Total mean curvature surfaces in the product space $\mathbb{S}^{n} \times \mathbb{R}$ and applications.
 Sylvia Ferreira
 UFRPE

sylvia.ferreira@ufrpe.br

Introduction

An interesting line of research is to study which submanifolds are critical points of certain functional. In this scenario, we can highlight the work from [1, 2], being the last one concerning about the the total mean curvature functional, for a submanifold σ^{m} in the Euclidean space, \mathcal{H} given by

$$
\begin{equation*}
\mathcal{H}(\Sigma)=\int_{\Sigma} H^{m} d \Sigma \tag{1}
\end{equation*}
$$

and \boldsymbol{H} is the mean curvature function of the submanifold. Our main result is inspired by the functional (1) and our aim is to study the \mathcal{H}-surfaces in the product space $\mathbb{S}^{n} \times \mathbb{R}$, i.e, surfaces which are critical points of the \mathcal{H} functional in order to obtain an integral inequality relating the total umbilicity tensor $|\phi|$ and the Euler- Lagrange characteristic of the surface. As a consequence we characterizes those in what the equality holds. The results presented here are a part of [6].

1 Set up

Let Σ^{m} be a submanifold isometrically immersed in the product space $\mathbb{S}^{n} \times \mathbb{R}$. We denote by ∂_{t} the parallel and unitary vector field associated to this product and the second fundamental form of the imersion by σ, with A_{ξ} being the Weingarten Operator in the normal direction $\boldsymbol{\xi}$. Since $\partial_{t} \in$ $\mathfrak{X}\left(\mathbb{S}^{n} \times \mathbb{R}\right)$, it can be decomposed along Σ^{m} as $\partial_{t}=T+N$, where $T:=\partial_{t}^{\top}$ and $N:=\partial_{t}^{\perp}$ denote, respectively, the tangent and normal part of the vector field ∂_{t} on the tangent and normal bundle of the submanifold Σ^{m} in $\mathbb{S}^{n} \times \mathbb{R}$. Let us denote by \boldsymbol{h} the mean curvature vector field of $\boldsymbol{\Sigma}^{m}$ in $\mathbb{S}^{n} \times \mathbb{R}$, and by \boldsymbol{H} its norm, i.e, $\langle\boldsymbol{h}, \boldsymbol{h}\rangle=\boldsymbol{H}^{2}$.
Proposition 1. Let $\boldsymbol{x}: \Sigma^{m} \rightarrow \mathbb{S}^{n} \times \mathbb{R}$ be an isometrically immersed closed submanifold. Then \boldsymbol{x} is a stationary point of \mathcal{H} if and only if

$$
\begin{align*}
& H^{m-2}\left\{\Delta^{\perp} h+\left(\left(m-|T|^{2}\right)-m H^{2}\right) h-m\langle N, h\rangle N\right\} \\
& +\left(\sum_{\alpha, \beta} H^{\alpha} \operatorname{tr}\left(A_{\alpha} A_{\beta}\right) e_{\beta}\right)=0, \text { for } m>2 \text { and } \tag{2}
\end{align*}
$$

$$
\begin{align*}
& \Delta^{\perp} h+\left(2-|T|^{2}-2 H^{2}\right) h-2\langle N, h\rangle N \\
& +\sum_{\alpha, \beta} H^{\alpha} \operatorname{tr}\left(A_{\alpha} A_{\beta}\right) e_{\beta}=0 \tag{3}
\end{align*}
$$

in the case where $m=2$, where $m+1 \leq \alpha, \beta \leq n+1$.

Main Result

Before proving our main result, we need the following proposition.
Proposition 2. Let Σ^{2} be an \mathcal{H}-surface in the product space $\mathbb{S}^{n} \times \mathbb{R}$. Then, we have

$$
\begin{align*}
& \int_{\Sigma}\left(\left|\nabla^{\perp} \sigma\right|^{2}+2 \sum_{\alpha} \operatorname{tr}\left(A_{\alpha} \circ \operatorname{Hess} H^{\alpha}\right)\right) d \Sigma \tag{4}\\
& \geq \int_{\Sigma}\left(2\langle N, h\rangle^{2}-\left(2-|T|^{2}+|\phi|^{2}\right) H^{2}\right) d \Sigma
\end{align*}
$$

Theorem 1. Let Σ^{2} be a compact \mathcal{H}-surface in the product space $\mathbb{S}^{n} \times \mathbb{R}$. Then

$$
\begin{align*}
& \int_{\Sigma}|\phi|^{2}\left(1-5|T|^{2}-\frac{3}{2}|\phi|^{2}\right) d \Sigma \tag{5}\\
& -\int_{\Sigma}\left\{2\left(\left|\phi_{h}\right|+1\right)|T|^{2}+2\right\} d \Sigma \leq 4 \pi \chi(\Sigma)
\end{align*}
$$

In particular, the equality holds if and only if Σ^{2} is isometric to either
(i) a slice $\mathbb{S}^{2} \times\left\{t_{0}\right\}$, or
(ii) a totally geodesic 2 -sphere or a Clifford torus in $\mathbb{S}^{3} \times\left\{t_{0}\right\}$, (iii) or a Veronese surface in $\mathbb{S}^{4} \times\left\{t_{0}\right\}$, for some $t_{0} \in \mathbb{R}$.

