Algebras with additional structures and small colenght

Wesley Quaresma Cota Advisors: Rafazel dos Santos & Ana Vieira Universidade Federal de Minas Gerais

wesleyqc@ufmg.br

Introduction

Let F be a field of characteristic zero, A an associative Falgebra and $F\langle X \rangle$ the free associative algebra generated by a countable set of variables. We say that A is a PI-algebra if there exists a non zero polynomial $f(x_1,...,x_n) \in F\langle X \rangle$ such that $f(a_1, ..., a_n) = 0$, for all $a_1, ..., a_n \in A$. In this case, we say that f is an identity of A. Denote by $\overline{Id(A)} = \{f \in F \langle X \rangle \mid f \equiv 0 \text{ on } A\}$ the T-ideal of A. In characteristic zero, Id(A) is finitely generated, as a T-ideal, by its multilinear identities. Let $P_n =$ span $\{x_{\sigma(1)}\cdots x_{\sigma(n)} \mid \sigma \in S_n\}$ be the space of multilinear polynomials in the first n variables. We say that A and B are *T*-equivalent and we write $A \sim_T B$ if Id(A) = Id(B). Consider

- 3. $\mathcal{G}_{2,\tau}$: is the algebra $\mathcal{G}_2 = \langle 1, e_1, e_2 \mid e_i e_j = -e_j e_i \rangle$ with trivial G-grading and involution $\tau(e_i) = -e_i$, for i = 1, 2;
- 4. C_2^g : is the algebra C_2 with trivial involution and G-grading $(C_2^g)_1 = F(e_{11} + e_{22}), (C_2^g)_q = Fe_{12}, (C_2^g)_h = \{0\},\$ for all $h \in G \setminus \{1, g\};$
- 5. $C_{2,*}^g$: is the algebra C_2 with G-grading and involution de-

$$P_n(A) = rac{P_n}{P_n \cap Id(A)}, \ n \geq 1.$$

and denote by $c_n(A) := \dim_F P_n(A)$ the *n*th codimension of A. Notice that S_n acts on P_n via $\sigma \cdot (x_{i_1} \cdots x_{i_n}) =$ $x_{\sigma(i_1)} \cdots x_{\sigma(i_n)}$ and so P_n is a S_n -module. Since Id(A) is invariant by this action of S_n , we have that $P_n(A)$ is also a S_n -module. By complete reducibility, we may consider its character $\chi_n(A) = \bigoplus m_\lambda \chi_\lambda$, called *n*th cocharacter of *A*, where χ_{λ} is the irreducible S_n -character associated to $\lambda \vdash n$ and m_{λ} is its multiplicity. The *n*th colenght of *A* is defined by

$$l_n(A) = \sum_{\lambda dash n} m_\lambda.$$

Mishchenko, Regev and Zaicev, 1999: $c_n(A) \leq \alpha n^t \Leftrightarrow$

fined above.

If |G| is even and $g \in G$ with |g| = 2, we consider: 6. C_3^g : is the algebra C_3 with trivial involution and G-grading $(C_3^g)_1 = F(e_{11}+e_{22}+e_{33})+Fe_{13}, (C_3^g)_q = F(e_{12}+e_{23}),$ $(\overline{C}_2^g)_h = \{0\}, \text{ for all } h \in G \setminus \{1, g\};$ 7. $C_{3,*}^{g}$: is the algebra C_{3} with G-grading and involution defined above.

Let $n = n_1 + n_2 + \cdots + n_{2k-1} + n_{2k}, \langle n \rangle =$ (n_1,\ldots,n_{2k}) and $P_{\langle n \rangle}$ be the vector space of multilinear (G, *)-polynomials containing n_{2i-1} symmetric variables of homogeneous degree g_{2i-1} and n_{2i} skew variables of homogeneous degree g_{2i} , $1 \leq i \leq n$. Note that $P_{\langle n \rangle}(A) =$ $\frac{P_{\langle n \rangle}}{P_{\langle n \rangle} \cap Id^{(G,*)}(A)}$ is a $S_{n_1} \times \cdots \times S_{n_{2k}}$ -module. Consider $\chi_{\langle n \rangle}(A) = \sum m_{\langle \lambda
angle} \chi_{\lambda(1)} \otimes \cdots \otimes \chi_{\lambda(2k)}$, its cocharacter, where $\lambda(i) \vdash n_i$. The (G, *)-colenght of A is denoted by $l_n^{(G,*)}(A)=\sum$ $\overline{m}_{\langle\lambda
angle}.$ $n = n_1 + \cdots + n_{2k} \langle \lambda
angle dash \langle n
angle$

 $l_n(A) \leq k$, for some $k \geq 0$ and $\forall n \geq 1$. For a fixed constant $k \ge 0$ which algebras A generates varieties such that $l_n(A) = k$? Giambruno and La Mattina, 2005: 1. $l_n(A) = 0$ if and only if $A \sim_{PI} N$; 2. $l_n(A) = 1$ if and only if $A \sim_{PI} C$; 3. $l_n(A) = 2$ if and only if $A \sim_{PI} D_1 \oplus N$ or $D_2 \oplus N$, where $D_1 = Fe_{11} + Fe_{12}, D_2 = Fe_{22} + Fe_{12}, N$ denotes a nilpotent algebra and C a commutative non nilpotent algebra.

