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Introduction
Consider the 2D generalized surface quasi-geostrophic (GSQG) equation{

θt + u · ∇θ = 0
u = Λβ−1R⊥θ = Λβ−1(−R2θ,R1θ), (1)

where β ∈ (0, 2) is a fixed parameter, θ(x, t) : R2 × [0,∞) → R is a scalar function that represents
the potential temperature of the fluid, u(x, t) = (u1(x, t), u2(x, t)) ∈ R2 is the velocity field, Λβ is a
Fractional Laplacian of order β and each Rj is the Riesz transform given by

Rjθ(x) = P.V.

∫
R2

xj − yj
|x− y|3

θ(y)dy, j ∈ {1, 2}, and Λβθ(x) = P.V.

∫
R2

θ(x)− θ(y)
|x− y|2+β dy.

We say that θ ∈ C([0, T );Hs)∩L∞([0, T );L2) for some s > 1 + β and T > 0, is a locally self-similar
solution to the GSQG equation in a ball Bρ(x0) ⊂ R2, if it satisfies

θ(x, t) = 1
(T − t)

1+α−β
1+α

Θ
(

x− x0

(T − t) 1
1+α

)
, (x, t) ∈ Bρ(x0)× (0, T ), (2)

where α > −1 and Θ ∈ C1
loc(R2) is called a self-similar profile of θ.

Main Result
Theorem
Fix β ∈ (1, 2). Suppose θ ∈ C([0, T );Hs) ∩ L∞(0, T ;L2), with s > 1 + β, is a solution to the
generalized SQG equation (1) that is locally self-similar in a ball Bρ(x0) ⊂ R2, with scaling parameter
α > −1 and profile Θ ∈ C1(R2). Fix also p ≥ 2, and suppose that for some r > p,
γ1 ∈ [0, r(β − 1) + 2), and γ0 ∈ [0, γ1 + r], it holds∫

|y|≤L
|Θ(y)|rdy . Lγ0 and

∫
|y|≤L
|∇Θ(y)|rdy . Lγ1 (3 )

for all L sufficiently large. Then either Θ ≡ 0, or the index α admitting nontrivial profiles belongs to
the interval

[
β − 1 + 2−γ0

r , β − 1 + 2
p

]
, and for each such α the corresponding profile Θ satisfies∫

|y|≤L
|Θ(y)|pdy ∼ L2−p(1+α−β), (4 )

for all L sufficiently large.

The case 0 < β ≤ 1 was also proved in this work and we recover the result proved in [4] when β = 1.

Theorem
Fix β ∈ (1, 2). Suppose θ ∈ C([0, T );Hs) ∩ L∞(0, T ;L2), with s > 1 + β, is a solution to the
generalized SQG equation (1) that is locally self-similar in a ball Bρ(x0) ⊂ R2, with scaling parameter
α > −1 and profile Θ ∈ C1(R2). Then, the following statements hold:
(i) If there exist some σ0 > 0 and σ1 > 0 such that |Θ(y)| . |y|−σ0 and |∇Θ(y)| . |y|−σ1 for all
|y| � 1, then Θ ≡ 0 in R2.

(ii) Suppose |Θ(y)| & 1 and that there exists a real number 0 ≤ σ1 < β − 1 such that
|∇Θ(y)| . |y|σ1 for all |y| � 1, then the values of α admitting nontrivial profiles belong to the
interval [β − 2− σ1, β − 1] and for each such α the corresponding profile Θ satisfies∫

|y|≤L
|Θ(y)|pdy ∼ L2−p(1+α−β)

for all L sufficiently large and p ≥ 2.

Proof of Theorem 1
We start by showing that Θ ≡ 0 on R2, for all α > β + 2

p − 1. Fix t ∈ [0, T ) and denote
L = ρ(T − t) −1

1+α . Invoking the local self-similarity (2), it follows that∫
|x|≤ρ
|θ(x, t)|pdx = 1

(T − t)
p(1+α−β)

1+α

∫
|x|≤ρ

∣∣∣∣∣Θ
(

x

(T − t) 1
1+α

)∣∣∣∣∣
p

dx = Lp(1+α−β)−2
∫
|y|≤L
|Θ(y)|pdy.

