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Abstract

In this work, we study bifurcations of limit cycles for polyno-
mial and rational perturbations of differential equations with
an invariant manifold filled with periodic orbits. Using aver-
aging theory and the theory of Chebyshev systems, we obtain
upper bounds for the maximum number of limit cycles that
bifurcate from the periodic orbits on the invariant manifold.
Furthermore, we show that these bounds are attained.

Introduction

One of the main problems in the theory of differential equa-
tions is determining the number of limit cycles that bifurcate
from a center. In this work, we are interested in a generaliza-
tion of this problem: If a differential equation has an invariant
manifold filled by periodic orbits, will small perturbations of
this system produce any limit cycles? In this case, how many?

1 Averaging theory

Consider the differential system

ẋ = F0(t, x) + εF1(t, x) + ε2F2(t, x, ε), (1)

where x ∈ Rn, ε > 0 is sufficiently small, and F0, F1 and
F2 are Ck functions that are T -periodic on the first variable.
If ϕ(t, z) is a solution of (1)|ε=0 such that ϕ(0, z) = z,

denote by Mz(t) the fundamental matrix of the linearization
ẏ = D2F0(t, ϕ(t, z))y.
Theorem 1. Let V ⊂ Rm be open and bounded. Con-
sider Z := {zα = (α, β(α)) : α ∈ V }, where
β : V → Rn−m (resp. Rm) is a Ck function. Assume
that
1. The solution of (1)|ε=0 through each point of Z is T -

periodic;
2. For each α ∈ V , M−1

zα
(0)−M−1

zα
(T ) has a 0 upper right

submatrix and a nonsingular lower right submatrix (or vice-
versa).

If ξ is the projection onto the first m (resp. last n − m)
coordinates, define

F(α) = ξ

(∫ T

0

M−1
zα

(t)F1(t, ϕ(t, zα))dt

)
. (2)

Then, for each α0 ∈ V such that F(α0) = 0 and
det

(
∂F
∂α

(α0)
)

̸= 0, for ε ̸= 0 sufficiently small, there is
a unique periodic solution ϕ1(t, ε) of (1) passing through
zα0

such that lim
ε→0

ϕ1(t, ε) = ϕ(t, zα0
) and it is hyperbolic.

2 Chebyshev systems

Definition 1.A family of functions Φ = {ϕ1, ..., ϕk} defined
on an interval I is said a Chebyshev system if any nontrivial
linear combination of the elements of Φ admits at most k− 1

zeros in I .
Example. The following sets are Chebyshev systems:
•{1, x, x2, . . . , xn} for every n ∈ N;
•{cos(kx), sin(kx)}n

k=0 for every n ∈ N;
•{xieαjx : i ∈ {0, . . . , nj}}L

j=1 for finite increasing se-
quences (αj)

L
j=1 ⊂ R and (nj)

L
j=1 ⊂ N;

•{xαi+ℓ : ℓ ∈ {0, . . . , ni}}L
i=1 for finite sequences

(αj)
L
j=1 ⊂ R+ and (nj)

L
j=1 ⊂ N;

•{xi log(x)j : 0 ≤ i ≤ d− 1− 2j}⌊(d−1)/2⌋
j=0 for d ≥ 3.

3 Bifurcation of limit cycles from surfaces of revolution

Consider the differential system
ẋ = −y + εP (x, y, z);

ẏ = x + εQ(x, y, z);

ż = λF (x, y, z) + εR(x, y, z),

(3)

where λ ∈ R \ {0}, ε > 0 is sufficiently small, P , Q and
R are polynomials of degree at most d and F (x, y, z) =

x2 + y2 − f(z).
See that SF = F−1(0) is an invariant surface of (3)|ε=0.

Theorem 2 ([3]). If f is a polynomial of degree s, then, for
ε ̸= 0 sufficiently small, at most

D =

{
d − 1 , if s ∈ {0, 1, 2};
d − 1 + (s − 2)

⌊
d−1
2

⌋
, if s ≥ 3

limit cycles bifurcate from the periodic orbits of the invariant
surface SF of (3)|ε=0. Moreover, this bound is attained.

Theorem 3 ([3]). If f ∈ {zp/q, ez, log(z)}, then, for ε > 0

sufficiently small, at most D =
(⌊

d−1
2

⌋
+ 1

) (⌊
d
2

⌋
+ 1

)
−

1 limit cycles bifurcate from the periodic orbits on SF of
(3)|ε=0. Moreover, this bound is attained.

4 Bifurcation of limit cycles from an invariant torus

Consider the differential system
ẋ = (r(x, y)f(x, y, z) − z) x√

x2+y2
+ ϵP (x, y, z),

ẏ = (r(x, y)f(x, y, z) − z) y√
x2+y2

+ ϵQ(x, y, z),

ż = r(x, y) + zf(x, y, z) + ϵR(x, y, z)
(4)

where ε > 0 is a small parameter, r(x, y) =
√

x2 + y2−2

and f(x, y, z) = 1 − (
√

x2 + y2 − 2)2 − z2.
See that T = f−1(0) is an invariant torus for (4)|ε=0.

Theorem 4 ([2]). If P , Q and R are polynomials of degree at
most d, then at most 2(d + 1) limit cycles bifurcate from the
periodic orbits on the invariant torus T of (4)|ε=0.

Theorem 5. Assume that P (x, y, z) = p(x,y,z)
a+bz

and

Q(x, y, z) = q(x,y,z)
c+dz

, where p, q are polynomials of de-
gree at most d, |a| < |b| and |c| < |d|. Then, for ε > 0

sufficiently small, at most 2(d+1) limit cycles bifurcate from
the periodic orbits on T.

Theorem 6. If P and Q are suitable quotients of linear poly-
nomials of R[x, y], then, for ε > 0 sufficiently small, there
are polynomials A,B,C,D,E ∈ R[x, y] such that the
limit cycles that bifurcate from the periodic orbits on T corre-
spond to the simple zeros of

F(ϕ) = Ã(ϕ) + B̃(ϕ)C̃(ϕ)−1/2 + D̃(ϕ)Ẽ(ϕ)−1/2.
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