
Optimal Investment-Consumption
Decision Using Reinforcement

Learning

André Lorenzo Bittencourt
Advisor: Rodrigo dos Santos Targino

A Thesis submitted for the degree of
Master in Mathematical Methods in Finance

National Institute for Pure and Applied Mathematics
Brazil

August 2023

Abstract

This thesis offers an in-depth analysis of the Optimal Investment-Consumption Decision Problem,
often referred to as the Merton’s Portfolio Problem, viewed through the lens of Reinforcement
Learning (RL), with a specific focus on the Q-Learning algorithm. Within the Q-Learning frame-
work, two distinct implementations are examined: the traditional Tabular approach and the more
advanced Deep Q-Learning method, which employs Artificial Neural Networks. Through exper-
imentation and evaluation, this research compare the results obtained from each approach. The
findings illuminate the inherent strengths and limitations of both methods, providing insights into
their suitability for various scenarios. Moreover, this study aims to serve as a foundational reference
for those seeking to implement RL algorithms in the financial sector.

I first dedicate this work to my family and friends who believed in my potential and gave me the
confidence to pursue my master’s degree. I also wish to thank my professors in the Master in

Mathematical Methods in Finance program at IMPA for delivering a world-class curriculum and
imparting invaluable knowledge that will guide me throughout my career. Special mention goes to

my advisor, Rodrigo Targino, whose advice extended beyond this work. My colleagues in the
program deserve recognition for their support and enlightening conversations.

Most importantly, I dedicate this thesis to my beloved Thaline Fransceschi, who endured the
sacrifices made during this intense period of pursuing a degree while working. She has always

believed in me and my potential, often more than I believed in myself. Without her, this journey
would have been significantly more challenging.

Table of Contents

1 Introduction 4
1.1 Background . 4
1.2 Organization . 5

2 Machine Learning 6
2.1 Introduction . 6
2.2 Reinforcement Learning . 7
2.3 Artificial Neural Network . 15

3 Merton’s Portfolio Problem 21
3.1 Problem Definition . 21
3.2 Analytical Solution . 21
3.3 Discrete Merton’s Portfolio . 28

4 Numerical Implementation 30
4.1 Tabular . 30
4.2 Deep Q-Learning . 35

5 Conclusion 42

Bibliography 44

2

Detailed Contents

1 Introduction 4
1.1 Background . 4
1.2 Organization . 5

2 Machine Learning 6
2.1 Introduction . 6
2.2 Reinforcement Learning . 7

2.2.1 Finite Markov Decision Processes . 7
2.2.2 Bellman Equations . 9
2.2.3 Solution Algorithms . 10
2.2.4 Q-Learning . 11

2.3 Artificial Neural Network . 15
2.3.1 Activation Function . 16
2.3.2 Universal Approximation Theorem . 17
2.3.3 Training Process . 18

3 Merton’s Portfolio Problem 21
3.1 Problem Definition . 21
3.2 Analytical Solution . 21

3.2.1 Remarks . 24
3.2.2 Results . 24

3.3 Discrete Merton’s Portfolio . 28

4 Numerical Implementation 30
4.1 Tabular . 30

4.1.1 Results . 31
4.2 Deep Q-Learning . 35

4.2.1 Implementation . 35
4.2.2 Results . 37

5 Conclusion 42

Bibliography 44

3

Chapter 1

Introduction

1.1 Background

Despite early asset allocation history attracting limited interest and lacking comprehensive studies,
it’s safe to presume that the question of how to distribute financial wealth among available assets
has been an issue since humans began accumulating wealth. An early piece of advice can be traced
back to the Judaic book of Talmud, which reads, ”Let every man divide his money into three parts,
and invest a third in land, a third in business, and a third let him keep by him in reserve.” This
recommendation can be easily followed today using ETFs, REITS, and Treasuries or other money
market instruments.

Throughout history, we find instances of this idea of diversification, which is paramount in
financial management. A case in point is Shakespeare’s Merchant of Venice:

”My ventures are not in one bottom trusted, Nor to one place; nor is my whole estate
Upon the fortune of this present year; Therefore, my merchandise makes me not sad.”

Diversification is crucial not only to avoid the risk of losing all wealth in a single venture
but also to reduce risk in general. Humans are risk-averse, a direct consequence of diminishing
marginal utility. This concept was first noted by Daniel Bernoulli while exploring the St. Pe-
tersburg Paradox in 1738, and later developed by John von Neumann and Oskar Morgenstern
[Neumann and Morgenstern, 1953]. Utility theory plays a central role in this study.

In the 19th century, asset allocation evolved into an industry of its own [Turnbull and Farago, 2019],
dominated by insurance companies that needed to invest cash to meet their actuarial liabilities.
In 1862, one of the first papers on investment allocation was published [Bailey, 1862], advocat-
ing risk minimization and, what is known today as, illiquidity premium harvesting. In 1924, the
book Common Stocks As Long Term Investments was published, shifting the general perspective
of stocks from speculative instruments to tools of wealth accumulation.

However, it wasn’t until 1952, when Harry Markowitz’s groundbreaking work, Portfolio Se-
lection [Markowitz, 1952], was published, that the field of asset allocation found its theoret-
ical foundation. Markowitz formalized the concepts of diversification and risk aversion with
the mean-variance analysis, a milestone some authors consider as the birth of modern finance
theory [Campbell and Viceira, 2001, Rubinstein, 2006b]. This theory triggered numerous stud-
ies and publications on the subject, despite many pitfalls of the mean-variance optimization
(MVO) approach, which has been the focus of countless articles and methodological developments
[Litterman, 2004, Kinlaw et al., 2017, Scherer, 2007].

It has recently been acknowledged [Rubinstein, 2006a] that a decade prior to Markowitz, the
Italian statistician Bruno De Finetti had worked on a problem similar to Markowitz’s [Finetti, 1939],
but his work remained largely unknown at the time.

The MVO and its related variations, referred to as myopic portfolios [Campbell and Viceira, 2001],
consider only a single period, be it a day or fifty years. All that matters is the probability dis-
tribution of returns at the end of the period. However, investors typically engage in multi-period
investments, a series of ”single-period” decisions, where the allocation can change and cash can be
infused or withdrawn. Under certain conditions [Samuelson, 1963, Samuelson, 1969, Merton, 1969],
the solution for a single period is the same as for the multi-period, readjusted for the original al-
location, as the weights will diverge due to drift in asset values.

In certain scenarios, however, the MVO allocation might not be ideal. Consider a case where an
investor has to invest all their wealth in a single asset. The first asset could triple the investment

4

or lead to total loss. The second, more conservative, could result in a loss of 10% or a gain of
15%. Depending on the level of risk aversion, an MVO investor might choose the first investment.
However, if a series of such investments is considered, the probability of ruin (i.e., losing everything)
approaches 1 as the number of periods increases, making it a worse investment, regardless of the
level of risk aversion.

The complexity of analyzing many periods led to the proposal of a few solutions, in part
due to the mathematical complexity and computational resources only available with modern
computers. Two strategies stood out for their simplicity: Thomas Cover’s Universal Portfolio
[Cover, 1991], with impressive theoretical results but rarely used in practice, and the Growth-
Optimal portfolio that maximizes the expected log-return, also known as the Kelly Criterion
[Kelly, 1956, Thorp, 1975, Thorp, 2011]. Theoretically, the Kelly Criterion yields the highest ex-
pected return over a sequence of periods, an attribute that garnered much attention but did not
escape criticism [Samuelson, 1971].

However, all models to date have overlooked one key aspect of investing: theWhy. Few investors
invest solely with the aim of leaving a bequest. Most invest to finance future consumption, with the
expectation of consuming more than they currently do. Robert C. Merton [Merton, 1969] and Paul
Samuelson [Samuelson, 1969] finally addressed the complete, multi-period problem with consump-
tion in what is known today as Merton’s Portfolio Problem. The goal is to maximize the expected
sum of consumption’s utility over many periods. Although this problem is in continuous time (i.e.,
consumption and investment occur continuously), an idealization that makes the problem more
manageable, it remains mathematically challenging with analytical solutions known only for a few
cases [Merton, 1969, Merton, 1971, Rao and Jelvis, 2022, Kim and Omberg, 1996, Wachter, 2002],
not necessarily in realistic settings. With advances in computing power and numerical methods,
more realistic cases were solved using discrete-state approximations [Balduzzi and Lynch, 1999,
Barberis, 2000, Brennan et al., 1997].

The aim of this work is to present Merton’s Portfolio Problem (MPP) within the Reinforcement
Learning Framework and implement a flexible, realistic solution using Artificial Neural Networks.
The MPP has been more of a theoretical result or an introductory example of stochastic controls
in graduate courses than a practical problem. This is largely due to the complex nature of solving
the MPP in realistic scenarios, making it impractical as a ”product”. However, I believe that
advances in computational power and Machine Learning can overcome this issue. Schemes such
as the one presented in this work could be used to create investment policies for everyday people,
thus democratizing high finance.

1.2 Organization

This work is structured as follows: The chapter 2 introduces the field of Machine Learning, with
particular emphasis on Artificial Neural Networks as tools for approximating unknown functions,
and the framework of Reinforcement Learning. The chapter 3 details Merton’s Portfolio Problem,
deriving an analytical solution and presenting the discrete version necessary for our implementation.
The chapter 4 focuses on computational implementation and its results. Lastly, conclusions are
drawn, and suggestions for further research are proposed.

5

Chapter 2

Machine Learning

”I visualize a time when we will
be to robots what dogs are to
humans, and I’m rooting for the
machines.”

Attributed to Claude Shannon

2.1 Introduction

Machine Learning (ML) is a field that investigates the capability of machines to learn autonomously,
without relying on specific algorithms for a given task. While machine learning is often associated
with complex algorithms developed to solve intricate tasks, even mechanical structures can demon-
strate the ability to ”learn.” A notable example is MENACE [Michie, 1963], a mechanical device
assembled from matchboxes and colored beads, capable of learning how to play tic-tac-toe by en-
gaging in the game against a (presumably) human opponent. Each matchbox represents a possible
state of the game, and the beads denote the actions to be taken. MENACE learns by reinforcing
actions that lead to a victory (by adding more beads of the same color). In recent decades, the
field of machine learning has experienced exponential growth. Presently, ML algorithms are ubiq-
uitous, powering movie recommendations on streaming services, enabling text translation, driving
autonomous vehicles, assisting in disease detection, and more. Within the financial sphere, ML is
utilized for fraud detection, algorithmic trading, derivatives pricing, and asset management.

But what exactly is ”learning”? Probably the most widely accepted definition is proposed by
Mitchell [Mitchell, 1997]:

Definition 2.1.1 (Learning). A computer program A is capable of learning from experience E
with respect to a class of tasks T and a performance measure PT , if it performance improves with
E. In other terms: Let E1 ⊂ E2 ∈ E be sets of experiences and A(E) a program that received the
experience E. It is said capable of learning if:

PT (A(E1)) < PT (A(E2))

For example, the task T could be playing chess, E could be a match played by A with its
outcome or a replay of someone else’s match with annotated comments about each move, and PT

could be the probability of winning against another benchmark program.
In reality, 2.1.1 should be understood in terms of expectations, as an algorithm might perform

worse with the addition of a single experience but should improve with more and more experiences.
There are countless algorithms in Machine Learning, suitable for many different tasks, some

more adaptable, some more specific. They are generally classified into three methods or paradigms:

• Supervised Learning: In this method, data consisting of a set of features with correspond-
ing labels is used for training. The algorithm seeks to learn how to label a new data point
based on its features. An example could be the classification of stocks into economic sectors
based on their financial ratios.

