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A B S T R A C T

In this work, we apply the Bergault-Drissi-Guéant (BDG) optimal
liquidation model to stocks in the Brazilian market. The model at hand
assumes the price processes follow a mean-reverting, multidimensional
Ornstein-Uhlenbeck dynamics, which allows for both correlation and
co-integration dependency structures between the assets. As a baseline,
we compare the results, measured in terms of the resulting inventory
and wealth processes, to both single and multidimensional versions of
the seminal Almgren-Chriss (AC) optimal liquidation model. In the
studied case, the BDG model is able to outperform the AC models in
terms of both the mean wealth level and its variance, notwithstanding
its unconventional inventory process profile. As an additional line of
work, we apply the Deep Galerkin Method for partial differential equa-
tion solving to the BDG model’s Hamilton-Jacobi-Bellman equation.
Even though such novel method is able to satisfactorily tackle simpler
forms of the problem, it does not successfully generalize to the case at
hand, arguably because of the numerically problematic profile of the
solution.

Keywords: Limit Order Book, Optimal Portfolio Liquidation, Almgren-
Chriss Model, Bergault-Drissi-Guéant Model, Ornstein-Uhlenbeck Pro-
cess, Co-integrated Series, Hamilton-Jacobi-Bellman Equation, Deep
Galerkin Method.
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R E S U M O

No presente trabalho, o modelo de liquidação ótima de Bergault-
Drissi-Guéant (BDG) é aplicado a ações do mercado brasileiro. Tal
modelo assume que os preços dos ativos seguem uma dinâmica mul-
tidimensional de reversão à média do tipo Ornstein-Uhlenbeck, que
suporta tanto estruturas de correlação quanto de co-integração no que
diz respeito à dependência entre as ações. Os resultados, mensura-
dos com base nos processos de inventário e de riqueza obtidos, são
comparados com o modelo de Almgren-Chriss (AC) em suas versões
uni e multidimensional. No caso estudado, o modelo BDG é capaz de
superar os modelos AC, tanto em relação ao nível médio de riqueza
quanto em relação à sua variância, apesar do perfil pouco convencional
do processo de inventário resultante. De modo adicional, também são
aplicadas às equações de Hamilton-Jacobi-Bellman do modelo BDG téc-
nicas de solução de equações diferenciais parciais baseadas no Método
Profundo de Galerkin. Apesar de tal método ser capaz de solucionar
satisfatoriamente formas mais simples do problema, ele não é capaz de
atender o caso mais geral em tela, presumivelmente em razão do perfil
numérico problemático da solução.

Palavras-chave: Livro de Ordens, Liquidação Ótima de Portfólios, Mo-
delo de Almgren-Chriss, Modelo de Bergault-Drissi-Guéant, Processo
de Ornstein-Uhlenbeck, Séries Co-integradas, Equação de Hamilton-
Jacobi-Bellman, Método Profundo de Galerkin.
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1I N T R O D U C T I O N

Capital markets are essential to the modern world economies and, as
comprehensively and deeply as possible, it is critical to examine and
understand their characteristics and behavior. Particularly with respect
to secondary markets, a notable phenomenon is that of the impact on
price levels due to successive or sizable buy and sell orders. Besides
being intrinsically linked to the basilar supply and demand dynamics
of any market, this phenomenon can also be concretely explained as
a result of the organization of exchanges around Limit Order Books
(LOBs). As later expounded, it is possible both to empirically quantify
such impacts and to develop financial models that take them into
account. A critical application of such knowledge is that of asset
liquidation, particularly when the assets’ disposal is required to take
place in a short time frame or, equivalently, in large volumes with
respect to the available liquidity pool. In such scenarios, the liquidating
agent may incur in significant losses if a naive strategy is adopted
without better discernment of potential price impacts. On the other
hand, with proper risk management, a well balanced strategy can better
handle the inescapable trade-off between liquidation speed and the
expected losses due to price impacts.

After the present introduction, this work begins by describing in
Chapter 2 some fundamental concepts related to the structure of ex-
changes, particularly (i) the orders agents use to materialize their
buying or selling intentions to other market participants and (ii) the
LOB, which is the logical data structure in which the orders are con-
solidated and matched against each other to result in trades. Further,
it is also illustrated how LOBs can be used to quantify potential price
impacts on incoming orders. The chapter ends with a description of
the raw order data that are used in the present work.

In Chapter 3, we present two optimal liquidation models, namely
the Almgren-Chriss (AC) and the Bergault-Drissi-Guéant (BDG) ones.
The first is a classic and well known model in the finance literature,
while the second is a more recent development which represents a
generalization for the case with co-integrated assets. All the models’
main concepts and equations are sub-sequentially presented, and their
respective solutions are explained in detail. The chapter ends with
a discussion on the procedures used in order to estimate all models’
parameters.

In Chapter 4, the general concept of time series co-integration is
defined and explained. We also present some statistical tests that can be
used in order to identify co-integrated series. The chapter is concluded
with a brief discussion of co-integration in the context of continuous
time processes.
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2 Chapter 1. Introduction

All theory presented in the previous chapters is finally applied in
Chapter 5. We begin it by describing the real price series used and the
respective co-integration tests. We then estimate the models’ param-
eters from such price and order data and solve all models, obtaining
their respective control and inventory curves. The models are then
compared to each other in relation to their wealth process, both in
terms of their mean levels and variances. The chapter is concluded
with a discussion about the sensitivity of the models to some of their
parameters, particularly the risk aversion and terminal penalty ones,
which are neither observed nor estimated, and must be discretionarily
chosen.

In Chapter 6, we present an alternative numerical solution to the
BDG model equations, which is based on neural networks techniques.
We begin by describing the general method and then we apply it to
the model’s partial differential equation using a simplified parameter
set. We gradually increase the difficulty of the optimization problem
by changing the parameter values and adjusting the algorithm accord-
ingly. Unfortunately, such efforts fail to generalize when applied to the
parameter set with the previously estimated values. We conclude the
chapter with a brief discussion on the possible reasons for such result.

We finally conclude this work in Chapter 7 by wrapping up all
addressed themes, including the obtained results and suggestions for
future work.



2M A R K E T S T R U C T U R E A N D P R I C E I M PA C T

In general terms, exchanges can be characterized as organized markets
where securities, such as stocks, options, or futures, are exchanged
between matching buyers and sellers upon financial settlement. Be-
sides their role as trading facilitators, exchanges also typically provide
many other core services such as market-making, securities clearing,
settlement, registration and deposit, collateral management, among
others. They are also responsible for much of the enabling infrastruc-
ture for the smooth operation of financial markets worldwide. As such,
exchanges are paramount for liquidity provision, price discovery, and
transparency in the markets in which they operate, performing an
essential economic role.

Even though bilateral, over-the-counter (OTC) transactions are
common in some less liquid markets (e.g., corporate bond markets),
exchange-based trading platforms became dominant in recent times
in more developed ones (e.g., stock markets). Such trading platforms,
mostly electronic nowadays, are predominantly organized around Limit
Order Books (LOB) to which prospective buyers and sellers post buy
and sell orders during trading periods. In addition to the more regular
continuous trading phase where individual buyers are matched against
individual sellers, an order pair at a time, there can also be periods
of auctions where several agents (both buyers and sellers) interact
simultaneously to form a resulting settled price for a group of orders.
Auctions are common during opening and closing hours, but they can
also take place throughout the trading day, in response to unusual
events (e.g., volatility shocks) accordingly to the exchange’s rules. In
any case, both continuous trading and auctions rely on the LOB as a
central repository for all available orders.

In the following sections, we describe, in general terms, how LOBs
work, and present the main and most relevant types of orders with
respect to the present work. We also discuss the concept of price impact
which arises due to this market structure. This chapter’s exposition has
as its main references the introductory chapters in Cartea et al. (2015)
and Guéant (2016).

2.1 Order types and the Limit Order Book

For any trade to come about in a marketplace, it is essential that (i) mar-
ket agents are able to signal their willingness to buy or sell the assets
at hand and that (ii) corresponding buyers and sellers are matched
against each other. These two conditions are satisfied, respectively, by
orders and the matching algorithms that rely on the LOB.

3



4 Chapter 2. Market structure and price impact

In a basic setup, an agent’s buy (or sell) deal intentions can be
signaled to the market via orders that express his transaction conditions.
There are two main types of orders: limit orders and market orders. A
trader issuing a limit order signals the market his intention of buying
(or selling), at a predetermined price, a maximum quantity of shares of
a given stock1. This type of order can be considered “limited” in the
sense that the price paid (or received) per share in the case of buy (or
sell) orders is limited in the agent’s favor2. On the other hand, a trader
issuing a market order signals to the market his intention of buying
(or selling), at the best available price, a predetermined quantity of
shares of a given stock. Since a market order usually results in an
immediate trade, market orders are considered aggressive. Equivalently,
limit orders are considered passive, since they usually do not result in
immediate trades and require a new upcoming order to be matched
against and eventually executed3. Therefore, a key distinction between
both types of orders is that limit orders guarantee the price level of
the transaction but do not assure its occurrence, while market orders
guarantee execution and quantity but do not guarantee price levels.

Still taking into account this basic setup, it is necessary for orders
to be matched against each other and eventually executed. Matching
algorithms typically depend on the LOB, which can be characterized
as a data structure that holds and keeps track of all current and valid
orders. For each price level (e.g., one cent ticks), the LOB maintains a
list of all current (and available for execution) limit orders. Figure 2.1
illustrates a portion4 of PETR4’s LOB on November 27th, 2019, exactly at
15:00. Each vertical bar represents the total available volume, indicated
by the y-axis, at several price levels, indicated by the x-axis. The total
volume at each price level is obtained by the sum of the (remaining)
volumes of all valid limit orders with the corresponding price5. LOBs
are composed of two sides that represent the available buy and sell
limit orders. On Figure 2.1, each side is represented with a different
color, with the buy side to the left and the sell side to the right of the
graph. The highest price on the buy side is usually called bid-price and
represents the maximum price a buyer is willing to pay for a share of
stock at a given moment. Analogously, the lowest price on the sell side
is usually called ask-price and represents the minimum price a seller is
willing to take for a share of the same stock. The difference between the
bid and ask prices is denoted as bid-ask spread and the average between
these prices is called mid-price, which is a common indicator for the
spot price for a given stock6. It should be noted that, by construction,

1 The present discussion is broadly applicable to financial securities in general, but we
restrict our scope to stock shares for convenience’s sake.

2 It is possible, nevertheless, that the buyer pays less per share (or, respectively, that the
seller receives more) in special circumstances (e.g., auctions).

3 In the real world, nothing prevents agents from issuing limit buy (sell) orders at price
levels above the current ask price (below the bid price). These limit orders should also
be considered aggressive since they trigger trades. Nonetheless, for simplification’s
sake, we assume aggressive limit orders are not allowed.

4 Only a few price levels are displayed at the graph.
5 Individual orders are not represented on Figure 2.1.
6 Another usual indicator is the volume weighted average of the bid and ask prices.
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the bid price is always strictly smaller than the ask price, since only
unmatched limit orders are kept in the LOB.
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Figure 2.1: PETR4 Limit Order Book (2019–11–27 15:00)

Each time a new order arrives at the market during trading hours,
an accompanying matching engine checks if one or more trades can
take place and if so, processes the resulting transactions. Otherwise,
if a new (limit) order cannot be matched against any other order, it is
added to the corresponding price level in the LOB. In general, market
orders are always matched against previous limit orders according to
the following (simplified) rules:

• At first, the new buy (sell) market order is matched against the
available sell (buy) limit orders that offer the best, lowest (highest),
price in the LOB;

• If there are more than one sell (buy) limit order available at the
best price level, the market order is matched against the older
(first to arrive) limit order;

• Matched orders are processed (executed) against each other tak-
ing into account the minimum available volume among both,
which may give rise to partially executed orders;

• Completed orders (with all requested volume matched and pro-
cessed) are removed from the LOB;

• If the market other at hand is bigger (in terms of quantity de-
manded) than the previously matched limit order, then the next
older limit order at the best price level is matched (and executed);

• When the quantity demanded by the market order is larger than
the volume available at the best price, it is sequentially matched
against limit orders at the next best price level, following the
rules above, until the whole order volume is processed.



6 Chapter 2. Market structure and price impact

Although the description presented above is somewhat simplistic
when compared to what happens on exchanges in the real world, it
is sufficient for the purposes at hand. It also highlights one last key
distinction between market and limit orders concerning liquidity: while
limit orders usually provide liquidity to the market by adding volume
to the LOB, market orders consume it by removing volume.

2.2 Price impact

Given the trading framework presented in the previous section, one can
infer that market orders always take place at worse price levels than
the current mid-price (spot). At best, small buy (sell) market orders
can occur at the ask (bid) prices which, by definition, are different
from the mid-price. On the other hand, big market orders may be
executed at significantly worse prices insofar as they are matched
against continuously worse priced orders. This process is usually
referred as “walking” the LOB. The resulting price of an executed
market order, which corresponds to the volume weighted average
prices of all matched limit orders, is usually denoted as its effective
price.

As an illustration of walking the LOB, consider the order data
displayed in Table 2.1, which correspond to the same LOB indicated
by Figure 2.1. Suppose that an agent sends a small buy market order
for just 3,000 shares. The available volume present at the first price
level on the sell side of the LOB (4,400 shares at $29.40) is sufficient
to cover this order. The agent will pay7 a total of $88,200 monetary
units8 for 3,000 stocks, which correspond to an effective price of $29.40
per share. Alternatively, suppose the agent sends a bigger buy market
order of 300,000 shares. Now, it is clear that the volume available at the
first price level on the sell side of the LOB is not enough to cover this
order. In fact, we need to resort to the first four price levels on the sell
side of the LOB to account for the demanded volume. The agent will
now pay a total of $8,825,979 monetary units9 for 300,000 stocks, which
correspond to an effective price of approximately $29.42 per share.
Since the mid-price is $29.395, the price impacts for both scenarios are
approximately $0.005 and $0.025, respectively. The effective price for
buy market orders increases monotonically with volume. Conversely,
the effective price for sell market orders decreases monotonically with
volume. This phenomenon is illustrated in Figure 2.2 which presents
the effective price curves as functions of order volume for both buy and
sell orders extracted from the same LOB. Note, in particular, that outlier
limit orders with price levels significantly different from the mid-price
can severely impact the effective price curves for larger volumes. The
Figure 2.2 also exhibits the linear approximations of such effective price
curves, considering only 75% of total volume in each side of the LOB
(in order to avoid outlier effects).

