Structural stability for C^2 – diffeomorphisms

Sávio Silva Santana & Paulo Varandas

Universidade Federal da Bahia - Instituto de Matemática e Estatística

santana.savio@ufba.br

Abstract

This work has as goal to present a proof of structural stability for C^2 diffeomorphisms which are axiom A and satisfy the strong transversality condition defined on a smooth, compact, boundaryless manifold.

Locally hyperbolic

Definition 6. Let $N \subseteq M$ be an open set and $E \subseteq TN$ be a continuous subbundle. We say that E is d_f -Lipschitz if for every $x \in N$ and any neighborhood U of x, there are vector fields $X_1, ..., X_k \in \mathfrak{X}_f(M)$, such that $X_1(y), ..., X_k(y)$ is a basis of E_y , for all $y \in U$. **Definition 7.** We say that **f** is locally hyperbolic if there are

Instituto de Matemática Pura e Aplicada

Results and discussion

We say that $f, g \in \text{Diff}^r(M), r > 1$, are topologically *conjugated* if there is a homeomorphism $\phi: M \bigcirc$ such that $g = \phi \circ f \circ \phi^{-1}$. A C^r map f is C^m -structurally stable $(1 \leq m \leq r)$ if there is a neighborhood U of f in the C^m topology such that for every map $g \in U$ is topologically conjugated f.

Definition 1. A point $x \in M$ is nonwandering if for any neighborhood U of x, there exists n > 0 such that $f^n(U) \cap$ $U \neq \emptyset$. We denote by $\Omega(f)$ the set of nonwandering points *of* **f**.

Definition 2. A map $f \in \text{Diff}^r(M)$ satisfies Axiom A if $\Omega(f)$ is a hyperbolic and $\Omega(f) = Per(f)$.

Definition 3. We say that **f** satisfies the strong transversality condition if

$$E_x^s + E_x^u = T_x M,$$

for all $x \in M$, where $E_x^{\sigma} = E^{\sigma} \cap T_x M$.

Theorem 1. (*Robbin*, 71) A diffeomorphism $f \in \text{Diff}^2(M)$ that satisfies axiom A and the strong transversality condition is C^1 -structurally stable.

open subsets $Z_1, ..., Z_l, W_1, ..., W_l \subset M$, subbundles E_i^u , E_i^s of TZ_i^f , where i = 1, ..., l, a Riemannian metric $\|\cdot\|$ and $0 < \lambda < 1$ such that for $i, j = 1, ..., l, \sigma = s, u$ 1. $W_i \subset Z_i$; 2. $M = \bigcup_{i}^{l} W_{i}^{f}$; 3. W_i is not revisited by f; 4. $Z_i \cap Z_j = \emptyset$, for $i \neq j$; 5. E_i^{σ} is d_f -lipschitz; 6. E_i^{σ} is df invariant; 7. $TZ_i^f = E_i^s \oplus E_i^u;$ 8. $\|df_x \cdot v\| \leq \lambda \|v\|$, for $v \in E_{i_x}^s$, where $x \in Z_i$, $\|df_x^{-1} \cdot v\| \leq \lambda \|v\|$, for $v \in E_{i_x}^u$, where $x \in Z_i$; 9. $E_{i_x}^s \subseteq E_{j_x}^s$ and $E_{j_x}^u \subseteq E_{i_x}^u$ to $x \in Z_i^{f+} \cap Z_j^{f-}$. **Theorem 3.**Let $f: M \to M$ be a C^2 diffeomorphism. If fis locally hyperbolic, then **f** satisfies Robbin's condition. Let $\theta_1, \ldots, \theta_l$ be a partition of unity subordinate to the coverage $W_1^f, ..., W_l^f$ of M. Let $X \in \mathfrak{X}^0(M)$. For i = $1, \ldots, l$, we write $heta_i X = X_{i,s} + X_{i,u}.$