• Unsupervised Learning: Some tasks may not have associated labels, and the algorithm
should find hidden patterns in the data. Sector classifications may not reflect the true nature

6

of a stock in our current complex landscape; clustering algorithms could group stocks in a
more meaningful way [de Prado, 2020].

• Reinforcement Learning: This paradigm resembles how humans and animals typically
learn by interacting with the environment and receiving positive and negative feedback. The
program usually takes actions, receives feedback either immediately or later, and has to
evaluate and adjust its behavior based on this feedback. A stock trading algorithm, learning
from its Profit and Loss (PnL), would be a typical example. Reinforcement Learning will be
the main focus of this work.

Some popular algorithms include:

• Linear and Logistic Regression;

• Decision Trees and Random Forests;

• Support Vector Machines;

• K-Means Clustering;

• Genetic Algorithms;

• Artificial Neural Networks.

While most of these algorithms are specific to their respective paradigms, Artificial Neural
Networks (ANNs) have demonstrated versatile applications, ranging from simple tasks to advanced
chatbots, owing to their interesting properties which we will explore further in Section 2.3. ANN
will also be a central topic in this work.

2.2 Reinforcement Learning

Reinforcement Learning can be seen as a process of ”learning by doing.” It involves learning how to
map a situation or state to an action with the goal of maximizing feedback or reward. The learner
is not instructed on which actions are ”good” or ”bad” but must infer this from the feedback.
For example, consider a mouse in a lab cage that receives food if it presses a button after a light
turns on. Here, the state is the status of the light (on or off), the action involves pressing the
button or not, and the reward is the food. It is expected that the mouse will quickly learn this
association. While this is a simple and direct example, more complex applications may not be
as straightforward. The reward might not be received immediately but only sometime after the
action, the reward signal might be noisy, and the action could impact not only the reward received
but also the state of the world itself, affecting subsequent states and rewards.

In this section, we will introduce and define the fundamental concepts of Reinforcement Learn-
ing.

2.2.1 Finite Markov Decision Processes

Much of the field of RL is developed around the concept of a Markov Decision Process (MDP).
An MDP formalizes sequential decision-making, involving the interaction between an agent and
an environment through actions and rewards.

Let’s define some basic terms:

• Agent: The decision-making entity that interacts with and learns from the environment.

• Environment: The world or problem that receives the agent’s actions and provides feedback
in the form of rewards and next states.

• State: A representation of the environment, containing current information about the world
or problem.

• Reward: A numerical value received by the agent as feedback from the environment after
taking an action.

Definition 2.2.1 (Markov Decision Process). A Markov Decision Process (MDP) is defined as
the tuple ⟨S,A,P,R⟩, where:

7

• S: The finite state space, representing the set of possible states.

• A: The finite action space, representing the set of possible actions.

• P: The state transition probability function, denoted as Pa(s, s
′), which represents the prob-

ability of transitioning from state s to state s′ when taking action a. Pa(s, s
′) = P[St+1 =

s′ | St = s,At = a].

• R: The reward function, denoted as R(s, a, s′), which represents the immediate reward re-
ceived when transitioning from state s to state s′ under action a. The reward could be either
deterministic or sthocastic.

An MDP generates a sequence of interactions. The agent receives a state St ∈ S and selects
an action At ∈ A. The environment processes the action and returns a reward Rt+1 ∈ R and a
new state St+1 in the next time step. This interaction continues until a terminal state is reached,
either at fixed time steps or a specific state, resulting in a complete episode:

S0, A0, R1, S1, A1, ..., RT

The Markovian property is reflected on the fact that the state, action and reward depends only
on the last step and not the steps before.

Figure 2.1: The interaction between the agent and the environment in an MDP

To select which action to take, the agent follows a policy. Policies can be deterministic or
stochastic.

Definition 2.2.2 (Deterministic Policy). A deterministic policy maps each state to a single action.

π : S → A (2.2.1)

Definition 2.2.3 (Stochastic Policy). A stochastic policy selects actions according to a probability
distribution conditioned on the state.

π : A× S → [0, 1] (2.2.2)

π(a, s) = P[At = a | St = s] (2.2.3)

The goal of the agent’s actions is to maximize the total reward received over an entire episode,
not just the immediate reward. If an action leads to a large immediate reward but sacrifices
subsequent rewards, it is considered inferior to an action that yields a small immediate reward but
leads to greater rewards later on. This reflects the idea of ”playing the long game”.

Definition 2.2.4 (Return). The return Gt is the sum of discounted rewards from t to the end of
the episode, using the discount factor γ ∈ [0, 1]:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + . . .+ γ(T−1)RT (2.2.4)

The use of a discount factor γ serves several purposes. It allows for problems that do not have
a natural termination or that may continue indefinitely to have infinite returns. Additionally, in
many problems, a reward received sooner is more desirable than one received later. In economic-
related problems, the discount rate can be interpreted as the opportunity cost or the rate of

8

intertemporal preference for consumption. Furthermore, the discount factor allows for controlling
the preference for shorter-term or longer-term rewards.

Due to the stochastic nature of the environment, the agent’s objective is to maximize the
expected return.

Definition 2.2.5 (Value Function). The Value Function V t
π : S → R, or V-function, in a finite

MDP represents the expected return when starting from a given state s, in time t and following
policy π. If the :

V t
π(s) = Eπ[Gt|St = s, t] ∀s ∈ S (2.2.5)

Therefore, we seek:

π∗ = argmax
π

V t
π(.) (2.2.6)

Could also be of interest to know how good a single action is, if we return to follow π, afterwards.
For this end, we define the Action-Value Function:

Definition 2.2.6 (Action-Value Function). The Action-Value Function, Q-function, Qt
π : S×A →

R, is the expected return, conditional to the current state s, taking action a now and following the
policy π afterwards:

Qt
π(s, a) = Eπ[Gt|St = s, t, At = a] ∀(s, a) ∈ S ×A (2.2.7)

For brevity of notation, the time will be included in the state and the superscript will be
ommited.

2.2.2 Bellman Equations

The Value function 2.2.5 can be rewritten as a recursive equation:

Vπ(s) = Eπ[Gt|St = s]

= Eπ[Rt+1 + γRt+2 + γ2Rt+3 + · · ·+ γ(T−1)RT |St = s]

= Eπ[Rt+1 + γEπ[Gt+1|St+1 = s′]|St = s]

= Eπ[Rt+1 + γVπ(s
′)|St = s] (2.2.8)

The same result can be achieved for the Action-Value function:

Qπ(s, a) = Eπ[Rt+1 + γQπ(s
′, a′)|St = s,At = a] (2.2.9)

These equations are known as Bellman Equations, named after Richard Bellman [Bellman, 1957].
As mentioned before, we are interested in finding the optimal policy π∗, i.e., the one with the

highest Vπ∗(s). We can define the optimal Value and Action-Value functions:

V ∗(s) = max
π

Vπ(s) ∀s ∈ S (2.2.10)

Q∗(s, a) = max
π

Qπ(s, a) ∀(s, a) ∈ S ×A (2.2.11)

Notice that V ∗ and Q∗ are related by:

V ∗(s) = max
a∈A

Q∗(s, a) (2.2.12)

By substituting 2.2.8 and 2.2.9 into 2.2.10 and 2.2.11, respectively, we obtain:

V ∗(s) = max
π

Eπ[Rt+1 + γV ∗(s′)|St = s] (2.2.13)

Q∗(s, a) = max
π

Eπ[Rt+1 + γmax
a′∈A

Q∗(s′, a′)|St = s,At = a]

= max
π

Eπ[Rt+1 + γV ∗(s′)|St = s,At = a] (2.2.14)

These equations are consistent with the Bellman’s Principle of Optimality:

9

Definition 2.2.7 (Bellman’s Principle of Optimality). ”An optimal policy has the property that
whatever the initial state and initial decision are, the remaining decisions must constitute an op-
timal policy with regard to the state resulting from the first decision.” [Bellman, 1957]

Therefore, these equations are known as Bellman Optimality Equations.

Optimal Policy

It was always assumed that there is an optimal policy, but the reader may question if this is indeed
true.

Theorem 2.2.1 (Optimal Policy Existence). For any Markov Decision Process, ∃ a policy π∗,
called the optimal policy, such that Vπ∗(s) ≥ Vπ′(s), ∀s ∈ S and any acceptable policy π′.

Proof. The detailed proof can be found in [Kumar, 2020, Modirshanechi, 2020]. Here, I will provide
a sketch of the idea. We can define an operator T , called the Bellman Optimality Operator, that
takes a Value or Action-Value function and returns another Value/Action-Value function:

TV (s) = max
a

E[Rt+1(s, a, s
′) + γV (s′)] (2.2.15)

Applying the Bellman operator 2.2.15 on 2.2.13:

V ∗ = TV ∗ (2.2.16)

Hence, to prove the existence of a optimal V ∗ it is enough to prove that T operator has a fixed
point. It can be shown that for γ ∈ [0, 1), T is a contraction mapping in sup-norm in a complete
metric space. Then, by the Banach Fixed Point Theorem, such V ∗ exist and hence the optimal
policy π∗ exists.

2.2.3 Solution Algorithms

To obtain V ∗(s), Q∗(s, a), and π∗(s) for a given problem, countless algorithms have been developed,
each with its strengths and limitations. In some situations, the dynamics of the MDP (transition
probabilities and reward function) are known, such as in games or non-chaotic physical systems.
In these cases, we can expand equations 2.2.8, 2.2.9, 2.2.13, and 2.2.14 further:

Vπ(s) =
∑
a∈A

π(a|s)
∑

s′∈S,r∈R
P[s′, r|s, a](r + γVπ(s

′)) (2.2.17)

Qπ(s, a) =
∑

s′∈S,r∈R
P[s′, r|s, a](r + γ

∑
a′∈A

π(a|s)Qπ(s
′, a′)) (2.2.18)

V ∗(s) = max
a∈A

∑
s′∈S,r∈R

P[s′, r|s, a](r + γV ∗(s′)) (2.2.19)

Q∗(s, a) =
∑

s′∈S,r∈R
P[s′, r|s, a](r + γmax

a′∈A
Q∗(s′, a′)) (2.2.20)

The first two equations are linear and can potentially be solved explicitly or numerically if
the state and action spaces are not too large. The last two equations are nonlinear and require
numerical methods for solving systems of nonlinear equations. The set of methods based on these
equations is known as Dynamic Programming.

For more interesting and complex problems where the dynamics are not known, direct com-
putation of the Q and V functions is not feasible. In such cases, two contrasting category of
methods were developed: Monte Carlo and Temporal-Difference methods. A comprehensive
exposition of these methods can be found at [Sutton and Barto, 2020] and in finance-oriented
[Rao and Jelvis, 2022].

10

Monte Carlo

Monte Carlo methods are based on simulating a complete episode following a given policy, get
the realized return and updating the value function, of that initial state, as a weighted average
between the current estimation of the value function and the realized return of the episode:

V (St)← V (St) + α[Gt − V (St)] (2.2.21)

The parameter α is the learning rate. A larger α leads to faster moving towards the true value,
but the estimation may bounce around it or even diverge. A smaller value reduces this risk but
may be slower to converge. The solution to this trade-off is discussed in section 2.2.4. A con of
this method is that you either only improve the estimation of a single state, the initial, or a vector
of Returns, progressively discarding the older reward, has to be carried until the update step.

