional vector subspace π ⊂ TpM , there is a unique
Z = Zp,π that passes through p with TpZ = π; and
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3) all Z ∈ Z have the same area in (M, g).

The family Z is called a (Σ-)Zoll family and the metric g, a Σ-Zoll metric. We write
g ∈ Z(M,Σ) or g ∈ ZA(M,Σ) if we want to emphasize that the area of the submanifolds
Z ∈ Z is A.

When (Mn, g,Z) is a Σk-Zoll manifold, each surface Z ⊂M lifts canonically to

Grk(TM) = {(p, π) : p ∈M and π is a k-vector subspace of TpM}

as Ẑ = {(p, TpZ) ∈ Grk(TM) : p ∈ Z}, and the collection Z induces a foliation F of
Grk(TM). We can then define N = Grk(TM)/F the leaf space, called the space of Σ-
submanifolds of M . This space has a canonical bijection to Z, but the point is that we now
get a picture analogous to that of the double fibration (2.5) in Chapter 2. We may impose
the extra condition:

4) the Σ-Zoll manifold (M, g,Z) is said to be tame when its space of Σ-submanifolds
N has the structure of a smooth manifold for which the canonical projection ν :
Grk(TM) → N is a fiber bundle with fiber Σ. In this case, we also call the metric g
tame.

As for the classical notion of Zoll manifolds, there are many interesting questions in this
generalized setting. For example, the discussion of Zoll manifolds presented in this text
started by asking if there were other metrics on the 2-sphere all of whose geodesics were
simply closed and of the same length. This question can be posed for Σ-Zoll manifolds in
many different ways. Here is one of them:

Question. Are there other Sk-Zoll metrics on the sphere Sn aside the (multiples of the)
canonical metric?

Very recently, L. Ambrozio, F. Marques and A. Neves [AMN] gave an affirmative answer
for the codimension 1 case. In fact, they generalized Guillemin’s theorem in the following
way:

Theorem 5.6 (Ambrozio-Marques-Neves — see [AMN], Theorem A). Let ρ̇ be a smooth
odd function on the sphere Sn, n ≥ 3. Then there exists a smooth one-parameter family of
smooth functions ρ(t) on Sn, −δ < t < δ, with ρ(0) = 0 and ρ′(0) = ρ̇ such that

i) the metric g(t) = e2ρ(t)can ∈ Z(Sn, Sn−1) for every t;

ii) the triple (Sn, g(t),Zt), where Zt is the Zoll family of embedded Sn−1 ↪→ Sn of g(t), is
tame for all t; and

iii) the space of Sn−1-submanifolds Nt of e
2ρ(t)can is diffeomorphic to RPn for each t.
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5 Conclusions and further directions

In higher dimensions, the projective duality between KPn and its dual KPn∗ = P((Kn+1)∗)
is not about points and lines, but rather about points and hyperplanes. It then would be
natural to ask if there is some kind of rigidity as for the case of dimension two. However, if
there is, it is not so strong as to have a uniqueness resut such as that of Green’s theorem.
Indeed, in dimension greater than two, this uniqueness already breaks down as states the
next theorem.

Theorem 5.7 (Ambrozio-Marques-Neves — see [AMN], page 65 for all n ≥ 3). For all
n ≥ 3, there exist non-homogeneous Riemannian metrics on RPn with minimal projective
hyperplanes.

5.4 Comments on LeBrun and Mason’s approach

The ideas from Twistor Theory used by LeBrun and Mason changed the way we view
the theory of Zoll surfaces. In their work [LM1], they also considered the case of Zoll
projective structures on the sphere, and they found a relation between these structures and
holomorphic discs. Unfortunately, nothing of this was discussed in this brief monograph,
and the reader is referred to the papers [LM1] and [LM2]. We only mention a conjecture
they pose (see [LM1] for the terminology):

LeBrun and Mason’s conjecture. The moduli space of Zoll metrics on S2 is connected.
Moreover, once we mark our Zoll structures by choosing an orthonormal frame at some
base-point, the moduli space of marked Zoll structures is in natural 1-1 correspondence with
the set of totally real Lagrangian embeddings of RP2 ↪→ (CP2 − C, ω) which are homotopic
to the standard embedding.

As interesting as this Twistor-theoretic approach may look, it has some limitations. For
instance, it is not likely to give much information about Zoll manifolds of higher dimensions,
even when we consider Zoll manifolds in the generalized sense of Definition 5.5. This is
because the whole argument given in the proof of Green’s theorem used two properties that
only coexist in dimension two:

(i) the duality between points and lines on the projective plane; and

(ii) each embedded submanifold considered (in this case, the geodesics) has codimension
n in a 2n-dimensional manifold (n = 1 for Zoll surfaces).

As said before, the projective duality in higher dimensions relates points and hyperplanes.
Hence, if we want to find a generalization of LeBrun and Mason’s construction, we should
perhaps consider manifolds with Zoll families of minimal hypersurfaces. However, we used
the fact that, in dimension two, fiber-wise complex structures in a surfaceM2 are in one-to-
one correspondence with the space PTCM − PTM . When we deal with manifolds of (real)
dimension 2n, this should be replaced by GrC,n(TCM) − Grn(TM), where GrC,n(TC,pM)
is the set of all complex vector subspaces of TC,pM of complex dimension n, and we view
Grn(TM) ⊂ GrC,n(TCM) by identifying π ∈ Grn(TM) with π ⊗ C ⊂ GrC,n(TCM).
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In other words, there are two different possibilities if we want to work with some gener-
alization of LeBrun and Mason’s ideas: the first is to consider manifolds with Zoll families
of hypersurfaces; the second is to study Σn-Zoll manifolds of dimension 2n. Unfortunately,
not being able to have both properties at the same time may be a serious limitation that
does not seem easy to overcome. Even so, in view of Theorem 5.7 and Theorem 4.11, it
sounds reasonable to ask the following:

Question. Is it possible to find, for every tame RPn−1-Zoll metric g on RPn, a diffeo-
morphism F : RPn → RPn in such a way that F (Z) is a hyperplane for every minimal
submanifold Z in the Zoll family Z of g?
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