The Structure of 3-Pyramidal Groups

Xiaofang Gao ${ }^{1}$ \& Martino Garonzi ${ }^{1}$

${ }^{1}$ Universidade de Brasília - UnB
gaoxiaofang2020@hotmail.com

1 Introduction

A Steiner triple system $\operatorname{STS}(\mathrm{v})$ is a pair $(\boldsymbol{V}, \boldsymbol{B})$ where \boldsymbol{V} is a set of \boldsymbol{v} points and \boldsymbol{B} is a set of triples (blocks) of \boldsymbol{V} with the property that any two distinct points are contained in exactly one block. A Kirkman triple system $\operatorname{KTS}(\mathrm{v})$ is an STS(v) which admits a resolution of its block-set, i.e. the triples can be partitioned into parallel classes, each of which is a partition of the point-set. It is well known that there exists an STS(v) and KTS(v) iff $v \equiv 1,3(\bmod 6)$ (Kirkman, 1847) and $v \equiv 3(\bmod 6)$ (Ray-Chaudhuri, Wilson, 1971) respectively. An automorphism $\operatorname{Aut}(\boldsymbol{D})$ of an STS (resp. KTS) \boldsymbol{D} is a permutation of its points leaving the block-set (resp. resolution) invariant, which forms a group with composition. An STS (resp. KTS) \boldsymbol{D} is called 3 -pyramidal if there exists a subgroup \boldsymbol{G} of $\operatorname{Aut}(\boldsymbol{D})$ fixing 3 points and acting regularly on the other points. If this happens, we say that the STS (resp. KTS) is 3 -pyramidal under \boldsymbol{G}.

2 Some Results

Let \boldsymbol{D} be a Steiner Triple System, M. Buratti, G. Rinaldi and T. Traetta in [1] proved that if D is 3-pyramidal under G then G has precisely 3 involutions. Moreover, they proved the following result:
Lemma 2.1.A 3-pyramidal Steiner Triple System $\operatorname{STS}(v)$ exists if and only if $\boldsymbol{v} \equiv 7,9,15(\bmod 24)$ or $\boldsymbol{v} \equiv$ $3,19(\bmod 48)$.

In [2], S. Bonvicini, M. Buratti, M. Garonzi, G. Rinaldi and T. Traetta proved the following result:
Lemma 2.2. A necessary condition for the existence of a 3pyramidal $\operatorname{KTS}(v)$ is that $v=24 n+9$ or $v=24 n+15$ or $v=48 n+3$ for some \boldsymbol{n} which, in the last case, must be of the form $4^{e} \boldsymbol{m}$ with \boldsymbol{m} odd. This condition is also sufficient in each of the following cases:
$\cdot v=24 n+9$ and $4 n+1$ is a sum of two squares.

- $v=24 n+15$ and either $2 n+1 \equiv 0(\bmod 3)$ or the square-free part of $2 n+1$ does not have any prime $p \equiv 11(\bmod 12)$.
$\cdot v=48 n+3$.
Moreover, they proved that if \boldsymbol{D} is a 3-pyramidal Kirkman Triple System, then the corresponding group G has exactly 3 involutions, which are all conjugate to each other. So we give the following definition.
Definition 2.3. We say that a finite group G is 3 -pyramidal if it has exactly 3 involutions, which are all conjugate to each other.

3 Main Theorem

Theorem 3.1 (X. Gao, M. Garonzi, see [3]). Let G be a finite group and $\boldsymbol{O}(\boldsymbol{G})$ the largest normal subgroup of \boldsymbol{G} of odd order. Let \boldsymbol{K} be the subgroup generated by the involutions of G. Then G is 3 -pyramidal if and only if one of the following holds.