Temporal-Difference

Temporal-Difference (TD) methods, on the other hand, update the estimation at each step, allowing
for online estimation (no need to wait until the end of the episode) and learning in problems without
terminal states. This is done using the reward Rt+1 plus the estimated expected value of Gt+1 :

Ĝt = Rt+1 + γE[Gt|St = s] (2.2.22)

Ĝt = Rt+1 + γV (St+1) (2.2.23)

V (St)← V (St) + α[(Rt+1 + γV (St+1)− V (St)] (2.2.24)

This method has the advantage of immediately update the estimation, updating for all states
in the episode. It also reduce the memory usage and usually leads to simpler codes. A con is the
use of the function being estimation to improve itself. A poor initial value, will propagate and my
slow down the convergence.

2.2.4 Q-Learning

Among TD methods, Q-Learning is one of the most widely used algorithms, maybe one of the most
used in the whole field of reinforcement learning. It was developed by Watkins [Watkins, 1989]
in 1989 and remains a simple yet powerful algorithm. Q-Learning is classified as an off-policy
algorithm, meaning that during learning, it samples actions not from the optimal policy at that
time, but from another policy. The most common approach is the ϵ-greedy policy:

a =

{
∼ U(A), with probability ϵ

argmaxa Q(s, a), w.p. 1− ϵ
(2.2.25)

Here, ∼ U denotes uniform random selection. The ϵ-greedy policy allows for exploration of the
action space by occasionally selecting non-optimal actions. This is important to avoid getting stuck
in suboptimal actions and to encourage learning of potentially better actions. We usually do not
follow purely exploratory policies while learning to not waste computational resources improving
the estimation of actions we know are bad (I don’t have to go 10 times to the same restaurant to
be sure how bad it is).

The Q-Learning algorithm updates the estimation of the action-value function using a weighted
average between the current estimation and the reward received plus the discounted estimation of
the state-value for the next state as target:

Q(S,A)← (1− α)Q(S,A) + α(R+ γV ∗(S′)) (2.2.26)

Here, α is the learning rate, which determines the weight given to the new information compared
to the current estimation. The Q-Learning algorithm can be summarized as follows:

11

Algorithm 1 Q-Learning

Initialize Q(S,A);
Initialize α ∈ [0, 1];
Initialize n as total length of time steps;
for i = 1, . . . , n do

Initialize S;
while S ¬ terminal do

Sample A← ϵ-greedy(A);
Take action A;
Observe R, S′

Q(S,A)← (1− α)Q(S,A) + α(R+ γV (S′))
S ← S′

One advantage of Q-Learning is that it approximates the optimal action-value function regard-
less of the policy followed, as long as all state-action pairs continue to be updated. This allows for
flexibility in exploration and the ability to access the entire action space.

Convergence

Another advantage of this algorithm is that it’s guaranteed to converge under the conditions:

∑
t

αt =∞
∑
t

α2
t <∞ (2.2.27)

Before prove this [Jaa, 1993], let’s see some preliminary results:

Theorem 2.2.2 (Q Contraction and Fixed Point). The operator H is a contraction in the sup-
norm and Q∗, optimal Q-function, is a fixed point in it. The operator H, for a function Q :
S ×A → R, is defined as:

(HQ)(s, a) =
∑

s′∈S,r∈R
P[s′, r|s, a](r + γmax

a′∈A
Q(s′, a′)) (2.2.28)

Proof. Start with:

||HQ1 −HQ2||∞ =

= max
s,a

∣∣∣∣∣∑
s′∈S

P[s′|s, a][r(s, s′, a) + γmax
a′∈A

Q1(s
′, a′)− r(s, s′, a)− γmax

a′∈A
Q2(s

′, a′)]

∣∣∣∣∣
= γmax

s,a

∣∣∣∣∣∑
s′∈S

P[s′|s, a][max
a′

Q1(s
′, a′)−max

a′
Q2(s

′, a′)]

∣∣∣∣∣
≤ γmax

s,a

∑
s′∈S

P[s′|s, a]
∣∣∣∣max
a′∈A

Q1(s
′, a′)−max

a′∈A
Q2(s

′, a′)

∣∣∣∣
≤ γmax

s,a

∑
s′∈S

P[s′|s, a] max
a′∈A,s∗∈S

|Q1(s
∗, a′)−Q2(s

∗, a′)|

= γ||Q1 −Q2||∞

(2.2.29)

||HQ1 −HQ2||∞ ≤ γ||Q1 −Q2||∞ (2.2.30)

As the optimal action-value function is:

HQ∗ = Q∗ (2.2.31)

It is a fixed point in H.

Theorem 2.2.3 (Random Process Convergence). The random process {∆Qt} defined as:

∆Qt+1(.) = (1− αt)∆Qt(.) + αtFt(.) (2.2.32)

Converges to zero with probability 1, if:

12

1. 0 ≤ αt ≤ 1,
∑

t αt =∞ and
∑

t α
2
t <∞ (Robbins-Monro condition);

2. ||E[Ft(.)]|| ≤ γ||∆Qt||, with γ < 1;

3. V ar[Ft] ≤ C(1 + ||∆Qt||2), for C > 0;

Proof. See [Jaa, 1993].

Theorem 2.2.4 (Q-Learning Convergence). Given a finite MDP ⟨S,A,P,R⟩, the Q-learning
update rule:

Qt+1(st, at) = Qt(st, at) + αt[Rt + γ max
a∗∈A

Qt(st+1, a
∗)−Qt(st, at)] (2.2.33)

obeying the Robbins-Monro condition, converges to the optimal Q-function with probability 1.

Proof. Let just clarify that the subscript t in Qt refers to the sequence of updating the Q estimation
and not the step in the MDP. To prove the convergence, we should verify the Q-learning algorithm
satisfies the condition of theorem 2.2.3. The first condition of theorem 2.2.3 was imposed. To show
the second condition, rewrite 2.2.33 as:

Qt+1(st, at) = (1− αt)Qt(st, at) + αt[rt + γ max
a∗∈A

Qt(st+1, a
∗)] (2.2.34)

Subtract Q∗(st, at) from both sides and defining:

∆Qt(st, at) = Qt(st, at)−Q∗(st, at) (2.2.35)

yields

∆Qt(st, at) = (1− αt)∆Qt(st, at) + αt[rt + γ max
a∗∈A

Qt(st+1, a
∗)−Q∗(st, at)] (2.2.36)

Letting

Ft(st, at) = rt + γ max
a∗∈A

Qt(st+1, a
∗)−Q∗(st, at) (2.2.37)

Then, using the definition 2.2.28:

E[Ft(st, at)] = (HQ)(s, a)−Q∗(st, at) (2.2.38)

As Q∗ is the fixed point of H:

Ft(st, at) = (HQ)(s, a)− (HQ∗)(st, at) (2.2.39)

From 2.2.2 we achieve the second condition:

||Ft(st, at)||∞ ≤ ||HQt −HQ∗||∞ ≤ γ||Qt −Q∗||∞ = γ||∆Qt||∞ (2.2.40)

The third condition is simple to demonstrate:

V ar[Ft(st, at)] = E[(Ft(st, at)− E[Ft(st, at)])
2]

= E[(rt + γ max
a∗∈A

Qt(st+1, a
∗)−Q∗(st, at)− (HQ)(s, a) +Q∗(st, at))

2]

= E[(rt + γ max
a∗∈A

Qt(st+1, a
∗)− (HQ)(s, a))2]

= V ar[rt + γ max
a∗∈A

Qt(st+1, a
∗)]

(2.2.41)

As r and Qt are bounded, ∃C such:

V ar[Ft(st, at)] ≤ C(1 + ||∆Qt||2) (2.2.42)

13

Tabular Implementation

So far, we have discussed the Q-Learning algorithm without explicitly mentioning the representa-
tion or updating process of the Q-function. When both the action and state spaces are discrete,
or at least can be discretized, a straightforward approach is to use a tabular representation for the
Q-function.

The tabular implementation of Q-Learning involves representing the Q-function as a table,
which is often referred to as the Q-table. This table’s dimensions correspond to the number
of states and actions in the environment, making it more appropriate to call it a Q-tensor if
|A|+ |S| > 2. Each entry in the table stands for the Q-value for a specific state-action pair.

Initially, the Q-table is filled with arbitrary values or all zeros. As the agent follows algorithm
1, the Q-table gets updated.

This implementation provides a simple and intuitive representation of the Q-function. However,
it is constrained to discrete state and action spaces. With large state and action spaces, the tabular
representation becomes unfeasible due to the exponentially growing size of the Q-table, a problem
known as the Curse of dimensionality. Moreover, the Q-table can only learn the state-action value
for a specific pair (s, a) if this pair is encountered many times, which could be problematic if a
state or action is rarely visited.

Despite its limitations, the Q-table is a straightforward and powerful tool for small dimension
problems.

Deep Q-Learning

The tabular implementation becomes impractical when the number of actions and states is too
large, or if the state space is continuous. In such cases, we can rely on function approximation
methods to tackle the problem.

Definition 2.2.8 (Function Approximation). Suppose f : X → Y is a function, and Φ = ϕ(·,w)
is a set of functions parameterized by θ. A function ϕw′ ∈ Φ is considered an approximation of f
over a subset X ⊆ X , provided there exists an error tolerance ϵ > 0 such that:

sup ∥f(X)− ϕw′(X)∥ < ϵ (2.2.43)

Here, ∥ · ∥ denotes a suitable norm or distance metric in the space Y.
Function ϕw2 is deemed to be a better approximation of f than ϕw1 if:

sup ∥f(X)− ϕw2
(X)∥ < sup ∥f(X)− ϕw1

(X)∥ (2.2.44)

Essentially, ϕw2 is a superior approximation if it achieves a smaller error on X compared to
ϕw1.

In the instance of approximating f with a polynomial, w would represent the coefficients of
this polynomial, for example.

In Q-Learning, since Q∗ cannot be directly observed, we aim to discover a sequence of progres-
sively better approximations of Q∗, derived from rewards.

There are many common choices of functional forms such as Gaussian kernels and polynomials.
However, Artificial Neural Networks (ANN) have become particularly popular [Sutton and Barto, 2020]
due to their function approximation capabilities, as explored in more detail in Section 2.3.

The application of ANN for Q-Learning was pioneered by DeepMind [Mnih et al., 2013], giving
rise to Deep Q-Learning, which has been gaining popularity ever since. Its primary advantage lies
in handling large action and state spaces, even continuous state spaces. Furthermore, it can extrap-
olate Q-Values for previously unvisited state-actions. The overall popularity of ANNs has grown
in recent years, thanks to user-friendly programming libraries like PyTorch [Paszke et al., 2019]
and TensorFlow [Abadi et al., 2016].

Nonetheless, these advantages come at a significant cost. Theorem 2.2.4 is valid for the exact
Q-function representation and not approximations, hence convergence is not guaranteed. Worse
still, the training could be unstable and carries a risk of divergence. This can occur when the
deadly triad [Sutton and Barto, 2020] is present:

• Function approximation.

• Bootstrapping (using the estimation itself in the target).

• Off-policy training.

14

Deep Q-Learning checks all the three boxes. Despite this, its usage is frequently justified by its
empirical successes [Fan et al., 2019, Ramaswamy and Hullermeier, 2022].

2.3 Artificial Neural Network

Artificial Neural Networks (ANNs) [Mitchell, 1997, Sutton and Barto, 2020, Ertel, 2017] are math-
ematical models that take loose inspiration from biological brains. The foundational connection
between these concepts was initially made in [McCulloch and Pitts, 1943]. Human brains con-
tain approximately 1011 neurons interconnected by over 1014 synapses. ANNs are barely capable
of simulating a fraction of this size, yet achieve remarkable results. For instance, an ANN with
merely 1291 ”neurons” was capable of driving a car [Pomerleau, 1989], and a state-of-the-art ANN
managed to outperform humans in the game of Go [Silver et al., 2016].

