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1 Introduction

It is a remarkable fact, although standard, that the images of the maximal geodesics of
the Euclidean sphere are embedded circles, all of them having the same length (27 for a
sphere of radius ). Of course, this is not only true for S?: in addition to higher-dimensional
Euclidean spheres, other manifolds such as the projective spaces (RP", CP"™ and HIP™)
and the Cayley projective plane CaP?, with their respective canonical metrics, share this
property.

At first glance, requiring all geodesics to be simple closed curves of the same length
seems too restrictive. In fact, the examples given above are rather special for their rich
geometrical structure, and they are known as the Compact Rank One Symmetric Spaces
(CROSS). Hence, what may have been a plain observation raises an interesting question.
Is a Riemannian manifold all of whose geodesics are simply closed and of the same length
isometric to a CROSS?

As surprisingly as it might sound, the answer is no. Even more astonishing, at the
beginning of the last century, Otto Zoll [Zoll] found the first nontrivial examples of two-
dimensional spheres of revolution with this property. Due to his contributions, we now call
a Riemannian manifold a Zoll Manifold when all its geodesics are simple closed curves of
the same length.

Zoll’s discovery opened the door to further explorations. Not long after his examples, Funk
[Fun] tried to construct one-parameter families g(¢) of Zoll metrics starting at the canonical
metric can = g(0) on the sphere, and found a necessary condition for such a family to exist.
His method, however, was based on the computation of Taylor series expansions, and he
could not prove that his condition was also sufficient, since there was no guarantee that the
series would converge. More than fifty years passed until Guillemin [Gui] was finally able
to answer affirmatively Funk’s sufficiency problem. His proof relied on an implicit function
theorem of Nash-Moser type, a result not available at the moment of Funk’s works.

Both constructions given by Zoll and Guillemin have a crucial aspect in common: they
are intimately related to odd functions. As we are going to see in Chapter 3, in cylindrical
coordinates (r,0) € [—1,1] x [0, 2x], a metric of the form

g = [1 + h(cosr))?dr?* + sin® rd* (1.1)

is a Zoll metric on S? if and only if h : [~1,1] — (=1,1) is a smooth odd function that
maps 1 to 0. Moreover, any Zoll metric of revolution can be written as in the formula
above. On the other hand, Guillemin’s theorem states that, for any smooth odd function
f :S? = R, there exists a smooth one parameter family of C*°-functions p; such that
po =0, (dpt/dt)|t=0 = f and e”* - can is a Zoll metric for all ¢ sufficiently small.
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As a consequence, none of those examples gives us nontrivial Zoll metrics on the real
projective plane, since they are not invariant under the antipodal map. In fact, although
there is a great variety of Zoll spheres (many of them with trivial isometry group — see
[Bes], Chapter 4, Corollary 4.71), no nontrivial example exists on RPP2. This was first shown
by L. Green [Gre].

Green’s proof relied on a kind of “area comparison”. The idea is the following: One proves
that, if ¢ is a Zoll metric on RP? all of whose geodesics have length 7, then Area(RP2, g) >
27, with equality holding if and only if g = can. Then the argument ends by showing that
we must have Area(RP2, g) = 27.

Actually, Green did not work with (RP?2, g), but with the Riemannian covering (S?,9) —
(RP2, ¢) instead — the only difference is that we change 27 by 47. When we do not consider
the normalized case, in which the length of the geodesics is m, the result can be stated as

Green’s Theorem. Any Zoll metric on RP? is isometric to a constant multiple of the
canonical metric.

In the early 2000s, C. LeBrun and L. Mason [LM1] introduced new ideas to the study of
Zoll surfaces by applying methods from Twistor Theory. Their approach yielded another
proof of Green’s theorem, which relies on the rigidity of a duality between points and lines
— something that actually precedes the given metric. What they observed is that a Zoll
metric on RP? has a special property: through any two distinct points passes a unique
geodesic, and any two distinct geodesics intersect at exactly one point. This is quite similar
to what one has when working with plane projective geometry. In fact, LeBrun and Mason
were able to prove Green’s Theorem by exploring this analogy.

The main aim of this work is to explain this new approach in detail.

We now summarise what will be discussed throughout the text. In Chapter 2, we define
Zoll metrics and Zoll projective structures — the latter being a generalization of the former.
These two notions are closely related and impose important topological restrictions on the
manifold. Omne could, in fact, spend many pages discussing the topological implications
of the existence of such structures (see [Bes], Chapter 7), but we content ourselves with
two simple results. First, we describe the fundamental group of such manifolds: a striking
property of Zoll manifolds (and manifolds equipped with Zoll projective structures, more
generaly) is that their fundamental groups cannot have order greater than two. Then we
move on to the two-dimensional case, and give a fairly precise description of the number of
intersections between any two distinct geodesics.

All the main results we present in this text are about Zoll surfaces. The emphasis on
dimension two starts at the end of Chapter 2, and prevails through all Chapter 3. There
we give the complete characterization of the Zoll metrics of revolution on the sphere. In
particular, formula (1.1) is derived.

The heart of this monograph is Chapter 4. In it, we give a complete proof of Green’s
Theorem from the perspective of LeBrun and Mason’s ideas. The argument will be divided



in three parts, each explained in a section. In our presentation, all the important calculations
were done in detail, for we believe that, by doing so, the construction becomes clearer and
more concrete.

We conclude the text with a more informal discussion in Chapter 5. There, we briefly
talk about possible further directions one can go, and state some results not proved here
that complement the exposition.

Notations and conventions

Throughout this monograph, some conventions were made. For example, manifolds are
always connected and of class C°°, except when explicitly stated otherwise. The word
smooth is to be understood as C*°, and we will assume smoothness whenever possible. For
the absence of a priori differentiability (and even of continuity), we use the adjective rough.
This becomes clearer in the context of a vector bundle 7 : £ — M. In this case, a rough
section s : M — FE is a not necessarily continuous function s : M — E such that wos = id;.

Geodesics will be denoted, in most cases, by the letter v, while ¢ will be used for other
parametrized curves. The image of a maximal geodesic v : R — M will often be written as
€ =~(R).

Finally, Einstein’s summation convention is used in many parts of the text. This is to
say that when we have equal upper and lower indices together, they are to be implicitly
summed. For example, if v1, ..., v, is a basis for a real vector space V and a!, ..., a™ are real
numbers, then a'v; is written instead of 2?21 atv;.
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2 Different notions of Zoll structures

2.1 Zoll manifolds as special types of Riemannian manifolds

Let (M, g) be a Riemannian manifold. A curve 7 in M is a periodic geodesic with period
provided that v is a geodesic of M that is periodic as a map from R to M (parametrized
by arc length), with least period I. The number [ is the length of the periodic geodesic, and
we use the terminologies “periodic geodesic with period I”, “periodic geodesic of length [”,
and “l-periodic geodesic” interchangeably. For our purposes, we will say that a geodesic v
is simply closed if it is [-periodic for some period [ > 0 and if the function ~ : [0,{] — M is a
simple closed parametrized curve, in the sense that if 0 < ¢; < to <[ satisfy v(t1) = v(t2),
then ¢; = 0 and t2 = [. In other words, v is simply closed when 7(R) is an embedded circle.

Definition 2.1. A Zoll metric is a Riemannian metric all of whose geodesics are simply
closed and have the same length. A Zoll manifold is a Riemannian manifold whose metric
is Zoll.

For simplicity, we will say that a Riemannian manifold (M, g) is a Z;-manifold whenever
it is a Zoll manifold and its geodesics are [-periodic. In this case, we write g € Zj, or
g € Z(M,1) if we want to emphasize the manifold and the length. We will also denote by
Z(M) = U;>9 Z2(M,1) the set of all Zoll metrics on a given manifold M.

As to be expected, the existence of a Zoll metric on a manifold is quite restrictive. For
example, if (M, g) is a Z;-manifold, then since all geodesics are periodic, they are defined for
all values of time, i.e. (M, g) is geodesically complete. Thus, by the Hopf-Rinow Theorem,
(M, g) is complete as a metric space, and through any two points p,q € M passes some
minimizing geodesic 7. In particular, diam(M, g) <1/2 and M is compact.

Way more can be said about the topology of M (see Chapter 7 of [Bes]), but fairly simple
methods are sufficient to give us the following result.

Lemma 2.2. Suppose (M,g) is a Z;-manifold. Then diam(M, g) < 1/2, both M and its
universal cover M are compact, and the pull-back metric g = n*g of g by the cover map
7 M — M is a Zoll metric on M. Moreover, T : (M, g) — (M, g) is either an isometry
or a Riemannian double cover, and g € Z(M, 2l) in the second case. In particular, m (M)
1s either trivial or isomorphic to Zs.

Proof. We already proved that M is compact, and that diam(M,g) < [/2. Let us now
present another argument that does not rely on the Hopf-Rinow Theorem.

Fix a point p € M, let B(0,,1/2) = {v € T,M : |v| < /2}, and consider the restriction
exp, : B(0,,1/2) = M of the exponential map to this ball. This map is not injective because
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all geodesics passing through p are periodic with period I, hence exp,(v) = exp,(—v) for
all v € 5(0,,1/2) = {u € TyM : |u] = 1/2}. One way to overcome this problem is to
define X := B(0,,1/2)/ ~, where u ~ v if and only if u,v € S(0,,1/2) and u = =w.
Then X ~ RP", where n = dim M, and there is a smooth map p : X — M that factors
exp, : B(0p,1/2) — M through the canonical projection B(0,,1/2) — X.

It is important to note, however, that this construction does not solve the lack of injec-
tivity of exp,, : B(0p,1/2) — M. Indeed, there is no guarantee that the map p: X — M
is one-to-one, since there could be two distinct geodesics starting at p that meet at a point
q # p. This is the case of (S?, can), for any two linearly independent vectors u, v € S(0,, )
represent distinct points of X, and are both mapped to the antipodal point —p via the
exponential map.

Nonetheless, we argue that this possible lack of injectivity causes no harm, because the
pair (X, p) satisfies the following properties:

(i) X is a closed manifold (i.e. compact and without boundary);

(ii) p~(p) = {0,} (here we think of 0, as the image of 0, € T,M under the projection
B(0,,1/2) = X), because [ is the least period of the geodesics passing through p; and

(iii) px0, : To,X — T, M is an isomorphism, because p is modeled by the exponential map
near 0.

Thus the proper map p : X — M has mod-2 degree 1 € Zo, which implies that p is onto.
Since X is compact, we conclude that M is also compact. In particular, for any point
q € M, there is a geodesic starting at p that passes through ¢. Furthermore, because p was
chosen arbitrarily, through any two points of (M, g) passes some geodesic.

Assume we are given any two normalized geodesics 79 and ~; in M with v(0) = po,
71(0) = p1, v(0) = vp and 4}(0) = v;. We can then take a smooth curve ¢ : [0,1] — M
which goes from pg to p1, and write P : T,M — T, M for the parallel transport along
¢ from ¢(0) = pp to c(t). Since the parallel transport is an isometry, |Pi(vo)| = 1 for all
t € [0,1], so that there is a smooth one-parameter family O(t) in SO(T}, M, gp,) such that
0(0) =1Id and O(1)P1(vg) = v1. After concatenating ¢t — P;(vg) with ¢ — O(t)P1(vg), we
get a path v(¢) : [0,1] — UM along the unit tangent bundle UM = {w € TM : |w|, = 1}
from v(0) = vy to v(1) = v1. This induces a (free) homotopy H : [0,1] x R/IZ — M, given
by

H(Sv t) = Yu(s) (t) = exp(tv(s)),

between vy = H(0,-) and v; = H(1,-).

In other words, in a Zoll manifold M, all geodesics are freely homotopic. Even more, the
homotopy can be given along a fixed point p if both pg = p1 = p — for we can take ¢ to be
constant in this case. In particular, any geodesic is homotopic to the reverse orientation of
itself, and this implies that the homotopy class of any geodesic of M has order less than or
equal to two. Moreover, this order must be the same for every geodesic. Therefore, if we
denote by 7w : (M,g) — (M, g) the universal Riemannian cover of M, then the restriction
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m:5(R) = ~v(R) is either a diffecomorphism for the lift 7 in M of every geodesic v of M, or
a double cover for all v. In both cases, (]Tj ,g) is also a Zoll manifold.

Now fix p € M. It is well known that any homotopy class a € 71 (M, p) can be represented
by a geodesic loop v : [0, 1] — M at p — this is true for any complete Riemannian manifold,
but 7/(0) # +/(1) in general, i.e. vy does not need to be periodic. (See, for instance, the
argument presented in the proof of Theorem 2.2 of Chapter XII in [doC], which can easily
be changed to give the desired result.) But since M is Zoll, v must extend periodically, so
that 7/(0) = +/(1). Thus either 71 (M, p) is trivial, or a non-trivial element o € 71 (M, p)
is the homotopy class of a geodesic of M passing through p. This second case implies
m1(M,p) = Zy, for all geodesics passing through p are homotopic. ]

In the proofs of most of the assertions in Lemma 2.2, we did not use the hypothesis that
(M, g) is Zoll to all its extent. Indeed, the arguments assumed only that all the geodesics
passing through some point p € M were periodic and of the same length. More generally,
we can consider the following:

Definition 2.3. Let (M, g) be a Riemannian manifold and let p be some fixed point of M.
We say that (M, g) is a Zoll manifold at p (or a ZP-manifold) if all normalized geodesics
passing through p are simply closed with the same length. When it happens, and the length
of those geodesics is [, we say that (M, g) is a le-mam'fold, and write g € Z(M, 1, p).

Example 2.4. An ellipsoid of revolution is a ZP-manifold, where p is one of its poles. By
the symmetries of its construction, this induces a metric on RP? which is Z ], where [p]
is the class containg the poles. It is not true, however, that both the ellipsoid, and the
induced (RP?, g) are Z-manifolds in general.

We point out that such manifolds have most of the properties stated in Lemma 2.2.

Lemma 2.5. Suppose (M,g) is a le—manifold for some point p € M. Then both M and
its universal cover M are compact, and diam(M,qg) < l. Moreover, the pull-back metric
g = m*g by the cover map © : M — M is a ZP-metric for any p € 7' (p) on M, and

m: (M,q) — (M,g) is either an isometry or a Riemannian double cover. When 7 is 2-1,
g € Z(M,2l,p). In particular, 71 (M,p) is trivial or isomorphic to Zs.

Proof. Everything was already proved except for the estimate on the diameter of (M, g).
But this is a simple use of the triangle inequality after noting that, for every point ¢ € M,
there is a geodesic passing through p and ¢. Since all geodesics passing through p are
periodic of length [, dist(p,q) <1/2 for all ¢ € M. O

2.2 Zoll projective structures

The Hopf-Rinow Theorem is about Riemannian metrics g and the distance functions induced
by them on the underlying space (see Chapter VII of [doC], or Chapter 5, Section 5.7.1 of
[Pe]). On the other hand, we did not need to use this result in the proof of Lemma 2.2.
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Our argument was based on the existence of the exponential map (which is determined
by the Levi-Civita connection VY of g), the periodicity assumption on the geodesics, and
degree theory. The metric had a more subtle influence on the proof: it was needed when
we considered balls B(0,,r) C T,M, and on the construction of the homotopy between
geodesics (but only to make sure that v,), viewed as a map from R to M, had the same
period for all ¢). If not pointed out explicitly, the metric g could almost be forgotten and
overshadowed by the rest of the argument.

The topological techniques used in Lemma 2.2 are not only a choice of different methods,
but also a hint that it might be possible to work with Zoll manifolds in some kind of
generalized setting. As it is well known, there are two distinct approaches when dealing
with geodesics. The first is to consider them as solutions of a variational problem: they
are the paths that locally minimize length. The second is a dynamical one: geodesics are
curves with zero acceleration. Hence, if we look at our problem only through the lens of
dynamical systems, we need only a connection to be able to determine the geodesics — not
a Riemannian metric. It then makes sense to work with the following:

Definition 2.6. A Zoll connection on a manifold M is a connection V for which the images
of all its maximal geodesics are embedded circles.

The point, however, is that we are not concerned with geodesics viewed as maps from an
interval to the manifold, but rather as embedded circles € C M, where € = y(R) for some
maximal geodesic 7 : R — M. In particular, we should also not be concerned with their
parametrization. Therefore, a specific Zoll connection contains, in a sense, more information
than what we actually need. Different connections that have the same geodesics — viewed
as unparametrized curves — should not be distinguishable for our purposes.

Definition 2.7. Two connections V! and V2 on a manifold M are projectively equivalent
— written as V! ~ V2 — when all their geodesics are the same, as unparametrized curves.
A projective structure [V] on a manifold M is an equivalent class of connections on M for
the relation of being projectively equivalent.

This is to say that two connections V! and V? are projectively equivalent if and only
if, for every geodesic v : I — M of V!, there is an interval J C R and a diffeomorphism
¢ :J — I such that yo ¢ : J — M is a geodesic of V2.

In this context, Definition 2.6 can be replaced by:

Definition 2.8. A Zoll projective structure on a manifold M is a projective structure [V]
of Zoll connections on M.

Whenever [V] is a projective structure represented by a connection V, there is no loss
to assume that V is torsion-free. Indeed, in any coordinate chart (U;x!,...,2™) of M, the
connection V is completely characterized by its Christoffel symbols Ffj = d:ck(Vaiaj), and
any geodesic v : I — M satisfies the system of equations

ik _|_;yiﬁj1“f3 =0, k=1,...n.
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We can replace Ffj by their symmetrization %(Ffj +F§i) and obtain a torsion-free connection
V such that 1

5+ ")’i"}’j§(rfj +T0) =48 +4'47TF = 0
for all geodesics v of V. Hence both V and V have the same parametrized geodesics, so
they are projectively equivalent.

For some purposes, when dealing with a manifold equipped with a projective structure
[V], it is easier to fix a connection V € [V] so that computations can be carried over. If we
want to return to the projective structure, however, it is important to keep in mind what is
invariant under changes of a representative V. The following result tells us how it can be
done, and will be important later on.

Lemma 2.9. Two torsion-free connections V' and V? are projectively equivalent if and
only if there is a 1-form w € QY(M) such that

VLY = VAY +w(X)Y +w(Y)X (2.1)
for all XY € X(M).

Proof. Suppose V! and V? are projectively equivalent. Since both connections are torsion-
free, the difference V! — V? is a symmetric (1,2)-tensor, so we can think of V! — V2 as a
symmetric bilinear function TM & TM — T M.

Now fix p € M, a nonzero tangent vector X,, € T,M, and let v: I — M, I = (—¢,¢), be
the V!-geodesic passing through p at time zero with velocity X, (i.e. v(0) = p, v'(0) = X,
and Vlify’ = 0). Since V? has the same unparametrized geodesics of V!, there is some

dt
interval J = (—6,9) and an embedding ¢ : J — I such that v o ¢ is a V2?-geodesic with
initial values v o ¢(0) = p and (v 0 ¢)'(0) = X,. (In particular, ¢(0) = 0 and ¢/(0) =1.) If
we denote by s the standard coordinate on J, and by ¢ the standard coordinate on I, then
we get

0=V2%(r00) =V2%[¢ (o0
o)+ V(00
=¢"- (Y oo)+¢- (V4 .47) o)
=¢"- (0 d)+ (@) [(V%7) o 9]
hence
Vi, Xp — Vi, Xp = ¢"(0) X,

Of course the expression ViXpo, i = 1,2, does not make any sense, but we think of
V&po — V?Xpo as the tensor V! — V2 evaluated on the pair (X, X,).

