A singular variant of the Falconer distance problem

Tainara Borges¹, Alex Iosevich², Yumeng Ou³

 1 Brown University

² University of Rochester

³ University of Pennsylvania

In this talk we will discuss the following variant of the Falconer distance problem. Let E be a compact subset of \mathbb{R}^d , $d \geq 1$, and define

$$\Box(E) = \{ |(y,z) - (x,x)| : x, y, z \in E, \ y \neq z \} \subseteq \mathbb{R}.$$

We showed using a variety of methods that if the Hausdorff dimension of E is greater than $\frac{d}{2} + \frac{1}{4}$, then the Lebesgue measure of $\Box(E)$ is positive. This problem can be viewed as a singular variant of the classical Falconer distance problem because considering the diagonal (x, x) in the definition of $\Box(E)$ poses interesting complications stemming from the fact that the set $\{(x, x) : x \in E\} \subseteq \mathbb{R}^{2d}$ is much smaller than the sets for which the Falconer type results are typically established.