ANNs consist of interconnected units, where information flows from input units to output
units, undergoing a series of transformations. Numerous different architectures exist, reflecting
how the units are organized [Veen, 2019]. One of the most basic and widely used architectures is
the feed-forward neural network.

Definition 2.3.1 (Feed-forward Neural Network). Let NN denote the space of feed-forward ANNs.
The NN ∈ NN is a map NN : X → Y, with X ⊆ Rd0 and Y ⊆ RdL . Here, d0 and dL represents
the dimensionalities of the input and output spaces, respectively.

The NN consists of an ordered sequence of L mappings, referred as layers. Each layer l =
1, 2, ...L is characterized by a function fl : Rdl−1 → Rdl , where dl is the dimensionality of the lth

layer’s output.
The function fl is expressed as as the composition of a linear transformation, it a weight matrix

Wl ∈ Rdl×dl−1 and a bias vector bl ∈ Rdl , and a nonlinear activation function σl : R → R. That
is, fl(x; θl, σl) = σl(Wlx+ bl), where θl = (Wl,bl).

Therefore, we can define a NN as:

NN(X,Θ) = fL ◦ fL−1 ◦ · · · ◦ f1(X) (2.3.1)

where X ∈ X is the input vector, and Θ = {θ1, θ2, . . . θL} is the set of all network’s parameters.
W is usually called weights and b bias.

X

X

X

σ1

σ1

σ1

...

σ1

Hidden
layer 1

σ2

σ2

σ2

...

σ2

Hidden
layer 2

σ3

σ3

σ3

...

σ3

Hidden
layer 3

Y

Input
layer

Output
layer

Figure 2.2: Example of a feed-forward neural network

The input layer serves as the starting point for information, and the output layer represents
the final result of the ANN. Any layers situated between these two are termed hidden layers.

15

2.3.1 Activation Function

The selection of activation functions is wide-ranging and continues to grow [Lederer, 2021]. The
choice of which one to use often involves as much trial-and-error as theory.

Here are a few of the more commonly used activation functions:

ReLU

The Rectified Linear Unit (ReLU) is frequently used as an activation function due to its simplicity
and computational efficiency. It is defined as:{

R→ [0,∞)

σ(x) = max(0, x)
(2.3.2)

The ReLU activation function allows for faster and more effective training of neural networks
due to its property of activating a neuron only when the input is positive. This means it reduces
unnecessary computations by not activating all the neurons at the same time.

However, a drawback with ReLU is the so-called dying-ReLU problem. Occasionally, during
the training process, the bias becomes so negatively large that the ReLU consistently outputs 0
for most or all possible inputs. As the training process of an ANN involves taking the gradients of
each neuron, and this particular neuron has a gradient of zero, it ceases to improve, and effectively
”dies”.

ELU

To deal with the dying-ReLU problem, several variations were introduced, one of which is the
Exponential Linear Unit (ELU):

R→ (−a,∞)

σ(x) =

{
x, if x ≥ 0

a(ex − 1), if x < 0

(2.3.3)

Here, a ∈ [0,∞) is a parameter.
The ELU function introduces a small negative slope for negative input values, ensuring that

ELU neurons never completely die out. This leads to more robust and accurate training. However,
the ELU function is computationally more expensive than the ReLU, which can be a limitation in
scenarios where computational resources or speed are a concern.

Binary

The Binary activation function is specifically designed for binary classification problems, where
the output should be either 0 or 1. It is defined as:

R→ {0, 1}

σ(x) =

{
1, if x ≥ 0

0

(2.3.4)

The Binary activation function can be an effective choice when a clear binary decision is re-
quired from the model. However, because it is not differentiable, it can’t be used with standard
backpropagation training methods. This can limit its applicability in practical scenarios.

Logistic

The Logistic (or sigmoid) activation function is a differentiable and therefore trainable alternative
to the Binary function. It is defined as:{

R→ (0, 1)

σ(x) = 1
1+e−x

(2.3.5)

The Logistic function introduces a smooth, differentiable transition between the 0 and 1 outputs,
making it suitable for training via gradient descent. Additionally, its outputs can be interpreted
as probabilities, making it a popular choice for output layers in binary classification problems.

16

However, it can suffer from the ”vanishing gradient” problem, where the gradients become very
small if the input is too positive or too negative, slowing down the learning process.

Figure 2.3: Different types of Activation Functions.

2.3.2 Universal Approximation Theorem

The flexibility of Artificial Neural Networks (ANNs) largely explain their popularity, as they can
approximate a vast variety of functions. Specifically, a feed-forward ANN, equipped with a single
hidden layer (alongside a linear combination in the output layer), is capable of approximating
any function with a any degree of accuracy, given sufficient width. This is known as the Uni-
versal Approximation Theorem (UAT). In fact, there exist various versions of UATs, for different
architectures. Cybenko’s UAT [Cybenko, 1989] is arguably the most recognized:

Theorem 2.3.1 (Universal Approximation Theorem). Let C([0, 1]n) represent the set of all con-
tinuous functions [0, 1]n → R, and let σ denote any sigmoidal function. Define:

g(X) =

N∑
j=1

ajσ(wjX + bj) (2.3.6)

where wj is a matrix in Rn×n and bj is a vector in R1×n. Then, g(X) is dense in C([0, 1]n).
That is, g(.) can approximate any function in C([0, 1]n).

It’s important to clarify that the term sigmoidal function here doesn’t refer to the sigmoid
function, but rather any function where:

σ(t)→

{
1, as t→ +∞
0, as t→ −∞

(2.3.7)

Although the ReLU function is not a sigmoidal function, as it grows towards infinity, a linear
combination of ReLUs (one increasing, the other decreasing, thereby offsetting the infinite growth)
can function as such. Consequently, the theorem remains valid if we double the number of neurons
at most.

17

Proof. The detailed proof can be found in [Cybenko, 1989]. It involves functional analysis, which
falls outside the scope of this work. However, the concept can be grasped intuitively. Suppose
we aim to approximate a function f within the domain [0, 1]. We then consider an ANN with a
single neuron in the hidden layer that outputs 1 if the input exceeds 0.5, or 0 otherwise. With
appropriate selection of weights and bias, the ANN can yield the average of the function f over
[0, 0.5] if the input is < 0.5 and deliver the average of f over (0.5, 1] if it is greater. Employing two
neurons allows the domain to be divided into three parts, which approximates the average of each
part in the image, resulting in improved approximation. This process can be indefinitely repeated,
enhancing the approximation with each additional neuron in the hidden layer.

Figure 2.4: Universal Approximation Theorem. Approximations for N = 1, 3, 9 and 50 hidden
neurons. Function f(x) =

√
x+ sin(x), x ∈ [0, 0.2].

The theorem is immediately expanded to functions with image Rm, by staking m neural net-
works. Other findings expand on this theorem to accommodate bounded width and arbitrary
depth under varying conditions [Hornik et al., 1989, Hornik, 1993]. The debate whether use deep
(numerous hidden layers) or shallow structures is addressed in [Bianchini and Scarselli, 2014]. For
an overview of significant approximation results in Artificial Neural Networks, readers are directed
to [Petersen, 2022].

Intriguingly, a parallel result in finance, albeit unrelated to the main subject, stipulates that
any European contingent claim can be replicated with a static portfolio of vanilla calls and puts,
with strikes forming a continuum [Carr and Madan, 2002, Bossu et al., 1998]. A portfolio of call
options is analogous to a single hidden layer ANN with ReLU activation.

2.3.3 Training Process

The ability of an ANN to approximate any function to an arbitrarily close degree, provided enough
breadth or depth, has been established. However, the challenge lies in finding the optimal set Θ
within the weight space for an ANN of a fixed size. As the size of Θ can quickly escalate – for
example, a small network with layers dimensions [2, 4, 4, 2] would encompass 44 parameters (the
total sum of the connections and neurons). Trying different values mindlessly is unfeasible.

The method to find the optimal Θ∗ is referred to as training. Before diving into the training
of a complex network, let’s examine the training process for a single-layer ANN.

Delta Rule

Consider an NN ∈ NN with J inputs, I outputs and a single layer with I neurons:

yi = σi (hi) (2.3.8)

18

hi =

I∑
i=1

wijxj (2.3.9)

And the define the Error Function:

E =
1

2

I∑
i=1

(ti − yi)
2 (2.3.10)

This function measures the discrepancy between our target output ti and our actual output yi.
Our goal is to identify either the global or at least a local minimum of E. Gradient Descent is a
well-known and efficient algorithm to locate a local minimum. For a function F , the argument a
that minimizes the function (locally) is obtained from an arbitrary starting point a0 by:

a← a− α∇F (a) (2.3.11)

Here, ∇ denotes the gradient and α represents the learning rate. This can be seen as ”taking
a step of size α in the direction of steepest descent”.

In terms of the function E, the derivative with respect to a single weight can be computed
using the chain rule:

∂E

∂wij
=

∂E

∂yi

∂yi
∂θij

(2.3.12)

Applying the chain rule again to the second term:

∂E

∂wij
=

∂E

∂yi

∂yi
∂hi

∂hi

∂wij
(2.3.13)

This gives us:

∂E

∂yi
= (ti − yi)

∂yi
∂hi

= σ′(hi)
∂hi

∂wij
= xj (2.3.14)

which then implies:

∂E

∂wij
= (ti − yi)σ

′(hi)xj (2.3.15)

The gradient descent for each weight then becomes:

wij ← wij −∆wij (2.3.16)

∆wij = α(ti − yi)σ
′(hi)xj (2.3.17)

Commonly, it is denoted as:

∆wij = αδixj (2.3.18)

δi = (ti − yi)σ
′(hi) =

∂E

∂hi
(2.3.19)

Backpropagation

When dealing with multilayer networks, the delta rule cannot be directly applied as there is no
specific target for each layer, except for the output layer. However, as ANNs are essentially
compositions of functions, we can still leverage the chain rule.

For the output layer, the delta rule remains applicable, but with the previous layer’s output
instead of the network input. For the hidden layers, each neuron contributes to the error of several
neurons in the subsequent layer. Therefore, we need to sum these contributions to determine the
error term:

∂E

∂hl
j

= δlj =
∑
i

(
∂E

∂hl+1
i

∂hl+1
i

∂olj

)
olj
∂hl

j

(2.3.20)

19

In this equation, the superscript l represents the layer, and olj symbolizes the output of the jth

neuron of the lth layer, as a substitute for yj , the network output. Here, ∂E

∂hl+1
i

is the error term

for neuron i in layer (l + 1),
∂hl+1

i

∂yl
j

is the weight wl+1
ji , and

∂yl
j

∂hl
j

is the derivative of the activation

function σ′
j(h

l
j). Hence, the error term for the jth neuron in the lth layer, denoted as δlj , can be

rewritten as:

δlj =

(∑
i

δl+1
i wl+1

ji

)
· σ′

j(h
l
j) (2.3.21)

Observe that we initiate calculations from the output layer and proceed backward to the input,
hence the nomenclature of the technique. Backpropagation can be viewed as a particular instance
of a programming abstraction termed Automatic Differentiation (AD) [Baydin et al., 2018], which
encompasses techniques to efficiently compute derivatives in computer programs.

The weight update process remains consistent with the earlier process:

wl
jk ← wl

jk − αδljxk (2.3.22)

20

Chapter 3

Merton’s Portfolio Problem

3.1 Problem Definition

Consider a scenario where an investor who retires or inherits a substantial sum of money at time
t = 0. The investor plans to live for T ∈ R more years and doesn’t foresee any additional income
aside from the portfolio. All consumption is discretionary, meaning that there are no fixed costs or
minimum levels of consumption. Regarding the market, we assume that the investor can trade any
fractional amount of wealth without incurring transaction costs. We are operating in continuous
time. Some of these assumptions are more realistic than others, but they are necessary to make
the problem manageable.