7 For simplification’s sake, we are ignoring transaction costs in this illustration.
8 Amount given by 29.40× 3000.
9 Amount given by 29.40× 4400 + 29.41× 96700 + 29.42× 95500 + 29.43× 103400.
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Table 2.1: PETR4 Limit Order Book (2019–11–27 15:00)

Buy Side Sell Side
Volume Price Price Volume

12 300 $29.39 $29.40 4400
30 500 $29.38 $29.41 96 700
52 800 $29.37 $29.42 95 500
33 900 $29.36 $29.43 120 200
41 200 $29.35 $29.44 54 800
31 100 $29.34 $29.45 59 100
32 600 $29.33 $29.46 124 700
34 000 $29.32 $29.47 36 600
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Figure 2.2: PETR4 effective price curves (2019–11–27 15:00)

It is clear from the discussion above that market agents can affect
prices when trading, in particular when their market orders walk the
LOB consuming liquidity. Some authors distinguish between two kinds
of price impact: temporary and permanent. According to Almgren and
Chriss (2001), “temporary impact refers to temporary imbalances in
supply and demand caused by trading leading to temporary price
movements away from equilibrium” and “permanent impact means
changes in the equilibrium price due to trading”. Thus, the key dis-
tinction between both types of impact is influence on the “equilibrium”
price. In their seminal work on optimal execution, Almgren and Chriss
model both impacts as linear functions that depend on the rate of trade.
For an alternative and somewhat different approach, also consider-
ing a more empirical point of view, Cartea et al. (2015) estimate the
permanent price impact linearly relating it to the order flow10 using
time intervals of five minutes and the temporary price impact linearly

10 Order flow is the difference between the volumes of buy and sell market orders during
a time interval.



8 Chapter 2. Market structure and price impact

relating it to order volume using one second apart snapshots of the
LOB.

2.3 Brazilian stock market order data

Recall that, so as to build LOBs, one needs to resort to the complete
order dataset and not merely rely on intraday price series or carried
out trades information. The LOB is the fundamental data structure
that allows one to estimate temporary price impact parameters. Taking
into account the fact the optimal liquidation models presented in the
present work rely on price impact information and that we want to
apply such models in real world based asset liquidation simulation
scenarios, we have chosen to use real LOBs built from intraday order
data obtained from the Brazilian stock market (B3).

Daily data files with all orders submitted and processed during
each trading day used to be freely available on B3’s FTP servers up
until mid 2020 via the “Market Data” service11. Unfortunately, access
to B3’s file servers has been revoked since then12, and, to the best
of our knowledge, B3 does not provide order data any longer (even
though intraday trade data are still available). Anyhow, we had access
to complete order data from 2019, which we use in the present work.

For any given trading day, there used to be two files with buy and
sell orders, respectively. A third, somewhat redundant, file was also
available which contained trades data. Each line in the orders files
corresponds to an order record with information such as:

• Trading session date;

• Stock ticker;

• Order direction (buy/sell);

• Order sequence (identification) codes;

• Order event, which refers to the order’s stage in relation to its
life-cycle (e.g., order entry, order update, order cancellation, order
expiration, order trade);

• Order priority indicator;

• Order price;

• Order total and traded quantities;

• Order inclusion date and time;

• Order status (e.g., new, partially executed, totally executed, can-
celed, updated, expired);

11 Market Data service accessible at https://b3.com.br/en_us/market-data-and-indices/
data-services/market-data.

12 For the file servers deactivation notice, see B3’s Circular Letter 018/2020-PRE, is-
sued on February 27th 2020, retrievable at https://b3.com.br/en_us/regulation/
circular-letters-and-external-communications.
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• Order trade condition (neutral, passive or aggressive order).

For more information on B3’s order and trade files, refer to the (now
deprecated) R language package GetHFData (Perlin & Ramos, 2016).

As part of the present work, we have developed a computer pro-
gram to read the raw order data files, parse all order records and
add each incoming order into an evolving and dynamic LOB. The
program also takes periodic snapshots (every one minute) of the LOB
and extracts or computes several statistics, such as:

• Bid, ask and mid-prices;

• Bid-ask spreads;

• Temporary price impact coefficients.





3T H E O P T I M A L L I Q U I D AT I O N P R O B L E M

Portfolio managers and other financial agents frequently need to liqui-
date positions in short notice in order to comply with risk mandates or
to fulfill withdrawal requests from clients, for instance. Often enough,
a trade-off emerges between execution speed and cost minimization,
because of the price impacts typically entailed by fast trading. Almgren
and Chriss (2001) provide some of the earliest rigorous treatments
of optimal execution, and their work remain influential to this day.
They frame the optimal execution problem in terms of maximizing the
expected revenue of trading (or equivalently minimizing trading costs)
with a penalty for the uncertainty of revenue (or cost). Ensuing this
seminal work, many other models and extensions have been proposed
by the academia ever since, and many of those have made their way
into the real world practice of financial markets.

The original AC model is discrete in time and uni-dimensional with
respect to the number of assets, whose price processes are described
with a Bachelier dynamics (arithmetic Brownian motion). Both tempo-
rary and permanent price impacts are linear functions in relation to
the trade rate. The efficient trading strategies are obtained as solutions
to mean-variance optimization problems. Furthermore, given its rela-
tive simplicity and straightforwardness, its solution (i.e., the optimal
execution rate) can be written in analytical form.

Extensions to this benchmark model have been proposed in several
directions (e.g., continuous time, multi-asset, mean-reverting price
dynamics, non-linear price impacts, alternative optimization tech-
niques). With respect to the work at hand, we are particularly in-
terested in exploring multi-asset trades with possibly mean-reverting
or co-integrated dynamics. In practice, market agents often hold multi-
asset portfolios and need to liquidate them simultaneously and, even
in single asset liquidation scenarios, it might be beneficial to factor
other assets into the strategy. Evidently, single-asset models are not
able to capture eventual joint price dynamics such as innovation corre-
lation or even series co-integration. Besides, many existing multi-asset
models simply consider correlated Brownian motions when modeling
the joint dynamics of the price processes, but such models may be
overly unrealistic and unable to capture portfolio-level impacts and
costs. Multivariate Ornstein-Uhlenbeck (OU) dynamics are particularly
attractive in this context, since such models are still relatively lean and
sufficiently general to cover many multidimensional dynamics, includ-
ing correlated Brownian motions and mean-reverting or co-integrated
ones. Besides, such models are widely used in the financial world, both
by academia and practitioners.

11



12 Chapter 3. The optimal liquidation problem

Almgren and Chriss propose a multi-asset extension to their original
model in an appendix of their seminal paper. As before, this model
is discrete in time and assumes a Bachelier dynamics for the price
processes. The multidimensional facet of the model is handled by the
employment of correlated Brownian increments. This pioneer model
can be considered as a benchmark for comparison with subsequent
extensions. One of the first multi-assets model to incorporate an OU
dynamics is developed in Cartea et al. (2018), in which the execution
problem is treated as an optimal stochastic control problem. The paper
applies the model to the execution of a basket of co-integrated stocks
and shows how the additional dynamics information can be used to
outperform Almgren-Chriss’ model. The authors assume the agent
wants to maximize an objective function given by the expected profit
and loss (PnL) abated by a running penalty linked to the variance of
the portfolio. Another similar model is the one proposed in Bergault
et al. (2022), hereby referred as Bergault-Drissi-Guéant (BDG), which
uses as its objective function an expected exponential utility of the PnL.
In the following sections, the multivariate AC and the BDG models are
described in detail.

3.1 Almgren-Chriss multi-asset model

In this section, we describe the modeling framework, notation and
main results presented in Almgren and Chriss (2001). The present
exposition focus on the multi-asset version of the model. For a more
thorough discussion of the Almgren-Chriss (AC) model, including the
original mathematical results, we refer the reader to the paper itself.

The AC model considers a market with m ∈N assets and an agent
who wishes to completely liquidate a portfolio over a period of time
[0, T], with T > 0. The authors divide the trading period into N ∈N

time intervals of length τ = T/N and define the discrete times tk = kτ,
for k = 0, . . . , N. They also define the trading trajectory to be a list
x0, . . . , xN , where xk = (x1,k, . . . , xm,k)

ᵀ are column vectors representing
the inventory, i.e., the quantity of each stock, held at time tk. The initial
inventory is x0 = X = (X1, . . . , Xm)

ᵀ and complete liquidation requires
xN = 0. Equivalently, it is possible to specify a trading strategy by
the trade list n1, . . . , nN , where nk = xk−1 − xk is the column vector
indicating the number of stocks sold between times tk−1 and tk. The
trading trajectory, the trade list and the initial inventory are related by
the equations

xk = X−
k

∑
j=1

nj =
N

∑
j=k+1

nj,

for k = 0, . . . , N. Note that, if xjk < 0, then the stock j is held short at
time tk; and if njk < 0, then the stock j is being bought between tk−1
and tk.

As usual, the AC model assumes that the stock prices Sk evolve
according to the two exogenous factors of volatility and drift. Volatility
and drift are exogenous in the sense that they are assumed to be
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the result of market forces that occur randomly and independently
of the agent’s trading. Nonetheless, as a simplification, the authors
assume the drift factor is null since the agent has no information
about the direction of future price movements. As expected, the model
also incorporates the endogenous factor of permanent market impact,
which model deviations from the “equilibrium” price due to the agent’s
trading. Therefore, Sk follow a multidimensional arithmetic Brownian
random walk with zero drift and a permanent market impact term. Its
dynamics is given by

Sk = Sk−1 + σ
√

τ ξk − τ g
(nk

τ

)
, (3.1)

for k = 1, . . . , N, where ξk = (ξ1k, . . . , ξrk)
ᵀ are vectors of r independent

and identically distributed standard Gaussian random variables, with
r ≤ m, and σ ∈ Rm×r represents the volatility matrix of the assets.
Furthermore, σ is such that C = σσᵀ, with C ∈ Rm×m, is a symmetric
positive-definite covariance matrix. Additionally, g, h : Rm → Rm are,
respectively, the permanent and temporary impact functions of the
average rate of trading vk = nk/τ during the interval (tk−1, tk]. It is
assumed that both impact functions are linear, with expressions given
by

g(v) = Γv (3.2)

and

h(v) = ε� sgn(v) + Hv, (3.3)

where Γ, H ∈ Rm×m are matrices whose ij-element represents the price
depression on stock i caused by selling stock j at a unit rate, ε ∈ Rm

is a column vector representing fixed costs of selling (e.g., half the
bid-ask spread plus fees), and � represents the Hadamard (element-
wise) product operator. It is required that H be positive-definite (i.e.,
vᵀHv > 0 for any non-zero column vector v), but it is not necessary for
Γ and H to be symmetric. If H were not positive-definite, then there
could be a non-zero selling rate v with vᵀHv ≤ 0 that would result in
a net benefit (or at least no loss) obtained from instantaneous market
impact. Given the temporary price impact, the actual (or effective)
prices per share received on sale k can be obtained by

S̃k = Sk−1 − h
(nk

τ

)
. (3.4)

As expected, the temporary effect due to h does not influence the price
process Sk.

The authors define the capture of a trajectory to be the full trading
revenue upon completion of all trades. At each instant tk, the trans-
action revenue corresponds to the dot product nᵀ

k S̃k. Therefore, the
full trading revenue is ∑N

k=1 nᵀ
k S̃k. From (3.1) and (3.4), we can find the
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expression for the capture of a trajectory as

N

∑
k=1

nᵀ
k S̃k =

N

∑
k=1

nᵀ
k

(
Sk−1 − h

(nk

τ

))
=

N

∑
k=1

nᵀ
k Sk−1 −

N

∑
k=1

nᵀ
k h
(nk

τ

)
=

N

∑
k=1

(
xᵀk−1 − xᵀk

)
Sk−1 −

N

∑
k=1

nᵀ
k h
(nk

τ

)
=

N

∑
k=1

xᵀk−1Sk−1 −
N

∑
k=1

xᵀk
(

Sk − σ
√

τξk + τ g
(nk

τ

))
−

N

∑
k=1

nᵀ
k h
(nk

τ

)
= XᵀS0 +

N

∑
k=1

xᵀk
(

σ
√

τξk − τ g
(nk

τ

))
−

N

∑
k=1

nᵀ
k h
(nk

τ

)
,

where we rely on the fact that AC is a complete liquidation model
(i.e., xN = 0)1. The market value of the initial position is XᵀS0 and the
loss in value (i.e., the total cost of trading) incurred by a liquidation
profile x = (x1, . . . , xN) is the difference XᵀS0 −∑N

k=1 nᵀ
k S̃k. The term

∑ xᵀk σ
√

τξk represents the gain (or loss) arising from price volatility,
while the terms ∑ xᵀk τ g(nk/τ) and ∑ nᵀ

k h(nk/τ) represent losses due
to permanent and temporary price impacts, respectively. Given that
the total cost of trading, given by Cx = XᵀS0 −∑N

k=1 nᵀ
k S̃k, is a random

variable2, where x indicates the trading trajectory which represents the
control parameters of the optimization problem at hand, we can write
the expressions for its expected value E[Cx] and variance V[Cx] as

E[Cx] =
N

∑
k=1

xᵀk τ g
(nk

τ

)
+

N

∑
k=1

nᵀ
k h
(nk

τ

)
(3.5)

and

V[Cx] =
N

∑
k=1

τxᵀk σσᵀxk =
N

∑
k=1

τxᵀk Cxk. (3.6)

Given this modeling framework, the authors frame the optimal liq-
uidation problem in terms of finding trading profiles that minimize
U(x) = E[Cx] + λV[Cx] for some risk aversion coefficient λ ≥ 0.