By the uniqueness and smooth dependence of solutions of ordinary differential equations,
the function ¢ = ¢, x, is uniquely determined by, and depends smoothly on p and X,,. This
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means that, for any (p, X,,) € T'M, there is a neighborhood U of (p, X,,) and an open interval
J = (—9,0) such that ¢y, is defined on J, and the map (q,Y,,t) € U x J = ¢4y, (1) €R
is smooth. Moreover, since the geodesic equation is homogeneous, ¢, x,(At) = Ad, x, (f)
for all A € R\ {0} and all |¢| sufficiently small. (The only case remaining is when X, = 0,
which is trivial.)

Thus there is a well defined 1-form w € Q' (M) given by w(X)(p) = 3 Z:Xp (0) if X, # 0,
and w(X)(p) =0if X, =0, for all X € X(M). This form satisfies the identity

VEX - VEX =20(X)X, X € X(M),

and the bilinearity of V! — V2 then implies the desired result:

Py -y = [P 4 7) - T+ 1)
- (V}(X - vi(X) - (WY - v%y)}
= w(X)Y +w(Y)X.

Conversely, assume that V! and V? are related by formula (2.1). Then a geodesic v of
V! defined on an open interval I = (—¢,¢) satisfies the equation

V4 (r06) = 2(¢)%w(y 0 9) = 6]+ (7' 0 9)

for any reparametrization ¢. By the existence and uniqueness of solutions of ordinary
differential equations, there is an interval J = (—4,d) and a unique smooth function ¢ :
J — I that solves the initial value problem

{¢// _ 2(¢/)2w(,y/ o ¢),
¢(0) =0, ¢'(0) =1.

Since ¢/(0) > 0, after restricting I and J if necessary, we may assume that ¢ : J — [
is a diffeomorphism — hence a reparametrization. By construction, the curve v o ¢ is a
geodesic for the connection V? that passes through v(0) at time zero with velocity 7/(0).
This finishes the proof, since v was chosen arbitrarily. O

In order to avoid an ambiguity, a Zoll manifold will always be understood as a Rieman-
nian manifold (M, g) whose metric is Zoll. Whenever [V] is a Zoll projective structure
on a manifold M, we will call the pair (M, [V]) a manifold equipped with a Zoll projective
structure.

Before we move on, there is still one problem to deal with. A Zoll projective structure is
far from the notion of Zoll metrics — at least further than is to be desired for our purposes.
Indeed, there are many examples of Zoll projective structures that do not quite fit in what
we expect. All the maximal geodesics of a lens space (S®/Z,, can) are simply closed, but
not all of them have the same length when p > 3. Thus, except for (RP?3, can), lens spaces

10
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are examples of a Riemannian manifolds whose metrics are not Zoll, but have canonical
Zoll projective structures (see [Bes] for more examples). Moreover, S*/Z, does not admit
a Zoll metric when p > 3, because its fundamental group has order greater than two (see
Lemma 2.2).

What we want is a structure slightly more general than a Zoll metric, but not so much.
For example, we would like to impose a restriction on the Zoll projective structures here
considered so that Lemma 2.2 is still valid. This is what we do next.

Given an immersed curve ¢ : [a,b] & M, the class [¢/(t)] is a well defined element of

PTM := (TM — 03;)/R”,

since ¢'(t) € Ty M does not vanish at any time ¢ € [a,b]. The canonical lift of ¢ along
the canonical projection p : PTM — M is the map ¢é: ¢t — [¢/(t)]. Observe that the image
¢([a,b]) € PTM does not depend on the parametrization of the curve. Hence any geodesic
€ of a given Zoll projective structure [V] can be canonically lifted to an embedded circle
€ C PT'M, and the set of all these lifted circles is a foliation of PT'M, which will be denoted
by F.

The next lemma suggests what is the extra piece of structure we are looking for.

Lemma 2.10. If (M,g) is a n-dimensional Zoll manifold, then the induced foliation of
PTM by lifted geodesics is locally trivial, in the sense that each leaf has a neighborhood
which is diffeomorphic to S' x R*"~2 in such a way that every leaf corresponds to a circle
of the form S* x {pt}.

Proof. Assume first that M is orientable. Let 7 : [0,1] — M be a geodesic loop of length
I = |¥/(t)|, and denote by € = ([0, 1]) its image. The orientability of M and € tells us
that the normal bundle T-€ is trivial, i.e. there is an orthonormal frame ey (t), ..., e,_1(t)
of T+€ along ~ such that e;(0) = e;(1) for all i = 1,...,n — 1. Moreover for some & > 0 the
map

R/Z x R"™' = M

. ; (2.2)
(t,rl, L expv(t)(r ei(t))

induces a diffeomorphism between the cylinder R/Z x B(0,¢), B(0,¢) C R*"!, and a tubu-
lar neighbourhood U = B(C,e) of € — this allows us to denote any point p € U by
(t,rt,...,v""1). After taking ¢ > 0 sufficiently small, we may assume that any curve in U
of the form ¢t € [0,1] — (¢ mod 1,r(¢)) has length greater than 3[/4.

By the smooth dependence of solutions of ordinary differential equations, we can get an
open set V' C T'M satisfying:

(i) v'(s) € V for all t € [0,1];
(ii) |v] € (1/2,31/2) for all v € V; and

(iii) for any v € V, the geodesic v, with initial condition 7, (0) = v stays inside U = B(C,¢)
for any time |s| < 3/2, i.e. 7,(s) € U whenever s € [—3/2,3/2].

11
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Properties (i), (ii) and (iii) together with the fact that all geodesics have the same length
imply that all v, : R = M, v € V, stay inside U for all s € R. Hence any geodesic v, can
be written as s € R+ (¢,(s),7(s)) in U. Furthermore, the derivative dt,/ds cannot vanish
at any time: on the contrary, -, would pass through € with velocity normal to T'€, and so
would eventually move out of U.

What we have so far is that any geodesic €,) = vy (R), v € V, is completely inside of U,
and can be locally parametrized by s € R — (t,(s),7,(s)) with dt,/ds > 0. The retraction
(t,7) = (¢,0) induces a local diffeomorphism €, — €, which is a covering map, since
€, is compact. The cover €,; — € must be a diffeomorphism: otherwise €, could be
parametrized as s € [0,k] — (s mod 1,7(s)) for some integer £ > 1, and some smooth
periodic function 7 with least period k. But this implies that the length of €, is greater
than 3kl/4 > [, which contradicts the assumption that (M, g) is a Zoll manifold.

Now let W be the image of V' under the canonical projection TM — 0y — PTM, and
consider the set A = {(t,7) € U :t =0 mod 1}. Since any geodesic €, [v] € W, passes
through A at some point pp,) = (0,7([v])) with direction

(5 +€0D0) p{v]] , (2:)

any [v] € W is uniquely described as (¢([v]), 7} ([v]), ..., 7" 1([v]), €L ([v]), ..., "~ 1([v])), where
r([v]) and £([v]) are the ones described in formula (2.3), while ¢([v]) = ¢(pu([v])) is given by
the cylindrical coordinates in (2.2). This identifies W with an open set of R/Z x R?"~2
and induces the desired diffeomorphism by restricting W, if necessary.

Finally, assume M is not orientable. In this case, Lemma 2.2 tells us that m (M) = Zs
and that the homotopy class of a geodesic loop v : [0,1] — M is not the identity element.
Hence the normal bundle T+€ of € = ~([0,1]) is nontrivial, and we cannot construct
global cylindrical coordinates as in (2.2). There is still a sufficiently small ¢ > 0 for which
U = B(€,e) ~ T*C is a tubular neighborhood of € = ~([0,1]), though, and we have a
well defined map ¢ : U — R/Z given by the composition of the retraction U — € with the
diffeomorphism € ~ R/Z that identifies a point p € € with t € R/Z if p = ~(t).

By choosing ¢ sufficiently small, we may assume that any curve ¢ : (a,b) — U for which
the composition t o ¢ : (a,b) — R/Z is onto has length greater than 3//4. We can then
obtain an open set V' C T'M with properties (i), (ii) and (iii) as before, and consider W as
its image via TM — 0p; — PT M. Similarly to the orientable case, (i)—(iii) imply that any
geodesic (), [v] € W, is contained in U.

Even though global cylindrical coordinates do not exist, we can take local coordinates on
U of the form (¢,r) € (a,b) x B(0,¢), for b — a < 1, induced by the map

TPM € =

(a,b) x R"™ 1 — M

- ; (2.4)
(t,rt, ) = expy ) (r'ei(t))

(here we think of v as a 1-periodic function defined for all values in R). Just like in the
orientable case, the geodesics ), for [v] € W, are contained in U, and the restriction

12



2.2 Zoll projective structures

of t to €, induces a diffeomorphism €,; — €. Indeed, in the coordinates (2.4) any local
parametrization v, (s) = (t(s),7(s)), v € V, of €,) has dt/ds > 0: on the contrary, €f,] would
pass through € with direction normal to T'€, and so would eventually move out of U. Since
€,y — € is an immersion and both € and €, are circles, €,; — € is a covering map. But
€] — € is, in fact, a diffeomorphism: otherwise the length of €, would be greater than [,
which contradicts the assumption that (M, g) is Zoll. By taking —1/2 <a <0<b<1/2in
(2.4), we can define A = {(0,7) € U} and put coordinates (¢,7,§) on W by t([v]) = t(u([v]))
and r([v]), &([v]) as in (2.3). O

Definition 2.11 ([LM1], Definition 2.5). Let [V] be a Zoll projective structure on a n-
dimensional manifold M. We say that [V] is tame if the induced foliation of PT'M by
lifted geodesics is locally trivial, in the sense that each leaf has a neighbourhood which is
diffeomorphic to S* x R?"~2 in such a way that every leaf corresponds to a circle of the form

St x {pt}.

Lemma, 2.10 tells us that a Zoll metric induces a tame Zoll projective structure. The next
result goes the other way around. This, in a sense, justifies the hypothesis of tameness as
the right generalization.

Lemma 2.12. Let M be a manifold equipped with a tame Zoll projective structure [V]. If
[V] is represented by the Levi-Civita connection of some metric g, then g is Zoll.

Proof. The geodesics of g are, by assumption, simply closed, and it only remains to prove
that every one of them has the same length.

For a fixed unparametrized geodesic € of M, there is a trivializing neighborhood V' of its
canonical lift € C PTM , in the sense that there is a diffeomorphism ¢ : S' x R27—2 Z v,
where the lifted geodesics in V' are identified with S! x {pt}. In particular,

e St M
t—= p(o(t,r))

is a smooth (2n — 2)-parameter family of loops on M, so that the length

L) = [l

depends smoothly on r € R?*~2, Thus we can construct a smooth (2n — 2)-parameter
family of affinely parametrized geodesic loops v, : S' — M by requiring that «, is the
unique geodesic that passes through ¢,(0) at time zero with velocity (L(c,)/|c.(0)]) - ¢.(0)
(here we think of ¢ € S! as a number in [0,1)). Of course . is a reparametrization of ¢,
but the point is that now each ~, is a critical point for the energy functional (see [doC] or

Pe])
Bn) = [ o) Pt

13



2 Different notions of Zoll structures

Since 7 +— 7, is a smooth (2n — 2)-parameter family of critical points, the energy does not
depend on r, i.e. the map r — E(~,) is constant. This implies that the length L(v,) = L(c,)
is also constant as a function of r.

Finally, for any two directions [vg], [v1] € PTM, there is a path o : [0,1] — PTM,
a(t) = [v], that starts at [vg] and ends at [v1]. Denote by €; the geodesic of M whose
lift & c PTM passes through [v;]. Then the previous argument showed that the length
L(t) = L(€;) of €; is a smooth locally constant function of ¢ € [0,1]. Hence L(t) is constant,
and L(€y) = L(€y). Since [vg], [v1] € PT'M where chosen arbitrarily, this proves that all
geodesics have the same length. O

As a consequence of Definition 2.11, if [V] is a tame Zoll projective structure on a manifold
M?™, then the leaf space N := PT'M/F, called the space of unparametrized geodesics of
(M,[V]), is a connected manifold of dimension 2n — 2, and the canonical projection v :
PTM — N is an S'-bundle. Moreover, as seen in the argument used in the proof of the
previous lemma, all geodesics of (M[V]) are freely homotopic to each other. The picture
can then be put together to form the following double fibration:

PT M
n/ N\
M N,

and the tangent spaces to the fibers of y and v are linear independent everywhere, i.e.
(ker p14) N (kervy) = 0.
Another space of importance is the sphere tangent bundle:

STM := (TM — 0p7)/RT.

When ¢ : [a,b] & M is an immersed curve, its class RTc/(t) = {\d(t) : A > 0} is a well
defined element for all ¢ € [a,b], and RT¢ : ¢ — RT(¢) lifts ¢ to ST M along the canonical
projection STM — M. The image R"¢([a,b]) is invariant under orientation-preserving
reparametrizations, in the sense that, if ¢ : [a’,V/] — [a,b] is a orientation-preserving dif-
feomorphism, then R*¢/([a, b]) = RT (co ¢)'([a’,b']). When ¢ reverses orientation, however,
R*¢((t)) # RH(6(1)6 (1)), so that R*¢([a, b)) NR*(co ) ([d', b]) = 0.

As a consequence, a geodesic € of (M, [V]) lifts to STM in two possible ways €, and
€_. These lifts give us a foliation F on STM, which is ‘locally trivial’ in the sense of
Definition 2.11 when [V] is tame, for there is a canonical double cover STM — PT'M. The
leaf space N = ST M /F is then a connected manifold, called the space of directed geodesics
of (M, [V]), and there is a canonical nontrivial double cover N — N.

Our goal now is to understand the topological restrictions shared by manifolds equipped
with a tame Zoll projective structure. The approach is similar to that of Section 2.1.

(2.5)

Lemma 2.13. Let (M,[V]) be a n-dimensional manifold equipped with a tame Zoll pro-
jective structure, and let m : M — M be its universal cover. Then [1*V] is a tame Zoll
projective structure on M.

14



2.2 Zoll projective structures

Proof. There is nothing to prove when M is simply connected. So we can assume that this
is not the case.

Since any two geodesics of M that pass through a given point are homotopic, every
parametrized geodesic of M is homotopic to its reverse parametrization. Hence the homo-
topy class of any geodesic of M has order no greater than two. Moreover, because any
two geodesics of M are freely homotopic, this order is the same for all homotopy classes of
geodesics, independent of a chosen fixed point. Thus the restriction 7 : € — C is either a
double cover for any component € of 7 1(€) of any geodesic € C M, or a diffeomorphism
for every € and every €. This shows that the geodesics of (M ,[m*V]) are embedded circles,
since they are the components of the pre-images of geodesics of M. Equivalently, [7*V] is
a Zoll projective structure on M.

The tameness is then proved in a simple manner. Assume [V] is tame. Fix any geodesic €
of M, and let € C 7~1(€) be a geodesic of M. Then, the tameness of [V] tells us that there
is a neighbourhood U C PT'M that contains the canonical lift of €, and is diffeomorphic
to R/Z x R?"~2 in such a way that the lifted geodesics of M correspond to the circles
R/Z x {pt}. At the same time, 7 : M — M induces a covering map # : PTM — PTM such
that the components of the pre-images of lifted geodesics of M are lifted geodesics of M.
Hence the component U C #~1(U) containing the lift of € is diffeomorphic to R/kZ x R2"~2,
for k € {1,2} independent of the choice of € and €, in such a way that the lifted geodesics
of M correspond to the circles R/kZ x {pt}. The arbitrary choice of € and € then concludes
the proof of the tameness of [7*V]. O

Lemma 2.14. If (M,[V]) is a manifold equipped with a tame Zoll projective structure,
then M is compact, and has finite fundamental group. Furthermore any two points of M
are connected by a geodesic.

Proof. Fix a point p in M. Since (ker u,) N (ker v,) = 0, the set

A~

X =v ' v(p (p)]

is a closed submanifold of PT'M, and the projection p : PT'"M — M restricts to a smooth
map (i : X — M. Observe that X can be identified with the set of pairs (¢, T,C), where ¢ is
a point of a geodesic € that passes through p. With this identification, we see that =1 (p) is
diffeomorphic to an RP"~! whose normal bundle is the tautological line bundle. Hence we
can blow-down X at p~'(p) to obtain a manifold X, and a smooth map p : X — M. (This
is the analogous construction to that in the proof of Lemma 2.2.) Let x € X be the image
of ~1(p) by the blowing-down map X — X. The pair (X, p) has the following properties:

(i) X is a closed manifold;
(ii) p~'(p) = {z}; and

(iii) psq : TpX — Tp,M is an isomorphism, because p is modeled by the exponential map
near x.
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Thus p is a regular value of p, and the proper map p : X — M has mod-2 degree 1 € Zo,
which implies that p is surjective. This proves that M is compact, and that any two points
of M can be joined by a geodesic, since p was arbitrary.

For the finiteness of the fundamental group, observe that Lemma 2.13 tells us that the
universal cover M has a tame Zoll projective structure. Hence M is compact by the above
argument, which implies that the fundamental group of M is finite. O

Remark. It can be shown that X, defined in the above proof, is diffeomorphic to RP™.
To see this, let g be a Riemannian metric on M. By the same reasoning as in the proof
of Lemma 2.12, there is a smooth function L, : N — (0,00) that assigns to each y € N
the length of the geodesic €, = u(r~!(y)) (in terms of the metric g). Pulling back L,
via the composition UIM — PTM % N, where UIM = {u € TM : g(u,u) = 1} and
U9IM — PTM is the projection u — [u], we get a smooth function Ly : UIM — (0, 00).
Now let
By :={ ue€TpM :uecUJM, 0 <\ < Ly(u)/2},

and define a smooth application f : B; — M in the following way. For each u € UjM,
there is a unique parametrization ¢, : R/Z = €, (ju)) such that ¢, (0) = Ly(u)u and |c,(t)| =
Ly(u), and ¢, depends smoothly on u. We then put f(Au) = ¢,(A/Ly(u)) for A > 0, and
f(0p) = p. Since Ly(u) = Ly(v([u])) = Ly(—u), and since ¢, (t) = c—y(1 —t), the map f
factors through the quotient B, — Y = By/ ~, where v ~ w if and only if v = —w =
(L(u)/2)u for some u € Uy M.

Of course Y ~ RP", but we also claim that Y is canonically identified with X. Indeed,
f induces a smooth function F' : By — X, given by F(v) = (f(v), Tf(,)€y((v))) When v # 0,
and F(0,) = z. Moreover, since F((Lg(u)/2)u) = F(—(Lg(—u)/2)u), it factors through
B, — Y, so that we get a smooth map G : Y — X. Observe that G is injective because
f(v) = f(w) if and only if v = w or v = —w = (Lg(u)/2)u for some u € UJM — this is
because ¢, (A1) # c—y(A2) for all A, A2 € (0,1/2), and all u € Uy M. Furthermore, any point
of X not equal to x can be written as a pair (g, 7,C) for some point g contained in a geodesic
€ that passes through p, so that G is also onto. In particular, G is a homemorphism, for it
is a bijective continuous map between compact manifolds.

In fact, G is actually a diffeomorphism. This follows from the tameness of [V] and the
very construction of ¢,, which imply that, for any ug € Uy M, there is a neighborhood U of
ug such that the map U xR/Z > (u,t) — [c},(t)] € PTM is a diffeomorphism onto its image,
which lies in X. Since ¢, (t) = ¢_,(1 —t), this implies that G is a local diffeomorphism, and
hence a diffeomorphism. The picture we get is the commutative diagram drawn below.