Let’s denote Wt as the wealth at any given time t. The investor will withdraw a certain amount,
ct, from Wt for consumption, providing a utility u(ct). Considering that current consumption is
more desirable than future consumption, future utilities are subject to discounting at a rate ρ.
The investor might wish to leave a bequest for their family or a charity, which is evaluated by a
”bequest function”. This function is typically assumed to be ϵγ for simplicity, where 0 < ϵ << 1
results in no bequest (instead of 0, for technical reasons), and γ is a utility-related parameter.

The objective is to maximize the expected time-aggregated utility of consumption by controlling
the asset allocation and the consumption, at = [πt, ct]:

max
πt,ct

E

[∫ T

t

e−ρ(s−t)u(cs)ds+ ϵγe−ρ(T−t)u(WT)

]
(3.1.1)

In Stochastic Control language, we have a Markovian Decision Process with:

• State: (Wt, t)

• Action: (πt, ct)

• Reward at t < T : u(ct)

• Reward at T : ϵγu(WT)

So far, we have made very few assumptions, which could be adjusted to accommodate more
realistic scenarios. For instance, a minimum level of consumption could be imposed in the utility
function, and a fixed transaction cost could be added as an additional term in the equation. This
flexibility makes Merton’s Portfolio Problem (MPP) a robust and realistic framework for such
work.

3.2 Analytical Solution

As previously mentioned, 3.1.1 has analytical solution under specific conditions. In this section,
we will derive one of these solutions, following [Rao and Jelvis, 2022]. The aim is to work with a
stochastic control example to gain a deeper understanding and to have a benchmark for comparison
with the Tabular and ANN implementations.

We will further consider:

• A riskless asset, Rt, accruing a known constant rate of return:

dRt = rRtdt (3.2.1)

21

• A risk asset, St following a Geometric Brownian Motion with known µ and σ:

dSt = µStdt+ σStdZt (3.2.2)

• µ > r > 0 and σ > 0

• The fraction of wealth allocated in the risk asset is a function of the state only, πt = π(Wt, t).

• The fraction allocated in the risk-free asset is the complement, i.e. 1− πt.

• Constant Relative Risk Aversion (CRRA) Utility function, with risk-aversion parameter γ:

u(x) =

{
x1−γ

1−γ , for 0 < γ ̸= 1

log(x), for γ = 1
(3.2.3)

Under these conditions, the Wealth process Wt is defined as:

dWt = ((πt(µ− r) + r)Wt − ct)dt+ πtσWtdZt (3.2.4)

The equation 3.1.1 can be considered an Optimal Value Function for a given state, given the
utility function 3.2.3:

V ∗(Wt, t) = max
πt,ct

E

[∫ T

t

e−ρ(s−t)c1−γ
s

1− γ
ds+

ϵγe−ρ(T−t)W 1−γ
T

1− γ

∣∣∣∣Ft

]
(3.2.5)

Under careful inspection, it’s evident that 3.2.5 is a recursive equation, and the solution would
require solving a Hamilton-Jacobi-Bellman (HJB) equation, a common approach in stochastic
control theory:

V ∗(Wt, t) = max
πt,ct

E

[∫ t′

t

e−ρ(s−t)c1−γ
s

1− γ
ds+ e−ρ(t′−t)V ∗(Wt′ , t

′)

]
(3.2.6)

The first term corresponds to the reward accrued within the interval [t, t1] while the second
term is the expected rewards, discounted over time. Reformulating this as a Stochastic Differential
Equation and reordering the terms, we have:

ρV ∗(Wt, t)dt = max
πt,ct

E

[
dV ∗(Wt, t) +

c1−γ
t

1− γ
dt

]
(3.2.7)

The term dV ∗(Wt, t) can be expanded using Itô’s lemma:

ρV ∗(Wt, t)dt = max
πt,ct

E
[(

∂V ∗

∂t
+

∂V ∗

∂W
((πt(µ− r) + r)Wt − ct) +

∂2V ∗

∂W 2

π2
t σ

2W 2
t

2

)
dt

+ πtσWtdZt +
c1−γ
t

1− γ
dt

]
(3.2.8)

The term dZt is a martingale and thus E[πtσWtdZt] = 0. By dividing both sides by dt, we
obtain the Partial Differential Equation (PDE) for the Hamilton-Jacobi-Bellman (HJB) equation:

ρV ∗(Wt, t) = max
πt,ct

[
∂V ∗

∂t
+

∂V ∗

∂W
((πt(µ− r) + r)Wt − ct) +

∂2V ∗

∂W 2

π2
t σ

2W 2
t

2
+

c1−γ
t

1− γ

]
(3.2.9)

The right-hand side of the equation can be noted with Φ(t,Wt;πt, ct). To obtain the optimal
values π∗

t and c∗t , the partial derivatives with respect to these variables are equated to zero:

∂Φ

∂πt
= (µ− r)

∂V ∗

∂Wt
+

∂2V ∗

∂W 2
t

πtσ
2Wt = 0 (3.2.10)

π∗
t =
−(µ− r) ∂V

∗

∂Wt

σ2Wt
∂2V ∗

∂W∗
t

(3.2.11)

22

∂Φ

∂ct
= −∂V ∗

∂Wt
+ (c∗t)

−γ = 0 (3.2.12)

c∗t =

(
∂V ∗

∂Wt

)− 1
γ

(3.2.13)

By substituting equations 3.2.11 and 3.2.13 into equation 3.2.9, the following result emerges:

ρV ∗(Wt, t) =
∂V ∗

∂t
− (µ− r)2

2σ2

(
∂V ∗

∂Wt

)2
∂2V ∗

∂W 2
t

+
∂V ∗

∂Wt
rWt +

γ

1− γ

(
∂V ∗

∂Wt

) γ−1
γ

(3.2.14)

With the terminal condition:

V ∗(WT , T) = ϵγ
(WT)

1−γ

1− γ
(3.2.15)

It can be confirmed that the second-order conditions are satisfied for ct > 0, Wt > 0, ∂2V ∗

∂W < 0,
and γ > 0. Economically, these conditions can be understood as positive consumption and wealth,
diminishing marginal utility, and risk-aversion, respectively.

Now, assume the ansatz:

V ∗(Wt, t) = f(t)γ
(Wt)

1−γ

1− γ
(3.2.16)

We have the following partial derivatives:

∂V ∗

∂t
= γf(t)γ−1f ′(t)

W 1−γ
t

1− γ

∂V ∗

∂Wt
= f(t)γW−γ

t

∂2V ∗

∂W 2
t

= −f(t)γγW−γ−1
t

Putting all together, we have the ODE:

f ′(t) = νf(t)− 1 (3.2.17)

with:

ν =
ρ− (1− γ)((µ−r)2

2σ2γ + r)

γ
(3.2.18)

The ODE solution is:

f(t) =

{
1+(νϵ−1)e−ν(T−t)

ν , for ν ̸= 0

T − t+ ϵ, for ν = 0
(3.2.19)

Making the proper substitutions, we finally get:

π∗(Wt, t) =
µ− r

σ2γ
(3.2.20)

c∗t =
Wt

f(t)
=

{
νWt

1+(νϵ−1)e−ν(T−t) , for ν ̸= 0
Wt

T−t+ϵ , for ν = 0
(3.2.21)

V ∗
t (Wt, t) = f(t)γ

W 1−γ
t

1− γ
=

{
(1+(νϵ−1)e−ν(T−t))γ

νγ

W 1−γ
t

1−γ , for ν ̸= 0

(T − t+ ϵ)γ
W 1−γ

t

1−γ , for ν = 0
(3.2.22)

The wealth process evolve according:

dWt

Wt
=

(
r +

(µ− r)2

σ2γ
− 1

f(t)

)
dt+

µ− r

σγ
dZt (3.2.23)

23

The consumption c∗t is annualization of the instantaneous consumption, i.e. the consumption
at given point in time is c∗t dt. For 0 << t < T and/or small ϵ the consumption could be larger
than 1, which doesn’t mean one should borrow to consume. A quantity of interest could be the

expected consumption over a year. The direct calculation of
∫ T

t
c∗τdτ probably does not yield an

analytical solution and numerical procedure is necessary. But we may approximate the percentage
consumption over two periods in time as:

%C∗
t,t′ ≈

∫ t′

t

1

f(τ)
dτ (3.2.24)

Resulting in:

%C∗
t,t′ ≈

(t′ − t)ν + log
(

(ϵν−1)e−ν(T−t)+1

(ϵν−1)e−ν(T−t′)+1

)
, for ν ̸= 0

log
(

T−t+ϵ
T−t′+ϵ

)
, for ν = 0

(3.2.25)

Earlier in the process, for ν ̸= 0, ν dominates the consumption, later the second part of the
equation dominates.

The reader may wonder how the action-value function in continuous-time is, but it does not
exist [Kim et al., 2021]. The action-value function calculate the expected return, deviating the
policy momentarily, and return to the prescribed policy afterwards. The shorter the time ∆t the
policy is deviated, the smaller the impact, i.e. smaller the difference between the Q-value for a
given action and the V-value, until:

lim
∆t→0

|Q(s, a)− V (s)| = 0 ∀a ∈ A (3.2.26)

Therefore, the action-value function in continuous time is not defined.

3.2.1 Remarks

The solution derived herein have interesting implications, some of which are consistent with com-
mon investment wisdom, while others conflict with it.

The portion of wealth allocated to the risky asset is time-homogeneous, challenging the age-
old belief that younger individuals should invest more in risky assets than their older counter-
parts. The conditions under which this is true have been previously explored by Samuelson
[Samuelson, 1963]. While this holds under the assumptions made in this work, it does not always
apply [Kritzman and Rich, 1998, Ross, 1999, Bianchi et al., 2016]. Another fascinating revelation
is that the share of wealth invested in the risky asset is reduced to:

πt =
µ− r

σ2
(3.2.27)

For γ = 1. This equation is also known as Kelly’s Criterion and represents the optimal solution
for a log-utility investor. This formula can be derived independently by maximizing the logarithm
of a portfolio invested in a risky and a risk-free asset, with respect to the fraction invested in the
risky asset.

3.2.2 Results

In this section, we illustrate two instances utilizing the analytical solution.

Case 1

The first case have the following set of parameters:

Parameter W0 T µ σ r γ ρ ϵ
Value 100 40 8% 35% 5% 0.3 0.06 0.6

The prescribed percentages allocated to the risky asset and consumption throughout the years
are depicted as follows:

24

Figure 3.1: Optimal consumption and Investment policy

Notice, the consumption escalates sharply at the end of the period, attributable to the term
1

e−ν(T−t) in equation 3.2.21. At the period’s end, the consumption surpasses 100%, but it’s impor-
tant to remind that this represents the consumption rate over dt.

The resulting State-Value function (V-Value) can be visualized in the heatmap below. As it
would be expected, higher values of wealth provide higher expected discounted returns. Starting
with Wt = 100 and t = 0, the V-Value is V (100, 0) = 82.878.

Figure 3.2: State Value (V-Value)

Lastly, a sample of possible wealth processes paths, with two highlighted paths.

25

Figure 3.3: Sample of wealth process. Two arbitrary samples highlighted.

Case 2

Due to computational limitations, the discrete numerical implementations will have a shorter time
length. In this example, we maintain all parameters consistent with Case 1, except for the time
T , which is reduced to T = 5, to serve as a benchmark against the solutions in the forthcoming
section.