Since Hs(R2) ⊂ Lp(R2) for s > 1 + β, we get∫
|y|≤L
|Θ(y)|pdy ≤ CL2−p(1+α−β). (5)

Hence, if α > β − 1 + 2
p, we may take the limit as t→ T in (5) and conclude that Θ ≡ 0 on R2.

In the next step, we also prove that for all −1 < α < β−1 + 2−γ0
r the corresponding profile Θ ≡ 0

on R2. Let φρ
4
, φρ ∈ C∞(R2) be cut-off functions with 0 ≤ φρ

4
, φρ ≤ 1, φρ

4
≡ 1 in Bρ/8, φρ

4
≡ 0 in

Bc
ρ/4, and φρ ≡ 1 in Bρ/2, φρ ≡ 0 in Bc

ρ. Since θ ∈ C([0, T );Hs(R2)) for some s > 1 + β, yields∫
R2
|θ(x, t2)|pφρ

4
(x)dx−

∫
R2
|θ(x, t1)|pφρ

4
(x)dx =

∫ t2

t1

∫
R2

(u(x, t) · ∇φρ
4
(x))|θ(x, t)|pdxdt, (6)

where t1, t2 ∈ (0, T ) are fixed. By invoking the local self-similarity of θ, it follows that∫
R2
|θ(x, ti)|pφρ

4
(x)dx = l

p(1+α−β)−2
i

∫
|y|≤ρ

4 li

|Θ(y)|pφρ
4
(yl−1

i )dy, li = (T − ti)−
1

1+α , i = 1, 2. (7)

Decomposing the velocity field u in a self-similarity region and outside of it, we can conclude that∣∣∣∣ ∫ t2

t1

∫
R2
|θ(x, t)|p(u(x, t) · ∇φρ

4
(x))dxdt

∣∣∣∣ .
∫
ρ
8 l1≤|y|≤

ρ
4 l2

|Ṽ (1)(y)||Θ(y)|p

|y|2−α−p(1+α−β) dy +
∫
ρ
8 l1≤|y|≤

ρ
4 l2

|Θ(y)|p

|y|3+α−p(1+α−β)dy,

where

Ṽ (1)(y) :=
∫ t2

t1

∣∣∣∣ ∫
R2

1
|y − z|β

∇⊥Θ(z)φρ(z(T − t)
1

1+α)dz
∣∣∣∣1B(y)(t)dt. (8)

and
B(y) :=

{
t ∈ [t1, t2] : ρ

8
1
|y|
≤ (T − t)

1
1+α ≤ ρ

4
1
|y|

}
.

Plugging this back into (6) and recalling (7), we get∣∣∣∣lp(1+α−β)−2
2

∫
R2
|Θ(y)|pφρ

4
(yl−1

2 )dy − lp(1+α−β)−2
1

∫
R2
|Θ(y)|pφρ

4
(yl−1

1 )dy
∣∣∣∣

≤
∫
ρ
8 l1≤|y|≤

ρ
4 l2

|Ṽ (1)(y)||Θ(y)|p

|y|2−α−p(1+α−β) dy +
∫
ρ
8 l1≤|y|≤

ρ
4 l2

|Θ(x)|p

|y|3+α−p(1+α−β)dy.

Taking the limit as l2 →∞ and recalling that −1 < α < β − 1 + 2−γ0
r , we get

1
L2−p(1+α−β)

∫
|y|≤L
|Θ(y)|pdy ≤ c

∫
|y|≥L

|Ṽ (1)(y)||Θ(y)|p

|y|2−α−p(1+α−β) dy + c

∫
|y|≥L

|Θ(x)|p

|y|3+α−p(1+α−β)dy, (9)

where ρ
8l1 = L. Next, we will use the following Lemma:

Lemma
Let Θ ∈ C1

loc(R2) and T > 0. Suppose that for some r > p and γ > 0, it holds∫
|y|≤L
|∇Θ|rdy . Lγ. Then

∫
L≤|y|≤2L

|Ṽ (1)(y)|rdy . Lγ+r(1−α−β), L� 1.