A

F M
=
T,M D By f
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Corollary 2.15. If [V] is a tame Zoll projective structure on a manifold M, then 71 (M)
is either trivial or isomorphic to Zs. In the second case, the homotopy class of any geodesic
is the nontrivial element of w1 (M).

Proof. We may assume that M has nontrivial fundamental group. We already know that
the order of the homotopy class of a geodesic does not depend on the choice of geodesic and
of the fixed point for the homotopy, since all geodesics are freely homotopic to each other.
Moreover, this order is no greater than two, for a parametrized geodesic is homotopic to
itself with the reverse parametrization.

Now fix p in M, let 7 : M — M be the universal cover, and consider the induced
tame Zoll projective structure [7*V] by Lemma 2.13. Choose a nontrivial homotopy class
a € (M, p), represented by a loop ¢ : [0,1] — M at p, and take a lift ¢ : [0,1] — M of ¢
to M. Since o # 1, we have ¢(0) # &(1). By Lemma 2.14, there is a geodesic € C M that
passes through o = ¢(0) and ¢; = &(1). Hence its image € = 7(€), viewed as an embedded
circle in M, is then a geodesic that represents a nontrivial homotopy class 8 € m1(M, p).
Also, since 7 1(p) N € contains go and g1, the induced projection 7 : € — € is a k-sheeted
covering for some integer £ > 1. On the other hand, 8% = 1, s0 k < 2 and 7 : €€ is,
in fact, a double cover. But then a parametrization v : R/Z Z, € can be lifted to a curve
v :10,1] — M in a unique way such that 7(0) = ¢o and 5(1) = ¢1. This shows that a = f3,
and thus 71 (M, p) = {1,a}, where « is a nontrivial element of order two represented by
any geodesic of M that passes through p. O

Remark. From Lemmas 2.13 and 2.14 together with Corollary 2.15, we see that a manifold
equipped with a tame Zoll projective structure also has the same topological restrictions as
those stated in Lemma 2.2 for Zoll manifolds.

2.3 The two-dimensional case

We now turn to the study of the topological properties of Zoll structures on surfaces. In
this case, there are only two possible manifolds for which a Zoll metric or a tame Zoll
projective structure can exist: S? and RP?. All the other compact surfaces have nontrivial
fundamental groups of order greater than two, so they are ruled out by Corollary 2.15.

Let us start by unraveling the spaces present in the double fibration (2.5). The discussion
here follows the one in [LM1].

Lemma 2.16. The order of m (PTM) is 4 when M =~ S?, and is 8 when M ~ RP2?. In
particular, PT M has finite fundamental group whenever (M?,[V]) is a surface equipped with
a tame Zoll projective structure.

Proof. Viewing S? C R3, we can identify its unit bundle US? = {(p,v) € TS : Jv| = 1}
with SO(3) in the following way. Any element (p,v) € US? (where p € §* and v € U,S?)
corresponds to a unique orthogonal matrix O = O(p,v) whose first and second columns
are p and v, respectively, and whose third column is the unique unit vector w = w(p,v)

17



2 Different notions of Zoll structures

perpendicular to both p and v, and satisfying the condition det(O) = 1. This let us identify
PTS? with SO(3)/Zs, where the nontrivial element of Zs acts on SO(3) by [p v w] —
[p —v —w]. Thus |m (PTS?)| = 2|71 (SO(3))| = 4 (see [Bre]).

When M ~ RP? one only needs to notice that the double cover S? — RP? induces a
double cover SO(3) = UTS? — UTRP? = SO(3)/Zs, where the action of the nontrivial
element of Zs maps [p v w] to [—p — v w] (this is the action induced by the antipodal map).
From this we get a double cover PT'S? — PTRP?, and we conclude that | (PTRP?)| =
2|7y (PTS?)| = 8. O

Lemma 2.17. If (M,[V]) is a compact surface with a tame Zoll projective structure, then
the space N of its uparametrized geodesics is diffeomorphic to RP?.

Proof. Since M is compact and has dimension two, both PT'M and N are compact, and
have dimensions three and two, respectively. Moreover, the induced homomorphism

Vg o 7T1(]P)TM) — 7T1<N)

is onto, since each fiber of v is path connected. Thus N is a compact surface with finite
fundamental group, so it must be diffeomorphic either to S? or to RP2. On the other hand,
we know that N has a double cover N, the space of directed geodesics of M. Hence N is
diffeomorphic to RP2. O

Now our goal is to study the following problem: Given a surface M? equipped with a
tame Zoll projective structure [V], how many times two distinct geodesics intersect each
other? It is not hard to obtain rough estimates, as we will see in the following two results.

Lemma 2.18. Assume (M, [V]) is a orientable surface, equipped with a tame Zoll projective
structure. Then the number of intersections of any two distinct geodesics is even.

Proof. Since M is orientable and [V] is tame, M =~ S2. Hence a geodesic €, being a smooth
simple closed curve, divides M in two regions diffeomorphic to discs. The desired result
then follows, because any other geodesic € is simply closed, and any possible intersection
between € and €' is transversal. O

Lemma 2.19. Assume (M, [V]) is a nonorientable surface, equipped with a tame Zoll pro-
jective structure. Then any two distinct geodesics intersect at least once.

Proof. Let €; and €, be two distinct geodesics of M. Since [V], we know that the homotopy
class of €; is nontrivial and has order equal to two. In particular, the normal bundle
N€, = TM)|g,/T€ is a Mébius band and a tubular neighborhood V' ~ N€; of €; divides
M ~ RP? in two parts: the open set V, and the closed set M — V', which is diffeomorphic
to a disc. If €; and €5 did not intersect, then V N €y = () for some tubular neighborhood
V of €, so that € C M — V. But this would imply that €5 is homotopic to a constant.
However, €, is homotopically nontrivial, so that €; and €5 intersect each other at least
once. O
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If we want to obtain finer results, however, we will need to combine these observations
with a local analysis. In the Riemannian case, we have an answer for an infinitesimal version
of the question: Given two points p,q € M, and given a geodesic v : I M passing through
p and ¢, if p and ¢ are conjugate along v — i.e. if all Jacobi fields along v that vanish
at p also vanish at ¢ —, then all geodesics infinitesimally close to « pass through p and q.
We can also give a similar answer to the case in which we have only a tame Zoll projective
structure [V], but it will require some generalizations.

Given a manifold M equipped with a torsion-free connection V, a variation of geodesics
by geodesics is amap F : I x (—e,e) — M such that the curves v, : t — F(, s) are geodesics
for each s € (—¢,¢). The variational field of F' (at zero) is the vector field along vy given by

d

s=0

F(t,s),
and is called a Jacobi field. As in the Riemannian setting, a Jacobi field J along a geodesic
~v of M satisfies the Jacobi equation:

J"+R(J,~' )y =0,

where R(X,Y)Z =VxVyZ —VyVxZ -V xy)Z, for X,Y,Z € X(M). More generally, a
Jacobi field is any vector field along some geodesic of M that satisfies the above equation.
It can be shown that, if J is a Jacobi field along a geodesic v : (a,b) & M, then for
any tg € (a,b) there are a < a < tg < f < b, and a variation of geodesics by geodesics
F:la,B] x (—¢,€) = M such that F(-,0) = vl|jq,g), and (dF/ds)(-,0) = Jljq.g-

The problem with the definition of Jacobi fields given above is that it depends on the given
connection V, since we considered geodesics as parametrized curves. On the other hand, if \Y
is a torsion-free connection projectively equivalent to V, then a variation F' : I x(—¢,e) - M
of geodesics by geodesics with respect to V can be changed into a variation of geodesics by
geodesics with respect to V by taking a reparametrization of the form F (¢s(t), s). In other
words, the map (t,s) — F(¢s(t),s) is such that the curves t — F(¢ps(t),s) are geodesics
of V for all s. A careful analysis of the proof of Lemma 2.9 shows that the family of
reparametrizations ¢ can be taken by varying smoothly with respect to s, in the sense that
(t,s) — ¢s(t) is smooth. We may further assume that, for a fixed point tg € I, ¢5(to) = to
and ¢/, (tg) = 1 for all s. With this, we know that J(t) = (dF/ds)(t,0) is a Jacobi field along
v(t) = F(t,0) with respect to V, while

[F'(¢s(t), 5)]

is a Jacobi field along 4 := v o ¢q for V. By observing that

- d
J=|-—
(ds

we see that J o ¢ and J represent the same class in the normal bundle NC€ = TM|¢/TC,
where € = () is the unparametrized geodesic.

¢s>7'0¢0+a]0¢0,
s=0
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Definition 2.20. Let M be a manifold equipped with a projective structure [V], and let
€ & M be an unparametrized geodesic of M. A Jacobi class along € is a section 73 of the
normal bundle N€ = T'M|¢/T'C that locally is the class of a Jacobi field along C.

In other words, for any point p € €, and for any chosen connection V € [V] there is an
affine parametrization v : (—¢,e) — € passing through p at time zero, and a Jacobi field J
along ~ such that

3=.J modTC.

Definition 2.21. Let M be a manifold equipped with a projective structure [V], and let
€ & M be an unparametrized geodesic of M. Two points p, ¢ € € are conjugate along € if
and only if there exists some nontrivial Jacobi class along € that vanishes at both p and gq.

Let us move back to our case of interest: a surface M? equipped with a tame Zoll
projective structure. Fix a geodesic € C M and a connection V € [V], so that we can get a
local affine parametrization v : (a,b) — €. Since the pullback bundle v*(T'M|¢) is trivial,
and since V induces a section on v*(T'M|¢), there is a parallel section e € T'(v*(T'M|¢))
along 7 such that {7/, e} is a frame of v*(T'M|¢), i.e. {7'(t),e(t)} is a basis for T, )M for
each t € (a,b). This implies that the class [e] € I'(y*NC) trivializes v*NC. A Jacobi field
J along ~ can then be written as J = v’ + ye, for some z,y : (a,b) — R, and the Jacobi
equation becomes

d’z d?
Y+

= 77 + Tze R )Y

0= Vivij—i-R(J,’}/)’}/

dt dt
Writing R(e, ')y = ay' + ke, we see from the equation above that a section 3 € T'(NC) is
a Jacobi class if and only if it can be written locally as J3 = [ye] for y : (a,b) — R a solution

of )
d=y
— + ry =0, 2.6

and for every local affine parametrization v : (a,b) — €.
Observe that equation (2.6) is a linear ordinary differential equation of second order, so
its solutions form a two-dimensional vector space, and we can fix a basis y1, 42 : (a,b) - R

for this space. Now consider the Wronskian of {y1, y2}, which is the function

1| = 000 ~ Ol

Since
W' = y1ys + 1 — yiy2 — Y1
= —Y1KY2 + KY1Y2
=0,

we see that W is constant, and since (y1,v]) and (y2, ) are linearly independent (by the
fact that y; and yo form a basis of solutions of equation (2.6), W # 0.
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Thus there is a well defined map ¢ : (a,b) — RP! given by ¢(t) = [y1(t) : y2(t)], which is

an immersion, since
d (11 w d (12 w
—|l=)=—5 and | = |=——5
dt \ y2 5 dt \ y1 i

are never zero. The idea is that we interpret ¢(¢) as the set of Jacobi classes that vanish
at y(t) € €. Indeed, if ¢(t) = [A1 : A2], the Jacobi class that is locally written as t —
[(A2y1(t) — A1ya(t))e(t)] is a nontrivial Jacobi class that vanishes at y(¢). Since the set of
Jacobi classes that vanish at (¢) is a one-dimensional vector space, any such Jacobi class
is locally written as t — [A(Aay1(t) — My2(t))e(t)] near the point v(¢) for some A € R.

Consequently, two points p = 7(t1) and g = (t2) are conjugate along € if and only
if ¢(t1) = ¢(t2). Moreover, since a Jacobi class depends only on the projective structure
[V], but not on a connection V € [V], so does the map ¢. This means that the value
¢(t) depends only on the point () = p and the geodesic €, but not on the specific local
parametrization v : (a,b) < €, so that we can glue the functions ¢ : (a,b) — RP! obtained
from different choices of parametrizations v, and get a smooth map ¢ : € — RP!. This
new ¢ : € — RP! is a covering map because it is a local diffeomorphism — for it is an
immersion between curves —, and because € is compact. The order of the cover ¢ is called
the conjugacy number of the geodesic €.

We can now start to answer the question posed about the number of intersections of two
geodesics. When (M?,[V]) is a surface equipped with a tame Zoll projective structure we
have a double fibration of the form

PTM

7N

and such that ker p, Nker v, = 0. For any point p and any geodesic € passing through p, a
Jacobi class 3 along € that vanishes at p can be obtained by a variation of € by geodesics
in such a way that all geodesics of the variation contain p. But since a geodesic of M is
identified with an element of IV, a variation of geodesics by geodesics can be viewed as a
curve ¢ : (—e,e) — N, and the Jacobi class of the variation corresponds to the tangent
vector ¢(0). In other words, a point y € N is thought of as a geodesic €, < M in such a
way that the tangent vectors to y become the Jacobi classes along €.

With this identification, the set of geodesics passing through a fixed point p € M corre-
sponds to the circle £, := v(u~1(p)) in N, and the tangent space T}, of an element y € £,
may be viewed as the set of Jacobi classes along €, = p[v=(y)]. A curve c: (—¢,€) — £,
starting at y induces a variation €, of €, by geodesics, and by taking their canonical lifts
(tc(s) C PTM we obtain a curve « : s — (p, Tpéc(s)) C PT'M. Observe that o/(0) € ker i, »
where z = (p, T,€) because p(a(s)) = p for all s € (—¢,e). Moreover, ¢/(0) = v, .(a/(0))
since v(a(s)) = ¢(s) by construction.
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2 Different notions of Zoll structures

Thus v (ker ps ) = T,f, is identified with the set of all Jacobi classes along €, that
vanish at the point p = u(z). That is, the map

¢ :PTM — PTN

2.7

z > vy o (ker iy ), 27)
when restricted to a lifted geodesic € C PTM, is modeled as the map ¢ : € — RP! defined
above. Furthermore, there is a commutative diagram

PTM —2— PTN

AN

M N, (2.8)

where m : PT'’N — N is the canonical projection.

Proposition 2.22 ([LM1], Proposition 2.14). Let (M?,[V]) be a surface equipped with a
tame Zoll projective structure. Then the map ¢ : PTM — PTN defined as in (2.7) is a
covering map, and its order is the conjugacy number of any geodesic of M. In particular,
all geodesics of M have the same conjugacy number.

Proof. We first prove that ¢ is an immersion. Observe that the tangent space of a fixed
point z € PT'M can be written as T, IPT'M = ker pu, . @ ker v, , ® L for some one-dimensional
subspace L C T,PT'M, so that the commutativity of diagram (2.8) implies that the im-
age s . (ker i, @ L) is a two-dimensional subspace of T,,\PT'N. This is true because
Tao(z) (P2 (KeT pru > @ L)) = v o(ker pu, @ L) = Ty;yN. On the other hand, there is a
unique lifted geodesic €, that passes through z, and the map ¢ restricted to €, is modeled
by ¢ : €, — RP!, which is an immersion. Hence ¢x,2(v) is a nonzero vector in kerm, ..
for any 0 # v € kerv, .. Since z € PT'M was chosen arbitrarily, this proves that ¢ is
an immersion. In particular, ¢ is a local diffeomorphism. But because [V] is tame, M is
compact, so that PT'M is also compact. Thus ¢ is a covering map.

Let k be the order of the covering ¢, fix z € PTM and write o~ (p(2)) = {21, ..., 2},
where z = z;. Since all z; are mapped to the same image ¢(z) € PT'N, and since mo ¢ = v,
they are all points contained in the unique lifted geodesic C. passing through z. Restricted
to (f,z, the map ¢ is modeled by the cover map ¢ : €, — RP! — because ¢(z) is identified
with the set of Jacobi classes along €, that vanish at u(z). Hence k is precisely equal to
the order of the covering ¢, which is the conjugacy number of C,. O

Definition 2.23. Let (M?2, [V]) be a surface equipped with a tame Zoll projective structure.
The order of the covering ¢ defined in (2.7) is called the conjugacy number of (M, [V]).

We are now ready to prove the main results of this section.
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2.3 The two-dimensional case

Theorem 2.24 (|[LM1], Theorem 2.15). If [V] is a tame Zoll projective structure on a
surface M? diffeomorphic to S?, then the conjugacy number of (M,[V]) is 2, and the cover
p : PTTM — PTN can be lifted to a diffeomorphism ¢ : PI'M — STN in such a way
that v : PTM — N is the composition of ¢ with the canonical projection STN — N.
Furthermore, the real line bundle ker p, — PT M 1is trivial.

Proof. Lemma 2.16 tells us that the covering ¢ has order

m(PTN)| _ [m(PTRP?)| _ 8 _,
T (PTM)|  |m(PTS?)| 4 7

i.e. o is a double cover. This proves that (M, [V]) has conjugacy number equal to two.

Remember that, viewing S? C R3, the unit bundle US = {(p,u) € TS? : |u| = 1} is
identified with ST'S?, and that SO(3) acts freely and transitively on US? by O - (p,u) =
(Op,Ou) — here p and u are orthonormal vectors on R3. This action preserves the line
bundle ker fi, — US? induced by the canonical projection fi : US? — S?, in the sense that
O.w € ker [i, (0p,0u) Whenever w € ker fi, ). Indeed, any curve ¢t — (p,u(t)) in i (p)
is mapped to a curve t — (Op, Ou(t)) in =1 (Op). Hence, if we start with some element
(po,up) € US? and take a nonzero vector wg € ker [ (po,ug)> We obtain a nonvanishing
section W € I'(ker ji.) defined by W(op, 0ug) = O«wo. This proves that the line bundle
ker ji, — US? is trivial.

Now PT'S? = US?/(0), where o acts on US? by o(p,u) = (p, —u), and the action of SO(3)
on US? commutes with o, in the sense that O(c(p,u)) = (Op, —Ou) = o(O(p,u)). Hence the
action of SO(3) on US? induces an action on PTS?. Moreover, given (p,u) = (Opg, Oug) €
US?, there is a unique element T € SO(3) such that (Tp,Tv) = (p, —v) = o(p,v) for all
(p,v) € i~ 1(p). Writing wg = ¢(0) for some curve c: t — (po,u(t)) € i~ *(po), we obtain

s (payWip.u) = 0404 (0)
= (U © O)*CI(O)

d
= di|_ n=0uw)

d (TOpo, TOu(t))

ity

= (T0).c (0)

Thus W induces a nonvanishing section V' € T'(ker pi4), i.e. the line bundle ker i, — PTS?
is trivial.

Finally, the double cover ¢ : PTTM — PTN can be lifted via the projection STN — PT'N
to a diffeomorphism ¢ : PT'M — ST'N by taking a nonvanishing section V' € I'(ker p,), and
defining ¢(z) = Rtv, (V) = {Mvs (V) : A > 0}. Indeed, the fact that the composition
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2 Different notions of Zoll structures

PTM % STN — PTN equals ¢ implies that ¢ is a local diffeomorphism, so that it is a
covering map since PTM is compact. Furthermore, the fundamental groups of PT' M =
PTS? and STN ~ STRP? both have the same order, so that ¢ is actually a diffeomorphism.

O

Theorem 2.25 ([LM1], Theorem 2.17). If [V] is a tame Zoll projective structure on a
surface M? diffeomorphic to RP?, then the conjugacy number of (M,[V]) is 1, and the
cover ¢ : PTM — PTN 1is a diffeomorphism such that v : PI'M — N is the composition
of v with the canonical projection m : PI'N — N, and the line bundle ker p, — PTM is
isomorphically mapped to the ‘tautological’ real line bundle L — PTN.