Replacing into equation (3.5) the linear price impact functions de-
fined by (3.2) and (3.3), the expected value E[Cx] is

E[Cx] =
N

∑
k=1

nᵀ
k ε� sgn

(nk

τ

)
+

N

∑
k=1

τxᵀk Γvk+
N

∑
k=1

nᵀ
k Hvk

=
N

∑
k=1

∣∣nᵀ
k

∣∣ ε+
N

∑
k=1

τxᵀk
(

ΓS+ΓA
)

vk+
N

∑
k=1

τvᵀk
(

HS+HA
)

vk

= εᵀ |X|+
N

∑
k=1

τxᵀk ΓSvk+
N

∑
k=1

τxᵀk ΓAvk+
N

∑
k=1

τvᵀk HSvk+
N

∑
k=1

τvᵀk HAvk,

1 This is generally not the case for other liquidation models, which admit remaining
inventories at t = T.

2 Also referred as implementation shortfall by some authors.
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where the superscripts S and A denote, respectively, the symmetric and
antisymmetric parts of the corresponding matrix3. It is also assumed
that all vk = nk/τ have the same sign (i.e., we have a pure sell or
buy trading profile. Note that the authors recognize that it is possible
for some components of the trading velocity to be non-monotonic
in time, in particular when there are highly correlated assets in the
portfolio being liquidated. In this case, the previous equations are not
exactly correct because of the changing sign of the fixed cost (ε) terms.
In such scenarios, one could simply pragmatically assume this sign
changing effect is negligible or, in order to preserve mathematical rigor,
assume ε = 0.). In any case, the expression above can be simplified by
noting that, for any column vector v, we have vᵀHAv = vᵀ(HA)

ᵀv =
−vᵀHAv = 0, which implies the last summation term above is null.
Further, we can rewrite the first summation term above as

N

∑
k=1

τxᵀk ΓSvk =
N

∑
k=1

xᵀk ΓSnk =
N

∑
k=1

xᵀk ΓS (xk−1−xk)

=
N

∑
k=1

[
xᵀk ΓSxk−1−xᵀk ΓSxk

]
=

1
2

N

∑
k=1

[
xᵀk−1ΓSxk−1−xᵀk ΓSxk−

(
xᵀk ΓSxk−2xᵀk ΓSxk−1+xᵀk−1ΓSxk−1

)]
=

1
2

N

∑
k=1

[
xᵀk−1ΓSxk−1−xᵀk ΓSxk−

(
xᵀk−xᵀk−1

)
ΓS (xk−xk−1)

]
=

1
2

N

∑
k=1

[
xᵀk−1ΓSxk−1−xᵀk ΓSxk

]
−1

2

N

∑
k=1

nᵀ
k ΓSnk

=
1
2

XᵀΓSX−1
2

N

∑
k=1

nᵀ
k ΓSnk,

in which we rely on the identity xᵀk ΓSxk−1 = xᵀk−1ΓSxk, since ΓS is
symmetric. Thus, we arrive at the following final expression for E[Cx]

E[Cx] = εᵀ |X|+ 1
2

XᵀΓSX +
N

∑
k=1

τxᵀk ΓAvk +
N

∑
k=1

τvᵀk H̃vk, (3.7)

where H̃ = HS− 1
2 τΓS is symmetric. We also assume τ is small enough

so as to allow H̃ to be positive-definite and hence invertible.
With E[Cx] given by (3.7) and V[Cx] given by (3.6), it is clear that

U(x) is a quadratic function of the control parameters4 x1, . . . , xN−1 and
it is strictly convex for all λ ≥ 0. Therefore, it is possible to determine
its unique global minimum by setting all its partial derivatives to zero
(i.e., ∂U/∂xjk = 0 for j = 1, . . . , m and k = 1, . . . , N − 1). The (vectorial)

3 Note that any square matrix M can be expressed as a sum of a symmetric and
an antisymmetric matrix such that M = MS + MA, with MS = 1

2 (M + Mᵀ) and
MA = 1

2 (M−Mᵀ). Additionally, recall that, if S and A are, respectively, symmetric
and antisymmetric, then Sᵀ = S and Aᵀ = −A.

4 Note that we can always replace vk in (3.7) with (xk−1 − xk)/τ.
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expression for such partial derivatives can be written as

∂U
∂xk

=
∂

∂xk

N

∑
i=1

τxᵀi ΓAvi +
∂

∂xk

N

∑
i=1

τvᵀi H̃vi + λ
∂

∂xk

N

∑
i=1

τxᵀi Cxi. (3.8)

The first term of this expression can be simplified as

∂

∂xk

N

∑
i=1

τxᵀi ΓAvi =
∂

∂xk

N

∑
i=1

xᵀi ΓA (xi−1−xi) =
∂

∂xk

k+1

∑
i=k

xᵀi ΓA (xi−1−xi)

=
∂

∂xk

[
xᵀk ΓA (xk−1−xk)

]
+

∂

∂xk

[
xᵀk+1ΓA (xk−xk+1)

]
= xᵀk ΓA ∂

∂xk
[xk−1−xk]+(xk−1−xk)

ᵀ(ΓA)
ᵀ ∂xk

∂xk
+xᵀk+1ΓA ∂

∂xk
[xk−xk+1]

= −xᵀk ΓA−(xk−1−xk)
ᵀΓA+xᵀk+1ΓA

=
(
−xᵀk−1+xᵀk+1

)
ΓA,

the second one can be written as

∂

∂xk

N

∑
i=1

τvᵀi H̃vi =
∂

∂xk

N

∑
i=1

1
τ
(xi−1−xi)

ᵀH̃ (xi−1−xi)

=
∂

∂xk

k+1

∑
i=k

1
τ
(xi−1−xi)

ᵀH̃ (xi−1−xi)

=
∂

∂xk

[
1
τ
(xk−1−xk)

ᵀH̃ (xk−1−xk)

]
+

∂

∂xk

[
1
τ
(xk−xk+1)

ᵀH̃ (xk−xk+1)

]
=

1
τ
(xk−1−xk)

ᵀH̃
∂

∂xk
[xk−1−xk]+

1
τ
(xk−1−xk)

ᵀH̃ᵀ ∂

∂xk
[xk−1−xk]

+
1
τ
(xk−xk+1)

ᵀH̃
∂

∂xk
[xk−xk+1]+

1
τ
(xk−xk+1)

ᵀH̃ᵀ ∂

∂xk
[xk−xk+1]

=
1
τ
[−(xk−1−xk)

ᵀ−(xk−1−xk)
ᵀ+(xk−xk+1)

ᵀ+(xk−xk+1)
ᵀ] H̃

=
1
τ
[−2(xk−1−xk)

ᵀ+2(xk−xk+1)
ᵀ] H̃

= − 2
τ
(xk−1−2xk+xk+1)

ᵀH̃

and the last one is equal to

λ
∂

∂xk

N

∑
i=1

τxᵀi Cxi = λ
∂

∂xk

k

∑
i=k

τxᵀi Cxi = λ
∂

∂xk

[
τxᵀk Cxk

]
= λτxᵀk (C + Cᵀ) = 2λτxᵀk C,

where we apply the matrix calculus properties (in the numerator layout
convention)

∂xᵀAx
∂x

= xᵀ (A + Aᵀ) and
∂uᵀAv

∂x
= uᵀA

∂v
∂x

+ vᵀAᵀ ∂u
∂x

.
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Equating (3.8) to zero, we get the resulting relations(
−xᵀk−1 + xᵀk+1

)
ΓA − 2

τ
(xk−1 − 2xk + xk+1)

ᵀH̃ + 2λτxᵀk C = 0

⇒ ΓA (xk−1 − xk+1)−
2
τ

H̃ (xk−1 − 2xk + xk+1) + 2λτCxk = 0

⇒ xk−1 − 2xk + xk+1

τ2 = λH̃−1Cxk + H̃−1ΓA xk−1 − xk+1

2τ
.

As suggested by the authors, it is convenient to define a transfor-
mation of the solution variable

yk = H̃
1
2 xk,

considering H̃−1C is not necessarily symmetric and H̃−1ΓA is not
necessarily antisymmetric. In this case, the resulting equations are
given by

yk−1 − 2yk + yk+1

τ2 = λA yk + B
yk−1 − yk+1

2τ
,

in which A = H̃−
1
2 CH̃−

1
2 and B = H̃−

1
2 ΓAH̃−

1
2 are symmetric positive-

definite and antisymmetric, respectively. This is a linear system of
equations in (N − 1)m variables which can be numerically solved.

Unlike its uni-dimensional version, the multidimensional formula-
tion of the AC model does not admit an explicit solution in the general
case. Nevertheless, if it is assumed that trading in each stock does not
affect prices of other stocks, then it is possible to obtain an analytical
solution for the problem. Mathematically, this assumption corresponds
to the matrices Γ and H being diagonal, with Γjj = γj and Hjj = ηj,
where it is required that each γj > 0 and ηj > 0. Even though this
diagonal model is not able to capture cross-asset price impact effects,
the covariances still couple the whole system. Additionally, H̃ is also
diagonal with

H̃jj = ηj

(
1−

γjτ

2ηj

)
,

where it is required that τ < minj(2ηj/γj) so all these diagonal ele-
ments are positive.

Since Γ is now symmetric, we have ΓA = 0 and hence B = 0. Thus,
yk must satisfy the second-order linear difference equations

yk+1 =
(
2I + τ2λA

)
yk − yk−1. (3.9)

As λA is symmetric and positive definite, it admits the spectral de-
composition λA = UΛUᵀ, where U is an orthogonal matrix (i.e., such
that Uᵀ = U−1) whose columns are orthonormal eigenvectors of λA
and Λ is a diagonal matrix whose main diagonal is composed of the
corresponding eigenvalues of λA, denoted as κ̃2

1, . . . , κ̃2
m, with κ̃2

j > 0.
Defining zk = Uᵀyk, with yk = Uzk, we can rewrite (3.9) as

yk+1 =
(
2 UUᵀ + τ2 UΛUᵀ) yk − yk−1

⇒ yk+1 = U
(
2I + τ2Λ

)
Uᵀyk − yk−1

⇒ Uzk+1 = U
(
2I + τ2Λ

)
zk −Uzk−1

⇒ zk+1 =
(
2I + τ2Λ

)
zk − zk−1,
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which gives rise to the m second-order homogeneous difference equa-
tions

zj,k+1 =
(

2 + τ2κ̃2
j

)
zj,k − zj,k−1. (3.10)

Taking ωj = 2 + τ2κ̃2
j , the characteristic polynomials corresponding

to (3.10) are given by
r2

j −ωjrj + 1 = 0,

whose solutions are

rj± =
ωj ±

√
ω2

j − 4

2
.

One can show that rj+ = 1/rj− with a straightforward algebraic expe-
dient. Notice as well that ωj > 2, which implies rj+ > 1. Therefore,
we can write rj± = e±κjτ for some κj > 0. In particular, note that
zjk = α+rk

j+ = α+eκjτk is a solution to the difference equation, and we
can substitute this expression back into (3.10) to find how to write κj
in terms of κ̃2. Hence, we get

eκjτzjk =
(

2 + τ2κ̃2
j

)
zjk − e−κjτzjk

⇒ eκjτ + e−κjτ = 2 + τ2κ̃2
j

⇒ 2 cosh(κjτ) = 2 + τ2κ̃2
j

⇒ κj =
1
τ

cosh−1

(
τ2κ̃2

j

2
+ 1

)
.

Since the roots of the characteristic polynomials are real and distinct,
the general solution for the difference equations (3.10) is given by

zjk = α−rk
j− + α+rk

j+ = α−e−κjτk + α+eκjτk = α−e−κjtk + α+eκjtk ,

for some yet to be determined constants α±. Given that zN = 0, we can
write

zj0 = α−e−κj0 + α+eκj0 = α− + α+

and
zjN = α−e−κjT + α+eκjT = 0.

Solving these equations for α− and α+, we obtain

α− =
eκjT

eκjT − e−κjT
zj0 and α+ = − e−κjT

eκjT − e−κjT
zj0.

Therefore, we can write

zjk =

[
eκjT

eκjT − e−κjT
e−κjtk − e−κjT

eκjT − e−κjT
eκjtk

]
zj0

=

[
eκj(T−tk)

eκjT − e−κjT
− e−κj(T−tk)

eκjT − e−κjT

]
zj0

=
sinh

(
κj (T − tk)

)
sinh

(
κjT
) zj0

with z0 = Uᵀy0 = UᵀH̃
1
2 X. Finally, we have the solution

xk = H̃−
1
2 Uzk.
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3.2 Bergault-Drissi-Guéant model

In this section, we describe the modeling framework, notation and
main results presented in Bergault et al. (2022). For a more thorough
discussion of the BDG model, including the original mathematical
results, we refer the reader to the paper itself. If deemed necessary,
we also refer the reader to Appendix A, where we describe some
foundational mathematical results on stochastic optimal control theory
and the Hamilton-Jacobi-Bellman (HJB) Partial Differential Equation
(PDE) that will be alluded to in the model description.

The BDG model considers a market with d ∈N assets and an agent
who wishes to liquidate a portfolio over a period of time [0, T], with T >
0. The inventory process is denoted by (qt)t∈[0,T] = (q1

t , . . . , qd
t )

ᵀ
t∈[0,T]

with dynamics
dqt = vt dt, (3.11)

for a given q0 ∈ Rd, where (vt)t∈[0,T] = (v1
t , . . . , vd

t )
ᵀ
t∈[0,T] represents

the column vector of instant trading rates. The fundamental prices of
the d assets are modeled as a d-dimensional OU process (St)t∈[0,T] =

(S1
t , . . . , Sd

t )
ᵀ
t∈[0,T] with dynamics

dSt = R (S̄− St) dt + V dWt, (3.12)

for a given S0 ∈ Rd, where R ∈ Rd×d represents the mean-reversion in-
tensity (speed)5, S̄ ∈ Rd represents the mean-reversion level, V ∈ Rd×k

represents the process diffusion and (Wt)t∈[0,T] = (W1
t , . . . , Wk

t )
ᵀ
t∈[0,T] is

a k-dimensional standard Brownian motion process for some k ∈ N.
The covariation matrix of the process is given by Σ = VVᵀ. To account
for the market impact, the authors introduce the market price process
(S̃t)t∈[0,T] = (S̃1

t , . . . , S̃d
t )

ᵀ
t∈[0,T] with dynamics

dS̃t = dSt + Kvt dt = dSt + K dqt (3.13)

and S̃0 = S0, where K ∈ Rd×d is a symmetric matrix that represents the
linear permanent impact the agent has on prices. At last, the authors
also introduce the (uni-dimensional) trader’s cash account process
(X̃t)t∈[0,T] with dynamics

dX̃t = −vᵀt S̃t dt− L(vt) dt, (3.14)

for a given X̃0 ∈ R, where L : Rd → R+ is a function representing
the temporary market impact of trades. It is assumed that L is a
positive-definite quadratic form given by

L(v) = vᵀηv, (3.15)

where η ∈ Rd×d is a positive-definite matrix.
The trader wants to maximize the (exponential) expected utility of

his wealth at the end of the trading window. This wealth is given by the

5 The matrix R must also be positive definite for the price processes to be co-integrated,
as discussed in Section 4.3.
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sum of the amount on the cash account (X̃T) and the market value of
any remaining inventory at time T (qᵀT S̃T), deducted by a discount term
˜̀(qT) that penalizes any non-zero terminal position. The expression
for the final wealth is therefore X̃T + qᵀT S̃T − ˜̀(qT) and it also assumed
that ˜̀ is a positive-definite quadratic form given by

˜̀(q) = qᵀΓ̃q,

where Γ̃ ∈ Rd×d is a positive-definite matrix. This problem can be
mathematically expressed as the dynamic optimization problem

sup
v∈A0

E
[
−e−γ

(
X̃T+qᵀT S̃T− ˜̀(qT)

)]
, (3.16)

where γ > 0 is the absolute risk aversion parameter of the trader and
A0 is the set of admissible controls6 beginning at t = 0.

