Optimal plane curves of degree $q-1$ over a finite field

Walteir de Paula Ferreira \& Pietro Speziali

Department of Mathematics, University of Campinas, Campinas, Brazil
w235426@dac.unicamp.br \& speziali@unicamp.br

Abstract

Let $\boldsymbol{q} \geq 5$ be a prime power. In [1], we prove that if a plane curve \mathcal{X} of degree $\boldsymbol{q}-1$ defined over \mathbb{F}_{q} without \mathbb{F}_{q}-linear components attains the Sziklai upper bound $(d-1) q+1=(q-1)^{2}$ for the number of its \mathbb{F}_{q}-rational points, then \mathcal{X} is projectively equivalent over \mathbb{F}_{q} to the curve $\mathcal{C}_{(\alpha, \beta, \gamma)}: \alpha X^{q-1}+\beta Y^{q-1}+\gamma Z^{q-1}=0$ for some $\alpha, \beta, \gamma \in \mathbb{P}_{q}^{*}$ such that $\alpha+\beta+\gamma=0$. This completes the classification of curves that are extremal with respect to the Sziklai bound. Also, since the Sziklai bound is equal to the Stöhr-Voloch's bound for plane curves of degree $q-1$, our main result classifies the \mathbb{F}_{q}-Frobenius extremal classical nonsingular plane curves of degree $q-1$.

Introduction

Let \mathcal{X} be a (projective, geometrically irreducible, algebraic) curve defined over a finite field \mathbb{F}_{q} where $\boldsymbol{q}=\boldsymbol{p}^{h}$ for some prime \boldsymbol{p} and some positive integer \boldsymbol{h}. It is a classical problem to count the number $\mathrm{N}_{q}(\mathcal{X})$ of \mathbb{F}_{q}-rational points of \mathcal{X}. However, since this problem is rather hard to solve, it is often desirable to find good upper bounds for $\mathrm{N}_{q}(\mathcal{X})$ depending on some invariants of the curve \mathcal{X}. Once we have a bound, it is a natural question to see whether such a bound is sharp or not, and then, it is also natural to try and classify the optimal curves, that is, the curves attaining said bound.
Let $C_{d}\left(\mathbb{F}_{q}\right)$ be the set of plane curves of degree $\boldsymbol{d} \geq \mathbf{2}$ defined over $\mathbb{F}_{\boldsymbol{q}}$ without $\mathbb{F}_{\boldsymbol{q}}$-linear components. In [6], if $\mathcal{X} \in C_{d}\left(\mathbb{F}_{q}\right)$, Sziklai conjectured the following result: $\mathrm{N}_{q}(\mathcal{X}) \leq(d-1) q+1$. The unique exception to Sziklai's conjecture was found in [4, Section 3] and it is given by the curve over \mathbb{F}_{4} with homogeneous equation
$X^{4}+Y^{4}+Z^{4}+X^{2} Y^{2}+Y^{2} Z^{2}+Z^{2} X^{2}+G(X, Y, Z)=0$, where $G(X, Y, Z)=X^{2} Y Z+X Y^{2} Z+X Y Z^{2}$. The Sziklai bound was later proved by Homma and Kim in a sequence of three papers $[2,4,3]$. We are interested in the curves attaining the Sziklai bound.

Optimal plane curves

In [4, section 5], Homma and Kim observe that the possible degrees d of a nonsingular curve with $(\boldsymbol{d}-1) q+1$ rational points are $q+2, q+1, q, q-1, \sqrt{q}+1$ and 2 . Also, for each degree d in the list, there is a nonsingular curve of degree \boldsymbol{d} attaining the bound. For $\boldsymbol{d} \neq \boldsymbol{q}-1$, the complete classification of such optimal curves is known. For $\boldsymbol{d}=\boldsymbol{q}-1$, as it was mentioned by Sziklai in [6], the curve

$$
\mathcal{C}_{(\alpha, \beta, \gamma)}: \alpha X^{q-1}+\beta Y^{q-1}+\gamma Z^{q-1}=0
$$

with $\alpha, \beta, \gamma \in \mathbb{P}_{q}^{*}$ and $\alpha+\beta+\gamma=0$ has $(q-1)^{2}$ rational points. This curve is nonsingular and the set of its \mathbb{F}_{q}-rational points is
$\mathcal{C}_{(\alpha, \beta, \gamma)}\left(\mathbb{F}_{q}\right)=\mathbb{P}^{2}\left(\mathbb{F}_{q}\right) \backslash\{X=0\} \cup\{Y=0\} \cup\{Z=0\}$.
Recently, in 2021, Homma has stated the following question:
Question 1: Are there curves of degree $q-1$ that attain the Sziklai's upper bound such that are not projectively equivalent over \mathbb{F}_{q} to a curve of type $\mathcal{C}_{(\alpha, \beta, \gamma)}$?