Proof. Lemma 2.16 tells us that the covering ¢ has order

|m(PTN)|  |m (PTRP?)|
T (PTM)| |7 (PTRP2)|

i.e. @ is a diffeomorphism. The ‘tautological’ line bundle L — PT'N is the bundle whose
points can be represented as a pair (y,v), where y € PT'N, and v € y. Similarly, we can
represent an element of the bundle ker p, — PT'M as a pair (z,u), where z € PT'M, and
u € ker p, .. With these identifications, we see that the map ¢ induces a vector bundle
isomorphism ¢ : ker i, — L given by @(z,u) = (v« »(ker fis 2), Vs 2 (u)) — and this implies
that ¢*L = ker u,, as desired. O

Corollary 2.26. If [V] is a tame Zoll projective structure on RP?, then any two distinct
geodesics of (RIP2,[V]) intersect at exactly one point.

Proof. Fix a point p € RP?, and let X be defined as in Lemma 2.14. In other words, X is
obtained blowing down the manifold X = v~ 1[v(4~(p))] at p~(p). The remark following
Lemma 2.14 shows that X is diffeomorphic to RP?, and Theorem 2.25 tells us that, for
any geodesic € containing p, a nonconstant Jacobi class along € that is zero at p cannot
vanish at any other point. This implies that the map p : X — RP? is an immersion by
our construction of X and p. In particular, p is a covering map, and since p~'(p) = {z},
it is actually a diffeomorphism. But this is equivalent to saying that through any point
q # p of RP? passes a unique geodesic containing p. Since p was arbitrary, this finishes the
proof. O

In every part of this section, the assumption of tameness was always made. This does
not seem to cause much trouble, since, as argued in Lemma 2.10, the projective class of
the Levi-Civita connection of a Zoll metric is always a tame Zoll projective structure. In
this sense, we are not losing much if we assume the extra tameness condition. On the
other hand, we do loose something making this choice. As previously observed, lens spaces
are examples of manifolds whose canonical metrics are not Zoll in general, but have Zoll
projective structures. As a consequence of Lemma 2.12, their Zoll projective structures
are not tame, at least for most of them. This raises the question if it is possible to find
examples of non-tame Zoll projective structures in dimension two. The answer turns out to
be negative, and so the tameness assumption here considered is innocuous.
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2.3 The two-dimensional case

Theorem 2.27 ([LM1], Theorem 2.16). Any Zoll projective structure on a compact surface
s tame.

We will not prove this theorem here. The proof for the case of a compact orientable
manifold uses results from the theory of foliations, specially a result in [Eps]. The nonori-
entable case, however, is proved with the results on the conjugacy number here studied.
The complete proof can be found in [LM1], Proposition 2.6 and Theorem 2.16.

Throughout this chapter, we have encountered different notions of Zoll structures. Zoll
manifolds are special types of Riemannian manifolds, while Zoll projective structures do
not depend on a metric. In the first two sections, we showed that many basic topological
properties are the same in both cases, and the last section proved some consequences for
the two-dimensional case.

At first, it might be unreasonable to consider Zoll projective structures instead of Zoll
metrics. What would be the need for a generalization for the sake of generalization? How-
ever, our argument is that to highlight this distinction makes things more transparent.

In the next chapter, we construct nontrivial examples of Zoll metrics on the sphere, and
classify all of the Zoll spheres of revolution. This is done exploring heavily the properties
of the metric itself, specially its representation on certain cylindrical coordinates. On the
other hand, Zoll projective structures will play a prominent role in the proof of Green’s
theorem presented in Chapter 4. The argument will rely on a kind of point-line duality,
and almost nothing specific to a Riemannian metric will be used.
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3 Examples of Zoll Manifolds

In this chapter, we construct examples of Zoll surfaces which were first discovered by [Zoll]
at the beginning of last century. The presentation here follows that done in Section 4.B of
[Bes].

As shown in the previous chapter (see Lemma 2.2), the fundamental group of a Zoll
surface (M, g) is either 1 or Zs, hence it must be diffeomorphic to S? or to RP? by the
classification of compact surfaces. Furthermore, we know that any Zoll metric on RP?
determines a Zoll metric on S?, so there is no loss if we assume that M ~ S? when studying
examples of Zoll metrics.

One further simplification we impose is that the metric g on S? is a metric of revolution.
This is to say there is an effective action of S! on (S?,g) by isometries. The reason we
consider this type of metric is because its geodesic flow is integrable. Moreover, it already has
a family of simply closed geodesics: the ones passing through the poles (see the discussion
below), called meridians. In fact, a rotationally symmetric sphere (S?, g) is a Z}-manifold
for at least two points p € S?, and some [ > 0 (see Definition 2.3). Our goal is to determine
when g is Zoll.

Let us explain this in more detail. It is a well known fact from topology (see [Bre], ch.
IV, Corollary 6.14) that any continuous vector field on the sphere vanishes at some point.
As a consequence, if we denote by # € S' — Fp € Isom(S?, g) the group action, and let
X = dFy/df be its infinitesimal isometry, then X, = 0 for at least one p € S?. Any such
point necessarily is a fixed point for all isometries Fy. From this we obtain an S'-action on
(T,S%, gp) by isometries, given by 6 — DFy(p), and all of them are orientation preserving,
since DFy(p) = Id. (Here we think of 6 as a number in [0,27).) If DFy(p)Y, =Y, for
some nonzero vector Y, € T,,S?, then DFy(p) would be an orientation preserving isometry
of T,S? ~ R? that fixes the line span{Y,} — hence DFy(p) = Id. But this implies that
Fy =1d, and so 6 = 0, for the action is effective by assumption. In particular, § — DFy(p)
is a Lie group isomorphism between S' and SO(2), and p is an isolated singularity of X of
index 1.

We are then in position to use a theorem by Hopf (see [Bre], ch. VI, Theorem 12.11 and
Proposition 12.12) which asserts that the Euler characteristic of a compact manifold can be
written as the sum of the indices at the zeros of any vector field with isolated singularities.
Since x(S?) = 2, we conclude that X vanishes at precisely two distinct points of S?, called
the north and south poles of g, and denoted by N and S, respectively.

Now fix a normalized geodesic segment 7o : [0, L] — S? from N to S (i.e. dist(N,S) = L),
and denote by v := Fj 0 7g, for § € S'. Thanks to the effectiveness of the action, we know
that all points p € M can be written uniquely as p = 4 (t) for some ¢t € [0, L] and 6 € [0, 27),
except for p = N or S. In other words, after identifying 6 with a number in the interval
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3 Examples of Zoll Manifolds

[0,27), we get cylindrical coordinates (¢,6) on U = M \ {N,S}. We will also consider the
open sets with coordinates

Un ={N}U{(t,0) e U :t < L/2}
(t,0) —(x =tcosb,y =tsinb),
N —(0,0),

and

Us :={S}u{(t,0) e U :t>LJ2}
(t,0) —(x = (L —t)cosb,y = (L —t)sinbh),
S +—(0,0).

On the one hand, 7y is a normalized segment from N to S, and 8 + 7y is a variation of
geodesics by geodesics all of them passing through N, so 9/0t := ~, and 0/00 = d~y/db
are orthogonal vector fields on U, and [0/0t| = 1. (This is a standard result about Jacobi
fields along geodesics, and can be found in [doC], Chapter V.) Hence the metric g can be
written as

g = dt* + p*(t)do* (3.1)

on U, for some smooth function p : (0,L) — (0,00). This is a special case of the general
form of rotationally symmetric metrics (see [Pe] Chapters 1 and 4 for more examples).

On the other hand, given a smooth function p : (0, L) — (0, 00), it is natural to ask when
a metric on U given by formula (3.1) extends to a metric on the whole sphere S2.

Lemma 3.1. Suppose p : (0,L) — (0,00) is a smooth function, and let g be the metric on
U =S8%\{N,S} given by equation (3.1). Then g extends to a Riemannian metric on S* if
and only if p extends to a smooth function p : [0, L] — [0,00) such that p(0) = p(L) = 0,
p(0) =1, p/(L) = —1, and p¥)(0) = p®*)(L) = 0 for all k > 1.

Proof. In Uy N U, the equations

x=tcosfh, y=tsinb

imply
and

dx = cosOdt — tsin0df, dy = sinOdt + tcosOdb.

In particular, we have

da? + dy* = dt* + t*db? (3.2)

and
tdt = xdx + ydy. (3.3)
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From (3.2) and (3.3), we obtain

d d
dt = %ﬂ”’ (3.4)
and ) )
do? = 2 {daﬂ +dy® — 2 (x2dx2 + zydzr @ dy + rydy ® dx + yzdy2>} : (3.5)
We then apply equations (3.2), (3.4), and (3.5) in the formula (3.1), and obtain
dt*+p*(t)do* = m( da® +zydr@dy +zydy@dz+y>d 2)4—@(6[ 2+dy®). (3.6)
p i xdr” +zrydrRdy+xydyRdr+y~dy o (de”+dy”). (3.

Thus the metric g given by (3.1) on U extends to a metric on U U Uy = S?\ {S} if and
only if the functions
2 — p?(t 2(t
2 )
4 12
extend smoothly to 0. We have to be careful, however, because t = /22 + y2 is not smooth
at the origin as a function of x and y. First observe that for

p*(t)
t2

to extend smoothly to 0, it is necessary that p(t) extends smoothly to 0, with p(0) = 0.

Similarly, for the function

?—p*t) 1 p?

o T2 s
to be smooth a 0, it is necessary for p(t) to be smooth at 0, and p’(0) = 1. Indeed, we write
p(t) = S8 ait’ + O(t*1) for some k > 1, and compute

. 2
22t - (Zle a;t" + O(tk+1))

4 4 (3.7)
(1 — a?)t? — 2a1a9t3 kZH - e ‘
= t4 - bitz_ —|— O(t N ),
i=4

where b; = Zzzl a;a;—;. From (3.7), observe that the limit
2 _ 2
i =)
t—0+ 4

exists if and only if a; = p/(0) = 1 and ag = p”(0) = 0 (it is not possible to have a; = —1,
because p(t) > 0 for t € (0, L)). Applying this to the function p?(t)/t?, we obtain the Taylor
expansion:

pQ(t) k+1 ‘
5 = D bt 4+ O(t*). (3.8)
=2
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3 Examples of Zoll Manifolds

Since t is not smooth at 0, but ¢? is, as functions of x and y, we need that b; = 0 for
every ¢ odd in order to (3.8) to be k-times differentiable on x and y at the origin. Using
induction on the coefficients, we conclude that the smoothness of p?(t)/t? is equivalent to
ag; = p?)(0) = 0 for all i > 1.

This shows that the conditions stated in the Lemma are necessary. The sufficiency comes
from the fact that both functions p?(t)/t? and (t* — p?(t))/t* have expansions of the form

k+1

Z by tZz t2k)7

and
2 k+1

Z b t21 t2k_2)

for k > 2, and both are smooth in the variables x and y at the origin.
The computations for the case in which g extends to S are analogous. O

From now on, we will assume that g is given by formula (3.1) for some smooth function p
that satisfies the conditions of Lemma 3.1. Our goal is to study the behavior of the geodesics
of g. For this, recall that a geodesic 7, written in coordinates as v(s) = (¢(s),6(s)) on U, is
a solution of the system of equations

d>t dt dt do do
ds2 T <ds> Ll + 205 @5 Lo+ <d_) Tog =0,
420 | (dt dt df do
S+ (% )Fft+2££l“f9+( )Fﬁe 0,

where I‘w, i,7,k € {t,0}, are the Christoffel symbols of the Levi-Civita connection of g.
These symbols are given by the formula

1
pfj — 59““ (95911 + Digji — D1gij),

where g;; = g(0;,9;), and [g¥] = [g;;] 7. Hence, after a few computations, we have
/
F'(t) /
rY) = r t)p(t
to p(t)’ p()p( )7

and all the other symbols are zero. This means that the system of equations satisfied by
the geodesics of M on U is:
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Lemma 3.2 (Clairaut’s First Integral). Suppose we have the parametrization {Un,Ug, U}
on S? as described above, together with cylindrical coordinates (t,0) on U. Let g be a
Riemannian metric of revolution on S?, written as g = dt*> + p?(t)d6? on U, where p :
(0, L) — (0,00) is a smooth function satisfying the hypotheses of Lemma 3.1. Then

(i) the segments vy (called meridians) extend to simply closed geodesics passing through
N and S, and they are the only geodesics that pass through one of these points — i.e.
any other geodesic must be entirely contained in U;

(i) if a geodesic y(s) = (t(s),0(s)) is not a meridian, then there are numbers 0 < t; <
to < L such that p(t1) = p(t2) and t(s) € [t1,t2] for all values of s.

Proof. Statement (i) follows from the effectiveness of the S' action, together with the local
uniqueness of geodesics: these guarantee that every normalized geodesic passing through N
or S is a meridian 7y. Concatenating vy and g, (with the reverse parametrization), we
get a simply closed geodesic through N and S of length 2L.

For the second statement, consider a normalized geodesic y(s) = (¢(s),6(s)) which is not
a meridian. Multiply both sides of the second equation of (2.9) to get

2
0= 053 + 200 G = 1 (FOF),

dsds  ds ds
7.€. 20
2
1) —
p()ds c

along  for some constant c. Also, since « is a normalized geodesic, we have

R = (%) +ro(2) -1

We then multiply both sides of the equation by p?(t), and obtain the inequality

A%
@ = (5) <r0;
hence |c| < p(t). Since v is not a meridian, df/ds # 0 for all s. (If not, then +/(s) =
'yé(s) (t(s)) for some s € R, and this would imply v = () by the uniqueness of geodesics.)
Thus df/ds is either strictly positive or strictly negative, and |c| > 0. Because p is continuous
and p(0) = p(L) = 0, there must be 0 < ¢; < to < L such that p(t;) = p(t2) = ||, and

p(t) < |e| whenever ¢ < t; or t > to. Since p(t(s)) > |c| for all s, we conclude that
t(S) € [t1,t2]. O

Looking at the system of equations (3.9), we see that, if v(s) = (¢(s),8(s)) is a geodesic
that passes through a point v(sg) = (to,6p) with p'(tg) = 0 and #'(s¢) = 0, then (s) = tg
for all s, and 7 is a closed geodesic of length 2mp(ty). Indeed, in this case the curve

7e) = (to’ Yot Sp&os)())
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is the (unique) solution of (2.9) with initial condition

Y(s0) = (to,60) and v'(s0) = (0,1/p(t0)),

and is parametrized by arc length. Inversely, if v(so) = (to,6o), but p'(to) # 0, then the
parallel ¢ = #( is not a geodesic.

Now, suppose g € Z(S?,27). Then L = 7, and p(to) = 1 for any point ¢y € [0, 7] satisfying
p'(to) = 0 — because the parallel t = ¢ is a closed geodesic of length 27p(tp) = 27. Since
the point ¢y at which p attains its maximum is such a point, we conclude that p maps (0, 7)
onto (0,1]. Furthermore, any Jacobi field J along a geodesic 7 such that J(0) = 0 is a
(27-)periodic solution of the equation

o p"(t(v)) J

o) =Y

this is simply the fact that the Gaussian curvature of a rotationally symmetric metric on
the sphere does not depend on 6, and is given by

(see [Pe], ch. 4). When ~ is the parallel ¢t = t¢, for 9 € (0,7) with p'(¢9) = 0, the Jacobi
equation assumes the form:
J" = p(t0)J =0,

which admits periodic solutions if and only if p”(¢y) < 0. Thus any critical point ¢y of p
must be a local maximum, and so p has only one such point.

Lemma 3.3. Let g be a Zor-metric of revolution on S? equipped with the parametrization
{U,Un,Us}, and the coordinates (t,0) on U for which g is written as g = dt*> + p?(t)d6?.
Then, by setting p(t) = sinr, it is possible to obtain new coordinates (r,8) on U in such a
way that the metric g is written as

g = [f(cos)]?dr? + sin® rdf?, (3.10)

for some smooth function f : (—1,1) — (0, 00) that extends smoothly to [—1,1], and satisfies
F(1)=1= f(-1).

Remark. Observe that r = ¢ when g = can (since the function p(¢) = sint), and g =
dr? 4 sin?rdf?, so f = 1. The passage from (¢,60) to (r,0) is justified, in a sense, by the
desire to force the geodesic parallel t = ¢y (o being the only critical point of p) to be placed
on the equator r = /2.

Proof. Our characterization of the function p : [0,7] — [0,1] is quite similar to the char-
acterization of sin on [0, 7]. Indeed, p(0) = 0 = p(7), p/(0) = 1 = —p/(7), and p has only
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one critical point: its maximum, say tg, for which the critical value is 1. Hence p is strictly
increasing between 0 and tg, and strictly decreasing between ty and 7. Thus the function

arcsin p(t), for ¢ € (0, to],
r =
7 — arcsin p(t), for t € [to, ).
is smooth, and (r, ) are the desired coordinates on U.

What remains to be proved is the existence of a smooth function f : (—1,1) — (0, c0) for
which ¢ may be written as (3.10). For this, observe that the equality p(t) = sinr implies

o (t)dt = cosrdr;

hence what we seek is a function n(z) satisfying n(cosr) = t. Indeed, such 7 allows the
definition of f as

so that g can be written as (3.10) on U. Define

) = 1—p2(t), fort e (0,to],
| =1 = p2(t), fort e [to, ),

and 1 := ¢, Since
_ PP ()

V1-p2(t)’

\;(f)_—[;%, for t € (to, ),

and since p/(t) > 0 for t < to, p'(t) < 0 for t > tg, and p(t) < 1 for t # ty, we see that £ is a
strictly decreasing smooth function with non-vanishing derivative for all ¢ # t3. Moreover,
¢ is also smooth at ¢y, since p'(tg) = 0, and p”(t9) < 0 — for the first derivative, write

for t € (0,1to),

¢'t) =

p(0) = 1+ 3" (10)(t — 0)* + O((¢ — t0)")

to see that

£(1)? = (o)t — to)® + O((t — t0)*) ' (to):

7 (to)(t — t0)2 + O((t — 10)%) 110 ’
hence ¢ is differentiable at ¢ty and &'(tg) = —v/—p"(to). What this shows is that £ maps
(0,7) diffeomorphically on (—1,1) reversing the orientation; thus its inverse n = £71 :
(—1,1) — (0,7) exists, is smooth, and satisfies n(cosr) = ¢t. Indeed, £ was chosen so that
p%(t) + &2(t) = 1, and since sinr = p(t), we see that £(t) = cosr.
Finally, the function f defined as

f(.,L.) _ {p,(;j(m)), fOI‘ X 7é 07
1, for x = 0,
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is smooth — including at 0, because p'(n(x)) = x + O(z?); maps (—1,1) to (0,00), because
n((—=1,0]) = [to, ), where p’ is nonpositive, and 7([0,1)) = (0, to], where p’ is nonnegative;
and extends smoothly to [—1,1] by f(—1) = f(1) = 1, because £ extends to a reverse
orientation diffeomorphism from [0, 7| to [—1, 1], sending ¢¢ to 0 — this is a consequence of
the properties of p stated in Lemma 3.1. Actually, all the necessary and sufficient conditions
on p stated in Lemma 3.1, for a metric given by (3.1) on U to extend to S?, are replaced
by the condition of f(—1) = f(1) = 1. The condition of p(0) = p(7w) = 0 is replaced by
the possibility of extending & (and so n) to [0,7]. The condition on the first derivatives
p'(0) = 1 and p/(w) = —1 is replaced by f(—1) = f(1) = 1, because f(—1) = —1/p'(n),
f(1) = 1/p/(0). The restriction on the even derivatives p(*)(0) = p(¥) (1) = 0 is also
replaced by f(—1) = f(1) = 1 — this can be seen by applying the chain rule on the identity

1—p(t)

PO = i)

We are now able to state and prove the two main results of this section.