The authors propose an equivalent optimization problem defined
with respect to the fundamental price process instead of the market
price7. At first, note that we can rewrite (3.14) as

X̃T = X̃0 −
∫ T

0
vᵀt S̃t dt−

∫ T

0
L(vt) dt,

and, through (3.11), (3.13) and the Itô product rule, we have

d[qᵀt S̃t] = qᵀt dS̃t +
(
S̃ᵀ

t dqt
)ᵀ

+ dqᵀt dS̃t

= qᵀt (dSt + K dqt) + vᵀt S̃t dt + 0,

with

qᵀT S̃T = qᵀ0 S̃0 +
∫ T

0
qᵀt dSt +

∫ T

0
qᵀt K dqt +

∫ T

0
vᵀt S̃t dt

and

d [qᵀt St] = qᵀt dSt + (Sᵀ
t dqt)

ᵀ
+ dqᵀt dSt

= qᵀt dSt + (Sᵀ
t vt dt)ᵀ + 0,

with

qᵀTST = qᵀ0 S0 +
∫ T

0
qᵀt dSt +

∫ T

0
vᵀt St dt.

Now let (Xt)t∈[0,T] be given as

dXt = −vᵀt St dt− L(vt) dt = − (vᵀt St + L(vt)) dt, (3.17)

6 For all t ∈ [0, T], the admissible control set At is composed of all Rd-valued and
adapted processes (ξs)s∈[t,T] that satisfy a linear growth condition with respect to the
process (Ss)s∈[t,T]. Refer to the original paper for a precise definition of the admissible
controls sets.

7 The rationale for the selection of this optimization problem is not explicitly stated by
the authors in Bergault et al. (2022). A possible motivation for such choice is the fact
that, unlike S̃t, St follows a more manageable OU process.
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with X0 = X̃0. Considering the identities above, we can rewrite the
wealth expression as

qᵀT S̃T = qᵀTST +
∫ T

0
qᵀt K dqt +

∫ T

0
vᵀt S̃t dt−

∫ T

0
vᵀt St dt

⇒ X̃T + qᵀT S̃T = X0 + qᵀTST +
∫ T

0
qᵀt K dqt −

∫ T

0
vᵀt St dt−

∫ T

0
L(vt) dt

⇒ X̃T + qᵀT S̃T = XT + qᵀTST +
∫ T

0
qᵀt K dqt

⇒ X̃T + qᵀT S̃T − ˜̀(qT) = XT + qᵀTST − ˜̀(qT) +
1
2

qᵀTKqT −
1
2

qᵀ0 Kq0,

We can also define the penalty function ` : Rd → R as

`(q) = ˜̀(q)− 1
2

qᵀKq = qᵀΓ̃q− 1
2

qᵀKq = qᵀΓq, (3.18)

with Γ = Γ̃− 1
2 K, where it is assumed that ` is a positive semi-definite

form, that is, Γ ∈ Rd×d is a positive semi-definite matrix.
Then, it can be shown that the problem given by (3.16) is equivalent

to the problem

sup
v∈A0

E
[
−e−γ

(
XT+qᵀTST−`(qT)

)]
, (3.19)

which can be tackled with the tools of stochastic optimal control. Let
w : [0, T]×R×Rd ×Rd → R be the optimal value function associated
with the problem (3.19):

w(t, x, q, S) = sup
v∈A0

E
[
−e−γ

(
XT+qᵀTST−`(qT)

) ∣∣∣Xt = x, qt = q, St = S
]

.

Note that w depends on three non-temporal variables, namely x, q and
S, associated with three different random processes, which imply that
the corresponding infinitesimal generator8 will be given by

L = µᵀ
x · ∂x + µᵀ

q · ∇q + µᵀ
S · ∇S +

1
2

Tr(σSσᵀ
S · D

2
SS),

where µx, µq, µS and σS correspond to the drift and diffusion terms
in the dynamics equations (3.17), (3.11) and (3.12). In particular, note
that there are no second-order derivatives of x and q in the expression
above because these variable’s dynamics do not include any Brownian
motion term. Note, as well, that only µx and µq depend on v.

Therefore, the HJB equation associated with (3.19) is given by

0 = ∂tw(t, x, q, S)
+ sup

v∈Rd

[
− (vᵀS + L(v)) ∂xw(t, x, q, S) + vᵀ∇qw(t, x, q, S)

]
+ (S̄− S)ᵀRᵀ∇Sw(t, x, q, S)

+ 1
2 Tr
[
Σ D2

SSw(t, x, q, S)
]

, (3.20)

8 See a brief discussion about infinitesimal generators in Appendix A.
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for all (t, x, q, S) ∈ [0, T)×R×Rd ×Rd, with terminal condition

w(T, x, q, S) = −e−γ(x+qᵀS−`(q)), (3.21)

for all (x, q, S) ∈ R×Rd ×Rd.
The authors propose using the ansatz

w(t, x, q, S) = −e−γ(x+qᵀS+θ(t,q,S)), (3.22)

for all (t, x, q, S) ∈ [0, T] ×R×Rd ×Rd. Differentiating both sides
of (3.22) for each variable, we get the following differential relations
between w and θ:

∂tw = −γw ∂tθ

∂xw = −γw
∇qw = −γw

(
S +∇qθ

)
∇Sw = −γw (q +∇Sθ)

D2
SSw = −γw D2

SSθ + γ2w(q +∇Sθ)ᵀ (q +∇Sθ) .

Replacing each differential term in w in (3.20) for the corresponding
expression in θ shown above and dividing each term of the equation
by −γw (which is always positive), we get the following HJB equation
for θ:

0 = ∂tθ(t, q, S) + sup
v∈Rd

[
vᵀ∇qθ(t, q, S)− L(v)

]
− 1

2 γ(q +∇Sθ(t, q, S))ᵀΣ (q +∇Sθ(t, q, S))

+ (S̄− S)ᵀRᵀ (q +∇Sθ(t, q, S))

+ 1
2 Tr
[
Σ D2

SSθ(t, q, S)
]

, (3.23)

for all (t, q, S) ∈ [0, T)×Rd ×Rd, with terminal condition

θ(T, q, S) = −`(q), (3.24)

for all (q, S) ∈ Rd ×Rd. If θ is a solution to (3.23), then w, defined
as (3.22), is a solution to (3.20).

By replacing L(v) for vᵀηv in (3.23), it becomes clear that we have
the quadratic expression (in v)

φ(v) = vᵀ∇qθ(t, q, S)− vᵀηv

in the optimization (supremum) term, which can be solved analytically.
Differentiating it with respect to v and equaling the resulting expression
to zero, we get

arg sup
v

φ(v) =
1
2

η−1∇qθ(t, q, S),

with
sup

v
φ(v) =

1
4
∇qθ(t, q, S)ᵀ η−1∇qθ(t, q, S).
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At last, we get the resulting HJB equation for θ

0 = ∂tθ(t, q, S)

+ 1
4∇qθ(t, q, S)ᵀ η−1∇qθ(t, q, S)

+ 1
2 Tr
[
Σ D2

SSθ(t, q, S)
]

− 1
2 γ(q +∇Sθ(t, q, S))ᵀΣ (q +∇Sθ(t, q, S))

+ (S̄− S)ᵀRᵀ (q +∇Sθ(t, q, S)) , (3.25)

with terminal condition

θ(T, q, S) = −qᵀΓq. (3.26)

At this point, the authors propose using a second ansatz and looking
for a solution θ of the following (quadratic in q and S) form:

θ(t, q, S) =

qᵀA(t) q + qTB(t) S + STC(t) S + D(t)ᵀ q + E(t)ᵀ S + F(t), (3.27)

for all (t, q, S) ∈ [0, T] × Rd × Rd, where A, B, C, D, E and F are
functions which take values from [0, T] and whose co-domains are
Rd×d, Rd×d, Rd×d, Rd, Rd and R, respectively. Additionally, note that
A and C only return symmetric matrices. Assuming these functions
satisfy the following system of Ordinary Differential Equations (ODEs)

A′(t) = 1
2 γ (B(t)+ Id)Σ (B(t)ᵀ+ Id)−A(t) η−1A(t)

B′(t) = (B(t)+ Id) R+2γ (B(t)+ Id)Σ C(t)−A(t) η−1B(t)

C′(t) = Rᵀ C(t)+C(t) R+2γ C(t)Σ C(t)− 1
4 B(t)ᵀ η−1B(t)

D′(t) = − (B(t)+ Id) R S̄+γ (B(t)+ Id)Σ E(t)−A(t) η−1D(t)

E′(t) = −2 C(t) R S̄+RᵀE(t)+2γ C(t)Σ E(t)− 1
2 B(t)ᵀ η−1D(t)

F′(t) = −S̄ᵀRᵀE(t)−Tr[Σ C(t)]+ 1
2 γE(t)ᵀ Σ E(t)− 1

4 D(t)ᵀ η−1D(t),
(3.28)

where Id corresponds to the identity matrix in Rd×d, with terminal
conditions

A(T) = −Γ, B(T) = C(T) = D(T) = E(T) = F(T) = 0, (3.29)

it can be shown that (3.27) is a solution of (3.25) and (3.26).
As a demonstration, suppose A, B, C, D, E and F satisfy (3.28)

and (3.29) and θ is given by (3.27). Then, the following equalities hold

∂tθ = qᵀA′(t) q + qᵀB′(t) S + SᵀC′(t) S + D′(t)ᵀ q + E′(t)ᵀ S + F′(t)
∇qθ = 2 A(t) q + B(t) S + D(t)
∇Sθ = B(t)ᵀ q + 2 C(t) S + E(t)

D2
SSθ = 2 C(t).
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If we replace each of these differential equalities in the right-hand side
of (3.25), we obtain

∂tθ(t, q, S)+ 1
4∇qθ(t, q, S)ᵀ η−1∇qθ(t, q, S)+ 1

2 Tr
[
Σ D2

SSθ(t, q, S)
]

− γ
2 (q+∇Sθ(t, q, S))ᵀΣ (q+∇Sθ(t, q, S))+(S̄−S)ᵀRᵀ (q+∇Sθ(t, q, S))

= qᵀA′(t) q+qᵀB′(t) S+SᵀC′(t) S+D′(t)ᵀ q+E′(t)ᵀ S+F′(t)

+ 1
4 (2A(t) q+B(t) S+D(t))ᵀη−1 (2A(t) q+B(t) S+D(t))

− γ
2 (q+B(t)ᵀ q+2C(t) S+E(t))ᵀΣ (q+B(t)ᵀ q+2C(t) S+E(t))

+(S̄−S)ᵀRᵀ (q+B(t)ᵀ q+2C(t) S+E(t))+Tr[Σ C(t)]

= qᵀA′(t) q+qᵀB′(t) S+SᵀC′(t) S+D′(t)ᵀ q+E′(t)ᵀ S+F′(t)

+qᵀA(t)η−1A(t) q+qᵀA(t)η−1B(t) S+ 1
4 SᵀB(t)ᵀη−1B(t) S

+D(t)ᵀη−1A(t) q+ 1
2 D(t)ᵀη−1B(t) S+ 1

4 D(t)ᵀη−1D(t)

− γ
2 (q+B(t)ᵀ q+2C(t) S+E(t))ᵀΣ (q+B(t)ᵀ q+2C(t) S+E(t))

+Tr[Σ C(t)]+S̄ᵀRᵀ (q+B(t)ᵀ q+2C(t) S+E(t))
−SᵀRᵀ (q+B(t)ᵀ q+2C(t) S+E(t))

= qᵀ
[

A′(t)+A(t)η−1A(t)− γ
2 (I+B(t))Σ(I+B(t))ᵀ

]
q

+qᵀ
[

B′(t)+A(t)η−1B(t)−2γ (I+B(t))ΣC(t)−(I+B(t)) R
]

S

+Sᵀ
[
C′(t)+ 1

4 B(t)ᵀη−1B(t)−2γC(t)ΣC(t)−RᵀC(t)−C(t)R
]

S

+
[

D′(t)+A(t)η−1D(t)ᵀ−γ (I+B(t))ΣE(t)+(I+B(t)) RS̄
]ᵀ

q

+
[

E′(t)+ 1
2 B(t)ᵀη−1D(t)−2γC(t)ΣE(t)+2C(t)RS̄−RᵀE(t)

]ᵀ
S

+
[

F′(t)+ 1
4 D(t)ᵀη−1D(t)− γ

2 E(t)ᵀΣE(t)+S̄ᵀRᵀE(t)+Tr[Σ C(t)]
]

= 0.

where we resorted to the equalities

qᵀA(t) η−1B(t) S = SᵀB(t)ᵀ η−1A(t) q

qT A(t) η−1D(t) = D(t)ᵀ η−1A(t) q

Sᵀ B(t)ᵀ η−1D(t) = D(t)ᵀ η−1B(t) S
qᵀB(t)Σ C(t) S = Sᵀ C(t)Σ B(t)ᵀ q

SᵀRᵀ C(t) S = Sᵀ C(t) R S
qᵀB(t)Σ E(t) = E(t)ᵀ Σ B(t)ᵀ q

Sᵀ C(t)Σ E(t) = E(t)ᵀ Σ C(t) S
Sᵀ Rᵀ E(t) = E(t)ᵀ R S,

which hold since A(t), C(t), Σ and η are symmetric. Additionally, note
that (3.27) also satisfy the terminal condition (3.26), which concludes
the proof.