- \boldsymbol{G} is isomorphic to $\boldsymbol{S}_{3} \times \boldsymbol{H}$ where \boldsymbol{H} is a group of odd order.
- $O(G) \leqslant C_{G}(\boldsymbol{K})$ and $G / O(G)$ is isomorphic to $N \rtimes A$ where \boldsymbol{N} is the Suzuki $\mathbf{2}$-group of order $\mathbf{6 4}$ and \boldsymbol{A} is a subgroup of $\operatorname{Aut}(N)$ of order $\mathbf{3}$ or 15.
- $O(G) \leqslant C_{G}(\boldsymbol{K})$ and $\boldsymbol{G} / \boldsymbol{O}(\boldsymbol{G})$ is isomorphic to $\left(C_{2^{n}} \times\right.$ $\left.C_{2^{n}}\right) \rtimes \boldsymbol{A}$ where \boldsymbol{A} is the cyclic group of order $\mathbf{3}$ generated by the automorphism $(a, b) \mapsto\left(b,(a b)^{-1}\right)$.
In the first item $\boldsymbol{K} \cong \boldsymbol{S}_{3}$ while in the last two items $\boldsymbol{K} \cong$ $C_{2} \times C_{2}$.

4 Strategy of the proof

The first main step is to prove that G is solvable.
Sketch of proof: Let $\boldsymbol{C}=\boldsymbol{C}_{\boldsymbol{G}}(\boldsymbol{K})$. We assume that \boldsymbol{G} is a nonsolvable 3 -pyramidal group of minimal order, and we divide the proof into several steps.

Step 1 : We prove that $\Phi(G)$ is a 2 -group containing K and there exists a normal subgroup N of G with $\Phi(G)<$ $N \leqslant C$ such that G / N is a cyclic 3 -group and $N / \Phi(G)$ is isomorphic to S^{m} for some nonabelian simple group S.

Step 2 : Let M be a maximal subgroup of G with $M \neq C$. We prove that $M_{G}=\Phi(G)$ and consequently $G / \Phi(G)$ is a primitive group.

Step 3 : We prove that $G / \Phi(G)$ is an alsomt simple group with $S^{m} \leqslant G / \Phi(G) \leqslant S \imath P$ where P is a cyclic 3 -subgroup of $\operatorname{Sym}(\boldsymbol{m})$.

Step 4 : We construct a contradiction. Consider
$\Delta=\{(s, s, \cdots, s) \mid s \in S\} \leqslant S^{m}, \boldsymbol{H}:=N_{G / \Phi(G)}(\Delta)$. In fact, we can get that the preimage of \boldsymbol{H} in \boldsymbol{G} is a proper 3 pyramidal subgroup of \boldsymbol{G}. Obviously, \boldsymbol{H} is nonsolvable since $S \cong \Delta \leqslant \boldsymbol{H}$, this contradicts the minimality of \boldsymbol{G}.

This concludes the proof of the solvability of 3-pyramidal group.

We have proved that 3 -pyramidal groups are solvable, so the following result is very useful.
Lemma 4.1 (Thompson [4]). Suppose that G is a solvable group of even order and that the Sylow 2-subgroup of G contains more than one involution. Suppose that all the involutions in G are conjugate. Then the 2 -length of G is 1 and the Sylow 2 -subgroups of G are either homocyclic or Suzuki 2-groups.

Next, let $W:=G / O(G)$. In the light of Lemma 4.1 we have the Sylow 2 -subgroup P of W is normal in W and P is a homocyclic 2-group or Suzuki 2-group.

Finally, we use $W / C_{W}(P) \lesssim \operatorname{Aut}(P)$ to finish our proof.

The main theorem implies that, if G is a 3 -pyramidal group, then the quotient group $G / O(G)$ is one of the following: SmallGroup(192,1025), SmallGroup(960,5748), ($C_{2^{n}} \times$ $\left.C_{2^{n}}\right) \rtimes C_{3}, C_{2}$.

References

[1]M. Buratti, G. Rinaldi, and T. Traetta. 3-pyramidal Steiner triple systems. Ars Mathematica Contemporanea, 13:95-106, 2017.
[2] S. Bonvicini, M. Buratti, M. Garonzi, G. Rinaldi, and T. Traetta. The first families of highly symmetric kirkman triple systems whose orders fill a congruence class. Designs, Codes and Cryptography, 89(12): 2725-2757, 2021.
[3]X. Gao, M. Garonzi. The structure of 3-pyramidal groups. arXiv:2302.12285, 2023.
[4]B. Huppert, N. Blackburn. Finite groups II, volume 242. Springer, Berlin, Heidelberg, 1982.

Acknowledgements

The first author acknowledges the support of the CAPES PhD fellowship, the NSF of China (No. 12161035) and UnB. The second author acknowledges the support of Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Universal (No. 402934/2021-0).