Theorem 3.4 (Darboux). Let N and S be two distinct points of S?, let U := S?>\{N, S}, and
consider cylindrical coordinates (r,0) : U — (0,7)x[0,27). Let g be a Riemannian metric on
S2, and suppose g is written as in (3.10) on U for some smooth function f : [—1,1] — (0, 00)
such that f(—=1) = f(1) = f(0) = 1. A necessary and sufficient condition for all geodesics
of (S2,g) to be closed is that, for every o € (0,7/2), one has

/w—a f(cosr)sina dr — Bw, (3.11)

sinry/sin? r — sin? o q

for some co-prime integers p and q. In this case, apart from the equator — which is simply
closed and of length 2w —, every geodesic vy in U has length 2q - dist(N, S), turns p times,
and consists of 2q geodesic segments between two consecutive points of contact with the
parallels r =« and r =7 — a.

Proof. Similarly to the proof of Lemma 3.2, we study the geodesic equations. For this,
observe that the Christoffel’s symbols of the for the metric g on U are
f'(cosr)sinr sinr cosr P
I =-———— = ———=, L,g=cotr
" flcosr)y = % [f(cosr)2” " ’
and all the others are zero. Hence a geodesic v(s) = (r(s),0(s)) in U is a solution of the
system of equations

d?r f’(cosr)sin?‘(dr>2 _ sinrcosr(df@)2 —0

ds? f(cosr) ds f?(cosr) \ds

d?6 dodr _
@—FQCOtT%% —0
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Multiplying both sides of the second equation by sin®r, we see that

d . o db _
dg(sm Tds> =0.

dé
in®r— =c. 12
sin® 7o~ =c¢ (3.12)

for some constant ¢ € R. (This is, of course, the same equation already known, since
p?(t) = sin®r when we changed the variables.) Taking vy to be a normalized geodesic, we

also have the equation
dr\” A
f(COST)2<d.:> + sin? <ds> =1,

which, after multiplying both sides by sin?r, gives us

d 2
[f(cosr) sinr<dr>] +¢? = sin®r.
s

In particular, we see that |c¢| < sinr < 1, so that we can write |c¢| = sin « for some (unique)
a € (0,7/2] and r(s) € [a,m — «] for all s. Also, we get

d
f(cosr)sin r = erVsin?r — sin? (3.13)

ds

This shows that

for €, = £1. Thus, equations (3.12) and (3.13) tell us that, when the geodesic v is not the
parallel s +— (7/2,0y + s), it is a solution of the system

g e sin o
ds ~ “Ygin2
ST 6 f(cosT)sin«
i - = €&y ) (314)
ds f(cosr)sinr dr sinrv/sin? r — sin? o

. — Er
dT' \/Sll’l2 'I"—Sll'l2 (67

where both e,,69 € {—1,1}. The number g4 is the sign of df/ds; whereas ¢, is 1 if v is
moving from the parallel r = o towards r = 7 —«, and is —1 if v is moving from the parallel
r=m — « towards r = o — i.e. &, is the sign of dr/ds.

The angle between two consecutive points of contact with the parallelsr = cand r = 71—«

is
R mT—Q de T—Q :
O(a) = / —dr = 5987«/ J(cosr)sina dr.

dr sin r4/sin? 2

r —sin“ «

The geodesic is then closed if and only if f(«) is a rational multiple of 7, say

oy P
eregb(a) = @™
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for p(a), () co-prime integers. Furthermore, it closes at the angle 2p(«)m and, since 7 is
parametrized by arc length, has length equal to 2¢(«)e,l(«), where €,l(«) is the interval of
time required for v to move from the parallel r = a tor =7 — a:

erl(a) = 57"/ ﬁdr _ f(cosr)sinr dr

dr a Vsin?r — sin? «

Given a € (0,7/2), the normalized geodesic v,(s) = (Ta(s),0a(s)) passing through («,0)
at time zero with (drq/ds)(0) = 0 and (df/ds) > 0 is the unique geodesic — modulo the
St action, and reversing the parametrization — such that r, € [a, 7 — o] and touches the
extreme parallels r = a and r = 7 — . Thus, the application o € (0,7/2) — £,£40(cr) € R
is well defined, and is continuous, because of the smoothness of the exponential map. In
particular, if all geodesics are closed, then EgEré : (0,7/2) — R is a continuous map with
range in 7Q. Hence § must be constant, and p(a) = p, q(a) = q for all a.

The function a € (0,7/2) — &, l(a) is also well defined, continuous, and tends to
dist(N, S) when @ — 0 — since 74, restricted to [0,!(«)], is approaching a meridian in
this case. Using the continuity of &, («), we can construct a (free) homotopy between any
two geodesics 7o, and 7., via geodesics of the form +,, parametrized in such a way that
they all close at time 1. Since every geodesic is a critical point for the energy functional,
the homotopy gives a path between two critical points via critical points. Hence the energy
must be constant, and also the length; this shows that &,l(«) must be constant equal to
dist(V, 5).

The only remaining case is when ~ is the equator, but then ~ is simply closed and has
length

2
£(0)dd =27 f(0) = 2.
0

O

Characterization of Zoll surfaces of revolution. A rotationally symmetric metric g
on S? is a Zax-metric if and only if, on the cylindrical coordinate chart (U;r,0), g is written
as

g = [1 + h(cosr))?dr? + sin® rdf?, (3.15)

where h : [—1,1] — (—=1,1) is a smooth odd function mapping 1 to 0.

Proof. First, observe that, since (S?, can) is a Za.-surface of revolution, Theorem 3.4 tells

us that
T—Q :
sin o
/ dr=m
a sinry/sin? r — sin? a

for every real number a € (0,7/2). Theorem 3.4 and Lemma 3.3 also tell us that a metric
of revolution g is Zy; only if g can be written as in (3.10) for some smooth function
f:[-1,1] — (0, 00) satisfying the condition (3.11), and such that f(—1) = f(0) = f(1) = 1.
Define

h(z) = f(x) — 1.
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Our claim is that

T—Q h 3
/ (cosrsine o va e (0,7/2) (3.16)

sinry/sin? r — sin? o

if and only if h is odd. For this, define h¢(x) := (h(z) + h(—2))/2,

WP

H(a):= i (cos) dr, a € (0,7/2],

a sinry/sin?r — sin? «

/ h(COS 7’) S « dr =2 Sln(a)H(a)’

and notice that

sinry/sin? r — sin? a

because

mT—Q h
CosT) h(cosr
/ ( / ) dr
a sinry/sin? r — sin® o o sinry/sin?r — sin? «

n /” @ h(cosr) dr
z  sinr

sin?r — sin?

h(cosr
/ ) > dr
a sinry/sin?2r — sin? a

7T
2 h(—cosr)
+ dr
a sinry/sin?r — sin? «

B 2 2h(cosT)
a sinry/sin?r —sina
=2H(«).

In particular, h is odd if and only if h® = 0, which implies H = 0, and so (3.16) is satisfied.
For the converse, consider the function

1(B) == ;S%)d B e (0,7/2].

Observe that, for each g € (0,7/2], the function
1
V/(sin? 7 — sin® ) (sin? o — sin® )

is integrable on {(r, @) : r € [3,7/2],a € [B,7/2],« < r}, and Fubini’s theorem tells us that
I(ﬁ):/g (cosr </ sin v - cos da)dr
sinr \/ (sin 7 — sin? o) (sin® a — sin® 3)
o

/2 he(cosr) </ )
3 sinr o l1+=z

(r,a) —

(3.17)
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where we used the change of variables

sin? o — sin? 3
2 2

xTr = "
r — s

sin
If H =0, then I = 0, which implies, by formula (3.17), h® = 0 — equivalently, A is odd.

Also, since f maps [—1,1] to (0,00), the assumption of h = f — 1 being odd implies that
h maps [—1,1] to (—1,1). Otherwise, there would be some z € [—1, 1] with h(xz) > 1, and
so f(—x) =1 — h(z) <0, which is absurd.

Thus, by Theorem 3.4, we conclude that, if a metric g is given by formula (3.15) for some
smooth odd function h : [—1,1] — (—1,1) such that h(1) = 0, then its geodesics are all
simply closed, and — except possibly for the meridians — of length 27. Since the length
of a meridian is

/”(1 + h(cosr))dr =
0

by the oddness of h, we conclude that g is a Zoll metric. On the other hand, if g € Z(S?, 27),
then the argument above together with Lemma 3.3 and Theorem 3.4 imply that g may be
written as in formula (3.15) for some smooth odd function h : [-1,1] — (—1,1) such that
h(1) = 0. O

Remark. Although we considered only the case of Zoll spheres of revolution in dimension
two, it is interesting to mention that the construction done here can be extended to spheres
of arbitrary dimension. This was done by Weinstein, and is exposed in [Bes], Chapter 4,
Section 4.E. Guillemin also proved that there are many other interesting examples on the
sphere. We state his result below.

Theorem 3.5 (Guillemin — see [Gui]). For every odd function p on S?, there exists a
smooth one-parameter family of C*°-functions p(t) on the sphere such that p(0) =0, p'(0) =
p and €2’ - can is a Zoll metric for small t.
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4 Point-line duality and Green’s Theorem

Our main goal for this chapter is to prove the following result:

Theorem 4.1 (Green’s Theorem). If g is a Zoll metric on the real projective plane RP?,
then g is isometric to a constant multiple of the canonical metric.

When Green first proved this theorem (see [Gre] and also Chapter 5 of [Bes]), the ideas
and methods used were entirely in a Riemannian geometric setting. However, the argument
we will present here, due to LeBrun and Mason [LM1], goes on a different way: it explores
a duality between points and lines that arises from Corollary 2.26. Let g be a Zoll metric
on M ~ RP?, and denote by V = VY its Levi-Civita connection. We now know that the
projective connection [V] is a (tame) Zoll projective structure (see Lemma 2.10), and that
such structure on RP? implies that any two geodesics of M intersect at exactly one point
(see Corollary 2.26). In particular, a point p € M determines a circle £, = v[p~!(p)] in
the manifold N of unparametrized geodesics of M, and any two distinct ¢, and ¢, C N
intersect at precisely one point — the point of N representing the unique geodesic that
passes through both p and ¢. In this sense, M becomes the moduli space of the curves
{gp}pEM in N.

One could argue, however, that such a general viewpoint does not give us much in-
formation. Indeed, how could we possibly hope to distinguish the curves of the family
{¢, : p € M}? The point is that this situation is analogous to the projective duality
known in algebraic geometry between the projective plane KP? and the dual projective
plane KP** = P(K3*) for any field K (see [Ful]). Even more, what we will argue is that
the data we have is not only ‘analogous to’, but actually ‘is’ the projective duality, in some
sense. To make our argument more transparent, let us work with the following definition.

Definition 4.2. Let K be either R or C, and let M be a (complex, when K = C) surface.
A point-line dual structure on M is a collection € of subsets of M satisfying the following
properties:

(i) the elements of € are non-singular embedded (complex, when K = C) curves of M,
all of them diffeomorphic (biholomorphic, when K = C) to KP!, and are called the
lines of M;

(ii) for every point p € M, and for every K-subspace ¢ C T,M of K-dimension one there
is a unique line € = €, ») € ¢ passing through p with T,,€ = ¢;

(iii) any two distinct lines €; and €5 intersect at exactly one point; and
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4 Point-line duality and Green’s Theorem

(iv) the foliation F of the lifted lines of M on PxTM = (T'M — 0;7)/K* is locally trivial,
in the sense that every lifted line € C PTM has a neighborhood diffeomorphic (bi-
holomorphic, when K = C) to KP! x K? in such a way that the lifted lines contained
in this neighborhood correspond to the projective lines KP! x {pt}.

Of course the main examples of these structures are RP? and CP? with their canonical
projective lines. What we proved in Section 2.3 is that any (tame) Zoll projective structure
on a manifold M ~ RP? induces a point-line dual structure on M.

When M is equipped with a point-line dual structure €, then % is canonically identified
with the leaf space N = PxT'M/F, which is a connected K-surface called the dual of M,
and the canonical projection v : PxTM — N is a KP!-fiber bundle. For each point p € M,
there is a corresponding dual line ¢, = v[p~1(p)] in N — the set of lines of M passing
through p —, and property (iii) tells us that two distinct points p, g € M determine distinct
dual lines ¢, and ¢,. Using properties (i), (ii) and (iv), we can prove, with almost the
same argument as the one given in Lemma 2.14, that any two distinct points p,q € M
are contained in some line €, which is unique by property (iii). In particular, M must be
compact, and any two dual lines ¢, and ¢, intersect at a unique point of N. When M is a
real surface, arguments similar to the proofs of the first lemmas of Section 3.1 tell us that
M must be either S? or RP?, and that N ~ RP2. In fact, M cannot be S?, since property
(iii) cannot be satisfied in this case; hence M ~ RP2.

When % comes from a Zoll projective structure on a compact real surface M, we will
show that € := {{, : p € M} is a point-line dual structure on N, and that the dual of
(N,€¢*) is (M,%).

The most important observation, however, is that this kind of structure is unique when
M ~ CP?, as the following lemma states.

Lemma 4.3. Let S be a simply connected compact complex surface, equipped with a fixed
class o € Hy(S,7Z) such that oo = 1. Suppose also that there is a family € of nonsingular
embedded complex curves of genus 0 in S, all of them with homology class «, and such
that, for every point p € S, there is at least one € € € passing through p. Then S is
biholomorphic to CP?, in such a way that all of the given curves of the family € become
projective lines. Furthermore, if there is an embedded real surface S — S, together with an
anti-holomorphic involution o : & — S with fized set S, and such that all the curves of €
are invariant under o, then the biholomorphism F : S — CP? can be chosen in a way that
o becomes the standard complex conjugation [zg : z1 : 23] — [Zo : Z1 : Zo|, S is identified
with RP?2 = {[z0 : 21 : 23] € CP? : 2, 21,22 € R}, and the complex curves € € € with the
complex projective lines CP' C CP? which are invariant under complex conjugation.

We will not prove this lemma (see Lemma 3.3 and Theorem 3.4 of [LM1]), but the point
is that the result makes us ask if point-line dual structures on RP? are also unique. As we
will see, the answer is affirmative when the point-line dual structure comes from a tame
Zoll projective structure.

The proof we give will be done in three parts. First, we construct a four-dimensional
manifold NV containing N. Then we will show that there is a complex structure on N, and
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that all hypotheses of Lemma 4.3 are satisfied. Finally, we identify N with CP? in such a
manner that the lines £, are the real part of the projective curves ax + by + cz = 0, for
a,b,c € R, and identify M with (RP?)* C (CP?)*. This identification will be proved to be
conformal, and a last simple computation will show that, when this duality arises from a
metric g, we obtain an isometry between (M, g) and RP? equipped with a constant multiple
of its canonical metric.

4.1 Embedding the manifold of unparametrized geodesics

For now, fix a point-line dual structure € on a manifold M ~ RP?. As we explained above,
a point-line dual structure on M induces a diagram as given in (2.5), and we can also
construct a map ¢ : PT'M — PTN given by ¢p(z) = vy (ker p1,.). We will impose an extra
restriction on the point-line dual structure %"

(v) the map ¢ : PTTM — PT'N is a diffeomorphism, such that the submersion v : PT'M —
N becomes the canonical projection PT'N — N, and the line bundle ker p, — PT'M
becomes the tautological real line bundle L — PT'N.

In other words, we assume that the conclusion of Theorem 2.25 holds.

We want to construct N in such a way that N is embedded in A, and that the dual lines
¢y, p € M, become embedded circles inside projective curves ¥, — N, ¥, ~ CP!. For this
purpose, notice that the dual lines ¢, are the images of p~1(p) ~ RP! under the map v, so
that, by considering the complexification

PTeM = (C®PTM — 0,)/C%,

and denoting by [ : PIc M — M the canonical projection, it would be reasonable to require
that there is a map ¥ : PTc M — N satisfying the following conditions:

(1) ¥ is a submersion, and its restriction to PTM C PTcM is the map v;
(2) the projective lines X, are the sets W[~ (p)].

The construction of the manifold A is then done with the following procedure. First,
observe that there is a complex structure J!l on the fibers of PT M, since those fibers are
complex projective lines. In particular, the line bundle J Il ker s« — PTM can be identified
with the normal bundle of the inclusion PT M — PTc-M. Next, fix a tubular neighborhood
V C PTcM of PTM, and fix a diffeomorphism V ~ Jllker p.. Then by identifying V with

the tautological line bundle L — PT'N via the compositions V&~ Jll ker s _—JH> ker 1, %L,
where ¢(z,u) = (¢(2), v4.u) (see the proof of Theorem 2.25), we get a map 1 : V — TN
induced by the blowing-down map 5 : L — TN, B(y,v) = v. Having done this, denote by
U=PIcM —PTM,V =TN, and define

N:=U Uy V. (4.1)
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Lemma 4.4. Suppose € is a real point-line dual projective structure on a surface M ~ RP?
that satisfies the extra condition (v). Then there is a real compact simply connected four-
dimensional manifold N, together with a submersion ¥ : PTcM — N, in such a manner
that N is smoothly embedded in N, the restriction of ¥ to PTM is the map v, and each
dual line £,, p € M, is contained in a smooth closed real surface ¥, = W[i~1(p)] of genus
zero.

Proof. We define ' as in (4.1). The canonical map ¥ : PTcM — N is taken to be the
identity on U, and the ‘blowing-down’ map ¥ : Y — Von V. The topology on N is the
weakest for which the function U is a continuous open map, and N is embedded in A as
the zero section of TN = V. Now observe that the blowing-down map g: L - TN =YV
is a diffeomorphism away from the zero section PT'N, where it restricts to the canonical
projection PT'N — N. Also, since the submersion v : PT'TM — N is identified with the
canonical projection PI'N — N under the diffeomorphism ¢ : PT'"M — PT N, the restriction
of ¥ to PT'M is the map v. Hence there is a unique differentiable structure on N for which
the map ¥ is a smooth submersion and induces a diffeomorphism between U and N — N,
and the open set V = ¥()) is a tubular neighborhood of N < A,

For a point y € A" — N, a coordinate chart (U’, x’) around ¥~1(y), with U C U, induces
a chart (U, x) = (¥(U’),x’ o (¥|y)~!) around y. For the other case, when y € N, we can
take a coordinate chart (W;y',4?) of N around y, and consider the induced coordinates
(y',y%, ¢ty c?) on TN|w given by

12 :
wor Ol
Since V = T'N|y is an open set of V = TN C N (and since V is open in N), (V,¥), where
9 = (y', 9%, ¢!, c?), is a coordinate chart around y in A. Coordinate transitions between two
charts of the form (U, x) are smooth because U is, in itself, a smooth manifold. The same is
true for coordinate transitions between two charts of type (V,d), by the very differentiable
structure of TIN. The only nontrivial case is when we consider transitions between charts
of type (U, x) and (V,9). But by our construction, ¥ o ! is the map 1 restricted to an
open set of U N V. Thus ¢ o x~ ! is a diffeomorphism, for 1 is a diffeomorphism away from
PTM. The collection of all charts of type (U, x) and (V) is then the C*° atlas of N.