Applying the dyadic decomposition together with Holder’s inequality and Lemma, we obtain∫
|y|≥L

|Ṽ (1)(y)||Θ(y)|p

|y|2−α−p(1+α−β) dy ≤
∞∑
k=0

1
(2kL)2−α−p(1+α−β)

(∫
|y|∼2kL

|Θ(y)|rdy
)p

r
(∫
|y|∼2kL

|Ṽ (1)(y)|rdy
)1

r

(2kL)2(1−p+1
r )

≤ cLp(1+α−β)−2−β+3+γ1−2
r + (γ0−2)p

r . (10)
For the second term on the right-hand side of (9), we have that∫

|y|≥L

|Θ(y)|p

|y|3+α−p(1+α−β)
dy ≤ c

∞∑
k=0

1
(2kL)3+α−p(1+α−β)

(∫
|y|∼2kL

|Θ(y)|rdy
)p

r

(2kL)2(1−p
r)

≤ cLp(1+α−β)−2+1−α+ (γ0−2)p
r , (11)

Combining (10) and (11) with (9), we conclude that∫
|y|≤L
|Θ(y)|pdy ≤ cL3−β+ (γ1−2)

r + (γ0−2)p
r + cL1−α+ (γ0−2)p

r ≤ cLa0, (12)

where a0 := max
{

1− α + (γ0−2)p
r , 3− β + (γ1−2)

r + (γ0−2)p
r

}
. Note that, if a0 < 0, the proof is fin-

ished. Otherwise, if a0 ≥ 0, we obtain by interpolation (p < q < r) that∫
|y|≤L
|Θ(y)|qdy ≤

(∫
|y|≤L
|Θ(y)|pdy

)δ(∫
|y|≤L
|Θ(y)|rdy

)1−δ
≤ CLa0δ+(1−δ)γ0, (13)

where δ := r−q
r−p ∈ (0, 1). Next, proceeding similarly as in (10) and (11), we obtain∫

|y|≥L

|Ṽ (1)(y)||Θ(y)|p

|y|2−α−p(1+α−β) dy ≤ Lp(1+α−β)−2+a0−a1 and
∫
|y|≥L

|Θ(y)|p

|y|3+α−p(1+α−β)dy ≤ Lp(1+α−β)−2+a0−(1+α).

where a1 > 0. Plugging this back into (9), we deduce that∫
|y|≤L
|Θ(y)|pdy ≤ cLa0−a1 + cLa0−(1+α) ≤ cLa0−b0, where b0 := min{a1, 1 + α}.

Now we repeat this process until ∫
|y|≤L
|Θ(y)|pdy ≤ cLσ, (14)

for some σ < 0. Therefore, we conclude that Θ ≡ 0 on R2 if −1 < α < β − 1 + 2−γ0
r .

Finally, we prove that if β − 1 + 2−γ0
r < α < β − 1 + 2

p, then either ≡ 0 or

c1L
2−p(1+α−β) ≤

∫
|y|≤L
|Θ(y)|pdy ≤ c2L

2−p(1+α−β), c1, c2 > 0. (15)

Assume Θ 6≡ 0, then in view of (5) it suffices to prove the lower bound of (15). Supposing that the
lower bound does not hold, then there exists a sequence Li > 0, i ∈ N, such that

1
L

2−p(1+α−β)
i

∫
|y|≤L
|Θ(y)|pdy → 0, as Li →∞.

Setting l2 = Li, ρ
8l1 = L and taking l2 →∞ in (9), we obtain

1
L2−p(1+α−β)

∫
|y|≤L
|Θ(y)|pdy ≤ c

∫
|y|≥L

|Ṽ (1)(y)||Θ(y)|p

|y|2−α−p(1+α−β) dy + c

∫
|y|≥L

|Θ(x)|p

|y|3+α−p(1+α−β)dy.

Now we proceed with similar arguments as in the previous case, namely by applying a dyadic decom-
position together with bootstrapping method, and then arrive at the contradiction that Θ ≡ 0.
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