In the same paper, he gives a positive solution to this problem for $q=4$, since in this case, the Hermitian cubic attains Sziklai's bound but is not projectively equivalent to any $\mathcal{C}_{(\alpha, \beta, \gamma)}$.

In [1], we give a negative answer to Question 1 for $q \geq 5$, thus completing the classification of optimal Sziklai curves.

Main Result
In [1], we proved the following result:
Theorem: Let $\mathcal{X} \in C_{q-1}\left(\mathbb{F}_{q}\right)$. If $\mathrm{N}_{q}(\mathcal{X})=(q-1)^{2}$ and $q \geq 5$, then there exist $\alpha, \beta, \gamma \in \mathbb{F}_{q}^{*}$ with $\alpha+\beta+\gamma=0$ such that \mathcal{X} is projectively equivalent over $\mathbb{F}_{\boldsymbol{q}}$ to the curve $\mathcal{C}_{(\alpha, \beta, \gamma)}$ over \mathbb{F}_{q}.

Final Remarks

In [5], Stöhr and Voloch gave a geometric method to obtain upper bounds for the number of rational points of a curve of \mathbb{P}^{n}. Let $\mathcal{X} \subseteq \mathbb{P}^{2}$ be an irreducible nonsingular algebraic curve of degree \boldsymbol{d} defined over \mathbb{F}_{q}. If \mathcal{X} is \boldsymbol{q}-Frobenius classical, by Stöhr and Voloch Theory, we have

$$
\begin{equation*}
\mathrm{N}_{q}(\mathcal{X}) \leq \frac{d(d+q-1)}{2} \tag{1}
\end{equation*}
$$

Note that if $d=q-1$ then $d(d+q-1) / 2=(q-1)^{2}$. This means that the Stöhr-Voloch upper bound for a nonsingular \boldsymbol{q}-Frobenius classical plane curve of degree $\boldsymbol{q}-1$ is equal to Sziklai's upper bound. Also, by the proof of our main result, it is inferred that the curves attaining the Sziklai bound are \boldsymbol{q}-Frobenius classical and have no \mathbb{F}_{q}-rational point of inflection. In other words, our main result classifies the $\mathbb{F}_{\boldsymbol{q}}$-Frobenius classical nonsingular curves of degree $\boldsymbol{q}-\mathbf{1}$ attaining the Stöhr-Voloch upper bound (1) up to projective equivalence.

References

[1] Walteir de Paula Ferreira and Pietro Speziali. Optimal plane curves of degree $q-1$ over a finite field. arXiv preprint arXiv:2211.14288, 2022.
[2] Masaaki Homma and Seon Jeong Kim. Around sziklai's conjecture on the number of points of a plane curve over a finite field. Finite Fields and Their Applications, 15(4):468-474, 2009.
[3] Masaaki Homma and Seon Jeong Kim. Sziklai's conjecture on the number of points of a plane curve over a finite field iii. Finite Fields and Their Applications, 16(5):315319, 2010.
[4] Masaaki Homma and Seon Jeong Kim. Sziklai's conjecture on the number of points of a plane curve over a finite field ii. Finite Fields: Theory and Applications, in: Contemp. Math, 518:225-234, 2010.
[5] Karl-Otto Stöhr and José Felipe Voloch. Weierstrass points and curves over finite fields. Proceedings of the London Mathematical Society, 3(1):1-19, 1986.
[6] Peter Sziklai. A bound on the number of points of a plane curve. Finite Fields and Their Applications, 14(1):41-43, 2008.

Acknowledgements

This study was financed in part by the Coordenaccao de Aperfeiccoamento de Pessoal de Niivel Superior - Brasil (CAPES) - Finance Code 001. The first author is funded by the grant 88887.616821/2021-00.