Notice that the first three equations on the ODE system above are
independent of the others and can be solved as a first step. Similarly,
the equations for D and E are independent of the last one and can
be solved for after A, B and C are obtained. As a last step, F can
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be found through an integration procedure. We can apply numerical
ODE solvers to incrementally obtain the solutions to these three sub-
problems and find θ numerically. As a final result, the authors also
show that the optimal control process (vt)t∈[0,T] ∈ At can be written as

vt =
1
2

η−1∇qθ =
1
2

η−1 (2 A(t) qt + B(t) St + D(t)) . (3.30)

3.3 Model parameters estimation

3.3.1 Temporary price impact coefficient

While prices and spreads can be directly extracted from the LOB snap-
shots, price impact coefficients must be estimated. In order to compute
these coefficients, we assemble the effective price curve (as a function
of trade volume) at each side of the LOB for each time snapshot. Then
we perform a null-intercept linear regression on the difference between
the effective price and the current mid-price and retrieve the regres-
sion’s slope as the temporary price impact coefficient estimator. Check
Figure 2.2 for an illustration of the temporary price impact curves and
the respective regressed lines. Note that, in order to mitigate the effect
of outlier orders typically found at the extremes of real world LOBs
(clearly seen in Figure 2.2, for instance), the regressions only take into
account the slices of the effective prices curves corresponding to 75% of
the available volume at each side of the LOB. Figure 3.1 illustrates the
obtained price impact coefficients for all LOB snapshots in a trading
session.

10:00 17:0011:00 12:00 13:00 14:00 15:00 16:00

−1.5

−1.0

−0.5

0.0

0.5

×10−6

Buy side
Sell side

Figure 3.1: PETR4 price impact coefficients (2019–11–27)

Subsequently, the obtained buy and sell side price impact coeffi-
cients are averaged together to produce a single output value for each
one-minute snapshot. Similarly, in order to get a single price impact
coefficient for a trading period (e.g., a day), the one-minute snapshots
coefficients are averaged together. In order to avoid low liquidity effects
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of opening and closing hours on the LOBs, the first and last 30 minutes
of the daily trading window are discarded when computing the final
price impact coefficient mean.

3.3.2 Ornstein-Uhlenbeck parameters

In order to estimate the OU model parameters, the only required data
are the mid-price series, which can be directly obtained from the LOB
snapshots. Also notice that the time discretization of an OU process is
equivalent to a vector auto-regressive (VAR) process of order 1. Thus, it
is possible to fit an OU model by means of a VAR(1) model parameter
estimation.

To see why this is the case, recall that the multidimensional OU
process dynamics is given by

dSt = R (S̄− St) dt + V dWt, (3.31)

where we use the same notation presented in Section 3.2. Through the
Euler-Maryuama discretization, we can write a discrete version of the
equation above as

Sk+1 − Sk = RS̄∆t− RSk∆t + V (Wk+1 −Wk)

Sk+1 = RS̄∆t + (I − R∆t) Sk + V
√

∆t εk+1,

where εk ∼ N(0, Id) are d-dimensional Gaussian noise vectors. Note,
as well, that the process (Sk)k∈N admits the following VAR(1) represen-
tation

Sk+1 = a + BSk + Cεk+1, (3.32)

where a ∈ Rd, B ∈ Rd×d and C ∈ Rd×d. Matching each term in both
equations, one can find the following expressions for the OU process
parameters:

R =
1

∆t
(I − B)

S̄ =
1

∆t
R−1a

V =
1√
∆t

C.

Therefore, one can estimate a VAR(1) model to the mid-price series and
obtain the OU parameters using the relations above.

Alternatively, instead of obtaining a discretization for the OU pro-
cess from its dynamics equation (3.31), we can obtain a discretization
directly from its analytical solution. Recall that the analytical expres-
sion for the OU process defined by (3.31) is given by

St+τ =
(

I − e−Rτ
)

S̄ + e−RτSt +
∫ t+τ

t
e−R(t+τ−s)V dWs, (3.33)

where the last term (the Itô integral) is a multi-variate normally dis-
tributed random variable with zero mean and covariance matrix Στ ∈
Rd×d given by

Στ =
∫ t+τ

t
e−R(t+τ−s)VVᵀe−Rᵀ(t+τ−s) ds ≈ τe−RτVVᵀe−Rᵀτ,
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where the approximation holds for τ → 0 (which makes t− s ≈ 0).
According to Meucci (2009) and Vatiwutipong and Phewchean (2019),
we can apply the identities vec(ABC) = (Cᵀ ⊗ A) vec(B) and eA⊕B =
eA ⊗ eB, expressed in terms of the vector operator9 as well as the
Kronecker product (⊗) and sum (⊕), to obtain

vec(Στ) =
∫ t+τ

t
e−R(t+τ−s) ⊗ e−R(t+τ−s) ds vec(VVᵀ)

=
∫ t+τ

t
e−(R⊕R)(t+τ−s) ds vec(VVᵀ)

= (R⊕ R)−1(I − e−(R⊕R)τ) vec(VVᵀ).

Taking τ = ∆t, we can write a discrete version of (3.33) as

Sk+1 =
(

I − e−R ∆t
)

S̄ + e−R ∆tSk +
√

Σ∆t εk+1,

where εk ∼ N(0, Id). Matching each term of the equation above
with (3.32), one can find the following expressions for the OU pa-
rameters:

R = − log B
∆t

S̄ =
(

I − e−R ∆t
)−1

a

V =

{
vec−1

[(
I − e−(R⊕R)∆t

)−1
(R⊕ R) vec(Σ∆t)

]} 1
2

.

It must be noted as a final remark that the mean-reverting speed
parameter R is notoriously difficult to estimate accurately, even with
numerous observations (see Pei, 2021).

9 The vector operator (vec) stacks the columns of a matrix into a vector. The inverse
operator (vec−1) reshapes a vector back into a square matrix.
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In financial markets, it is often empirically observed that some groups
of assets evolve in a highly interrelated manner. Such coupling may
take one of different forms, requiring diverse and appropriate mathe-
matical tools in the modeling endeavor. In the case of random variables,
one of the simpler and most commonly used form of statistical relation-
ship modeling is that of correlation. Generally speaking, correlation
can be understood as a measure of the linear dependency1 between
two random variables (e.g., stock returns) and is ubiquitously applied
in the realm of quantitative finance. In the case of time series analysis,
particularly when resorting to parametric approaches, another fruitful
form of relationship modeling is that of co-integration, which is able to
capture the dynamics of a stronger type of coupling between financial
series (e.g., stock prices). The concept of co-integration has been put to
use as the foundation for mean reverting (pair) trading strategies and,
as exemplified in the present work, portfolio liquidation programs,
among other possible applications.

Both models presented in Chapter 3 use correlation structures
to represent the coupling between the price processes’ innovations,
which is a widespread practice in quantitative finance. On the other
hand, the application of co-integration dependency structures, as in
the case of the BDG model, is much less common, particularly in the
realm of optimal liquidation. In the present chapter, we present the
concept of co-integration, along with the statistical tests that can be
used to identify its presence on a time series. We also briefly discuss
co-integration in the context of continuous processes and its connection
to the OU process, as applied in the BDG model.

4.1 Co-integration concepts and definition

Before formalizing the definition of co-integration in the context of time
series analysis, it is necessary to introduce the two basilar concepts
of stationarity and integration. A time series (Xn)n=1,...,N is said to be
strictly stationary if its unconditional joint probability distribution does
not change with respect to time. More precisely, if, for every m, n ∈N,
with n+m ≤ N, the distributions of (X1, . . . , Xn) and (X1+m, . . . , Xn+m)
are the same, then (Xn)n=1,...,N is said to be a stationary time series.
This strong sense of stationarity implies, among other outcomes, that

1 This common linear notion of dependency is typically quantified through Pearson’s
correlation coefficient. Naturally, there are other non-linear measures of depen-
dency between random variables such as rank-based correlation (e.g., Spearman’s and
Kendall’s correlation coefficients) and even more general and complex copula-based
structures.

29
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all the series’ statistics (e.g., its distribution moments) are immutable
with respect to time shifts. There is also a weaker sense of stationarity
which only requires the process’ mean, variance, and covariance to be
limited and static with respect to time.

Financial series such as price processes are usually not stationary,
since price levels, and hence the process mean, clearly change from a
moment to the other. On the other hand, closely related processes such
as returns can be stationary, specially in the weaker sense mentioned
above. Notice, in particular, that the return series can be obtained from
the price series through the application of a differencing operator ∆
defined by ∆Xt = Xt − Xt−1. To account for this phenomenon, it is
useful to introduce the concepts of integration, which is the inverse
operation of differencing, and order of integration, which represents the
number of times the differencing operator needs to be applied to a
non-stationary series in order to obtain a stationary one. If a time series
has order of integration equal to d, we say it is integrated of order d or,
as a shorter notation, that it is I(d).

Having established the concepts of stationarity and integration,
it is now possible to properly define co-integration. A collection
(X1,n)n, . . . , (Xm,n)n, for n = 1, . . . , N, of m I(d) time series is said
to be co-integrated if there is a linear combination determined by scalar
constants k1, . . . , km, with ki ∈ R, not all null, such that the series
(Yn)n=1,...,N given by Yn = k1X1,n + · · ·+ kmXm,n, has an order of inte-
gration smaller than d. When disposed as a column vector, the collec-
tion of linear combination coefficients is referred as a co-integrating vec-
tor. An equivalent and more intuitive way to describe the co-integration
property is to realize that a collection of time series is co-integrated if
and only if the series share a common non-stationary stochastic trend
component, the remainder terms being stationary.

A customary application of co-integration in finance is the iden-
tification of assets, typically pairs of stocks, that exhibit some sort of
joint mean reversion dynamics. Once the co-integrated property is
identified, it is possible for an arbitrageur to exploit eventual price
unbalances for financial gain, based on the assumption that the co-
integrated process will, in due course, revert to its mean. Usually, in
this type of application, the price (or log-price) processes are I(1) and
the return (or log-return) processes are stationary (I(0)).

4.2 Co-integration estimation and tests

Two fundamental requirements when applying co-integration tech-
niques in practice are (i) to estimate the linear combination coefficients
ki and (ii) to assert the confidence levels of both the co-integration
property per se and such coefficient estimations.

A simple method to estimate ki can be obtained by performing
linear regressions. To see why this is the case, we can consider a
bi-variate I(d) example. Assume (X1,n)n=1,...,N and (X2,n)n=1,...,N are
two distinct co-integrated I(1) time series and k1, k2 ∈ R are such that
Yn = k1X1,n + k2X2,n is a stationary series. Assume as well that both
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series share a common I(1) trend component (Tn)n=1,...,N . Then we can
write

X1,n = c1Tn + ε1,n

X2,n = c2Tn + ε2,n,

where ci ∈ R, ci 6= 0, and (εi,n)n=1,...,N are noise processes, for i = 1, 2.
We can assume, without loss of generality, that k1 = 1 and k2 = −c1/c2,
which gives us

Yn = X1,n −
c1

c2
X2,n = c1Tn + ε1,n −

c1

c2
c2Tn −

c1

c2
ε2,n = ε1,n −

c1

c2
ε2,n,

which satisfy the stationarity requirement. Therefore, we can write

X1,n = α + βX2,n + εn,

for α, β ∈ R and (εn)n=1,...,N a mean-zero stationary noise process.
The equation above corresponds to the typical formulation of linear
regressions, with α = E[ε1,n − c1/c2 ε2,n] and β = c1/c2. Therefore,
[1,−β]ᵀ should be a co-integration vector.

In relation to testing the co-integration property, it must be noted
that this property is strongly linked with auto-regressive (AR) models
and unit root tests. Recall that, when analyzing AR processes for
stationarity or non-stationarity, one can check the roots of the respective
characteristic polynomial. The necessary and sufficient condition for
non-stationarity is that all roots of this polynomial have absolute values
greater than one.

Therefore, a possible way to test for co-integration between two
or more series, at least as a first approximation, is to perform the
aforementioned linear regression and check, using unit root tests, for
the stationarity of the series obtained through the linear combination
of the original series designated by the prospect co-integration vector.
This method is essentially what the Engle and Granger (1987) co-
integration test performs, using a variation of the Dickey-Fuller unit
root test. The test’s null hypothesis is that there is no co-integration and
the alternative hypothesis is that there is a co-integration relationship.
Therefore, if the p-value is small, we can reject the hypothesis of no
co-integration. See also MacKinnon (2010) for updated and improved
versions of the Engle-Granger (EG) test, including critical values tables.

Even though the EG co-integration test is easy to apply, it suffers
from some problems and weaknesses, which led to the development of
more general and robust tests, such as the Johansen (1991) test. The
Johansen test is not limited to the bi-variate case and can check for
numerous co-integration relationships, unlike the EG test. It models the
time series as a VAR process2 and uses vector error correction model
(VECM)3 techniques to test for the number of co-integrating factors.
Given a d-variate problem, the method sequentially tests4 whether the

2 The VAR model can be understood as a multidimensional extension of the AR model.
3 VECMs are used to study short-term deviations in a series from one or more permanent

stochastic trends.
4 Johansen proposes two distinct variants for his co-integration test: the trace test and

the maximum eigenvalue test, which have different statistics and critical values.
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number of co-integrating vectors is equal to k, for k = 0, . . . , d. At each
step, the null hypothesis is that the number of co-integrating vectors is
equal to k and the alternative hypothesis is that it is greater than k. The
first non-rejection of the null hypothesis corresponds to the resulting
estimate for the number of co-integration factors.

4.3 Continuous co-integration and the OU process

Even thought co-integration has traditionally been studied in the con-
text of discrete time processes, there have been some efforts to gener-
alize the concept for continuous time processes. One of the earliest
papers that explore this subject is Comte (1999), where the author pro-
poses a definition for continuous time co-integration which is akin to
the discrete case. In broad terms, according to such definition, non sta-
tionary continuous time processes with stationary increments are said
to be co-integrated if there is a linear combination of such processes
that results in a stationary time process.

At any rate, a more general definition for co-integration in the
context of continuous time processes is the one offered in Benth and
Süss (2018), which is construed in terms of convergence of probability
distributions. Such definition is more useful for our current discussion
and is hereby succinctly presented. Let (St)t≥0 ∈ Rd, for d ≥ 2, be a
stochastic process representing the asset prices in a given market, and
let also PX(t, ·) denote the probability distribution of some stochastic
process (Xt)t≥0. Then, (St)t≥0 is said to be continuously co-integrated
if there exist a non-null vector c ∈ Rd and a probability distribution µc
such that PcᵀS(t, ·) converges in distribution to µc when t→ ∞. Such
convergence can also be denoted as

cᵀS d−→ µc.

In more practical terms, such definition means that there is a linear
combination, indicated by c, of the components of the price process
vector (St)t≥0 which admits a limiting probability distribution.