Parameter W0 T µ σ r γ ρ ϵ
Value 100 5 8% 35% 5% 0.3 0.06 0.6

26

Figure 3.4: Optimal consumption and Investment policy

Figure 3.5: State Value (V-Value)

With V (100, 0) = 57.556.

27

Figure 3.6: Sample of wealth process. Two arbitrary samples highlighted.

3.3 Discrete Merton’s Portfolio

In practice, neither consumption nor investment can occur in continuous time. Instead, these
actions are performed at discrete time intervals, demanding certain modifications to the model.

Let’s consider a partition τn on the time interval [t, T], τn : t = t0 < t1 < · · · < tn = T and
ti+1 − ti = ∆t, ∀ti ∈ τn. The objective now becomes:

V ∗
t (Wt, t) = max

(πt,ct)∈A
E

[
T∑

τ=t

e−ρ(T−τ)u(cτ)∆t+ ϵγe−ρ(T−τ)u(WT)

∣∣∣∣Wt = w

]
(3.3.1)

The utility function remains the same, therefore, we have:

V ∗
t (Wt, t) = max

(πt,ct)∈A
E

[
T∑

τ=t

e−ρ(T−τ) c
1−γ
τ

1− γ
∆t+ ϵγe−ρ(T−τ)W

1−γ
T

1− γ
f

∣∣∣∣Wt = w

]
(3.3.2)

The risk-free and risky assets now follow the discrete versions of Equations 3.2.1 and 3.2.2:

Rt+1 = Rt ·∆Rt (3.3.3)

∆Rt = er∆t (3.3.4)

St+1 = St ·∆St (3.3.5)

∆St = e(µ−
σ2

2)+σ
√
∆tξ (3.3.6)

In the continuous case, investment and consumption are assumed to occur ”simultaneously”.
However, in the discrete case, we first consume and then invest the remaining amount until the
next period. The wealth, therefore, evolves as follows:

Wt+1 = (Wt − ct)(πt(∆St −∆Rt) + ∆Rt) (3.3.7)

From equation 3.3.2 is direct to see it is a Bellman optimality equation:

28

V ∗
t (Wt, t) = max

(πt,ct)∈A
E

[
c1−γ
t

1− γ
+

T∑
τ=t

e−ρ(T−τ) c
1−γ
τ

1− γ
∆t+ ϵγe−ρ(T−τ)W

1−γ
T

1− γ

∣∣∣∣Wt, t

]
(3.3.8)

V ∗
t (Wt, t) = max

(πt,ct)∈A
E

[
c1−γ
t

1− γ
+ e−ρ∆t

(
T∑

τ=t

e−ρ(T−τ) c
1−γ
τ

1− γ
∆t+ ϵγe−ρ(T−τ)W

1−γ
T

1− γ

)]
(3.3.9)

V ∗
t (Wt, t) = max

(πt,ct)∈A
E

[
c1−γ
t

1− γ
+ e−ρ∆tV ∗

t+1

]
(3.3.10)

The optimal action-value function is:

Q∗
t (Wt, t; ct, πt) = max

(πt+1,ct+1)∈A
E

[
c1−γ
t

1− γ
+ e−ρ∆tV ∗

t+1(Wt+1, t+ 1)

∣∣∣∣ct, πt

]
(3.3.11)

Equations 3.3.10 and 3.3.11 are nonlinear equations that should be solved numerically. More-
over, they rely on the calculation of expectations. Even though the dynamics are given in this
scenario, the calculation of the expectation can be complex. In other cases, the dynamics might
not be known at all.

In the next section, the Discrete Merton’s Portfolio problem will be solved using Q-Learning
with Tabular and Deep Q-Learning Implementations.

29

Chapter 4

Numerical Implementation

In this chapter, two implementations of the Q-learning algorithm will be presented. Both imple-
mentations, as well the analytical solution can be found at my GitHub repository andrequant/Q-
Merton.

First, the Tabular implementation, where the estimated Q-Values are stored in a 4-dimensional
tensor, one dimension for each state variable and one for each action variable. Second, the Deep
Q-Learning implementation, using a Neural Network to approximate the functional form of the
Action-State function.

4.1 Tabular

The main advantage of the Tabular Q-Learning is the guarantee of convergence 2.2.4. With
sufficient training, we are assured the true state-action values and hence, the optimal policy are
achieved. The main drawback is the agent’s size in memory of order O(|S|×|A|), with |.| being size
of each set. In a 100-points discretization in each dimension, the tensor has 108 entries, and each
entry has to be visited many times during the training process to achieve satisfactory convergence.
If we want to generalize the model, say, by adding a second risk asset, the tensor will have 1010

entries, and training that starts to become unfeasible. A second issue is that each entry learns
individually. A given Q(s, a) does not gain any information from its surrounding Q-values, even if
we may expect them to be correlated with each other. Interpolations may help [Szepesvari, 2001].

As the reader remembers from equation 2.2.26, the update of the Q-value depends on the
estimated Q-value for the next state (bootstrapping). Therefore, bad estimations on the Q-value
for later states impact the estimation for earlier states. A poor estimation also affects the actions
taken during the learning process when the ϵ-greedy policy selects to follow the optimal step.

But there is an exception to the bootstrapping: the last step. As our problem has a fixed
terminal condition (when remaining times reach zero), the update at t = T is:

Q′(sT−1, aT−1)← (1− α)Q(sT−1, aT−1) + α · (rT + γB(WT)) (4.1.1)

Where B(.) is our terminal condition, the bequest, which is known at this point in the training.
In the last step, the bootstrapping problem disappears.

Due to the Markovian nature of the process and fixed episode length, instead of training the
whole episode, we can start by training only at the last step. With this, QT−1 will converge faster.
Next, with a good estimation of QT−1 on hand, restart the training with two steps; the propagation
of the error of QT−1 to QT−2 will be small, resulting in faster convergence of QT−2 (note QT−1

will keep improving as well). Continue this process until training for the desired number of time
steps.

The algorithm is below:

30

Algorithm 2 Backward Training

Initialize Q-table;
Initialize n as total length of time steps;
for i = 1, . . . , n do

while not stopping training criteria do
Initialize Environment with steps = i
for step = 1, . . . , i do

Take action ϵ-greedy
Get reward and next state
Update Q

This process is repeated a certain number of times. Each time the backward training restart,
the learning rate α and the ϵ of the ϵ-greedy policy decay:

αi+1 = λααi ϵi+1 = λϵϵi (4.1.2)

with λα, λϵ < 1. At this moment, the agent’s performance is evaluated, measuring the return of
following the optimal policy many times. The evaluation is not performed at each Q-Table update
due to the computational time required, which would slow down the training process significantly.

4.1.1 Results

Due to computational restrictions, the problem was limited to only five time steps. The complete
discretization is:

Min Value Max Value Nº of steps
Wealth 0 250 126
Time 1 5 5

Consumption % 0% 90% 19
Risk Investment % 0% 150% 16

In the event that wealth exceeds the maximum value, the Reward is assigned to the maximum
wealth in the table. The following were the environment parameters used:

Parameter W0 T µ σ r γ ρ ϵbeq
Value 100 5 8% 35% 5% 0.3 6% 0.6

and training parameters:

Parameter Initial α Final α Initial ϵ Final ϵ Nº Episodes
Value 1 1e-4 2 0.5 6e4

Every 2,000 episodes of training were followed by a estimation of the true return by simulating
additional 2,000 episodes following the (currently) optimal policy. Below are is the evolution of
the Return.

31

Figure 4.1: Return vs Training

The initial point in the graph represents an agent following a uniform random policy. Backward
training was then implemented, with each leap in return corresponding to the training moving on to
the next timestep. From the 20 to 30 (x2,000) marks, the training was performed on the entire time
length. For each episode, the initial wealth was set according to a uniform distribution U [0, 150],
except when the complete timeframe was trained (i.e., remaining time of five years), in which case
the initial wealth was set at 100. The simulations always used the complete timeframe and set the
initial wealth as 100.

The average simulated actual return was 53.851, with a standard error of 0.226, but the expected
Return, or V-value, was estimated at 82.407, representing a significant overestimation.

The lack of improvement towards the end of the training process may suggest the agent had
converged to the optimal policy, (even with the overestimation of individual Q-values, the policy
can be optimal if the overestimation is homogeneous across states and actions). While we cannot
definitively say if the agent had converged to the optimal solution and true state and action-state
values, the action-state values may provide some insights.

Figure 4.2: Q-Values for Wealth = 100 and Remaining Time = 5.

The Q-Values at this point do not depict a smooth graph, and a comparison with the continuous
case might suggest that the agent hasn’t converged yet. However, the graph does give a sense of

32

what the true solution might look like. Note that with the full timeframe, the training always
starts with wealth set at 100, thus, this state is visited many times. Other states are visited either
through uniform initialization or as the subsequent state of a previous state, hence, they are visited
much less frequently.

Figure 4.3: Q-Values for Wealth = 100 and Remaining Time = 1.

The state at figure 4.3 clearly haven’t achieved a good estimation of the Q-Values at this point
in training.

A characteristic of the ϵ-greedy policy is its tendency to better estimate the Q-Value of the
optimal action than for other actions, as it transitions from an exploratory to an exploitative
behavior. Hence, it is possible to have a poor estimation of the Q-Values in general, but a good
estimation of the V-Values.

Figure 4.4: V-Value for each wealth and remaining time. For remaining time = 5, other levels of
wealth different of 100 are not trained.

While the V-value graph visually resembles the continuous case, it fails to be monotonic on
each axis and also reaches higher values, indicating an overestimation.

Training for an additional 150,000 episodes resulted in an average return of 56.215, with a
standard error of 0.302, which is very close to the continuous solution in case 3.2.2. The estimated

33

V-value was 70.935, still overestimating.
The resulting graphs were:

Figure 4.5: Q-Values for Wealth = 100 and Remaining Times = 1 and 5 respectively.

Figure 4.6: V-Value for each wealth and remaining time.

Although the Q-Value for values other than Wt = 100 and T − t = 5 are poorly estimated, the
V-value seems much closer than the continuous case. Here are some V-values for comparison:

t \ Wt 50 100 150
0 35.43 57.55 76.44
2 31.53 51.23 68.04
4 25.15 48.85 54.26

Table 4.1: Selected V-Values for the Analytical Solution

t \ Wt 50 100 150
0 NA 70.93 NA
2 37.80 58.63 76.32
4 25.19 41.36 59.25

Table 4.2: Selected V-Values for Tabular Q-Learning, trained with 210,000 episodes.

To provide a sense of the time scale involved in training, the process of training 150,000 episodes
took approximately 17 minutes. The code was implemented in Python, utilizing the Pandas package

34

for tensor manipulation. Faster execution could have been achieved with the use of Numpy or
TensorFlow, but such tools might have complicated the implementation. The code was executed
in Google Colab, a cloud-based Python notebook with specifications equivalent to an Intel Xeon
@2.20 GHz processor and 13GB of RAM.

4.2 Deep Q-Learning

Deep Q-Learning (DQL) offers several advantages over the Tabular approach. First, only the action
space is discretized, the state space can be continuous. This allows DQL to handle the curse of
dimensionality more effectively. Additionally, by approximating a smooth function with respect to
state variables, states that haven’t been visited can still benefit from the learning of other states.
However, these benefits come at the expense of a lack of guaranteed convergence.

Leveraging Artificial Neural Networks (ANNs) to approximate the Q-Function brings forth
several benefits:

• Function Approximation: ANNs excel in handling continuous states and vast state-action
spaces.

• Generalization: They can estimate the Q-value for state-action pairs that have never been
encountered.

• Efficient Implementation: Contemporary ANN programming tools employ cutting-edge
techniques, enhancing both implementation and training efficiency.