We define ¥, := U(i!(p)) for each p € M. Because the restriction of ¥, , to the
tangent space 1.4 ! (p) is injective for each z € 4~ 1(p) and each p, the sets 3, are real
closed surfaces, and ¥ induces a diffeomorphism between i~1(p) ~ CP! and ¥,.

It only remains to prove that A is simply connected. For this, observe that I/ can
be viewed as the set of point-wise complex structures on M. Indeed, an element [v] €
PIc,M — PT,M induces a decomposition

WP el o el

Tc pM = spanc{v} ® spanc{v}

for which we associate the complex structure Iy, : Tg M — T, M acting as
- 0
Iy = [0 —I—i] '
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On the other hand, the (—i)-eigenspace of a complex structure I : Tc ,M — Tc,M can
be viewed as an element of PTcM — PT M. (Our convention for the choice of (+i)- and
(—1)-eigenspaces follows the discussion done in the next section.) But the set of point-wise
complex structures on M can be identified with the set of pairs ([gp], Op), wWhere [gp] is
a conformal class of a inner product g, on T,M =~ R?, and O, is a choice of orientation
for T, M. Since the space of inner products is a convex cone, U deform retracts to the
orientation covering M ~ S? of M.

We can thus finish our proof. By construction, N' =4 U V. On the one hand, I/ deform
retracts to S?, and V ~ TN deform retracts to N. On the other hand, the inclusion
1:UNY <=V is homotopic to the bundle projection @ : TN — Oy — N. Since U is simply
connected and U NV is connected, the Seifert-van Kampen Theorem tells us that

mV) m(N)
z#(m(L{ﬂV)) 7T#(7T1(TN—ON)).

m(N) =

At the same time, the fibers of 7 : TN —0x — N are path connected, so my : 71 (TN—0n) —
m1(N) is onto. Thus N is simply connected. O

4.2 The complex structure

Now that we have constructed the four-dimensional manifold A/, we want to prove that it
is the complex projective plane. For that we will construct a complex structure J on N,
and verify that all conditions stated in Lemma 4.3 are satisfied. This is the point of the
argument where the Zoll projective structure [V] plays a prominent role: it determines a
special decomposition of TPTcM as the direct sum of two vector sub-bundles.

Fix K to be either R or C, and consider a manifold M of dimension n, together with an
affine K-vector bundle (E,V) — M, and denote by p : PE — M, PE = E/K*, the induced
projective bundle. When K = C, assume that V is complex linear, i.e. V(is) = iVs for
every section s € I'(F). Then the connection V induces a decomposition TPE = H® V,
where H and V are called the horizontal and the vertical bundles respectively, in such a
manner that pu, : H — p*T'M is an isomorphism. The vertical bundle is simply taken
to be V = ker u,, while the horizontal bundle is defined as follows: For a given point
p, and a class [e] in the fiber PE,, H, is generated by vectors of the form ¢'(0), where
o =1s]:(—e,e) —» PE is a section of PE along a smooth curve ¢ : (—¢,e) — M, starting at
p = ¢(0), that can be represented by a parallel section s of E along c, satisfying the initial
condition s(0) = e € [e].

Turning back to our case of interest, we have a compact surface M?2, equipped with a
Zoll projective structure [V] of conjugacy number equal to one, and we fix a torsion-free
connection V € [V]. The vector bundle here considered is TcM, which we turn into an
affine bundle by extending V to be complex linear. Then V decomposes TPT-M as a direct
sum H @ V, that can be complexified as

TcPIceM = He @ V.

43



4 Point-line duality and Green’s Theorem

On the one hand, V = ker /i, is tangent to the fibers of PTcM — M, and since all of
them are copies of CP!, there is a fiber-wise complex structure JIl : V. — V, (J”)2 =—1.
In particular, we can consider the (—i)-eigenspace of JlI:

Ly := V% C Vc. (4.2)

On the other hand, fi, : Hc — T¢M is an isomorphism, so there is a ‘tautological’ line
sub-bundle Ly C H¢ given by

(LQ)[U] = (ﬂ*,[v})il(spanc{v})‘ (43)

We then define
D :=L; ¢Ls. (44)

The idea behind this construction is that determining a complex structure J on N is
the same as defining an involutive complex distribution D C TcN, having dime Dy, = 2,
and D, N D, = {0} for all y € N. Indeed, for a given J, we define D = Tg’lN; while a
sub-bundle D with those properties induces an almost complex structure J having D as its
(—i)-eigenspace, and D as its i-eigenspace. In the second case, the integrability of J follows
from D being involutive, because for any two X,Y € I'(D), the Nijenhuis tensor is

7(X,Y)=[X,Y] - [JX,JY] + J[X,JY] + J[JX,Y]
= [X, Y] = (=0)’[X, Y] + (=) J[X, Y] + (i) J[X, Y]
=2[X,Y] - 2[X,Y] = 0.

Of course we could interchange the roles of D and its conjugate D, but this would only act
as a change of orientation.

Lemma 4.5. Let (M, [V]) be a surface diffeomorphic to RP?, equipped with a Zoll projective
structure. Then the distribution D defined in (4.4) is an involutive two-dimensional complex
sub-bundle of TcPTe M, and

0, for z¢ PTM

dimc(D,ND,) =
c(D: ) {1, for z e PT M.

Furthermore, D does not depend on the choice of the torsion-free connection V representing
the class [V].

Proof. D is a complex two-dimensional vector sub-bundle of TcPTe M by definition. The
other assertions are proved by local computations. Let z = (p,[v]) € PTcM, consider a
smooth path ¢ : (—e,e) — M starting at p, and fix a section 0 = [X] : (—¢,e) — PTM
along ¢, passing through z at time zero, and represented by a parallel complex vector field
X (t) along ¢. Choose a coordinate chart (U;z!,z%) of M around p, in such a way that

44



4.2 The complex structure

X( ) = Oilp + (Dalp, and denote by (x!,22,¢) : 471(U) — R? x C the induced coordinates
n o~ Y(U) C PIcM, given by
(;rl,acg):| .

0 0
(xlam27C) A |:(0$1 + CW)

We can then write, on U and on = H(U), c(t) = (c}(¢), cQ(t)) X (t) = a'(t)(010c) +a?(t)(Dz0
¢), and o(t) = (cl(t),CQ(t),aQ( )/at(t)), where al(t),a?(t) € C, and a'(t) # 0 for all t. In
particular,

"(0)=¢! iéQi 4 612al2 4 a*/a 9
7(0) = &1 (0) 5 +E(0) 2+[dt G )}8C+[dt @ 1)](% .
= c'l( )% + ¢ (O)% + (aQ(O) _Cal(O));C + (a2(0) —Cdl(()));g_

Since X is parallel by assumption, we have

where Fék are the Christoffel symbols of V with respect to the coordinates (z!,z?%); hence
a'(0) = —d? (0)¢* ()T, (p), 1=1,2. (4.6)

After substituting equations (4.6) on (4.5), we obtain

By the definition of horizontal bundle, what all these computations show us is that Hc .,
z = (x',22%,(), is the complex vector space spanned (over C) by

0 0

0
pral + Py(at $7C)

o). +P(:E x ,C)

J=12,

where

Pj($1,$2,C) = _Fgl + C(Fjll - F?Q) + ng]lQ
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4 Point-line duality and Green’s Theorem

Observe that the calculations done here also prove that fi, : Hc — 4*TcM is an isomor-
phism.

Now we see that, in the chart (4~ '(U);z!, 22, (), the complex line bundle Ly is generated
by 9/0¢, while the fiber of Ly on a point z = (2!, 22, () is the complex vector space spanned
by

0 0 0 0 0
(,a*,z)_l (8%’1+C61‘2> = @ +Cw + (Pl(xlax2a<-)+CP2(1717$2’C))67C
1,2 -~ 1,2 -~ 9
+(P1($ , L 7C)+CP2(J" , L 7<))8722 (47)
0 0 0 - 0
= gu1| TC9z| TGO +Q(ac,<,<>8—Z
— EO,Z7

here we use the notation
Q(z,u,v) = -7 + o]} — (u+v)I'Fy 4+ v(u+v)Iy — wol3, + uv®Ty,.

Thus locally we have

0
D: i,E ,
spaua(c{aC }
where
-0
EZEo—Q(%C,C)a*Z

0

B 5 i (4.8)
= @ﬂLC@ﬂLQ(%Q

9
ac’

for Q(x,¢) := Q(x, ¢, ¢). Since 9¢/0¢ = 0 and 8@/82 = 0, we see that

|-
¢

which implies that D is, in fact, involutive.
Observe that a change of torsion-free connection V in [V] is characterized, on local

coordinates, as a replacement of Fék, by ng + 5§-wk + wj%. Any such substitution leaves

Q(z,¢) = -TH + (T}, — 2T'%y) ¢ + (2T, — T3,)¢% + T3, ¢°

unchanged, so that = does not depend on the choice of V € [V]. Also, the sub-bundle L;

was defined independently of the projective structure. Thus D is projectively invariant,

since it is locally spanned by 9/9¢ and =, which do not depend on the choice of V € [V].
Finally, it comes from the definition that (L; NLy), = {0} for all z € PTcM — in our

coordinate representation, we see that L; = spanc{9/0(} = V;"?. On the other hand,
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4.2 The complex structure

notice that formula (4.7) tells us that the imaginary part of Zy does not vanish when z
is not real — i.e. z ¢ PTM — while Z is real for z € PTM. This is because, writing
¢ = & + in, we know that PTM is locally the set of points for which = 0, so that Zg on
PTM is

- 0 0 ~ 0 0 0 0 ~ 0
S0 g+ s+ Qe (e o) = s + QO

a¢ " aC €

As a conclusion, we have

_ _ 0, f PTM
dim(D, ND,) = dim(Ly, N y..) { , for z ¢

1, for z € PT' M.
O

Our goal is to prove that ¥U,D induces a unique complex structure on A. The next
lemma is an important step in this direction.

Lemma 4.6. Let (M, [V]) be a surface diffeomorphic to RP?, equipped with a Zoll projective
structure. Then
v,.D.N7,.D, =0

for every z € PTc M. Moreover, if zg,z1 € PT M are two distinct points such that ¥(zg) =
U(z1) =y, then
\IJ*vz()VZO D \IJ*,Z1VZ1 = TyN‘

Proof. The construction of the manifold N' was done by gluing U = PTcM — PT'M and
VY = TN via a ‘blowing-down’ map from a tubular neighborhood of PI'M to V. On U,
Lemma 4.5 tells us that D induces a complex structure, as discussed previously. At the
same time, the restriction of Lo to PT'M is the line-bundle generated by the directions
tangent to the geodesics of M, and W restricts to PT'M as the submersion v, which collapses
all lifted geodesics into points. Consequently, W, Ly . = 0 whenever z € PT'M, so that

\I/*,zDzﬂ\Ij*,zDz = (\P*,le,z‘i'\I/*,zLZz)m(\I/*,ZLLZ + \I/*,zLQ,z) = \Ij*,le,zm\I[*,le,z- (49)

Our goal is to prove that
\IJ*,le,z N \IJ*,le,z =0.

To better understand this, fix a direction [v] € PT'M, and let € be the unique geodesic
passing through p([v]) with T),,)€ = [v]. Choose a representative connection V € [V],
and consider an affine parametrization v : (—e,e) — M starting at u([v]). Because ¢ —
v/(t) € TM is a parallel vector field along ~, the section o : t — [/(¢)] € PT'M induces a
nonzero element ¢'(0) € Hg ). Actually we have more: o'(t) € Hg o) for all t. But ¢/(0)
is contained in Ly, for the equality fio o = implies o’ (t) = (fu|re) " (V' () € (L2)y )

47



4 Point-line duality and Green’s Theorem

Since Ls is a line-bundle, and by the arbitrary choice of [v] € PT'M, our conclusion is what
was said above: that Lg on PT'M is formed by the lines tangent to the geodesics of M.

It remains to examine what happens to L; under the map V,, when considered on
the restriction of TcPTeM to PTM. We proceed by constructing local coordinates (r, ),
(y',y?) and (y',9%,0) on M, N and PT M, respectively, in such a way that the projections
pw:PT'M — M and v : PT'M — N are locally expressed as

n(y',y2,0) = (r(y',y%,0),0) and v(y', 4%, 0) = (v', v°).

Let zg € PT'M be an arbitrary point, and denote by py = () € M and by € = €, the
unique lifted geodesic passing through zg. Take a neighborhood U of € diffeomorphic to
R? x S', in a way that the geodesics contained in U correspond to the circles {pt} x S!, and
€ becomes {0} x S'. Denote the ‘trivializing’ diffeomorphism U ~ R? x S! by (y',2,1).
(Here we think of ¢ as varying in the interval (—m, 7], and as being zero on zp.) By taking U
sufficiently small, we may assume that U = u((] ) is contained in a tubular neighborhood of
€ C M. In particular, there is a smooth retraction f : U — € which induces a submersion
0:U — S, by identifying € ~ € ~ S! via the coordinate ¢. Then the function 6 = e :
U — S!is also a submersion, and both ¢ and 6 coincide on € from the construction of
f. Therefore, by restrlctlng U once more, if necessary, we can assume that dé?/ dt never
vanishes, so that (y!,y?, 9) is a ‘cylindrical’ coordinate system on U.

The problem is that U is a Mobius band, which does not allow us to work with global
coordinates. Fortunately, this can be easily overcome if we fix some number € € (0, 7] and
consider U. := {p € U : |0(p)| < €} and U, := {z € U : \b(z)] < ¢}. Now U. and U.
are neighborhoods of pg and zg, respectively, and U, is the image of U. under the map U.
Moreover, U. is diffeomorphic to R? x (—¢,¢) via the coordinate system (y!, 32, é), and there
is a parametrization (r,0) : U. = R x (—¢,¢), because the line €N U, = (—¢,¢) has trivial
normal bundle. From now on we use # to denote both coordinates # on U, and 6 on UE.

For these coordinates, the canonical projection p : PTM — M takes the form (y!, y?, 0)
(r(y*,y?,0),0), so that

I or 0 or 0

er [ly = Spalpd —= — — —— ——=
Hox Palir oy? oyt Oyl Oy?

on UE. Observe that 87"/83/1 and Or/ Oy? cannot vanish at the same time, for 1 is a sub-

mersion. Next, write
_or 0 or 0

SOy oyt Oyl oy
Then J!l ker y, becomes the bundle spanned by JIIX (over the reals), and we parametrize

Jll ker s as
(W y% 0,0) & M X 120,

We now turn to the local description of the quotient map v : PI'M — N. Since v collapses
the lifted geodesics, we can give V = v(U) = v(U.) coordinates (y',%?) in such a manner
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4.2 The complex structure

that v becomes the projection (y',y%,0) — (y',y?). As a consequence, we have

or 0 or 0

v X = 5o, 01O

v(z)

for all z € U.. Similarly to what was done in the proof of Lemma 4.5, the system (v',y?)
induces local parametrizations of the form (3,42, ¢!, ¢?), (y*, 42, &), and (y*,y%,&,m) on TN,
PT N, and on the ‘tautological’ bundle L. — PT' N, respectively. The identifications are:

0
(y17y2vcl7c2)<_>cli ? =

C )
dy! (y'y?) dy? (y*y?)
0 0
17 27 <~ ( + > )
(y y 5) 8y1 £8y2 (y17y2)
0 0
(W', y% &) < 77((91 + fag>
Yy Y7 1 w2)

This allows us to represent the projection L — PTN as (y*,y? &) — (v, y?,&/n), and
the blowing-down map 3 : L — TN as (y*, 4%, &,n) — (y', 42, n,&n).

On the other hand, interchanging y' and y?, and taking ¢ smaller, if necessary, we may
assume that Or/9y? does not vanish. Hence ¢ : PTM — PTN is locally written as

ar /oyt
1.2y (1.2
oy ,y°,0) = (y T 8r/8y2>’ (4.10)

while the composition 8o @o (=J!) : Jllker ju, — TN becomes

or
129)\ 12A
Y,y 0,0 = |y, y7, a7

8—7"1 ) . (4.11)
(y*y2,9)

(y1,y2,0) ’ Iy

<8r/8y1>
(v 2.0 \ O/ Oy

never vanishes, for the map ¢ is a diffeomorphism.

The point of all these computations is that, in our construction of NV, we fixed a tubular
neighborhood V of PT'M, together with a diffeomorphism V ~ Jllker y1,. In other words,
we view the coordinates (y',42,6, ) as local parametrizations of 1}, and the composition
Bo@o(=Jly: Jlker y, — TN as the map V.

For these coordinate systems, the canonical projection i : PIcM — M is locally ex-
pressed as

Moreover, we also know that

9
a6

Ayt v 0.0 = (r(y', 9%, 6),6).
Hence the vertical bundle V = ker i, is generated by

R
Oy oyl Oyl oy? N
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4 Point-line duality and Green’s Theorem

But observe that PT'M is locally the hypersurface A = 0, and that

9
O

d

= ds SJHX(y17y27970) = J||X(y17y2,970). (412)

s=0

d

1.2
0.5) = —
(y7y7 75) ds

(yl 7y27070) SZO

Thus the line bundle Ly, restricted to PT'M, is spanned (over C) by

1 1 0
b Jlxy = = Tl
2(X+1J X) 2<X+za)\>
on a neighborhood of zy in PT¢cM.
Our conclusion is: from formulas (4.11) and (4.12), we have

_ o
= 52

(2i2) (2 4i2)
(0,0,0) oyt Ocl (0,0,0) Oy? Oc?

so that W, , (L1,2) N Wy 2o (L1z,) = 0. We then apply formula (4.9) to obtain the desired
result:

or

U, (X, +iJlX, -
) 0( 0 + 0) ¥ (x0) 83/1

U(20)

¥,DNY,D =0,

since zg € PT'M was arbitrary.

Furthermore, if z; is another point in U. contained in the lifted geodesic (f, then z; =
(0,0,61,0), with 6; # 0, in our coordinate system on a neighborhood of zp in PTc M. Since
¢ :PTM — PTN is a diffecomorphism, formula (4.10) tells us that

or /oyt or /oyt
/0y 00y 9T/0¥*|000)
Hence we have
%m(>>:ar o o 0
T\ OA, Oy? (0,0,0) dct|, oyt (0,0,0) ac?|,
or 0 or 0
9 0.0 0 |, ' 0,000, (419)
0
(3]
and
or 0 or 0
B L P e P Pl B
ol 9| ol o (1.14)
051000000 1y 90,00, 971y
=V, (X)),
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4.2 The complex structure
where y = W(z9) = U(z1). Since V = ker fi, is locally spanned by X and 0/0), formulas
(4.13) and (4.14) also imply

\II*,ZOVZO D \II*721V21 = TZ/N

whenever zg,z1 € PT'M are two distinct points contained in the same lifted geodesic, and
y = U(z9) = VU(z1), for ¥, (X,,), Vu(X3,), Vi(0/0N|2,) and W, (0/0N|;,) are all linearly
independent. O

The next proposition is the key technical result in [LM1] (compare [LM1], Proposition
3.1).

Proposition 4.7. Let (M,[V]) be a surface diffeomorphic to RP?, equipped with a Zoll
projective structure. Then there is a unique complex structure J on N such that

v.D c TN, ). (4.15)

Proof. Since the proof is long, we divide it in three parts as follows:

Claim 1. There is a unique rough almost complex structure J on N that satisfies equation
(4.15).

Recall that this means that there is a not necessarily continuous section J of End(T'N),
such that J? = —Id.