The multidimensional OU process is a natural candidate to use
when working with continuous time co-integration. Take, for instance,
the OU process whose dynamics is given by (3.12) with a positive
definite mean reversion matrix R and suppose α ∈ Rd and κ > 0 are,
respectively, a left-eigenvector of R and its corresponding eigenvalue,
such that αᵀR = καᵀ. Then, we can write the dynamics for the uni-
dimensional process αᵀSt as

d (αᵀSt) = αᵀ dSt

= αᵀR (S̄− St) dt + αᵀV dWt

= καᵀ (S̄− St) dt + αᵀV dWt

= κ (αᵀS̄− αᵀSt) dt + αᵀV dWt

= κ (µ̃− αᵀSt) dt + σ̃ dW̃t,

where µ̃ = αᵀS̄, σ̃ dW̃t = αᵀV dWt and the process (W̃t)t>0 is the uni-
dimensional Brownian motion resulting from the linear combination of
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(Wt)t>0 with factors defined by αᵀV. Thus, µ̃ and σ̃ are the mean and
volatility coefficients for the αᵀSt uni-dimensional OU process, which
is known to have a limiting stationary Gaussian distribution as t→ ∞.
Therefore, since

cᵀS d−→ N
(

µ̃,
σ̃2

2κ

)
,

the multidimensional OU process (St)t>0 is continuously co-integrated.
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In the present chapter, we apply the previously presented optimal exe-
cution models to Brazilian stocks. As a test case, we use both common
and preferred shares of the oil company Petrobras1, which, besides
being some of the most liquid stocks in the Brazilian market, should
also be highly correlated and co-integrated, since they are linked to the
same company. We also provide a second, though briefer, discussion
of the application of the models to another pair of stocks, namely the
common and preferred shares of the Brazilian bank Bradesco2. The
overall goal in our analysis is to evaluate the impact and potential
benefits for a market agent (e.g., a fund manager) of taking into account
the correlation and co-integration properties of assets in a portfolio
liquidation scenario.

In order to achieve such goal, we simulate the inventory processes
obtained via the liquidation strategies for the following models: uni-
dimensional AC, multidimensional AC and BDG. The initial position
being liquidated should be entirely composed of a single stock, not
least to allow for the application of the uni-dimensional AC model,
but, more fundamentally, because we wish to evaluate correlation and
co-integration effects in a single asset liquidation scenario. Particularly,
given a single asset position that needs to be liquidated, we wish to
find out if and how an agent could take advantage of other corre-
lated or co-integrated assets to mitigate his loss or even increase his
wealth along and after the liquidation process3. Recall that the uni-
dimensional AC model does not consider any of these two properties,
while its multidimensional version only considers correlation. BDG,
being the most comprehensive model of this set, takes into account
both correlation and co-integration properties, even though it also as-
sumes mean-reversion (OU). The uni-dimensional AC model serves,
therefore, as a baseline reference for the multidimensional AC and the
BDG models.

The models are fit using with real data, obtained from four consecu-
tive trading sessions, from which we build the corresponding LOBs. We
also verify that the mid-prices are co-integrated through statistical tests.
We then run some simulations in order to evaluate and compare the
final wealth resulting from each model’s liquidation strategy. Finally,
we study the models’ sensitivity to some of their parameters.

1 With tickers PETR3 and PETR4, respectively.
2 With tickers BBDC3 and BBDC4, respectively.
3 We could, alternatively, study a multiple asset liquidation scenario, but we assume

the single asset one to be much more common for practitioners and, therefore, more
interesting.
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5.1 Stock data, co-integration and model fitting

In order to fit the models’ parameters, we use order data from Novem-
ber 25th to 28th, 2019. The mid-prices series (with a 60-seconds res-
olution) are presented in Figure 5.1. Visual inspection of both series
suggests co-integration, which is confirmed by Engle-Granger and Jo-
hansen tests, as presented in Table 5.1. Note that we show two EG tests,
because the results may differ depending on which of the two stocks
we choose as the dependent variable. The obtained co-integrating
vector is [1,−1.257]ᵀ and the resulting co-integrated process is shown
in Figure 5.2.
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Figure 5.1: PETR3/PETR4 mid-prices (2019–11–25 to
2019–11–28)
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Figure 5.2: Co-integrated process (PETR3− β× PETR4)
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We fit the single and multidimensional AC models, as well as
the BDG model, to these price series. The fitted parameters for the
three models are shown in Tables 5.2, 5.3 and 5.4, respectively. In
particular, note the similarity between the volatility parameters of the
multidimensional models (σ and V, in Tables 5.3 and 5.4, respectively).
The values for V are a little bit smaller than the ones for σ since some
of the price process dispersion is captured by the mean reversion term
in the BDG model. Additionally, note that the values for ε in both
AC models were fixed at zero in order to preserve the mathematical
rigor in the derivation of (3.5), since we expect non-monotonic trading
profiles in the multidimensional case.

Table 5.1: Co-integration tests results

Test Test Variant Statistic Resulta

EG PETR3 as dep. variable −3.44 Reject H0
EG PETR4 as dep. variable −3.56 Reject H0
Johansen Trace, k = 0 32.41 Reject H0
Johansen Trace, k = 1 3.72 Fail to reject H0
Johansen Max eigenvalue, k = 0 28.69 Reject H0
Johansen Max eigenvalue, k = 1 3.72 Fail to reject H0

a The null hypothesis for the Engle-Granger test is that of no co-integration.
The null hypothesis for the Johansen test is that the number of co-integration
vectors is equal to k. The results are taken at a 0.05 significance level.

Table 5.2: Uni-dimensional Almgren-Chriss (AC) model
parameters

Parameter Meaning Value

η Temporary impact 4.82× 10−7

ε Fixed costs 0.0

γ Permanent impact 0.0

σ Volatility 0.178

λ Risk aversion 1.0× 10−5

5.2 Liquidation and wealth results

Next, for each model, we compute the corresponding liquidation strat-
egy and the resulting inventory process, considering real prices from
the following day (November 29th, 2019) and an initial inventory q0 of
100 thousand units of PETR34, which are to be liquidated during the
next trading session (T)5. The resulting inventory processes are shown
in Figures 5.3 and 5.4, respectively. Note that, for the BDG case, the

4 Which correspond to approximately 2% of the total volume traded on November 28th,
2019.

5 The trading hours on B3 go from 10 to 17, totaling 7 hours.
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Table 5.3: Multidimensional Almgren-Chriss (AC) model
parameters

Parameter Meaning Value

H Temporary impact
[

4.82× 10−7 0.0
0.0 1.62× 10−7

]
ε Fixed costs

[
0.0
0.0

]
Γ Permanent impact

[
0.0 0.0
0.0 0.0

]
σ Volatility

[
0.162 0.074
0.074 0.147

]
λ Risk aversion 1.0× 10−5

Table 5.4: Bergault-Drissi-Guéant (BDG) model parameters

Parameter Meaning Value

R Mean reversion rate
[

2.20 −1.28
−1.17 2.69

]
S̄ Mean reversion level

[
31.55
29.42

]
V Volatility

[
0.161 0.074
0.074 0.146

]
η Temporary impact

[
4.82× 10−7 0.0

0.0 1.62× 10−7

]
Γ Inventory penalty

[
1.0× 10−4 0.0

0.0 1.0× 10−4

]
γ Risk aversion 5.0× 10−3

mid-price processes for both stocks are also shown with their respective
estimated S̄ values. In Figure 5.5, it is possible to visually compare the
inventory processes for the multidimensional AC and BDG models.

When comparing the inventory processes for both versions of the
AC model (Figure 5.3), we can observe that the uni-dimensional one
exhibits a higher liquidation speed, particularly at the beginning of the
trading window. For instance, by two hours into the trading session,
the inventory for PETR3 is approximately 20 thousand units (around
one fifth of the initial amount) for the uni-dimensional version, versus
approximately 32 thousand (around one third of the initial amount)
for the multidimensional one. Even more significant is the fact that, in
the multidimensional version, the inventory process assumes a short
position for the other stock (PETR4) which reaches a maximum of
approximately 30 thousand units early on. Because of the correla-
tion between these two assets, and taking into account the fact that
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Figure 5.3: Inventory processes — Uni-dimensional and
multidimensional AC models
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Figure 5.4: Inventory processes — BDG model

PETR4 is more liquid6, the model is able to “hedge” some volatility,
improving on the optimization criteria with respect to the more re-
strict uni-dimensional version. This is also evidenced in the wealth
discussion to follow.

When comparing the inventory processes for the multidimensional
AC and BDG models (Figure 5.5), one can notice their remarkably
different liquidation profiles. The AC model inventory curves are
smooth throughout the whole trading session, with faster trading
speeds early on (the first hour), followed by a slower convergence
towards zero until the end of the trading session. On the other hand,

6 Note that the value corresponding to PETR4 in the H matrix (see Table 5.3) is smaller
than the one corresponding to PETR3.
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Figure 5.5: Inventory processes — AC and BDG models

the BDG model inventory curves are rougher and fairly irregular as
the model responds to the price dynamics of the underlying stocks.
Similarly to the AC model, the inventory process for the BDG model
also assumes significant short positions for PETR4 early on during
the trading day. These short position are considerably larger, though,
when compared to the AC model, reaching an astonishing maximum
level of approximately 90 thousand units in just some minutes into the
trading session. After this initial sell movement in the first minutes,
the control process for the PETR4 stock is reversed and a buying
signal is maintained for the next four hours, finally reaching a long
position of around 30 thousand units. Regarding the main PETR3
stock, the inventory curve begins with a brief fast selling movement,
shifts into a trading profile comparable to the AC model, and then it
stays relatively flat at around 25 thousand units until the middle of
the trading session. The control process then assumes a selling signal
for approximately two hours, reaching a short position of about 20
thousand units. In the final hour, both PETR3 and PETR4 positions
are definitely unwound. As a last remark, one can argue that, except
for the opening and closing moments of the trading session, the trade
(buy or sell) signals, along with their relative intensity, are directly
related to the price difference between the underlying stocks, as visibly
suggested in Figure 5.4. Thus, besides the correlation properties that
the multidimensional AC model could exploit, we can verify that the
BDG model is able to take advantage of the co-integration properties
of the underlying price series.

A metric that can be used to compare the models under evaluation
is the final wealth, which is the sum of the cash account and the value
of any eventual remaining inventory7. Mathematically, the wealth
process is given by Ωt = Xt + qtSt and the final wealth is simply ΩT.
Recall that the initial wealth value is Ω0 = q0S0, which is the same

7 Here we do not penalize any remaining inventory.
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for all test cases ($3.1485× 106). The resulting final wealth value for
each model, considering the real price processes (for both PETR3 and
PETR4), is approximately $3.1442× 106, $3.1501× 106 and $3.1589× 106,
respectively. Figure 5.6 shows the wealth process corresponding to
each model. Note that the processes corresponding to the AC models
are more stable than the one corresponding to the BDG model, since
the main source of volatility for the wealth processes is price variation
and the inventory levels are generally lower throughout most of the
trading session with the AC liquidation profile, as can be seen in
Figures 5.3 and 5.5. Besides the wealth values obtained from the real
price processes, we can also obtain wealth values for simulated price
processes. The relative wealth gain8 of the multidimensional AC and
the BDG models (with respect to the uni-dimensional AC model) are
shown as histograms in Figures 5.7a and 5.7b, respectively. The models
achieve progressively better results, considering their average wealth
values of (approximately) $3.1533× 106, $3.1540× 106 and $3.1663× 106,
respectively for the uni-dimensional, multidimensional AC and the
BDG models. In relation to the baseline model, the multidimensional
AC and BDG models achieve improvements of 2.35 and 41.19 basis
points, respectively. In order to further illustrate the variance of the
wealth processes corresponding to each model, we plot in Figure 5.8 the
0.05, 0.50 and 0.95 quantile curves corresponding to wealth processes
obtained through simulations. Unlike before, here we use S0 = S̄ so as
to remove variance effects related to the difference between the initial
and the mean price levels. Note that the median wealth increases
throughout all trading session in the case of the BDG model, while
it stays flat for the AC models. Additionally, the wealth variance is
significantly smaller in the case of the BDG model. This result is
particularly remarkable given that the liquidation profile for the BDG
model assumes more aggressive positions than its counterpart model,
as seen in Figure 5.5.

As a second application of the models, we also run them for another
pair of stocks, namely the common and preferred shares of the Brazilian
bank Bradesco. As before, we fit the models’ parameters using orders
data from November 25th to 28th, 2019, and test their performance with
real data corresponding to the following trading day. The obtained
liquidation profiles are illustrated in Figures 5.9 and 5.10. As before,
the inventory curves corresponding to the AC model are smoother and
less irregular than those corresponding to the BDG, albeit now the
liquidation speed for AC is slower when compared to the Petrobras
case. The BDG curves are also less dramatic than before in the sense
that there is no reversion between long and short positions and that
the short position for the second stock is not as large. Interestingly,
however, the multidimensional models are not able to significantly
outperform the base model in relation to the wealth criterion. Unlike
the previous case, the multidimensional AC model performs worse

8 Computed as (ΩM
T /ΩUAC

T − 1)× 104, where ΩM
T and ΩUAC

T represent the final wealth
corresponding to the model in question and the uni-dimensional AC model, respec-
tively.
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Figure 5.6: Wealth processes — AC and BDG models
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Figure 5.7: Relative wealth gain (basis points) histograms

(minus 2.33 basis points) and BDG performs only slightly better (5.85
basis points) than the baseline. The respective wealth distributions are
shown in Figures 5.11a and 5.11b.

5.3 Sensitivity to model parameters

The values for most of the AC and BDG models’ parameters are ex-
ogenously determined from real world circumstances. Some, such as
S0 and q0 are directly observed or given, while others, such as H, ε, Γ
and σ (AC) and R, S̄, V and η (BDG), may be estimated from the data
through statistical means. The value for T is also constrained because
of externally defined time to liquidation limits (usually dependent on
trading windows). The value for Γ in the BDG model is somewhat
less restricted in the sense that it is not directly derived from real
data. Nevertheless, since we are considering the problem of optimal
liquidation, we want the remaining inventory qT to be significantly
close to zero, which, in turn, requires Γ to be sufficiently big.

