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Abstract
We give an overview on the topic of classification of contin-

uous flows, going through Markus, Neumann, and López and
Buendı́a’s works.

Continuous flows
A flow on a set X is a group action of the additive group (R,+)

on X . In another words, a flow φ on a set X is a mapping
φ : X × R → X such that, for all x ∈ X and s, t ∈ R,
we have

(i)φ(x, 0) = x;
(ii)φ(φ(x, t), s) = φ(x, t + s).

If, instead of X × R, we consider the domain

D = {(x, t) | x ∈ X, t ∈ Ix},
where Ix is an interval depending on x and containing 0, then
φ : D → X is called a local flow. This often is the case when
considering flows generated by vector fields.
On our work, usually we talk about continuous flows on a con-

nected topological manifold M (second-countable, Hausdorff
and locally Euclidean) without boundary; it is not necessarily
compact nor orientable. The adjective continuous simply means
that φ is continuous.

Topological equivalence and parallelism

Two continuous flows (M1, φ1) and (M2, φ2) are topologically
equivalent if there exists a homeomorphism h : M1 → M2 tak-
ing orbits onto orbits preserving sense, and that h is a topological
equivalence between (M1, φ1) and (M2, φ2).

{
ẋ = x2 − 1

ẏ = x

{
ẋ = 1

ẏ = 0

Let U ⊂ M be a φ-invariant region. We call U parallel when
the restriction (U,φ) is equivalent to one of the following:

(i)R2 with flow defined by y′ = 0;
(ii)R2 − {0} with flow defined (in polar coordinates) by

dr/dt = 0, dθ/dt = 1;
(iii)R2 − {0} with flow defined by dr/dt = r, dθ/dt = 0;
(iv)S1 × S1 with the flow induced by (i) above, under the cov-

ering map which associates (x, y) with (x + n, y + m),
where m,n ∈ Z.

We distinguish these as strip, annular, spiral (or radial) and toral,
respectively.

Markus’ paper

In 1954, Lawrence Markus published a paper in which, among
other results, he established some new concepts in order to gener-

alize the idea of separatrix and to characterize vector fields in the
plane based on the separatrix configuration. He tried to separate
the flow into “simple” regions, and then classify the vector fields
based on this. Roughly speaking, an ordinary orbit is one within a
parallel region well behaved (in the sense that the α and ω-limit
sets do not “change too much”); a separatrix is an orbit which
is not ordinary. The separatrix configuration of a vector field is,
then, the union of all separatrices together with a representative
orbit from each canonical region.
Markus then “proved” that the separatrix configuration of a vec-

tor field with neither accumulation of critical points nor of separa-
trices (such accumulation on an orbit is called a limit separatrix)
characterize the vector field completely: two such vector fields
in the plane are equivalent if, and only if, they have equivalent
separatrix configuration (i.e., there exists an automorphism of the
plane taking one separatrix configuration onto the other).
The theorem does not work, even for simple examples. The

problem comes from the very definition of separatrix.

The correction

After that, in 1975, Dean Arnold Neumann generalized Markus’
result for continuous flows on two dimensional manifolds with
limit separatrices. Unfortunately, since he was using a notion of
separatrix that has already misguided Markus, Neumann’s result
is wrong as well.
In 2018, López and Buendı́a pointed the problems and suitable

corrections. The main flaw and its correction is exactly what the
intuition tells us: to guarantee the ordinariness of an orbit, one
may be able to take an “arbitrarily small” parallel regions con-
taining the desired orbit.

Definition. Let γ be an orbit of (M,φ). Consider the following
properties about a strong strip U with border orbits γ1 and γ2:

(i)α(µ) = α(γ) and ω(µ) = ω(γ) for every orbit µ ⊂
U ∪ γ1 ∪ γ2;

(ii) for every strong transversal T to U with endpoints p and
q, the boundary of the regions which T separates U into
can be written as ∂U−

T = T ∪ γ−
p ∪ γ−

q ∪ α(γ) and
∂U+

T = T ∪ γ+
p ∪ γ+

q ∪ ω(γ).

We say that γ is ordinary if it is neighbored by an annular region
or a strong strip with properties (i) and (ii). An orbit that is not
ordinary is called a separatrix.

Finally, the theorem, with this simple correction, works fine; fur-
thermore, it can be extended for more flows.

Theorem. Let M be a 2-manifold and suppose that φ1 and φ2

are continuous flows on M whose set of essential singular points
is discrete. Then φ1 and φ2 are equivalent if and only if they have
equivalent separatrix configurations.

The goal of my Master’s studies was to understand, organize and
correct this whole topic. More details and examples can be found
in my dissertation.
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