Pedro Araújo (Institute of Computer Science - Czech Academy of Sciences)

Local central limit theorem for triangle counts in sparse random graphs

Let X_{3} be the number of triangles in $G(n, p)$, with mean μ and variance σ. Here we prove a local central limit theorem for X_{3} whenever $C n^{-1 / 2} \leq p \leq 1 / 2$ and $C>0$ is large enough. More precisely, defining $X_{3}^{*}=\left(X_{3}-\mu\right) / \sigma$, we prove in this regime of p that

$$
\sup _{x \in \mathcal{L}_{X_{3}}}\left|\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}-\sigma \cdot \mathbb{P}\left(X_{3}^{*}=x\right)\right| \rightarrow 0
$$

where $\mathcal{L}_{X_{3}}:=\frac{1}{\sigma}(\mathbb{Z}-\mu)$ is the support of X_{3}^{*}. Our proof relies on the connection between point probabilities and the characteristic function of a random variable.