The remaining risk aversion parameters λ (AC) and γ (BDG) are
the ones whose value assignment is more flexible, in the sense that they
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Figure 5.9: Inventory processes — BDG model

admit a greater range of reasonable choices. In general, bigger values
for λ and γ result in faster liquidation profiles in which the correlation
and the mean-reverting (co-integrated) properties of the series are not
adequately taken advantage of. On the other hand, smaller values of λ
lead to essentially constant trading speeds, resulting in basically linear
inventory profiles. As for γ, smaller values induce the inventory to
assume unrealistic large positions, even beyond the initial inventories,
which is contrary in spirit to the original problem of liquidation. This
behavior is illustrated in Figure 5.12, where we show the inventory
profiles resulting from the application of different values of the risk
aversion parameters for both models.
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Figure 5.10: Inventory processes — AC and BDG models
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Figure 5.11: Relative wealth gain (basis points) histograms

Specifically in the case of the BDG model, it is also useful to un-
derstand how big Γ should be in order to force liquidation by the
end of the trading session. Recall that this model does not guarantee
qT = 0, but we should be able to get sufficiently close to a complete
liquidation with proper parameterizing. Figure 5.13 and Table 5.5
illustrate the model’s sensitivity with respect to the terminal inventory
penalty parameter. In order to get close to total liquidation, we need
Γ to be at least around 10−4. Note that even with Γ = 10−5, we still
get somewhat close to complete liquidation. On the other extreme,
when we set Γ = 10−8, the terminal liquidation penalty is so low that
it is virtually indistinguishable from zero. The Table 5.5 shows the
remaining inventories corresponding to some values of Γ.
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Figure 5.12: Risk aversion sensitivity
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Figure 5.13: Terminal inventory penalty sensitivity

Table 5.5: Remaining inventories per Γ

Γ PETR3 PETR4

0 −9040.7 12 599.3
1× 10−8 −8974.2 12 507.9
1× 10−7 −8412.7 11 748.0
1× 10−6 −5184.0 7367.0
1× 10−5 −1077.7 1720.5
1× 10−4 −109.7 343.4

1 17.5 160.2
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As discussed in detail in Section 3.2, the solution to the BDG model’s
PDE given by (3.20) and its corresponding terminal condition (3.21)
was obtained by a sequence of steps:

1. At first, the problem was simplified by dropping the dimension
corresponding to the variable x, which corresponds to the cash
account process. This was done through the ansatz (3.22) and
resulted in the PDE on θ given by (3.23) and its corresponding
terminal condition (3.24).

2. Then, the optimization (supremum) term in (3.23) was analyt-
ically handled through a simple differential technique, which
resulted in a more manageable PDE given by (3.25).

3. Lastly, the authors cleverly propose applying the ansatz (3.27),
which essentially transforms the previous PDE problem into a
more amenable ODE problem. The resulting system of equa-
tions can then be numerically handled by readily available ODE
solvers1.

These simplification steps were welcome because, in its original primal
form, the BDG model’s PDE is rather intractable. Some of the most
relevant challenges it presents are (i) its relatively high number of
dimensions2, (ii) its general non-linearity and, in particular, (iii) the
optimization term typical of HJB equations.

Unfortunately, however, it is not always the case that these or alter-
native simplifying mathematical artifices are available and applicable
when one is confronted with the task of solving a general PDE. Except
for the simpler cases, one should not expect to find analytical solutions,
and even common numerical approaches (such as finite difference or
finite element methods) may not be practical. In particular, many con-
ventional grid-based numerical methods are known to be susceptible
to the curse of dimensionality, since their discretization strategies re-
quire the object function to be evaluated on an exponentially increasing
number of points with respect to the number of dimensions of the
problem.

In recent years, there have been some novel developments which
brought together the fields of scientific computing and machine learn-
ing through the application of neural networks-based techniques to

1 Such as the DifferentialEquations.jl Julia package (Rackauckas & Nie, 2017) or
the SciPy (scipy.org) Python package and its solve_ivp method.

2 Excluding the time dimension, the total number of “spacial” dimensions in this
problem is equal to 2d + 1, where d represents the number of financial assets under
consideration.
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numerical problems such as PDE solving (which we refer hereby as
neural PDE solvers). Two of the earliest and most influential papers are
Raissi et al. (2019), which introduces the concept of Physics-Informed
Neural Networks (PINNs), and Sirignano and Spiliopoulos (2018),
which introduces the Deep Galerkin Method (DGM). Both rely on neu-
ral networks with their high expressivity and universal approximation
properties3. In both cases, neural networks are trained via loss func-
tionals that take into account (i) the physical (or, in our application, the
“financial”) laws that govern the system, expressed in terms of PDEs,
(ii) the required boundary conditions, including initial or terminal ones,
and, optionally, (iii) known data points.

Such prodigious numerical methods have recently been computa-
tionally enabled in great measure by Automatic Differentiation (AD),
which is a set of algorithmic techniques that allow the evaluation of
the derivatives of functions along with their respective computation.
Unlike symbolic and numerical differentiation, AD admits a more
straightforward implementation and is not as afflicted by round-off
and discretization errors. AD is also particularly well-suited to the
computation of higher order derivatives. Such AD techniques recently
came to prominence in machine learning suites (e.g., TensorFlow and
PyTorch), where they are heavily used for the backpropagation step
during the network training step. In the present application, besides
being used for backpropagation, AD is also paramount to evaluate the
differential loss terms.

Despite their common kernels, both of the aforementioned papers
have slightly different approaches and emphases. The first one focuses
on physics-based applications and takes as its starting point the typical
data-driven optimization scenario of machine learning applications,
whose loss functions only consider boundary conditions and exper-
imentally measured data points. At this point, the authors propose
including an additional physical law term (i.e., the PDE term) to the
loss expression (hence the “physics-informed” designation), which is
arguably able to overcome low data availability scenarios. On the con-
trary, the second paper focuses on finance-based applications, where
hidden state variables are typically not available for empirical observa-
tion (hence the absence of the data loss term in this work). Moreover,
the authors focus on the question of high dimensionality, typical of
financial applications, where each asset under consideration usually
corresponds to one (or more) dimensions in the mathematical models.
Therefore, they propose a mesh-free algorithm that randomly samples
points from the internal and boundary domains to compute loss values
corresponding to the differential and the boundary terms, respectively.
Another key contribution is a novel neural network architecture, similar
to Long Short-Term Memory (LSTM) networks, which is arguably more
performant and better suited to capture rapidly changing function pro-
files than regular feed forward fully connected networks.

The inherent flexibility of neural networks and the devised PDE
solving algorithm allows for the specialization of the general method

3 Assuming, of course, the object functions under analysis are sufficiently regular.
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to some particular classes of PDEs. In this regard, we refer to Al-Aradi
et al. (2022), where we were able to improve on the original DGM
with respect to two classes of PDEs, namely, Fokker-Planck and HJB
equations. In the first case, given that the solution of the equation
is a probability density function, which is everywhere positive and
which integrates to unity, we were able to re-parameterize the solution
as the exponential of a properly normalized neural network. This
re-parameterizing ensures that both positivity and unity requirements
are obtained, which was not generally the case before. Regarding the
HJB class of equations, we were able to directly tackle the unsimplified
primal form of the equation, which includes the optimization (supre-
mum) term. In this case, we adapted the algorithm to solve for the
value and the control function simultaneously by representing both
functions as distinct neural networks. The networks are trained in an
alternating manner, similarly to policy improvement algorithms.

6.1 Description of the neural PDE solver

In general terms, given an unknown function u of time (t) and space (x),
whose domain is [0, T]×Ω for Ω ⊂ Rd, we are interested in solving
PDE problems of the form

(∂t + L) u(t, x) = 0 ∀(t, x) ∈ [0, T]×Ω
u(0, x) = u0(x) ∀x ∈ Ω
u(t, x) = g(t, x) ∀(t, x) ∈ [0, T]× ∂Ω,

where L is some differential operator and ∂Ω is the boundary of Ω.
The equations above represent the PDE per se, the initial condition
(expressed it terms of u0) and the boundary condition (expressed in
terms of g), respectively. Note that the previous structure can be
easily adapted for terminal condition problems by replacing the initial
condition expression above with a terminal one. Similarly, we could
suppress boundary conditions if they are not relevant to the problem
at hand.

The essence of the neural PDE solver method is to approximate u
by a neural network f (t, x; θ), whose parameter set is denoted by θ.
In order to train the neural network, we define a loss functional L(θ)
composed of three loss terms related to each equation, namely:

• The differential loss term:

L1(θ) = ‖(∂t + L) f (·, ·; θ)‖2
[0,T]×Ω, ν1

;

• The initial condition loss term:

L2(θ) = ‖ f (0, ·; θ)− u0(·)‖2
Ω, ν2

;

• The boundary condition loss term:

L3(θ) = ‖ f (·, ·; θ)− g(·, ·)‖2
[0,T]×∂Ω, ν3

.
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In all three loss terms above, the error is measured in terms of the
L2-norm, such that

‖φ(·)‖2
Θ, ν =

∫
Θ
|φ(z)|2 dν(z),

where ν is a probability measure defined on the region Θ. The final
loss functional is simply given by the sum of those three terms

L(θ) = L1(θ) + L2(θ) + L3(θ).

In practice, nonetheless, the integrals present in the loss terms above
are approximated by sampling points (zn) belonging to each region,
according to the respective distribution (ν), and then averaging |φ(zn)|2.

We then use some optimization technique (e.g., stochastic gradient
descent) to search for a parameter set that minimizes the loss functional
L. The general neural PDE method is presented in Algorithm 6.1.

Algorithm 6.1: Neural PDE method

Initialize the parameter set θ1 and the learning rate λ;
repeat for n = 1, 2, . . .

begin Generate random samples
Sample (tn, xn) from [0, T]×Ω according to ν1;
Sample yn from Ω according to ν2;
Sample (τn, zn) from [0, T]× ∂Ω according to ν3;
sn ← {(tn, xn), yn, (τn, zn)};

end

begin Compute the loss value
Compute L1(θn; tn, xn) as the mean of
[(∂t + L) f (tn, xn; θn)]

2;
Compute L2(θn; yn) as the mean of
[ f (0, yn; θn)− u0(yn)]

2;
Compute L3(θn; τn, zn) as the mean of
[ f (τn, zn; θn)− g(τn, zn)]

2;
L(θn; sn)← L1(θn; tn, xn) + L2(θn; yn) + L3(θn; τn, zn);

end

begin Perform the SGD optimization step
Compute the gradient of the loss with respect to the
parameters: ∇θL(θn; sn);

θn+1 ← θn − λ∇θL(θn; sn);
end

until L(θn) or ‖θn+1 − θn‖ is small enough;

6.2 Numerical results

In this section, we apply the neural PDE solver method to the BDG
model’s equations (3.25 and 3.26) using the ODE solver as a comparison
base. As a first step, we begin with a simple uni-dimensional case with
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all parameters (i.e., R, S̄, V, η, Γ, γ, S0, q0 and T) set to unity. The
uni-dimensional version of (3.25) is given by

0 = ∂tθ (t, q, S) +
1
4

η−1 ∂qθ(t, q, S)2 +
1
2

Σ ∂SSθ (t, q, S)

− γ

2
Σ(q + ∂Sθ (t, q, S))2 + (S̄− S) R (∂Sθ (t, q, S) + q) (6.1)

and the uni-dimensional terminal condition corresponding to (3.26) is

θ(T, q, S) = −Γq2. (6.2)

Figures 6.1, 6.2, 6.3, 6.4 and 6.5 show, the inventory (q), value (θ) and
control (v) processes obtained4 by both numerical methods. From such
results, it is clear that the neural PDE solver is able to satisfactorily
handle the problem in a simple uni-dimensional scenario. The training
loss after all iterations is around 10−7.
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Figure 6.1: Inventory (q) process (parameters equal to 1)

Unfortunately, however, the neural PDE solver is not robust with
respect to the model parameters, particularly the domain scale. For
instance, setting S0, S̄ and q0 to 100 while keeping all other param-
eters equal to one, we get the disappointing results illustrated by
Figures 6.6, 6.7, 6.8, 6.9 and 6.10. The training loss after all iterations is
still at an extremely high level of around 107.

We can improve on such predicament by noting that a best practice
when using neural networks is to normalize the input values they are
fed with. Thus, in the current scenario, it is desirable to normalize
both q and S variables5 which, in real applications, can easily assume
values of several orders of magnitude. This implies that we need to

4 In all cases presented in this section, we run the neural network training process for
five thousand iterations.

5 We could normalize the time variable as well, but it typically does not vary as
significantly as the other two.
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Figure 6.2: Value (θ) process (parameters equal to 1,
inventory slices)
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Figure 6.3: Value (θ) process (parameters equal to 1, time
slices)

rewrite the PDE problem with respect to the variables q̃ and S̃, given
by q̃ = 1

A q and S̃ = A
B S, for some normalizing constants A, B > 0.

The unusual choice of the normalizing factor for the S variable is
due to financial coherence considerations. Even tough the variables x,
q and S are mathematically independent in the original PDE problem,
one could argue that they are interdependent in the real world, at
least with respect to their units of measurement. These variables refer,
respectively, to the cash process, measured in terms of monetary units
($), to the inventory process, measured in terms of number of assets
(#), and to the price process, measured in terms of monetary units per
number of assets ($/#). Thus, any scale change in x or q should also
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Figure 6.4: Control (v) process (parameters equal to 1,
inventory slices)
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Figure 6.5: Control (v) process (parameters equal to 1, time
slices)

impact S. For instance, if we decide to measure q in terms of lots of
assets instead of asset units, the price per lot should be different from
the price per unit. Analogously, if we change the monetary unit (e.g., by
using another currency), the price per asset should be different as well.
Thus, in order to maintain financial coherence among all variables, we
use A as the normalizing factor in the inventory (#) dimension and B
as the normalizing factor in the monetary dimension ($).

