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1 Introduction

A Steiner triple system STS(v) is a pair (V,B) where V

is a set of v points and B is a set of triples (blocks) of V

with the property that any two distinct points are contained
in exactly one block. A Kirkman triple system KTS(v) is an
STS(v) which admits a resolution of its block-set, i.e. the
triples can be partitioned into parallel classes, each of which
is a partition of the point-set. It is well known that there ex-
ists an STS(v) and KTS(v) iff v ≡ 1, 3(mod 6) (Kirkman,
1847) and v ≡ 3(mod 6) (Ray-Chaudhuri, Wilson, 1971)
respectively. An automorphism Aut(D) of an STS (resp.
KTS) D is a permutation of its points leaving the block-set
(resp. resolution) invariant, which forms a group with compo-
sition. An STS (resp. KTS) D is called 3-pyramidal if there
exists a subgroup G of Aut(D) fixing 3 points and acting
regularly on the other points. If this happens, we say that the
STS (resp. KTS) is 3-pyramidal under G.

2 Some Results

Let D be a Steiner Triple System, M. Buratti, G. Rinaldi
and T. Traetta in [1] proved that if D is 3-pyramidal under
G then G has precisely 3 involutions. Moreover, they proved
the following result:

Lemma 2.1. A 3-pyramidal Steiner Triple System STS(v)

exists if and only if v ≡ 7, 9, 15(mod 24) or v ≡
3, 19(mod 48).

In [2], S. Bonvicini, M. Buratti, M. Garonzi, G. Rinaldi
and T. Traetta proved the following result:

Lemma 2.2. A necessary condition for the existence of a 3-
pyramidal KTS(v) is that v = 24n+9 or v = 24n+15

or v = 48n + 3 for some n which, in the last case, must be
of the form 4em with m odd. This condition is also sufficient
in each of the following cases:

•v = 24n + 9 and 4n + 1 is a sum of two squares.

•v = 24n + 15 and either 2n + 1 ≡ 0(mod 3) or
the square-free part of 2n + 1 does not have any prime
p ≡ 11(mod 12).

•v = 48n + 3.

Moreover, they proved that if D is a 3-pyramidal Kirkman
Triple System, then the corresponding group G has exactly 3

involutions, which are all conjugate to each other. So we give
the following definition.

Definition 2.3. We say that a finite group G is 3-pyramidal if
it has exactly 3 involutions, which are all conjugate to each
other.

3 Main Theorem

Theorem 3.1 (X. Gao, M. Garonzi, see [3]). Let G be a finite
group and O(G) the largest normal subgroup of G of odd
order. Let K be the subgroup generated by the involutions of
G. Then G is 3-pyramidal if and only if one of the following
holds.

•G is isomorphic to S3 × H where H is a group of odd
order.

•O(G) ⩽ CG(K) and G/O(G) is isomorphic to N ⋊ A

where N is the Suzuki 2-group of order 64 and A is a sub-
group of Aut(N) of order 3 or 15.

•O(G) ⩽ CG(K) and G/O(G) is isomorphic to (C2n ×
C2n)⋊A where A is the cyclic group of order 3 generated
by the automorphism (a, b) 7→ (b, (ab)−1).

In the first item K ∼= S3 while in the last two items K ∼=
C2 × C2.

4 Strategy of the proof

The first main step is to prove that G is solvable.
Sketch of proof: Let C = CG(K). We assume that G

is a nonsolvable 3-pyramidal group of minimal order, and we
divide the proof into several steps.

Step 1 : We prove that Φ(G) is a 2-group containing K

and there exists a normal subgroup N of G with Φ(G) <

N ⩽ C such that G/N is a cyclic 3-group and N/Φ(G) is
isomorphic to Sm for some nonabelian simple group S.
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Step 2 : Let M be a maximal subgroup of G with
M ̸= C. We prove that MG = Φ(G) and consequently
G/Φ(G) is a primitive group.

Step 3 : We prove that G/Φ(G) is an alsomt simple
group with Sm ⩽ G/Φ(G) ⩽ S ≀ P where P is a cyclic
3-subgroup of Sym(m).

Step 4 : We construct a contradiction. Consider

∆ = {(s, s, · · · , s)|s ∈ S} ⩽ Sm, H := NG/Φ(G)(∆).

In fact, we can get that the preimage of H in G is a proper 3-
pyramidal subgroup of G. Obviously, H is nonsolvable since
S ∼= ∆ ⩽ H , this contradicts the minimality of G.

This concludes the proof of the solvability of 3-pyramidal
group.

We have proved that 3-pyramidal groups are solvable, so
the following result is very useful.
Lemma 4.1 (Thompson [4]). Suppose that G is a solvable
group of even order and that the Sylow 2-subgroup of G con-
tains more than one involution. Suppose that all the involu-
tions in G are conjugate. Then the 2-length of G is 1 and
the Sylow 2-subgroups of G are either homocyclic or Suzuki
2-groups.

Next, let W := G/O(G). In the light of Lemma 4.1
we have the Sylow 2-subgroup P of W is normal in W

and P is a homocyclic 2-group or Suzuki 2-group.
Finally, we use W/CW(P ) ≲ Aut(P ) to finish our

proof.

The main theorem implies that, if G is a 3-pyramidal
group, then the quotient group G/O(G) is one of the follow-
ing: SmallGroup(192,1025), SmallGroup(960,5748), (C2n ×
C2n) ⋊ C3, C2.
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