Proof. With a straighforward computation the [3, Proposition 1] can be written as follow
$\frac{1}{2} \Delta|\sigma|^{2} \geq\left|\nabla^{\perp} \sigma\right|^{2}+2 \sum_{\alpha} \operatorname{tr}\left(A_{\alpha} \circ\right.$ Hess $\left.H^{\alpha}\right)+2\left|\phi_{N}\right|^{2}$
$-2\left|\phi_{h}\right||T|^{2}+\left(2-5|T|^{2}+2 H^{2}-\frac{3}{2}|\phi|^{2}\right)|\phi|^{2}$.
Taking the integrals and using the divergence theorem, it follows from Proposition 2 that,
$0 \geq \int_{\Sigma}\left\{2\left(\left|\phi_{N}\right|^{2}+\langle N, h\rangle^{2}\right)+\left(|T|^{2}+|\phi|^{2}\right) H^{2}\right\} d \Sigma$
$+\int_{\Sigma}\left\{\left(2-5|T|^{2}-\frac{3}{2}|\phi|^{2}\right)-2 H^{2}-2\left|\phi_{h}\right||T|^{2}\right\} d \Sigma$.
Hence
$\int_{\Sigma}\left\{\left(2-5|T|^{2}-\frac{3}{2}|\phi|^{2}\right)|\phi|^{2}-2 H^{2}-2\left|\phi_{h}\right||T|^{2}\right\} d \Sigma$
≤ 0.
Then, the Gauss-Bonnet theorem implies

$$
\begin{align*}
& \int_{\Sigma}\left\{\left(1-5|T|^{2}-\frac{3}{2}|\phi|^{2}\right)|\phi|^{2}\right\} d \Sigma \\
& -\int_{\Sigma}\left\{2\left(\left|\phi_{h}\right|+1\right)|T|^{2}+2\right\} d \Sigma \leq 4 \pi \chi(\Sigma) \tag{6}
\end{align*}
$$

Finaly, if the equality holds in (6), all inequalities obtained along of the proof becomes equalities. In particular it follows that $\left|\phi_{N}\right|=\langle\boldsymbol{N}, \boldsymbol{h}\rangle=0$ and either $|\boldsymbol{T}|=|\phi|=0$ or $\boldsymbol{H}=0$. In the first case, Σ^{2} is a \mathcal{H}-surface satisfying the assumptions of [6, Corollary 3.3] so it is totally geodesic. Therefore, either it is isometric to a slice $\mathbb{S}^{2} \times\left\{t_{0}\right\}$ in the case $\boldsymbol{n}=2$, or to a totally geodesic sphere \mathbb{S}^{2} in a certain $\mathbb{S}^{3} \times\left\{t_{0}\right\}$. For the second case, since $\boldsymbol{H}=0$, we must have that Σ^{2} is a parallel surface of $\mathbb{S}^{2} \times \mathbb{R}$. On the one hand, since $\left|\phi_{N}\right|=\langle\boldsymbol{N}, \boldsymbol{h}\rangle=0$ it implies that $\boldsymbol{A}_{\boldsymbol{N}}=0$. Consequently it is not hard to see from the Codazzi equation that $T=0$, so Σ^{2} is a minimal surface in a slice of $\mathbb{S}^{n} \times \mathbb{R}$. For the case where Σ^{2} can be isometrically immersed in a certain $\mathbb{S}^{3} \times\left\{t_{0}\right\}$, by [4] we have that Σ^{2} is isometric to a Clifford torus $\mathbb{S}^{1}(1 / \sqrt{2}) \times \mathbb{S}^{1}(1 / \sqrt{2})$ in $\mathbb{S}^{3} \times\left\{t_{0}\right\}$ for some $t_{0} \in \mathbb{R}$. In other case, observe that for $|\phi|^{2}=|\sigma|^{2}$, the equality in (1) becomes

$$
\begin{equation*}
\int_{\Sigma}|\sigma|^{2}\left(\frac{3}{2}|\sigma|^{2}-2\right) d \Sigma=0 \tag{7}
\end{equation*}
$$

Therefore, from [5, Theorem 1], Σ^{2} is isometric to a Veronese surface in $\mathbb{S}^{4} \times\left\{t_{0}\right\}$, for some $t_{0} \in \mathbb{R}$.

Referências

[1]B-Y. Chen. On the total curvature of immersed manifolds i. an inequality of fenchel-borsuk-willmore. Amer. J. Math., pages 148-162, 1971.
[2]B-Y. Chen. Some conformal invariants of submanifolds and their applications. Boll. Un. Mat. Ital., pages 380-385, 1974.
[3] F.R. dos Santos and S.F. da Silva. On complete submanifolds with parallel normalized mean curvature in product spaces. Proc. Roy. Soc. Edinburgh Sect. A, 2022.
[4] H.B. Lawson Jr. Local rigidity theorems for minimal hypersurfaces. Ann. of Math., -:187-197, 1969.
[5] A.M. Li and J.M. Li. An intrinsic rigidity theorem for minimal submanifolds in a sphere. Arch. Math., pages 582594, 1992.
[6] A. L. Albujer S. F. Da Silva and F.R. Dos Santos. Total mean curvature surfaces in the product space and applications. Proceedings of the Edingburgh Mathematical Society, pages 1-20, 2023.