Proof of Claim 1. On N — N = U(PIcM — PTM) ~ PIcM — PTM, there is only one
choice of J: since
Te N =9,.D,®¥,.D, (4.16)

whenever y € A" — N and z = U~ !(y), J must be the only almost complex structure whose
(—i)-eingenspace and i-eigenspace are ¥, ,D, and VU, .D,, respectively. In terms of the

decomposition (4.16),
—i 0
=10
on N — N.

It remains to define J on N. For this, observe that

V = ker fi, = ker . & J”ker,u*,

so that, according to this decomposition, JIl acts on V as
I _ 0 -1
J [1 0] |

At the same time, ¥ restricts to PTM as the map v — hence ker u, is mapped to the
tangent bundle of N under WU, while the image of J! ker y1, lies in the normal bundle of N,
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4 Point-line duality and Green’s Theorem

viewed as an embedded submanifold of TN = V. This shows that the natural choice of J
on N is the following: For a point y € N, any choice of coordinate chart (V;y!, y?) around
y induces a parametrization (y',42,c!, ¢?) on TN|y, given by
0 0
1,2 1 2 1 2
) ) 9 A a1 a 9
(y,y7,c,c”) ec oy

c .
(yhy?) dy? (¥ y?)

In particular, we can decompose TV|y as
TN|y ® T*Nly, (4.17)

where TNy is spanned by 0/0y* and 9/0y", while T+ N|y, is spanned by 9/dc! and 9/9c?
fiber-wise. Since any other choice of coordinates (§!,4?) around y produces a local trivial-
ization (', 92, ¢é',é?) on TN in such a way that

0 oo 0 oo
oyt 0yt Oyl oét 09t 0’

we see that decomposition (4.17) is invariant under change of local coordinates (y',%?) on
N. As a consequence, we can write

TV|y =TN @ TN,

0 —1
=1
on N, according to this decomposition.

Although it is not at all obvious that .J is even continuous on N, we claim that J is the
unique rough almost complex structure for which the identity ¥, o JIl = J o ¥, holds. In
particular, this will imply that ¥,D Cc T%}(N,J). Indeed, when we consider coordinates
(y',y%,0,\) on PIcM and (y',42, ¢!, c?) on N as before, the vertical bundle V is seen to
be locally generated by

and define

_oro9 oo 9
oy oyl Oyl oy? O\’

while the map ¥ : PTc M — N is written as in (4.11):

or or
Uyt 2, 0.0 = |y 2 A s, —A— |.
(y7y7 ) ) (y 7y7 ayQ? ayl

We also have

0

— =JIX1 200
8A (y1’y270’0) (y »Y=,u, )
from (4.12), and for any two points 2o = (y',y2,600,0) and 21 = (y',%2,61,0) of PTM,

the tangent space TyN of y = W(z9) = ¥(z1) is spanned by U, . (Xz), Vi (Xz),
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4.2 The complex structure

W, 0 (0/ON|5) and U, , (9/DN|.,) — see (4.13) and (4.14). Hence, equality ¥, o JIl = Jo U,
is satisfied on N if and only if

JU, . (X.,) = U, (3)ON,), and JU. . (9/ON-,) = —W.. (X..).

0 0 0 0
o) = a9 (55) =~

But this is equivalent to

because
o (2| Y | o) | o
N 0 e 0tly 0y 20,960,
and
% = 8?/2 (y17y2,9j)ayl Y 8y1 (y17y2’9j)ay2 y'

On N — N, the identity ¥, oJ = JoW, is trivially true. Moreover, all these computations
show that such almost complex structure must be the unique satisfying (4.15). O

Claim 2. If J is smooth, then J is integrable.

Proof of Claim 2. Assume for a moment that J is of class C'°°. Then the properties of the
distribution D stated in Lemma 4.5, together with the fact that ¥ is a diffeomorphism
between PTcM — PTM and N — N imply that J is a complex structure away from N.
Since N is a closed two-dimensional submanifold of A, the smoothness of J tells us that
its Nijenhuis tensor vanishes everywhere, because it is continuous on N and vanishes in the
dense open set N’ — N. ]

Claim 3. J is smooth.

Proof of Claim 3. Observe that J is smooth if and only if the bundle T%! (N, J) is of class
C*. With this in mind, we will prove that T% (N, .J) is of class C* for every integer k > 0.
The approach will be to construct C* local frames for T (N, J) for any k > 0.

Let k be a positive integer greater than 1, fix a coordinate chart (V;y!,4?) on N, and
denote by 27 = v*yJ : v™1(V) — R. Consider also a coordinate system (z',22,¢) on PTM

as the one used in Lemma 4.5, i.e. (z!,22) is a local parametrization of M and

o 0
(1'1,1'27 C) AN [(axl + CM) (m17$2)] ‘

Construct smooth complex-valued functions 3!, 527011 an open set of PTcM by requiring
that 3/ (2!, 22,¢) = 2/ (2!, 2%,€) + O(n) and 957 /0 = O(n¥), where ¢ = & +in. (Observe
that, in the coordinates (z',22,(), PTM is parametrized by n = 0. In other words, we
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4 Point-line duality and Green’s Theorem

require that 3 = 27 and that 05/ /0¢ = 0 to the k' order in n on PT'M.) This implies that
y is locally written as
k

1 .2 _ §
3J (x 9 X 9 C) - rln 8§r

r=0

+ O(n*th, (4.18)

xl 7m2 7{)

in term of the coordinates (z', 22, (), where ¢ = ¢ 4 in. This is seen by observing that

s 1[0 9\ [< oz .
oc 2(%*”&)<§:w”88'+0W )>

k . k—1 . ;
1 T ar—i—lzj i Zr—i—l rar—i—lzg )
= 527477 e+ 72 T e +0(")
r=0 r=0
ik 8k+1zj &
=0( "),

and since the cancellation is done term by term, uniqueness of the Taylor expansion is guar-
anteed. In particular, the functions 3/ are independent of the choice of given parametrization
(x',2%,¢), so that they can be glued together on the intersection of two charts, giving us
complex-valued maps on a neighborhood of v~1(V), viewed as a subset of PT¢ M.

On the one hand, the complex functions 3/ are constant along the lifted geodesics of
PTM, so that they can be viewed as maps on some neighborhood of V in N. On the
other hand, since J is smooth when restricted to TN|y, we can construct smooth complex-
valued coordinates (3',3?) around V by requiring that both ¥ = 37 and d¥(Y) =0 on V
for any Y € T%Y(N,J)|n. By the uniqueness of the Taylor expansion (4.18), and since
OU*¥ /o¢ = 0 on v~ 1(V), we see that

Y =5 +0().
Thus (3!,3%) may be viewed both as functions on some open set of PTcM, or as a smooth
complex-valued coordinate system on N. In particular, the map ¥ is then represented as

(¢!, 2%,¢) = (2", 2%, &) = (1,5,
The point of all this is that we want to express T%(N,J) in terms of the coordinates
(3',3%). With this in mind, first notice that

TN (N, ) ltm(3)=0 = spanc{9/05",0/95°}.

Indeed, the points where Im(3/) is zero for j = 1,2 are the points in N, and there we have

SR O Y EIY
oy o e o
O (0260008 OC |01 42,6.0)OF
_ oy 9
S (1 ,22,6,0) O
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4.2 The complex structure

by construction. Since W,(Zg) vanishes along PTM (see (4.7) for the definition of =),
and since T (N, J) is generated by the image of D under ¥, (this is a consequence of
Lemma 4.6), we get the inclusion T%'(N,J) C spanc{9/95',0/05°} on N. The equality
then follows because both sides have complex dimension two point-wise. In particular, we
see that Z3/ = 0 when 7 = 0 (see (4.8) for the definition of =).

Elsewhere, we have

TOY N, ) v-n = spanc{¥.(9/9C), V.(E)}.
Hence, by writing

o . D oy 9 0§ 0

; 0
\P*E:Eji =) — d\Ij* — | = —= = —
=) (5)83]+(5)8g] an <8C> ooy o o

we see that

0 0
701 N7J i{Im(3/ - {'_ l'} 7
(N D)y, im0y = spang oy 10y j=1,2

where aé- are the solutions of
,1 L
117 [=3 & =yl 9
ay ag =3 3% - _ =3 0 (4 19)
a% a% :*52 05" 552 o5 | :
- ¢ ¢

(This is a simple Linear Algebra result — see Lemma 4.8 below.)
Our goal then is to analyse what happens to the coefficients aé- when Im(3’) — 0. In

order to do so, notice that, because [Z,9/9¢] = 0, the function =3’ satisfies

At the same time, Z3/ = 0 along 1 = 0, so that

o
W(:ﬁj)

Il
o

n=0

for I =0,....,k — 1. Hence
= = 0(n").

The other terms of equation (4.19) are estimated as follows:

029

+ 0(772)> = — +0(n),

o_, 0 027
= o

3] = _ _-
ac. —ac\ "ae

n=0
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4 Point-line duality and Green’s Theorem

and
027
=6) ==( - iy | +ou)
9 |,
0
= —in [E, } s’ +0(n)
9] ,=0
077 N
77<8 5 +Q (5)85> + O(n)
Combining everything, we obtain
= B oL 4 Greyost ozt o 2?)
Sl =in|9n 2058 S5+ 00P) =i +0n)
= & T E+QO% % 02,6

Also, 0(21,22)/0(z%,€) # 0 everywhere, because Z is linearly independent from both /0>
and 0/9¢. Thus

19 -1
—_ 3! —1 O3
1 .1 =l B = 95
ay a4z _ >3 3 o¢)
ai a3 =2 B |z &

(") O@M)] in\a(=1, 22) —=32 =3t
[ 9(2,¢) Om*=1) o1 [o1) O(1)
B <8(z1,z2) O )> [0(77’“) O(n’”)] [0(77) 0(77)]
=0(*)

What all those computations tell us is that, when we take (z!,22,£,7m) in any compact
set, there is a constant C satisfying

|a| < Clnl*1.
Passing to N, what we see is that
jaj| < C'[Im(3)[*,

where 3 = (3!,3?), at least on the image under ¥ of the compact set where the coordinates
(', 22,£,m) are defined. Furthermore, ¥ is proper, so that we can cover the pre-image of
any compact subset of N by a finite number of compact coordinate charts on PT¢M, and
obtain the estimate

lal] < C"[Im(s)|* 7,

whenever (3',3?) lie in a fixed compact set.
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4.2 The complex structure

We have checked that the coefficients aé- are smooth away from N and can be extended

to N as zero, in such a way that we obtain C*~2 functions. In other words, J is, at least,
of class C*~2. Since k was chosen arbitrarily, we conclude that .J is thus smooth as we
claimed. O

This ends the proof of Proposition 4.7. O

Lemma 4.8. Let {v1,v2} and {w1,we} be two pairs of linearly independent vectors of C4,
in such a way that VNV =W NW = {0}, for V = span{vi,va} and W = span{w;, wa}.
In particular C* =V @V =W @ W, and we can write

wj = aka + bf@k.
We write L .
A=% B amin=|} 3l
ap ap by b3
and assume that A is invertible. Then W = span{vj — c?@k}jzl o, Where
11
=12 2|
1 G

s a solution of the matriz equation

CA=-B. (4.20)

Proof. The linear transformation 7" defined by Tw; = 0 and Tw; = w; is determined, in
terms of the basis {v1,ve,71,72}, by the system of equations

_ -k —k— Tk —fe—
T(ag’vk + b;?vj) = 0 and T'(bjvx + a?vj) = b,vg + a?vj,
which is written in matrix notation as
T A B] [0 B
B A] |0 A’

or equivalently

0 B
[ Al A
[0 B][A '+ A 'B(A-BA™'B)"'BA™! —A"'B(A-BA'B)7!
04 —(A—-BA™'B)"'BA™! (A—BA™'B)!
_ [-B(A- 'B)"'BA~' B(A-BA-'B)7!
N —Z(Z—BA B)"'BA™! A(A-BA'B)~!
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4 Point-line duality and Green’s Theorem

We want to find a matrix

1 1
c— [(g Cg].

1 G

in a way that W = span{vj - c?ﬁk} That is, we want to determine the coeficients c;?

j=1,2"
in such a way that
T(v; — ko) =0, j=1,2

In matrix notation, these equations are

-C A(A

. [1d] [-B(A-BA'B)"YBA™'+0)
0=T1 { ] [—A(A — BA-'B)Y(BA' +O)|"

Thus C = —BA~!is asolution, and the invertibility of A guarantees its existence. Rewriting
this equation, we conclude that C' must satisfy the desired equation

CA=-B.
O

Remark. In the specific case dealt in Claim 3 above, v; = /0%, w; = Z and wy = 9/9C,
and (4.20) becomes equation (4.19).

Proposition 4.9. Let (M,[V]) be a surface diffeomorphic to RP?, equipped with a Zoll
projective structure, and denote by N its space of unparametrized geodesics. Then there is
a compact simply connected complex surface N, together with an embedding N — N, such
that

(1) there is an anti-holomorphic involution o : N' — N with fized-point set N;

2) for all p € M, there is a complex curve ¥, C N, ¥, ~ CP', in a manner that
( p p

ly=%,NN;

(3) the surfaces ¥,, p € M, represent the same element of wo(N); and

(4) if p1 and p2 are two distinct points of M, then ¥,, and ¥, are transverse and intersect
exactly at one point.

Proof. We already constructed N, proved that it is a compact simply connected complex
surface, and defined the complex curves ¥, := ¥[g~!(x)]. Now notice that each fiber
f~1(x) is a CP! with the complex structure J Il and that ¥ induces a holomorphic map
between ~!(z) and X, by the construction of the complex structure .J on A. Since ¥ is
a diffeomorphism away from PT'M, its holomorphic restriction to 4~!(z) must be of degree
one, so that ¥, ~ CP'. Moreover, all ¥, are freely homotopic to each other in N, since
this is true for the fibers of PT¢-M.
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4.3 The final argument

Statement (2) is trivially true by the construction of N, and (4) comes from the fact
that two different fibers of PTz M are disjoint, so that ¥, NX,, = l;, Ny, C N, for ¥ is
a diffeomorphism on PTcM — PT M. But we already proved that two distinct geodesics of
M intersect transversely at only one point (see Corollary 2.26).

To finish the proof, observe that there is a canonical fiber-wise anti-holomorphic involution
6 : PTc M — PTcM — this is simply the function 6([v]) = [0]. Such ¢ has fixed-point set
PTM, and thus induces a map o : N' — N with fixed-point set N. At the same time,
the complex structure J on N is such that U, o JIl = J o U,. Hence o is, in fact, an
anti-holomorphic involution. ]

Corollary 4.10. The complez manifold N is biholomorphic to CP? in such a way that
the antiholomorphic involution o : N — N becomes the standard complex conjugation
[20 : 21 : 22] = [Z0 : 21 : Z2], IV is identified with RP? = {[z0 : 21 : 20] € CP? : 29, 21, 22 € R},
and the complex curves ¥, become projective lines CP! ¢ CP? invariant under complex
conjugation.

Proof. Proposition 4.9 tells us that N and the family {X,},ea satisfy the hypotheses of
Lemma 4.3. O

4.3 The final argument

Now that we constructed a complex surface N containing N that is biholomorphically
equivalent to CP?, we are able to prove the ‘rigidity’ of the point-line dual structure on
RP?, at least when it comes from a Zoll projective structure.

Theorem 4.11 (LeBrun and Mason, [LM1] Theorem 3.4). Let [V] a Zoll projective struc-

ture on a surface M? diffeomorphic to RP2. Then there is a diffeomorphism ® : M =, rRp2
such that [V] = [@*V]| where V" is the Levi-Civita connection of the canonical Rie-
mannian metric can on RP?

Proof. By Corollary 4.10, there is a biholomorphism F : A/ — CP? in such a way that
F oo o F~!is the standard complex conjugation on CP?, F(N) = RP? C CP?, and F(3,)
is a projective line invariant under complex conjugation for all p € M. Consider now the
dual projective plane CP?* = P(C3*) of CP?, and define the map

oy : M — CP*
p= F(EP)L7

where | denotes the usual correspondence between lines in CP? and points in CP?*, i.e. a
line ¥ = {[z : y: 2] € CP? : az + by + cz = 0} is identified with the element ¥+ € CP2*
represented by the linear functional I : C3 — C given by I(x,y, 2) = azx + by + cz.

The smoothness of ®g is proved in the following way. For any given local section s of
fi : U — M, we know that F[¥(s(p))] € F[¥(a1(p))] = F(X,). Since ¥(s(p)) € N — N
and F(X,) = F(2,), we have F[¥(s(p))] ¢ F(N) = RP? C CP% Therefore F(3,) is the
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4 Point-line duality and Green’s Theorem

unique projective line passing through both F[U(s(p))] and F[¥(s(p))]. Hence P is locally
written as

Do(p) = F[¥(s(p))] x F[¥(s(p))],

where x : C3 x C3 — C3* is the vector cross-product — in other words, if F[¥(s(p))] is
represented by a vector v € C3 — {0}, then F[¥(s(p))] x F[¥(s(p))] is represented by v x .
This proves that ®¢ is smooth, for it is locally the composition of smooth maps.

The same argument also shows that ®( is an immersion, because F' is a biholomorphism,
V¥ is a diffeomorphism on U, and s — being a local section — is an immersion.

With all this said, observe that ®q(p) is actually an element of RP?* C CP?*, for it is
invariant under complex conjugation. Thus ®g induces a smooth function ® : M — RP%*,
which a proper local diffeomorphism since M is compact, ®g is an immersion, and both
M and RP?* have the same dimension. Hence ® is a covering map, and because 71 (M) =
71 (RP2?*) 2 Zs, it is in fact a diffeomorphism.

Finally, the function ® : M = RP?* can be represented as

p = F(KP)L7

and it sends a geodesic €, represented by a point y € N, to I (y)*, which is the set of all
lines passing through the point F(y) € RP2. In other words, we successfully identified N
with RP? and M with its dual RP?* in such a manner that the geodesics of M become the
geodesics of the canonical metric on RP?* ~ RP2. Thus [V] = [®*V], and the proof is
finished. O

Remark. In other words, what Theorem 4.11 proves is the uniqueness of point-line dual
structures on RP?, at least when it comes from a Zoll projective structure. Another con-
sequence is that the collection €* := {¢, : p € M} gives a point-line dual structure on N,
that is dual to (M, %), where % is the collection of geodesics induced by the Zoll projective
structure.

Proof of Theorem 4.1 (Green’s Theorem, see [LM1] Theorem 3.5). Let g be a Zoll metric
on M ~ RP2. After a possible multiplication by a constant, we may assume that ¢ € Z;,
i.e. the length of all its geodesics is 7.

Extend g to TcM to be complex bi-linear, and define

C ={[v] € PTcM : g(v,v) = 0}.

Notice that, when we consider local coordinates (z!, 2?) around a point p € M with induced

coordinates 5 5

1.2 +1 42 1 9 2 0 T I
on Te M, the set of vectors v € Tec M for which g(v,v) = 0 is seen as the zero locus of a
quadratic homogeneous polynomial in ¢! and ¢? that varies smoothly as a function of z!
and 2. Hence C is a smooth curve of PTcM that intersects PT¢c ,M in two points, counted

with multiplicity. At the same time, g is a positive-definite inner product on 7, M that was
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4.3 The final argument

extended to 1t , M to be complex linear, and thus C is invariant under complex conjugation
[v] = [v]. In particular, if C N T M consists of a unique point with multiplicity two, then
it must lie in PT'M. But this is impossible, since g(v,v) > 0 for every nonzero v € T,M. By
the arbitrary choice of p € M we conclude that C intersects each fiber of PTcM in exactly
two distinct points, each intersection counted with multiplicity one.