Additional structures

Definition. For any group $\overline{G} = \{g_1, \ldots, g_k\}$ we say that an algebra A is a G-graded algebra if there exist subspaces A_g , $g \in G$, which is called homogeneous component of degree g, such that $A = \bigoplus A_g$ satisfying $A_g A_h \subseteq A_{gh}$ for all $g \in G$ $g,h\in G.$

In 2013, Vieira [6] presented the classification of varieties of \mathbb{Z}_2 -graded algebras with \mathbb{Z}_2 -colength bounded by 2.

Results

Consider $\mathcal{D} = \bigcup \mathcal{D}^g$, where $\mathcal{D}^g = \{C_2^*, C_2^g, C_{2,*}^g\}$. $g \in G \setminus \{1\}$ **Theorem.** Let G be a finite abelian group and A be a finite dimensional (G, *)-algebra. 1. If $l_n^{(G,*)}(A) = 0$, *n* large enough, then $A \sim_{T_{(G,*)}} N$. 2. If $l_n^{(G,*)}(A) = 1$, *n* large enough, then $A \sim_{T_{(G,*)}} C \oplus N$; 3. If $l_n^{(G,*)}(A) = 2$, *n* large enough, then $A \sim_{T_{(G,*)}}$: $C_{2,*} \oplus N, \ \overline{C_2^g \oplus N} \text{ or } C_{2,*}^g \oplus N, \text{ for some } g \in G \setminus \{1\}.$ 4. If |G| is odd and $l_n^{(G,*)}(A) = 3$, *n* large enough, then A is $T_{(G,*)}$ -equivalent to either: $C_3^* \oplus N, \mathcal{G}_{2, \tau} \oplus N ext{ or } D_1 \oplus D_2 \oplus N.$ 5. If |G| is even and $l_n^{(G,*)}(A) = 3$, *n* large enough, then A

is $T_{(G,*)}$ -equivalent to either: $C_3^*\oplus N, \mathcal{G}_{2, au}\oplus N, C_3^h\oplus N, C_{3,st}^h\oplus N ext{ or } D_1\oplus D_2\oplus N,$ for some $D_i \in \mathcal{D}$ with $D_1 \neq D_2$ and $h \in G$ with |h| = 2.This result generalizes the results presented in [5].

Definition. An algebra A is called a *-algebra if A is endowed with an involution *, i.e., a linear map satisfying $(a^*)^* = a$ and $(ab)^* = b^*a^*$, for all $a, b \in A$.

In 2018, La Mattina, Nascimento, and Vieira [4] extended the classification to *-varieties whose sequence of *-colenght is bounded by **3**.

We say that an involution * defined in a G-graded algebra is graded if $A_q^* = A_g$, for all $g \in G$.

Definition. A G-graded algebra endowed with a graded involution * is called a (G, *)-algebra.

1. $C_{2,*}$: is the algebra $C_2 = F(e_{11} + e_{22}) + Fe_{12}$ with trivial G-grading and involution $(\alpha(e_{11} + e_{22}) + \beta e_{12})^* =$ $lpha(e_{11}+e_{22})-eta e_{12};$

2. $C_{3,*}$: is the algebra $C_3 = F(e_{11} + e_{22} + e_{22}) + E_{22}$ $F(e_{12}+e_{23})+Fe_{13}$ with trivial G-grading and involution $(e_{12}+e_{23})^*=-(e_{12}+e_{23}), e_{13}^*=e_{13};$

References

- [1] W. Q. Cota, R. B. dos Santos and A. C. Vieira. Graded algebras with group graded involutions and small (G, *)colenght. Preprint.
- [2] A. Giambruno and D. La Mattina. PI-algebras with slow codimension growth. J. Algebra 284 (2005) 371-391.
- [3] D. La Mattina. Characterizing varieties of colength < 4. Comm Algebra. 37 (2009) 1793–1807.
- [4] D. La Mattina, T. S. do Nascimento and A. C. Vieira. Minimal star-varieties of polynomial growth and bounded colength. J. Pure App. Algebra. 222 (2018) 1765-1785.
- [5] T. S. do Nascimento and A. C. Vieira. Superalgebras with graded involution and star-graded colength bounded by 3. Linear and Multilinear Algebra. 67 (2019) 1999-2020.
- [6] A. C. Vieira. Supervarieties of small graded colength. J Pure Appl Algebra. 217 (2013) 322–333.