• Parallelization: Training ANNs can be parallelized, allowing for independent training
across multiple processing units. Modern graphics cards, with over 3000 processing units,
can expedite the training process significantly.

However, using ANNs also introduces challenges. The main issue is the absence of a conver-
gence guarantee. Without this, it’s uncertain if a chosen NN architecture and training procedure
will converge. Even if convergence is achieved, the selection of architecture, activation function,
hyperparameters (like learning rate and ϵ), and optimizer 1 can greatly influence the rate of con-
vergence. Another challenge is the steep learning curve associated with using these tools. In this
study, the TensorFlow v2 package with the Keras API was employed. While Keras offers a user-
friendly syntax for basic applications, its complexity can increase with more intricate problems,
necessitating a deep understanding of the documentation. Lastly, efficient utilization of the package
can be challenging. TensorFlow employs its unique datatype, the Tensor, which is efficient within
its ecosystem but can have compatibility issues with other Python packages. Converting Tensors
to Numpy arrays, for example, can be a slow process and may become a program’s bottleneck.
Thus, it’s crucial to design the code to minimize such conversions.

4.2.1 Implementation

Architecture

The Artificial Neural Network architecture follows:

• Layer 1: 2 input neurons.

• Layers 2, 3 and 4: 512 neurons with ELU activation.

• Layer 5: 256 neurons with Linear activation.

• Layer 6: Reshaping of Layer 5 into a 16x16 grid.

Each output in Layer 6 represents the Q-value for each consumption-investment fraction pair.
While the ANN allows for continuous input, the output remains discretized. The consumption
fraction, ranging from [0,1], is divided into 16 levels, and the investment, ranging from [0,1.5], is
also divided into 16 levels.

The NN is fully connected, meaning every neuron in a layer connects to all neurons in the
subsequent layer. The network has 723,968 trainable weights.

1ANN packages offer more efficient training techniques than the simple Gradient Descent presented in 2.3.3
such as Stochastic Gradient Descent (SGD), Adaptive Moment Estimation (ADAM) [Kingma and Ba, 2014] and
Nesterov-accelerated Adaptive Moment Estimation (NADAM) [Dozat, 2016].

35

Figure 4.7: ANN Architecture

The activation functions ReLU, ELU and Logistic were tested. The ReLU often encountered
the dying ReLU problem. The Logistic, constrained to (0, 1), struggled to learn higher rewards
even with the linear layer. ELU yielded satisfactory outcomes.

Training Procedure

Training this model required adjustments to the training procedure used in the tabular implemen-
tation. ANNs typically perform better with inputs rescaled to values closer to one. With wealth
values around 100, the network can easily diverge. Given our utility function choice, both the V
and Q functions can be scaled using the following identities:

f(Wt, t) = g(a)f

(
Wt

a
, t

)
(4.2.1)

g(a) = a1−γ (4.2.2)

Before inputting into the network, the wealth will be scaled by a factor of 100. The results will
then be rescaled to ensure comparability across the ANN, Tabular, and Analytical solutions.

The invariance could be further explored as the Q-values, properly scaled, should have the same
values. This could be explored by modifying the Error Function to take this fact into account or
by averaging the values, across different Wt, in the output. In this work, neither of those options
were applied.

The training procedure doesn’t directly update the estimated Q-value for a specific state and
action. Instead, it modifies the network’s weights as described in section 2.3.3. The Stochastic
Gradient Descent algorithm was employed, where the Error Function is derived from batches of
samples. While the network outputs a 16x16 grid of estimated Q-values, a sample of realized return
provides only a single reward. To address this, the Error Function was adapted to:

E =
1

2

I∑
i=1

∑
s,a

∈S,A

δs,a(ti − ys,ai)2 (4.2.3)

Here, δs,a = 1 for the network output that matches the sample’s state-action and 0 otherwise.
The backward training yielded poor results. Once you trained for T − t = 1 and goes to train

for T − t = 2, this new input will have the estimation improved, regardless if it deteriorate what
was already trained. The best result was achieved by training all T in parallel.

As mentioned earlier, converting back and forth Tensors is computationally intensive. The
environment was built within the Numpy framework, not TensorFlow. Thus, each interaction
between the agent and the environment requires conversion, slowing down the training process.
However, this issue can be overcome by leveraging the problem’s Markovian property. The Q-value
for Wt = 100 and t = 3 is the same, irrespective of whether the environment was Wt = 120 or
Wt = 90 in the previous step. Hence, simulating an entire episode isn’t necessary. Instead, multiple
environments can be initialized with different Wt and t values, an random or greedy action can
be chosen, its respective reward obtained, and the network updated accordingly. This approach
avoids the time-consuming Agent → Environment interaction.

For each set of realizations, the ANN is trained with a decreasing learning rate (Robbins-Monro
condition). The algorithm follows a purely random policy, as opposed to an ϵ-greedy one. This

36

choice might slow down the V-value estimation since the optimal action is visited less frequently.
However, it provides a more accurate Q-value estimation for other actions, and avoid the Agent-
Environment interaction.

The complete training algorithm is:

Algorithm 3 ANN Training

Initialize ANN;
Set n (Number of batches);
Set α0 (Initial Learning Rate)
Set αT (Final Learning Rate)
Set α-decay = (αT /α0)

1/n

Set Size (number of different initial states)
Set Epochs

for i = 1, . . . , n do
Initialize Size states with uniformly random Wt and t
Select Size random actions
Receive the Return Rt+1 of each state-action
Define Q(Wt, t; a) = Rt+1 + γmaxa′ Q(W ′

t , t
′) for each state-action

α = α0

for i = 1, . . . , Epochs do
Sample (Size/Epochs) samples
Update the NN using the pairs ⟨(W i

t , t
i, ai), Qi⟩

α← α ∗ α-decay

The Epochs loop refines the network based on the given sample ⟨(W i
t , t

i, ai), Qi⟩, but it doesn’t
necessarily converge to the true Q-value. This convergence happens across the n loop. The pair
⟨(W i

t , t
i, ai), Qi⟩ represents a sample input-output relationship, making the update essentially a

supervised learning process.

4.2.2 Results

The environment parameters remained the same as the previous settings. The training parameters
are outlined below:

Parameter Initial α Final α n Size Epochs
Value 5e-1 1e-3 10 105e3 3

The evolution of return is presented below:

37

Figure 4.8: Return vs Training

The starting point represents the average return of the untrained model, which is influenced
by the network’s initial random state. The first training batch is heavily influenced by the random
initialization. Notably, the second training batch shows a significant improvement. By the final
batch, the average return for Wt = 100 and t = 0 is 57.558 with a standard error of 0.066, remark-
ably close to the analytical result of 57.556. Simulating 10,000 episodes for increased precision
yielded an average return of 57.348 with a standard error of 0.030.

This striking result is consistent across various states. For example, for Wt = 50 and t = 2,
the result was 31.432 (SE: 0.152) compared to the analytical value of 31.533. For Wt = 150 and
t = 3, the result was 62.386 (SE: 0.027) against 62.224. The model even demonstrated (limited)
extrapolation capabilities for untrained states. For instance, for Wt = 100, t = 7 and t = 10, the
results were 61.401 (SE: 0.050; Analytical: 62.103) and 65.270 (SE: 0.068; Analytical: 67.080),
respectively. These outcomes suggest that the derived policy is very close to the optimal one.

The Q-values, as shown in figure 4.9, may not appear smooth, but they now offer consistent
estimations across different times. It’s intriguing to observe how the higher Q-values shift from
low consumption levels at the episode’s beginning to higher consumption levels towards its end.
The heatmap also indicates that higher expected returns are more concentrated on its right side.
This experimental result suggests that the region surrounding the optimal policy for a given state
is relatively flat, making pinpointing the optimal point challenging.

38

Figure 4.9: Q-Values for Wealth = 100

Given the ANN’s ability to accept continuous input, we can plot a continuous heatmap of the
V-Value as shown in figure 4.10. The DQL implementation effectively captures the functional form
of the State Value. However, the scale suggests a tendency to overestimate. This observation can
be further validated by comparing tables 4.1 and 4.3.

39

Figure 4.10: State Value (V-Value)

t \ Wt 50 100 150
0 41.49 64.17 84.75
2 36.65 55.66 72.92
4 26.42 41.89 55.76

Table 4.3: Selected V-Values for DQL

The three models can also be compared by they resulting wealth process for the same underlying
risk asset process. In the image 4.11, we have four samples. For the three models they tend to have
similar processes, but due to the still erratic behaviour of the action, we find relevant deviations.

40

Figure 4.11: Four samples of the wealth process for each model.

41

Chapter 5

Conclusion

The Merton’s Portfolio Problem (MPP) is a fundamental problem in financial mathematics. It
encapsulates the challenges and decisions faced by investors, providing a mathematical representa-
tion of real-world dilemmas. Academically, the problem encompass different areas of mathematical
modelling such as stochastic calculus, stochastic control, dynamic programming and even utility
theory and econometrics in the estimation of parameters, offering many possibilities of exploration.
But its practical implications extend far beyond the academic interest. It is a problem with imme-
diately implications for pension funds, insurance companies and even retail investors. But in my
opinion, the problem is less explored than it could be and even less used as a financial product. I
believe it can be attributed to the advanced level of mathematics needed to work with the Mer-
ton’s Portfolio Problem and the lack of incentives to use this type of resources in retail investors’
problems.

The MPP can also be notable challenge. With the set up used in this work, the region sur-
rounding the optimal solution is notoriously flat, it means that find the optimal solution is specially
challenge. On the other hand it makes that less-than-optimal solutions performs almost as good as
the optimal one. The numerical results presented here also highlights an paradox, investors devote
much more time trying to find the optimal investment policy, while the consumption policy is the
one with the higher impact in the expected return.

In our exploration of Reinforcement Learning as a tool to solve the MPP, two algorithms were
explored: Tabular Q-Learning and Deep Q-Learning. The former with its simple implementation
and guaranteed convergence is a powerful tool for scenarios characterized by smaller state and
action spaces. However, it might not be well-suited for problems with many decisions variables or
large state-action spaces.

Deep Q-Learning, on the other hand, is a more sophisticated object, better equipped to grapple
with larger state-action spaces, bringing a robustness that Tabular Q-Learning might lack. How-
ever, this robustness comes at a cost. Deep Q-Learning is computationally intensive, requiring a
careful implementation or the training time becomes impracticable. Additionally, the complexity
of tools used in its development have a steeper learning curve for the one who is implementing.

The use of Machine Learning into the financial sector has been a topic of considerable debate
and exploration. Much of the focus has been on harnessing ML’s predictive capabilities, especially
in forecasting returns, probably due to ML’s predictive capabilities in other areas. While this
approach has its merits, due to the level of market efficiency faced today, it will problem redeem
unfruitful results and overfitting. This focus also overlooks the broader potential of ML in finance.
Instead of a narrow focus on prediction, there is a vast landscape of intricate challenges within
finance that ML can address, with more realistic and rewarding results. The Merton’s Portfolio
Problem is a prime example of such problem. It is essential for the financial sector to recognize
and embrace this broader perspective, ensuring that ML’s full potential is realized.

The exploration of the MPP has raised ideas for potential future research. On the problem
itself, variations of the problem such as different utility functions or more nuanced asset behavior
models add layers of complexity as well bring the problem closer to real-world scenarios, enhancing
its practical relevance. A particularly intriguing propositions is the integration of stochastic time,
instead of having a fixed known time length, modeled after actuarial tables. This approach would
introduce an additional layer of uncertainty, mirroring the uncertainties of real-life investment
scenarios.

