Optimal plane curves of degree q - 1 over a finite field

Walteir de Paula Ferreira & Pietro Speziali

Department of Mathematics, University of Campinas, Campinas, Brazil

w235426@dac.unicamp.br & speziali@unicamp.br

Abstract

Let $q \geq 5$ be a prime power. In [1], we prove that if a plane curve \mathcal{X} of degree q - 1 defined over \mathbb{F}_q without \mathbb{F}_q -linear components attains the Sziklai upper bound $(d-1)q+1 = (q-1)^2$ for the number of its \mathbb{F}_q -rational points, then \mathcal{X} is projectively equivalent over \mathbb{F}_q to the curve $\mathcal{C}_{(\alpha,\beta,\gamma)} : \alpha X^{q-1} + \beta Y^{q-1} + \gamma Z^{q-1} = 0$ for some $\alpha, \beta, \gamma \in \mathbb{F}_q^*$ such that $\alpha + \beta + \gamma = 0$. This completes the classification of curves that are extremal with respect to the Sziklai bound. Also, since the Sziklai bound is equal to the Stöhr-Voloch's bound for plane curves of degree q - 1, our main result classifies the \mathbb{F}_q -Frobenius extremal classical nonsingular plane curves of degree q - 1. In [1], we give a negative answer to Question 1 for $q \ge 5$, thus completing the classification of optimal Sziklai curves.

Main Result

In [1], we proved the following result:

UNICAMP

Introduction

Let \mathcal{X} be a (projective, geometrically irreducible, algebraic) curve defined over a finite field \mathbb{F}_q where $q = p^h$ for some prime p and some positive integer h. It is a classical problem to count the number $N_q(\mathcal{X})$ of \mathbb{F}_q -rational points of \mathcal{X} . However, since this problem is rather hard to solve, it is often desirable to find good upper bounds for $N_q(\mathcal{X})$ depending on some invariants of the curve \mathcal{X} . Once we have a bound, it is a natural question to see whether such a bound is sharp or not, and then, it is also natural to try and classify the optimal curves, that is, the curves attaining said bound.

Let $C_d(\mathbb{F}_q)$ be the set of plane curves of degree $d \geq 2$ defined over \mathbb{F}_q without \mathbb{F}_q -linear components. In [6], if $\mathcal{X} \in C_d(\mathbb{F}_q)$, Sziklai conjectured the following result: $N_q(\mathcal{X}) \leq (d-1)q + 1$. The unique exception to Sziklai's conjecture was found in [4, Section 3] and it is given by the curve over \mathbb{F}_4 with homogeneous equation **Theorem:** Let $\mathcal{X} \in C_{q-1}(\mathbb{F}_q)$. If $N_q(\mathcal{X}) = (q-1)^2$ and $q \geq 5$, then there exist $\alpha, \beta, \gamma \in \mathbb{F}_q^*$ with $\alpha + \beta + \gamma = 0$ such that \mathcal{X} is projectively equivalent over \mathbb{F}_q to the curve $\mathcal{C}_{(\alpha,\beta,\gamma)}$ over \mathbb{F}_q .

Final Remarks

In [5], Stöhr and Voloch gave a geometric method to obtain upper bounds for the number of rational points of a curve of \mathbb{P}^n . Let $\mathcal{X} \subseteq \mathbb{P}^2$ be an irreducible nonsingular algebraic curve of degree d defined over \mathbb{F}_q . If \mathcal{X} is q-Frobenius classical, by Stöhr and Voloch Theory, we have

$$N_q(\mathcal{X}) \le \frac{d(d+q-1)}{2}.$$
 (1)

Note that if d = q - 1 then $d(d + q - 1)/2 = (q - 1)^2$. This means that the Stöhr-Voloch upper bound for a nonsingular *q*-Frobenius classical plane curve of degree q - 1 is equal to Sziklai's upper bound. Also, by the proof of our main result, it is inferred that the curves attaining the Sziklai bound are *q*-Frobenius classical and have no \mathbb{F}_q -rational

 $X^4+Y^4+Z^4+X^2Y^2+Y^2Z^2+Z^2X^2+G(X,Y,Z)=0,$ where $G(X,Y,Z) = X^2YZ + XY^2Z + XYZ^2.$ The Sziklai bound was later proved by Homma and Kim in a sequence of three papers [2, 4, 3]. We are interested in the curves attaining the Sziklai bound.

Optimal plane curves

In [4, section 5], Homma and Kim observe that the possible degrees d of a nonsingular curve with (d-1)q + 1 rational points are q + 2, q + 1, q, q - 1, $\sqrt{q} + 1$ and 2. Also, for each degree d in the list, there is a nonsingular curve of degree d attaining the bound. For $d \neq q - 1$, the complete classification of such optimal curves is known. For d = q - 1, as it was mentioned by Sziklai in [6], the curve

 $C_{(\alpha,\beta,\gamma)}: \alpha X^{q-1} + \beta Y^{q-1} + \gamma Z^{q-1} = 0$ with $\alpha, \beta, \gamma \in \mathbb{F}_q^*$ and $\alpha + \beta + \gamma = 0$ has $(q-1)^2$ rational points. This curve is nonsingular and the set of its \mathbb{F}_q -rational points is point of inflection. In other words, our main result classifies the \mathbb{F}_q -Frobenius classical nonsingular curves of degree q-1 attaining the Stöhr-Voloch upper bound (1) up to projective equivalence.

References

- [1] Walteir de Paula Ferreira and Pietro Speziali. Optimal plane curves of degree q 1 over a finite field. *arXiv preprint arXiv:2211.14288*, 2022.
- [2] Masaaki Homma and Seon Jeong Kim. Around sziklai's conjecture on the number of points of a plane curve over a finite field. *Finite Fields and Their Applications*, 15(4):468–474, 2009.
- [3] Masaaki Homma and Seon Jeong Kim. Sziklai's conjecture on the number of points of a plane curve over a finite field iii. *Finite Fields and Their Applications*, 16(5):315– 319, 2010.
- [4] Masaaki Homma and Seon Jeong Kim. Sziklai's conjecture on the number of points of a plane curve over a finite field ii. *Finite Fields: Theory and Applications, in: Contemp. Math*, 518:225–234, 2010.

 $\mathcal{C}_{(\alpha,\beta,\gamma)}(\mathbb{F}_q) = \mathbb{P}^2(\mathbb{F}_q) \setminus \{X = 0\} \cup \{Y = 0\} \cup \{Z = 0\}.$ Recently, in 2021, Homma has stated the following question:

Question 1: Are there curves of degree q - 1 that attain the Sziklai's upper bound such that are not projectively equivalent over \mathbb{F}_q to a curve of type $\mathcal{C}_{(\alpha,\beta,\gamma)}$?

In the same paper, he gives a positive solution to this problem for q = 4, since in this case, the Hermitian cubic attains Sziklai's bound but is not projectively equivalent to any $C_{(\alpha,\beta,\gamma)}$.

- [5] Karl-Otto Stöhr and José Felipe Voloch. Weierstrass points and curves over finite fields. *Proceedings of the London Mathematical Society*, 3(1):1–19, 1986.
- [6] Peter Sziklai. A bound on the number of points of a plane curve. *Finite Fields and Their Applications*, 14(1):41–43, 2008.

Acknowledgements

This study was financed in part by the Coordenaccao de Aperfeiccoamento de Pessoal de Niivel Superior - Brasil (CAPES) - Finance Code 001. The first author is funded by the grant 88887.616821/2021-00.