Similarly, it is also useful to take into account the dimensions as-
sociated with the other mathematical entities of the model, such as its
parameters, its functions and their respective derivatives. With some
abuse of notation, using τ, # and $ to denote, respectively, the time,
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Figure 6.6: Inventory (q) process (S0 = S̄ = q0 = 100)
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Figure 6.7: Value (θ) process (S0 = S̄ = q0 = 100, inventory
slices)

inventory and price unity measures, we can perform the dimension-
ality analysis of each mathematical object in the model, taking into
consideration its equations. From the inventory dynamics (3.11), we get
that v is measured in terms of #/τ, and from the price dynamics (3.12),
we obtain that R, S̄ and V are measured in terms of τ−1, $/# and $/#

√
τ,

respectively (we assume the Brownian motion term dWt has
√

τ as its
dimension). From the cash dynamics (3.17) and the temporary market
impact expression (3.15), we can establish that L is measured in terms
of $/τ and η as τ$/#2. From the final wealth expression present in (3.19)
and the permanent market impact equation (3.18), we can assert that
` is measured in terms of $ and Γ as $/#2. Assuming that the value
expression in (3.19) is dimensionless, we can take γ as being measured
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Figure 6.8: Value (θ) process (S0 = S̄ = q0 = 100, time
slices)
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Figure 6.9: Control (v) process (S0 = S̄ = q0 = 100,
inventory slices)

in terms of $−1. Lastly, from the terminal condition (3.24) we can affirm
that the dimension for θ is $ and, accordingly, the ones for its partial
derivatives ∂tθ, ∂qθ, ∂Sθ and ∂SSθ are $/τ, $/#, # and #2/$, respectively.
Building upon this dimensionality analysis, we can define the normal-
ized version of all variables, parameters, and functions of the BDG
model, written in terms of the original ones and the normalizing factors
A and B, as presented in Tables 6.1a and 6.1b.
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Figure 6.10: Control (v) process (S0 = S̄ = q0 = 100, time
slices)

Table 6.1: Normalized functions and parameters

(a)
Parameters

Parameter Value

R̃ R
˜̄S A

B S̄

Ṽ A
B V

Σ̃ A2

B2 Σ

η̃ A2

B η

Γ̃ A2

B Γ

γ̃ Bγ

(b)
Functions

Function Value

θ̃ 1
B θ

∂t θ̃
1
B ∂tθ

∂q̃ θ̃ A
B ∂qθ

∂S̃ θ̃ 1
A ∂Sθ

∂S̃S̃ θ̃ B
A2 ∂SSθ

ṽ 1
A v

Thus, we can write the normalized version of (6.1) as

0 = B ∂t̃ θ̃
(
t̃, q̃, S̃

)
+

1
4

η−1 B2

A2 ∂q̃ θ̃
(
t̃, q̃, S̃

)2
+

1
2

Σ
A2

B
∂S̃S̃ θ̃

(
t̃, q̃, S̃

)
− γ

2
Σ
(

Aq̃ + A ∂S̃ θ̃
(
t̃, q̃, S̃

))2
+

(
S̄− B

A
S̃
)

R
(

A ∂S̃ θ̃
(
t̃, q̃, S̃

)
+ Aq̃

)
= ∂t̃ θ̃

(
t̃, q̃, S̃

)
+

1
4

η−1 B
A2 ∂q̃ θ̃

(
t̃, q̃, S̃

)2
+

1
2

Σ
A2

B2 ∂S̃S̃ θ̃
(
t̃, q̃, S̃

)
− γ

2
Σ

A2

B
(
q̃ + ∂S̃ θ̃

(
t̃, q̃, S̃

))2
+

(
A
B

S̄− S̃
)

R
(
∂S̃ θ̃

(
t̃, q̃, S̃

)
+ q̃
)

= ∂t̃ θ̃
(
t̃, q̃, S̃

)
+

1
4

η̃−1 ∂q̃ θ̃
(
t̃, q̃, S̃

)2
+

1
2

Σ̃ ∂S̃S̃ θ̃
(
t̃, q̃, S̃

)
− γ̃

2
Σ̃
(
q̃ + ∂S̃ θ̃

(
t̃, q̃, S̃

))2
+
(

˜̄S− S̃
)

R
(
∂S̃ θ̃

(
t̃, q̃, S̃

)
+ q̃
)

.
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Additionally, the normalized expression corresponding to the terminal
condition (6.2) is

θ̃(T, q̃, S̃) =
1
B

θ(T, q, S) = − 1
B

Γq2 = − 1
B

B
A2 Γ̃ (Aq̃)2 = −Γ̃q̃2.

Even tough it presents some deviations with respect to the so-
lution provided by the ODE solver (particularly when q is close to
zero), the normalized version of the neural PDE solver is now able
to perform much better than the previous one, as attested by Fig-
ures 6.11, 6.12, 6.13, 6.14 and 6.15, where we used the same set of
parameters as before and the normalizing factors A = q0 and B = q0S0,
which should keep the magnitudes of q̃ and S̃ close to one. The training
loss after all iterations is at a much more reasonable level of around
10−7. Thus, at least to some extent, the applied normalization technique
results in an improvement of the numerical method at hand.
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Figure 6.11: Inventory (q) process (normalized variables)

At any rate, even after the normalization adjustments, the neural
PDE solver is still not generally robust with respect to the model’s
parameters. Figures 6.16, 6.17, 6.18, 6.19 and 6.20 illustrate the results
when using the parameter values corresponding to PETR3 in Table 5.3.
The training loss value is relatively high (around 10−2) and the model
is not able to converge to a proper solution.

Notice, however, that the value and control surfaces corresponding
to the solution of the PDE with this set of parameters are somewhat
problematic. They assume an extreme, singularity-like, behavior near
the terminal boundary t ≈ T. This effect can get even more pronounced
when using different sets of parameters, reaching differences of several
orders of magnitude. Remark, however, that this behavior does not
occur when q ≈ 0. In this case, the value curves obtained by the ODE
solver remain relatively flat. We understand such explosive behavior as
a simple consequence of the fact that the model forces any remaining
inventory near the end of the trading interval to be quickly liquidated,
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Figure 6.12: Value (θ) process (normalized variables,
inventory slices)
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Figure 6.13: Value (θ) process (normalized variables, time
slices)

and the corresponding liquidation speed must be roughly inversely
proportional to the time still remaining. Therefore, this intense behavior
is, in fact, expected. Mind, however, that these regions of high inventory
levels near the terminal boundary should rarely be reached in practice,
if the optimal control liquidation policy is being applied consistently
throughout the trading session.

Notwithstanding the previous discussion, we argue that it is not
tenable to expect a neural network-based model to easily converge
to such ill-disposed surfaces. This is specially the case when taking
into account that, on the neural PDE method, the boundaries and
their surrounding regions act as an anchor or as an initial point of
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Figure 6.14: Control (v) process (normalized variables,
inventory slices)
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Figure 6.15: Control (v) process (normalized variables, time
slices)

convergence of the model, from where all other regions’ convergence
should gradually emanate. However, since the object function values in
such problematic boundary region are so much greater than elsewhere,
the respective training loss term is expected to dominate over the PDE
loss term elsewhere, hindering the prospects of convergence in the
domain as a whole.

Motivated by the fact that such troublesome regions (with high
inventory levels near the terminal time) should not be common in real
world liquidation scenarios, one might try, as a possible workaround,
avoiding such problematic subdomain by simply not sampling points
with high values for both q and t. This could be achieved by using
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Figure 6.16: Inventory (q) process (PETR3)
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Figure 6.17: Value (θ) process (PETR3, inventory slices)

some sort of triangular domain or, analogously, a triangular sampler.
Similarly, one could use the ODE based solution to come up with a
distribution of commonly visited regions and use it instead of a more
uniform sampler. Unfortunately, such strategies proved unfruitful even
for the simpler unity parameter set.

We conjecture that, in other general cases where the object function
being approximated by neural networks is ill-behaved in specific re-
gions, one could circumvent such issue simply by avoiding sampling
from such problematic regions. Sadly this strategy is not applicable
here since the problematic region is precisely the boundary and its
neighboring subdomain.

Alternatively, one might try to use self-adapting weights for the loss
terms in order to avoid the boundary loss term completely dominating
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Figure 6.18: Value (θ) process (PETR3, time slices)
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Figure 6.19: Control (v) process (PETR3, inventory slices)

the other ones, or, as another class of workaround, one could try to
come up with some variable or function substitution scheme which
could level the resulting function values across all of its domain, in-
cluding the terminal boundary6. We leave those lines of work as a
possibility for further research, however. As a final remark, since
the neural PDE numerical results are not satisfactory even in the uni-
dimensional case, we do not extend its application to the original
multidimensional version of the problem.

6 Such scheme would be similar in spirit to what is done in the case of Fokker-Planck
equations in Al-Aradi et al. (2022).



62 Chapter 6. Numerical solution via neural networks

0 20000 40000 60000 80000 100000

−200000

0

200000

v

t = 0.00

0 20000 40000 60000 80000 100000

−400000

−300000

−200000

−100000

t = 2.34

NPDE
ODE

0 20000 40000 60000 80000 100000

q

−600000

−400000

−200000

0

v

t = 4.67

0 20000 40000 60000 80000 100000

q

−2.0

−1.5

−1.0

−0.5

0.0
×107 t = 7.00

Figure 6.20: Control (v) process (PETR3, time slices)



7C O N C L U S I O N

In this work, we consider models for the optimal execution of financial
assets given price impacts resulting from trading. We also apply such
models to Brazilian stocks.

We launch this project by providing an account of the general
operation of exchanges, particularly with respect to the two main types
of orders, namely limit and market orders, and how such orders are
collected and arranged via LOBs. From these general market structure
principles and concepts, we are able to grasp the mechanism that gives
rise to price impacts and how we can resort to LOBs to estimate and
quantify them.

Next, we begin our study of the optimal execution models per
se, firstly by presenting a classic result, namely the AC model, that
introduces the main mathematical concepts related to portfolio liq-
uidation (e.g., the trade-off between expected wealth and risk), and
secondly, by expounding a more recent one, namely the BDG model,
which expands from the previous one in several general directions.
Compared to AC, the BDG model is continuous in time, has a different
optimization goal and requires distinct mathematical tools to be solved.
More fundamentally, however, the BDG model assumes a different
asset price dynamics1, which allows for one of the key distinctive fea-
tures of the BDG model: its ability to capture not only the correlation
but also any eventual co-integration dependency properties between
assets. This lets the model take current price information into account
and adjust the liquidation profile accordingly in order to potentially
achieve better results, both in terms of higher returns (expected wealth)
and less incurred risks (wealth variance). Another distinction between
both models is that, while the AC model’s equations generally admit
closed-form solutions2, the BDG model’s solution is obtained via a
system of ordinary differential equations, which only admit numerical
solutions. The derivation of both models’ solutions are thoroughly
demonstrated in the aforementioned discussion, which is concluded
with some remarks about some available techniques which can be
used to estimate the models’ parameters from price series and LOB
snapshots.

Following, we present a brief overview of some concepts and the
definition of co-integration, particularly in relation to financial series.
We also discuss some techniques to estimate co-integration vectors
and introduce some statistical co-integration tests. We conclude such
discussion with a remark about co-integration for continuous series.

1 Random walk in AC versus mean-reverting in BDG.
2 Only the multidimensional version with cross-asset price impact requires a numerical

solution via a linear system of equations.
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64 Chapter 7. Conclusion

Finally, we apply the models to real data obtained from the Brazilian
stock market. In order to fit the models, i.e., find the models’ parameters
matching the data at hand, we first need to process the raw order data
flow to gradually reconstruct the corresponding LOB at periodic time
intervals. From such snapshots, we are then able to recover the price
impact coefficients and the intraday price series, and from such price
series we are able to estimate the price processes’ parameters.

In the main studied case, the BDG model is able to outperform
the AC model in terms of both the mean resulting wealth level and
its variance, notwithstanding its unconventional inventory process
profile, which maintained significant positions (both long and short)
throughout most of the trading session. Such behavior contrasts with
what one should usually expect from the AC model, where a major
portion of the initial inventory is typically liquidated early on, even
though short positions buildup is also common for this otherwise
more conservative model. Naturally, such results are grounded on
the premise of a mean-reverting price dynamics and any deviation
from such hypothesis may result in undesired losses in a real world
application. Such risk analysis is not in the scope of the present work,
though.

As a second line of work, we also investigate the application of
neural networks to the numerical solution of the PDE problem that
arises in the context of the BDG model solution. Such application is
done through the DGM framework, where neural networks are used to
approximate the desired functions, and the differential and boundary
equations are used as terms in a loss functional that is fed into the
optimization algorithm for the network’s parameters. Even though
it is possible to successfully solve the problem for simpler sets of
parameters, the method does not generalize well to the more realistic
tried settings. We argue that the failure of convergence to the solution
is due to the singularity-like profile of the curves near the terminal
boundary where significant amounts of inventory need to be liquidated
in increasingly small intervals of time, resulting in extreme trade speeds
which bring convergence difficulties to the numerical optimization
algorithms. Further work is required to devise and evaluate alternative
mathematical or numerical techniques that could eventually circumvent
such convergence challenge. Such work is, however, not in the scope of
the present work.



AS T O C H A S T I C C O N T R O L A N D T H E
H A M I LT O N - J A C O B I - B E L L M A N E Q UAT I O N

In the context of stochastic control problems, consider the control pro-
cess (ut)t∈[0,T] associated with a d-dimensional controlled state process
(Xu

t )t∈[0,T]. Suppose we want to maximize some expected profit (or
utility) expression, which depends on the state process, subject to a
required terminal condition. Alternatively, one might be interested
in minimizing some cost (or loss) expression, but it is usually trivial
to convert between maximization and minimization problems by just
toggling the signal of the expression at hand.

The controlled state process dynamics can be expressed as

dXu
t = µ(t, Xu

t , ut) dt + σ(t, Xu
t , ut) dWt, (A.1)

with Xu
0 = x0, where µ and σ represent, respectively, its drift and

diffusion properties and Wt is a Brownian motion. The utility ex-
pression for a given control ut can be represented as a value function
Vu : [0, T]×Rd → R given by

Vu(t, x) = E

[∫ T

t
F(s, Xu

s , us) ds + G(Xu
T)

∣∣∣∣Xu
t = x

]
,

where F(t, x, u) and G(x) indicate running and terminal utility (or loss)
functions, respectively. The terminal condition on the value function is
given by

Vu(T, x) = G(x).

We can define the optimal control u∗ = arg supu Vu, where the supre-
mum is taken among all admissible control processes, as well as the
optimal value function

V(t, x) = Vu∗(t, x) = sup
u

Vu(t, x).

Given this setup, and assuming V to be smooth, the dynamic
programming principle implies that the optimal value function must
satisfy the following HJB equation

∂tV + sup
u
{LuV + F(t, x, u)} = 0,

where Lu is the infinitesimal generator of the controlled state process.
Finally, recall that the expression for the infinitesimal generator of the
multivariate Itô process with dynamics given by (A.1) is

Lu =
d

∑
i=1

µi
∂

∂xi
+

1
2

d

∑
i=1

(σσᵀ)i,i
∂2

∂xi∂xi

= µᵀ · ∇x +
1
2

Tr(σσᵀ · D2
xx),

where ∇x and D2
xx represent the gradient and Hessian differential

operators, respectively.
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