On the algorithmic side, there is also room for refinement and exploration. A notable concern
is the Q-Learning tendency to overestimate expected returns. This overestimation, result of the
maximization term in the Bellman equation, can skew results. The introduction of the Double

42

Q-Learning algorithm [Hasselt, 2010] offers a potential solution to this challenge. By reducing the
overestimation bias, Double Q-Learning promises more accurate and reliable outcomes, enhancing
the algorithm’s efficacy.

In summary, it is crucial to reflect on the broader implications and potential impact on the
machine learning, whether RL or not, in finance. The methodologies and insights gathered on this
thesis are not confined to the Merton’s Portfolio Problem. Their adaptability means they can be
applied to a myriad of similar problems within finance. As the world of finance continues to evolve,
and the Brazilian market start to embrace the use of advance mathematical methods, I hope this
work serves as a starting point for those interesting in working with Reinforcement Learning within
financial problems, whether academically or in the industry.

43

Bibliography

[Mel,] Convergence of Q-learning: a simple proof.

[Jaa, 1993] (1993). On the Convergence of Stochastic Iterative Dynamic Programming Algorithms.

[Abadi et al., 2016] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Irving, G., Isard, M., et al. (2016). Tensorflow: A system for large-scale machine
learning. In 12th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 16), pages 265–283.

[Anderson and Rosenfeld, 1988] Anderson, J. A. and Rosenfeld, E., editors (1988). Neurocomput-
ing: Foundations of Research. MIT Press, Cambridge, MA, USA.

[Bailey, 1862] Bailey, A. H. (1862). On the principles on which the funds of life assurance societies
should be invested. Journal of the Institute of Actuaries, 10:142–147.

[Balduzzi and Lynch, 1999] Balduzzi, P. and Lynch, A. W. (1999). Transaction costs and pre-
dictability: some utility cost calculations. Journal of Financial Economics, 52:47–78.

[Barberis, 2000] Barberis, N. (2000). Investing for the long run when returns are predictable. The
Journal of Finance, 55:225–264.

[Baydin et al., 2018] Baydin, A. G., Pearlmutter, B. A., Radul, A. A., and Siskind, J. M. (2018).
Automatic Differentiation in Machine Learning: a Survey. Journal of Machine Learning Re-
search, 18(153):1–43.

[Bellman, 1957] Bellman, R. (1957). Dynamic Programming.

[Bernoulli, 1954] Bernoulli, D. (1954). Exposition of a new theory on the measurement of risk.
22:23–36.

[Bianchi et al., 2016] Bianchi, R. J., Drew, M. E., and Walk, A. N. (2016). The time diversification
puzzle: A survey. Financial Planning Research Journal, 1.

[Bianchini and Scarselli, 2014] Bianchini, M. and Scarselli, F. (2014). On the complexity of shal-
low and deep neural network classifiers. European Symposioum on Artificial Neural Networks.
Computational Intelligence and Machine Learning.

[Bossu et al., 1998] Bossu, S., Carr, P., and Papanicolaou, A. (1998). A functional analysis ap-
proach to the static replication of european options. 29:417–427.

[Bozinovski, 2020] Bozinovski, S. (2020). Reminder of the first paper on transfer learning in neural
networks, 1976. Informatica, 44.

[Brennan et al., 1997] Brennan, M. J., Schwartz, E. S., and Lagnado, R. (1997). Strategic asset
allocation. Journal of Economic Dynamics and Control, 21:1377–1403.

[Campbell and Viceira, 2001] Campbell, J. Y. and Viceira, L. M. (2001). Strategic Asset Alloca-
tion: Portfolio Choice for Long-Term Investors.

[Carr and Madan, 2002] Carr, P. and Madan, D. (2002). Towards a theory of volatility trading.

[Cover, 1991] Cover, T. M. (1991). Universal portfolios. Mathematical Finance, 1:1–29.

[Cybenko, 1989] Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function*.
Math. Control Signals Systems, 2:303–314.

44

[de Prado, 2020] de Prado, M. M. L. (2020). Machine learning for asset managers. Elements in
Quantitative Finance.

[Dozat, 2016] Dozat, T. (2016). Incorporating nesterov momentum into adam. 2016.

[Ertel, 2017] Ertel, W. (2017). Introduction to Artificial Intelligence.

[Fan et al., 2019] Fan, J., Wang, Z., Xie, Y., and Yang, Z. (2019). A Theoretical Analysis of Deep
Q-Learning. Proceedings of Machine Learning Research, 120:486–489.

[Finetti, 1939] Finetti, B. D. (1939). La teoria del rischio e il problema della rovina dei giocatori.
Istituto italiano degli attuariali.

[Hasselt, 2010] Hasselt, H. V. (2010). Double q-learning.

[Hornik, 1993] Hornik, K. (1993). Some new results on neural network approximation. Neural
Networks, 6:1069–1072.

[Hornik et al., 1989] Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward
networks are universal approximators. Neural Networks, 2:359–366.

[Kelly, 1956] Kelly, J. L. (1956). A new interpretation of information rate.

[Kim et al., 2021] Kim, J., Shin, J., and Yang, I. (2021). Hamilton-jacobi deep q-learning for
deterministic continuous-time systems with lipschitz continuous controls. Journal of Machine
Learning Research, 22:1–34.

[Kim and Omberg, 1996] Kim, T. S. and Omberg, E. (1996). Dynamic nonmyopic portfolio be-
havior. Review of Financial Studies, 9:141–161.

[Kingma and Ba, 2014] Kingma, D. P. and Ba, J. L. (2014). Adam: A method for stochastic
optimization.

[Kinlaw et al., 2017] Kinlaw, W., Kritzman, M. P., and Turkington, D. (2017). A Practioner’s
Guide to Asset Allocation. John Wiley & Sons.

[Kritzman and Rich, 1998] Kritzman, M. and Rich, D. (1998). Beware of dogma: The truth about
time diversification. Journal of Portfolio Management, 24.

[Kumar, 2020] Kumar, V. (2020). Mathematical analysis of reinforcement learning — bellman opti-
mality equation. https://web.archive.org/web/20230712184328/https://towardsdatascience.com/mathematical-
analysis-of-reinforcement-learning-bellman-equation-ac9f0954e19f?gi=f8c3c1665c34. Accessed:
2023-07-12.

[Lederer, 2021] Lederer, J. (2021). Activation Functions in Artificial Neural Networks: A System-
atic Overview.

[Litterman, 2004] Litterman, B. (2004). Modern investment management: an equilibrium ap-
proach. John Wiley & Sons.

[Markowitz, 1952] Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7:77–91.

[Markowitz, 2019] Markowitz, H. M. (2019). The early history of portfolio theory: 1600–1960.
https://doi.org/10.2469/faj.v55.n4.2281, 55:5–16.

[McCulloch and Pitts, 1943] McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the
ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5(4):115–133.

[Merton, 1969] Merton, R. C. (1969). Lifetime portfolio selection under uncertainty: The
continuous-time case. 51:247–257.

[Merton, 1971] Merton, R. C. (1971). Optimum consumption and portfolio rules in a continuous-
time model. Journal of Economic Theory, 3:373–413.

[Michie, 1963] Michie, D. (1963). Experiments on the mechanization of game-learning part i.
characterization of the model and its parameters. The Computer Journal, 6:232–236.

[Mitchell, 1997] Mitchell, T. M. (1997). Machine Learning. McGraw-Hill.

45

[Mnih et al., 2013] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra,
D., and Riedmiller, M. (2013). Playing Atari with Deep Reinforcement Learning.

[Modirshanechi, 2020] Modirshanechi, A. (2020). Why does the optimal policy ex-
ist? https://web.archive.org/web/20230719074454/https://towardsdatascience.com/why-does-
the-optimal-policy-exist-29f30fd51f8c?gi=2ccea0a71bc0. Accessed: 2023-07-12.

[Neumann and Morgenstern, 1953] Neumann, J. V. and Morgenstern, O. (1953). Theory of Games
and Economic Behavior (Commemorative Edition). Princeton University Press.

[Paszke et al., 2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019). Pytorch:
An imperative style, high-performance deep learning library. In Advances in Neural Information
Processing Systems 32, pages 8024–8035. Curran Associates, Inc.

[Petersen, 2022] Petersen, P. C. (2022). Neural network theory.

[Pomerleau, 1989] Pomerleau, D. (1989). Alvinn: An autonomous land vehicle in a neural network.
In Touretzky, D., editor, Proceedings of (NeurIPS) Neural Information Processing Systems, pages
305 – 313. Morgan Kaufmann.

[Ramaswamy and Hullermeier, 2022] Ramaswamy, A. and Hullermeier, E. (2022). Deep Q-
Learning: Theoretical Insights from an Asymptotic Analysis. IEEE Transactions on Artificial
Intelligence, 3(2):139–151.

[Rao and Jelvis, 2022] Rao, A. and Jelvis, T. (2022). Foundations of Reinforcement Learning with
Applications in Finance. Chapman and Hall/CRC.

[Ross, 1999] Ross, S. A. (1999). Adding risks: Samuelson’s fallacy of large numbers revisited. The
Journal of Financial and Quantitative Analysis, 34:323.

[Rubinstein, 2006a] Rubinstein, M. (2006a). Bruno de finetti and mean-variance portfolio selection.

[Rubinstein, 2006b] Rubinstein, M. (2006b). A History of the Theory of Investments. John Wiley
& Sons, Inc.

[Samuelson, 1963] Samuelson, P. A. (1963). Risk and uncertainty: A fallacy of large numbers.
Scientia, 57(98):108.

[Samuelson, 1969] Samuelson, P. A. (1969). Lifetime portfolio selection by dynamic stochastic
programming. The Review of Economics and Statistics, 51:239–246.

[Samuelson, 1971] Samuelson, P. A. (1971). The “fallacy” of maximizing the geometric mean
in long sequences of investing or gambling. Proceedings of the National Academy of Sciences,
68:2493–2496.

[Scherer, 2007] Scherer, B. (2007). Portfolio Construction and Risk Budgeting. Risk Books.

[Silver et al., 2016] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche,
G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D.,
Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel,
T., and Hassabis, D. (2016). Mastering the game of Go with deep neural networks and tree
search. Nature, 529(7587):484–489.

[Smith, 1924] Smith, E. L. (1924). Common Stocks As Long Term Investments.

[Sutton and Barto, 2020] Sutton, R. S. and Barto, A. G. (2020). Reinforcement Learning: An
Introduction. The MIT Press, 2 edition.

[Szepesvari, 2001] Szepesvari, C. (2001). Convergent Reinforcement Learning with Value Function
Interpolation. Technical report.

[Thorp, 1975] Thorp, E. O. (1975). Portfolio choice and the kelly criterion. Stochastic Optimization
Models in Finance, pages 599–619.

[Thorp, 2011] Thorp, E. O. (2011). Understanding the kelly criterion. The Kelly Capital Growth
Investment Criterion: Theory And Practice, pages 511–525.

46

[Time, 1961] Time (1961). Science: The goof button - time.

[Turnbull and Farago, 2019] Turnbull, C. and Farago, R. (2019). 200 years of asset allocation.

[Veen, 2019] Veen, F. V. (2019). The neural network zoo.
https://web.archive.org/web/20230616211637/https://www.asimovinstitute.org/neural-
network-zoo/. Accessed 2023-06-16.

[Wachter, 2002] Wachter, J. A. (2002). Portfolio and consumption decisions under mean-reverting
returns: An exact solution for complete markets. The Journal of Financial and Quantitative
Analysis, 37:63.

[Watkins, 1989] Watkins, C. J. (1989). Learning from delayed rewards.

[Yang et al., 2020] Yang, Z., Xie, Y., and Wang, Z. (2020). A theoretical analysis of deep q-
learning.

47