Robbin's condition

Consider a homeomorphism $\phi : M \bigcirc$ satisfying $g \circ \phi =$ $\phi \circ f$, for $g C^1$ -close to f, we can rewrite this equation as follows: $f^{-1} \circ g \circ \phi = f^{-1} \circ \phi \circ f$. Since $f^{-1} \circ g$ is close to the identity in the C^1 topology, there is $Y \in \mathfrak{X}^1(M)$ such that $f^{-1} \circ g = \exp(Y)$, where $\exp: TM \longrightarrow M$ is the exponential map. As we want ϕ close to the identity, $\phi = \exp(X)$, for some $X \in \mathfrak{X}^0(M)$. So $g \circ \phi = \phi \circ f$ assumes the following form

$$(Id - f^{\#})X = R_Y(X),$$
 (1)

where Id is the identity operator, $f^{\#}$ is the linear operator induced by f defined in the Banach space $\mathfrak{X}^0(M)$ and R_Y is a nonlinear operator with small lipschitz constant. Assuming that $(Id - f^{\#})$ has a right inverse J, we can rewrite (1),

$$X = JR_Y(X). \tag{2}$$

Thus, the problem of finding a function ϕ that satisfies $g \circ \phi = \phi \circ f$ becomes the problem of finding a fixed point for a certain operator and choosing J appropriately such that $\phi = \exp(X)$ is a homeomorphism.

We now define the field

$$J(X) = \sum_{i=1}^{l} \left(J_{i,u}(X_{i,u}) + J_{i,s}(X_{i,s}) \right).$$
(3)

Since $J_{i,s}(X)$ and $J_{i,u}(X)$ converge uniformly, we have that J(X) converges uniformly and $(Id - f^{\#})J(X) = X$. **Theorem 4.** If **f** satisfies Axiom A and the strong transversality condition, then **f** is locally hyperbolic.

Since f satisfies Axiom A, by Smale's Spectral Decomposition Theorem it is possible to write $\Omega(f) = \Omega_1 \cup \ldots \cup \Omega_l$ where Ω_i is compact and f-invariant. Using the strong transversality condition it is possible to consider Z_i neighborhoods of Ω_i , thus the local hyperbolicity conditions are satisfied.

Conclusion

Given a C^2 diffeomorphism satisfying Axiom A with strong transversality, it is locally hyperbolic. This property ensures the Robbin's condition, which, in turn, guarantees C^1 structural stability.

Definition 4. We say that a vector field $X \in \mathfrak{X}^0(M)$ is d_f -Lipschitz if for every letter (φ, U) in M, there is a $K \geq 0$ such that

 $|X_{arphi}(x) - X_{arphi}(y)| \leq K d_f(x,y),$

where X_{arphi} : $U \rightarrow \mathbb{R}^n$ such that $d\varphi_x X_x =$ $(\varphi(x), X_{\varphi}(x))$. We denote by $\mathfrak{X}_{f}(M)$ the set of all fields d_f -lipschitz in M.

Definition 5. Let $f: M \bigcirc$ be a C^2 diffeomorphism. We say that **f** satisfies Robbin's condition if there is a continuous linear operator $J : \mathfrak{X}^0(M) \to \mathfrak{X}^0(M)$ such that Jis the right inverse of operator $(Id - f^{\#})$ and $\mathfrak{X}_{f}(M)$ is J-invariant.

Theorem 2. If $f \in Diff^2(M)$ satisfies Robbin's condition, then **f** is structurally stable.

Reference

- [1] ROBBIN, J. W. A structural stability theorem. Annals of Mathematics, John Hopkins University Press, v. 94, p. 447-493, 11 1971.
- [2] ANDRONOV, A.; PONTRYAGIN, L. Sistèmes grossier. Dokady Akademi Nauk, p. 247–250, 1937.
- [3] SMALE, S.; PALIS, J. Structural stability theorems. In: Proc. of Symposia in Pure Mathematics (Global Analysis) XIV. [S.1.]: AMS, 1970.

Acknowledgment

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior –Brasil (CA-PES) –Finance Code 001.