On Pisier type problems

A subset $A \subseteq \mathbb{Z}$ of integers is free if for every two distinct subsets $B, B^{\prime} \subseteq A$ we have

$$
\sum_{b \in B} b \neq \sum_{b^{\prime} \in B^{\prime}} b^{\prime}
$$

Pisier asked if for every subset $A \subseteq \mathbb{Z}$ of integers the following two statement are equivalent:
(i) A is a union of finitely many free sets;
(ii) There exists $\varepsilon>0$ such that every finite subset $B \subseteq A$ contains a free subset $C \subseteq B$ with $|C| \geq \varepsilon|B|$.

In a more general framework, the Pisier question can be seen as the problem of determining if statements (i) and (ii) are equivalent for subsets of a given structure with prescribed property. We study the problem for several structures including B_{h}-sets, arithmetic progressions, independent sets in hypergraphs and configurations in the Euclidean space. This is joint work with Jaroslav Nešetřil and Vojtech Rödl.