There is an intuitive way to think of C, which also justifies its definition. When we think
of = PTcM — PTM as the set of point-wise almost complex structures on M, C can be
identified with the set of those structures that are orthogonal transformations with respect
to g. Indeed, as discussed in the proof of Lemma 4.4, an element [v] € PI¢ ,M — PT,M
induces a decomposition

Tc pM = spanc{v} @ spanc{v}

for which we associate the complex structure I}, : Te M — Tg M acting (in accordance
with our convention) as
—i 0
I, = |-
[l [ 0 +z]

If [v] € C, we can compute, for any a,b,c,d € C,

9(I 1) (av + b0), Iy (cv + dv)) = g(—iav + ibv, —icv + idD)
= —acg(v,v) + (ad + bc)g(v,v) — bdg(v, )
= (ad + bc)g(v, )
= acg(v,v) + (ad + be)g(v,v) + bdg(v,v)
= g(av + bv, cv + dv),

thus proving that I}, is an orthogonal transformation of (7,M,g,). Of course when we
consider [v] instead of [v], we get the same decomposition of T ,M, but the complex
structure associated is the only other that also is compatible with g,: the one corresponding
to the opposite choice of orientation on T,M, i.e. Iy = —I). This observation gives
another proof that C intersects the fibers of T M in exactly two distinct points, since there
are exactly two distinct ways to orient any tangent space T,M.

This interpretation also has an important implication: that C intersects the fibers of
PTcM transversely. In fact, we claim that C is horizontal with respect to the Levi-Civita
connection V of g. To see this, take a smooth curve ¢ : (—¢,e) — M, together with two
parallel vector fields X; and Y; along c¢. Consider also a nonvanishing complex vector field V;
along ¢, in such a way that [V;] € C for all t € (—¢,¢), and let I; = Ify;) be the corresponding
complex structure along ¢. As in the previous section, we extend V to TcM to be complex
linear, in the sense that V o¢ =i 0o V. Since I; is an orthogonal transformation and X,Y
are parallel,

g Xe, 1tY;) = g(X4,Ys) = g(Xo, Yo),

so that, because X and Y were arbitrary, we obtain:

0=V (LX) = (V%It)Xt
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4 Point-line duality and Green’s Theorem

for every parallel vector field X along c, i.e.
Vi]—t =0.
dt

On the other hand, we may assume that X is nonvanishing (for example, we can suppose
| X¢| = 1, since parallel transport preserves the metric), and write X = aV + aV for some
nonvanishing smooth function a : (—¢,e) — R. Because

d d _
0=VuX="2V4+2LV4aV,V+aveV
di dt dt dt ai
and
0=V (Ix)=i%y _ %%y oV —iav.v
= %( )_za —ZE +ia 4V —iaVaV,
we see that ) p
. a
0= <1V%X - V%(IX)> = TV +aVeV = Va(aV).
Hence the derivative of the curve t — [V;] = [a(t)V;] € C is an element of the horizontal

bundle H C TPTcM. But any tangent vector of C can be written as the derivative of a
curve of the form ¢ — [a(t)V], thus proving that TC C H. We actually have TC = H]¢, for
both sides have dimension two fiber-wise.

As a consequence, the projection fi : PTcM — M restricts to a local diffeomorphism
m:C — M. At the same time, as argued above, a point in C is identified with a point-wise
orthogonal complex structure, which is equivalent to a point-wise choice of orientation on
M. In other words, C is viewed in this way as the orientation double cover of M, which is
diffeomorphic to the sphere, and 7 : C — M is actually the orientation covering map.

Furthermore, observe that Y = PIcM — PT'M has a complex structure induced by the
distribution D (this is a consequence of Lemma 4.5), and that C C U is an embedded
complex curve. Indeed, as our previous computations show,

TcC = Hcle = (L2 & Lo)|c

so that the induced complex structure on U restricts to a complex structure I on C for
which
T%!C = Ly|c = spanc{Zo}

and
T'0C = Ly|c = spanc{Zo}.

The fact that C is actually a Riemann surface has two important consequences. The first
is that the covering m : C — M is a conformal map from C to the Riemannian manifold
(M, g). This is true because

T [T[?)’]IC} = spanc{v} C Tc M
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4.3 The final argument

from the definition of Ly, and g(v,v) = 0 — hence the pull-back metric 7*g is compatible
with I, as one can easily see from the following calculation:

7 g(I(aZo + aZo), I(bZ9 + b=o)) = 7°g(—iaZo + ia=o, —ib=o + ib=)
= —abg(m.Z0, m«Z0) — abg(T«Z0, TZ0)
+ (ab + a@b)g(m+Z0, TZ0)
= (ab +ab)g(mZ0, T+ =0)

= TF*g(an + TEO, b=y + E)

The second is that Q := ¥(C) is also a genus zero Riemann surface, for ¥ is a biholomor-
phism from U to N'— N.

We now turn to the study of the complex curve Q. By Lemma 4.3, we know that there
is a biholomorphism F : N’ — CP? that identifies N with RP? and the curves ¥, with the
complex projective curves invariant under complex conjugation. Consequently, F'(Q) is an
embedded Riemann surface of genus zero in CP2. Moreover, it must be either a projective
line or a conic by Chow’s theorem (see [Dem], ch. 2) and the degree-genus formula (see
[Don], ch. 7). At the same time, since C intersects each fiber of PT¢ M transversely exactly
at two points away from PT'M, Q also intersects the curves X, p € M, transversely precisely
at two points away from N. Hence F(Q) meets certain projective lines transversely in two
points away from RP2. Bézout’s Theorem (see [Ful]) then tells us that F(Q) is a conic, that
is the zero locus of a homogeneous quadratic polynomial

2
0=q(2) = Z QjkZj %k
J:k=0

On the other hand, the fact that C is invariant under fiber-wise complex conjugation on
PTcM implies that Q is invariant under the involution o, and hence that F'(Q) is invariant
under complex conjugation on CP2. Consequently, F(Q) is also the zero locus of

2
92) = > Trzize
j,k=0

If we then consider ¢(z) + ¢(Z) and ¢(z) — ¢(Z), we see that both

2 2
Z Re(gji)zjz, and Z Im(qji)z;2k
J,k=0 J,k=0

vanish at F(Q), and that at least one of then is non-trivial, since ¢ # 0. In other words,
what we discovered is that F'(Q) is, in fact, the zero locus of a real homogeneous quadratic
polynomial, which is completely described by a symmetric 3 x 3 real matrix A. Such a
matrix is similar, over GL(3,R), to a diagonal matrix whose entries are either 1, 0 or —1.
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4 Point-line duality and Green’s Theorem

Because F(Q) does not intersect RP?2, A must be definite. Thus, after a suitable real change
of coordinates, we may assume that the biholomorphism F : N' — CP? identifies Q with
the standard conic Qo C CP?, given by

zS—i—z%%—z%:O,

without losing any of the other properties of F.

All these procedures where done for an arbitrary Z,-manifold (M, g) = (RP?, g), so that
we can repeat them to the particular case of (RP?,can). The diffeomorphism ® : M — RP?
constructed in Theorem 4.11 is then described by

O(p) =P <= F(Z,) = F(Zp), (4.21)

where untilded letters are those related to the construction on (M, g), and tilded ones are
from (RP?, can). Indeed, what was actually constructed in Theorem 4.11 was an identi-
fication M — RP?* induced by the map p — F(X,)*, while the same construction on
(RP2, can) gives a diffeomorphism RP? — RP?* from the application p — F (iﬁ)i. Since
we view ® : M = RP? as the composition of M — RP?* with the inverse RP2* — RP2, &
is then characterized by (4.21). In particular, both curves C and € are mapped biholomor-
phically to Qp, so that

F(T(r Y (p))) = F(S,) N Qy and F(¥(77(p))) = F(S5) N Qo.

Hence the holomorphic map

makes the diagram

o
4)6
7

C
\ﬂ
[0
M
commute.

We can now finish the proof. For this, notice that, since both 7 and 7 are conformal, and
because ¥ is a biholomorphism of Riemann surfaces, the diffeomorphism @ is also conformal.
In particular, h := ®*can = e?“g for some function u € C*(M). Denote by V9 and V" the
respective Levi-Civita connections of g and h. By the formula relating conformal metrics,

RP? (4.22)

we have

V&Y = VAY = du(X)Y + du(Y)X — g(X,Y)grad, (u)
for every X,Y € X(M). Since V9 and V" are projectively equivalent by construction,

VLY = VAY = w(X)Y +w(Y)X
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4.3 The final argument

for some 1-form w. Hence
w(Xp)Yp +w(Yp)Xp = du(Xp)Yy + du(Yp) Xp — g(Xp, Y}D)gradg(u) (4.23)

for every pair of tangent vectors X,,,Y, € T,M, for any point p € M. Taking X, Y}, to be
orthonormal and such that w(Y,) = 0, we then see from (4.23) that

W(X,)Yy = du(X,)Y, + du(Y,)X,.

Because X, and Y}, are linearly independent, we see that w(X,) = du(X,) and du(Y,) =
0 = w(Y}). This implies that du = w, since they are equal on a basis for each tangent space.
Thus (4.23) can be further simplified to

9(Xp, Yp)erady(u), =0, VX, Y, € T,M, Vpe M.

If we take X, =Y}, # 0, we see that grad (u) = 0. Consequently, u is constant. Since all
geodesics of (M, g) and (RP?, can) have the same length 7, €2* must be identically equal to
1. This proves that ® : (M, g) — (RP?, can) is an isometry, as desired. O
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5 Conclusions and further directions

Our objective was to give a brief introduction to the theory of Zoll manifolds. The scope
was limited to the two-dimensional case, and even so we did not study in depth the Zoll
metrics on the sphere. This chapter tries to give a panorama of what comes next.

5.1 Topological and geometric facts about Zoll manifolds

More can be said about the topology of Zoll manifolds than what we proved in section 2.1.
Perhaps the best result in this direction is the Bott-Samelson Theorem, which can be stated
as follows:

Theorem 5.1 (Bott-Samelson — [Bot], [Sam], see also [Bes|, ch. 7). The integral coho-
mology ring of a Zoll manifold is the same as that of a CROSS.

As for the geometric properties of such manifolds, we mention two results. The first is
about their volume. There is an interesting theorem by A. Weinstein relating the volume of
a n-dimensional Zoll manifold to the volume of the n-dimensional sphere with its canonical
metric.

Theorem 5.2 (Weinstein — [Wei|, see also [Bes], ch. 2). If (M,g) is a n-dimensional

Z-manifold, then the ratio
Vol(M,g) (2m\"
Vol(S”, can) \
is an integer i(M, g), called the Weinstein integer of the Zoll manifold (M, g). In particular,

if (M, g) is a Zar-manifold, then the volume of (M, g) is an integral multiple of the volume
of (S, can).

The Weinstein integer depends continuously on the metric g, so it stays constant under
continuous deformations. However, we do not know in general if the space Z(M) is con-
nected — this is an open question even for the 2-sphere (see Section 5.4 below). Therefore, a
priori there could be two different Zoll metrics on a given manifold with different Weinstein
integers. Fortunately, this is not the case for the spheres.

Theorem 5.3 (Weinstein and Yang — [Wei], [Yan], see also [Bes|, ch. 2). The Weinstein
integer of a Zoll sphere (S",g) is 1. In particular, Vol(S",g) = Vol(S",can) whenever
g € Z(S", 2m).

Another interesting property of Zoll manifolds is that their Laplace spectra are asymptot-
ically well behaved. We do not state the result here, but refer the reader to [Bes], Chapter
8, specially to the Duistermaat-Guillemin Theorem in Section 8.B.
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5.2 The Blaschke conjecture

A notion closely related to that of a Zoll surface is that of a Blaschke surface. Put simply,
a Blaschke surface is a Riemannian surface (M2, g) for which the following condition holds:
For every pair of points p,q € M such that ¢ € Cut(p), there are exactly two shortest
normalized geodesics (called segments) v1,72 : [0,{] — M from p to ¢ and ~1(0) = —~5(0).
With a bit of work, it is not hard to show that the Green Theorem proved in Chapter 4 is
equivalent to the result below (see [LM1] or [Bes|, ch. 5):

Theorem 5.4 (Green). If (M,g) is a Blaschke surface, then it is isometric either to
(S%, kcan) or to (RP? kcan) for some constant k > 0.

The definition of a Blaschke surface generalizes, in higher dimensions, to that of a Blaschke
manifold. These are Riemannian manifolds (M", g) with the extra condition that, for any
pair of points p,q € M with g € Cut(p), the set

{7/(0) : v is a segment from p to ¢} C T,M

is a whole great sphere of the unit tangent space UM = {u € T,M : g(u,u) = 1}.
Similarly to the Zoll case, all CROSS’es are Blaschke manifolds. In dimension two, Green’s
theorem tells us that the CROSS’es are the only examples of Blaschke manifolds. In higher
dimensions, however, the question whether every Blaschke manifold is isometric to a CROSS
is, to the author’s knowledge, still widely open.

Blaschke conjecture. FEvery Blaschke manifold is isometric to a CROSS.

5.3 Other types of Zoll structures

Zoll projective structures are not the only possible generalization of Zoll metrics. As dis-
cussed at the beginning of Section 2.2, geodesics can be interpreted in two different way:
as solutions of a variational problem, or as curves with zero acceleration. The notion of
Zoll projective structures emerged from this second viewpoint, but from the first is derived
another possible perspective. While in dimension one geodesics are critical points for the
length functional, in higher dimensions minimal submanifolds are critical points for the
area functional. Hence, if we substitute the word “geodesic” with the expression “minimal
submanifold”, what we get is an entirely new definition:

Definition 5.5. Let ©* be a closed k-dimensional manifold. A 3-Zoll manifold is a Rieman-
nian manifold (M, g) of dimension n > k, together with a family Z of embedded minimal
submanifolds Z in (M, g) that satisfies:

1) every Z € Z is diffeomorphic to ¥;

2) for every p € M and every k-dimensional vector subspace m C T, M, there is a unique
Z = Z, » that passes through p with 7,7 = m; and
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3) all Z € Z have the same area in (M, g).

The family Z is called a (X-)Zoll family and the metric g, a X-Zoll metric. We write
g€ Z(M,X) or g € Z4(M,¥) if we want to emphasize that the area of the submanifolds
Z e Zis A.

When (M™", g, Z) is a ¥*-Zoll manifold, each surface Z C M lifts canonically to
Gri(TM) ={(p,7) : p € M and 7 is a k-vector subspace of T, M}

as Z = {(p,T,Z) € Gri(TM) : p € Z}, and the collection Z induces a foliation F of
Gri(TM). We can then define N = Gri(T'M)/F the leaf space, called the space of -
submanifolds of M. This space has a canonical bijection to Z, but the point is that we now
get a picture analogous to that of the double fibration (2.5) in Chapter 2. We may impose
the extra condition:

4) the ¥-Zoll manifold (M, g, Z) is said to be tame when its space of X-submanifolds
N has the structure of a smooth manifold for which the canonical projection v :
Gri(TM) — N is a fiber bundle with fiber 3. In this case, we also call the metric g
tame.

As for the classical notion of Zoll manifolds, there are many interesting questions in this
generalized setting. For example, the discussion of Zoll manifolds presented in this text
started by asking if there were other metrics on the 2-sphere all of whose geodesics were
simply closed and of the same length. This question can be posed for -Zoll manifolds in
many different ways. Here is one of them:

Question. Are there other S¥-Zoll metrics on the sphere S™ aside the (multiples of the)
canonical metric?

Very recently, L. Ambrozio, F. Marques and A. Neves [AMN] gave an affirmative answer
for the codimension 1 case. In fact, they generalized Guillemin’s theorem in the following
way:

Theorem 5.6 (Ambrozio-Marques-Neves — see [AMN], Theorem A). Let p be a smooth
odd function on the sphere S™, n > 3. Then there exists a smooth one-parameter family of
smooth functions p(t) on S™, —6 <t < 4, with p(0) =0 and p'(0) = p such that

i) the metric g(t) = e**Mcan € Z(S",S" 1) for every t;

ii) the triple (S, g(t), 2), where Z; is the Zoll family of embedded S"~! «— S™ of g(t), is
tame for all t; and

iii) the space of S"'-submanifolds Ny of e2?Wcan is diffeomorphic to RP™ for each t.
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5 Conclusions and further directions

In higher dimensions, the projective duality between KP" and its dual KP"™* = P((K"*1)*)
is not about points and lines, but rather about points and hyperplanes. It then would be
natural to ask if there is some kind of rigidity as for the case of dimension two. However, if
there is, it is not so strong as to have a uniqueness resut such as that of Green’s theorem.
Indeed, in dimension greater than two, this uniqueness already breaks down as states the
next theorem.

Theorem 5.7 (Ambrozio-Marques-Neves — see [AMN], page 65 for all n > 3). For all
n > 3, there exist non-homogeneous Riemannian metrics on RP™ with minimal projective
hyperplanes.

5.4 Comments on LeBrun and Mason’s approach

The ideas from Twistor Theory used by LeBrun and Mason changed the way we view
the theory of Zoll surfaces. In their work [LM1], they also considered the case of Zoll
projective structures on the sphere, and they found a relation between these structures and
holomorphic discs. Unfortunately, nothing of this was discussed in this brief monograph,
and the reader is referred to the papers [LM1] and [LM2]. We only mention a conjecture
they pose (see [LM1] for the terminology):

LeBrun and Mason’s conjecture. The moduli space of Zoll metrics on S? is connected.
Moreover, once we mark our Zoll structures by choosing an orthonormal frame at some
base-point, the moduli space of marked Zoll structures is in natural 1-1 correspondence with
the set of totally real Lagrangian embeddings of RP? — (CP? — C,w) which are homotopic
to the standard embedding.

As interesting as this Twistor-theoretic approach may look, it has some limitations. For
instance, it is not likely to give much information about Zoll manifolds of higher dimensions,
even when we consider Zoll manifolds in the generalized sense of Definition 5.5. This is
because the whole argument given in the proof of Green’s theorem used two properties that
only coexist in dimension two:

(i) the duality between points and lines on the projective plane; and

(ii) each embedded submanifold considered (in this case, the geodesics) has codimension
n in a 2n-dimensional manifold (n = 1 for Zoll surfaces).

As said before, the projective duality in higher dimensions relates points and hyperplanes.
Hence, if we want to find a generalization of LeBrun and Mason’s construction, we should
perhaps consider manifolds with Zoll families of minimal hypersurfaces. However, we used
the fact that, in dimension two, fiber-wise complex structures in a surface M? are in one-to-
one correspondence with the space PIcM — PT'M. When we deal with manifolds of (real)
dimension 2n, this should be replaced by Grc,(TcM) — Grp(TM), where Gre ,(Tc M)
is the set of all complex vector subspaces of T ,M of complex dimension n, and we view
Grn(TM) C Gren(TcM) by identifying ©# € Gry,(TM) with 7 ® C C Gre ,(TcM).
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5.4 Comments on LeBrun and Mason’s approach

In other words, there are two different possibilities if we want to work with some gener-
alization of LeBrun and Mason’s ideas: the first is to consider manifolds with Zoll families
of hypersurfaces; the second is to study X"-Zoll manifolds of dimension 2n. Unfortunately,
not being able to have both properties at the same time may be a serious limitation that
does not seem easy to overcome. Even so, in view of Theorem 5.7 and Theorem 4.11, it
sounds reasonable to ask the following:

Question. Is it possible to find, for every tame RP" '-Zoll metric g on RP", a diffeo-
morphism F : RP" — RP" in such a way that F(Z) is a hyperplane for every minimal
submanifold Z in the Zoll family Z of g%
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