On the self-similar blowup for the 2D generalized SQG equation
impa

Ricardo Guimarães

State University of Campinas - Brazil
 Drexel University - US

Joint work with: Anne Bronzi (advisor) and Cecilia Mondaini (co-advisor)

UNICAMP

$$
\left\{\begin{array}{l}
\theta_{t}+\mathbf{u} \cdot \nabla \theta=0 \\
\mathbf{u}=\Lambda^{\beta-1} \mathcal{R}^{\perp} \theta=\Lambda^{\beta-1}\left(-\mathcal{R}_{2} \theta, \mathcal{R}_{1} \theta\right)
\end{array}\right.
$$

where $\beta \in(0,2)$ is a fixed parameter, $\theta(x, t): \mathbb{R}^{2} \times[0, \infty) \rightarrow \mathbb{R}$ is a scalar function that represents the potential temperature of the fluid, $\mathbf{u}(x, t)=\left(u_{1}(x, t), u_{2}(x, t)\right) \in \mathbb{R}^{2}$ is the velocity field, Λ^{β} is a Fractional Laplacian of order β and each \mathcal{R}_{j} is the Riesz transform given by
$\mathcal{R}_{j} \theta(x)=P . V . \int_{\mathbb{R}^{2}} \frac{x_{j}-y_{j}}{|x-y|^{3}} \theta(y) d y, \quad j \in\{1,2\}, \quad$ and $\quad \Lambda^{\beta} \theta(x)=P . V . \int_{\mathbb{R}^{2}} \frac{\theta(x)-\theta(y)}{|x-y|^{2+\beta}} d y$.
We say that $\theta \in \mathcal{C}\left([0, T) ; H^{s}\right) \cap L^{\infty}\left([0, T) ; L^{2}\right)$ for some $s>1+\beta$ and $T>0$, is a locally self-similar solution to the GSQG equation in a ball $B_{\rho}\left(x_{0}\right) \subset \mathbb{R}^{2}$, if it satisfies

$$
\begin{equation*}
\theta(x, t)=\frac{1}{(T-t)^{\frac{1+\alpha-\beta-\alpha}{1+\alpha}}} \Theta\left(\frac{x-x_{0}}{(T-t)^{\frac{1}{1+\alpha}}}\right), \quad(x, t) \in B_{\rho}\left(x_{0}\right) \times(0, T) \tag{2}
\end{equation*}
$$

where $\alpha>-1$ and $\Theta \in C_{l o c}^{1}\left(\mathbb{R}^{2}\right)$ is called a self-similar profile of θ.

Main Result

Theorem
Fix $\beta \in(1,2)$. Suppose $\theta \in \mathcal{C}\left([0, T) ; H^{s}\right) \cap L^{\infty}\left(0, T ; L^{2}\right)$, with $s>1+\beta$, is a solution to the generalized SQG equation (1) that is locally self-similar in a ball $B_{\rho}\left(x_{0}\right) \subset \mathbb{R}^{2}$, with scaling parameter $\alpha>-1$ and profile $\Theta \in \mathcal{C}^{1}\left(\mathbb{R}^{2}\right)$. Fix also $p \geq 2$, and suppose that for some $r>p$,
$\gamma_{1} \in[0, r(\beta-1)+2)$, and $\gamma_{0} \in\left[0, \gamma_{1}+r\right]$, it holds

$$
\begin{equation*}
\int_{|y| \leq L}|\Theta(y)|^{r} d y \lesssim L^{\gamma_{0}} \quad \text { and } \quad \int_{|y| \leq L}|\nabla \Theta(y)|^{r} d y \lesssim L^{\gamma_{1}} \tag{3}
\end{equation*}
$$

for all L sufficiently large. Then either $\Theta \equiv 0$, or the index α admitting nontrivial profiles belongs to the interval $\left[\beta-1+\frac{2-\gamma_{0}}{r}, \beta-1+\frac{2}{p}\right]$, and for each such α the corresponding profile Θ satisfies

$$
\int_{|y| \leq L}|\Theta(y)|^{p} d y \sim L^{2-p(1+\alpha-\beta)}
$$

(4)
for all L sufficiently large.
The case $0<\beta \leq 1$ was also proved in this work and we recover the result proved in [4] when $\beta=1$.

Theorem

Fix $\beta \in(1,2)$. Suppose $\theta \in \mathcal{C}\left([0, T) ; H^{s}\right) \cap L^{\infty}\left(0, T ; L^{2}\right)$, with $s>1+\beta$, is a solution to the generalized SQG equation (1) that is locally self-similar in a ball $B_{\rho}\left(x_{0}\right) \subset \mathbb{R}^{2}$, with scaling parameter $\alpha>-1$ and profile $\Theta \in \mathcal{C}^{1}\left(\mathbb{R}^{2}\right)$. Then, the following statements hold:
(i) If there exist some $\sigma_{0}>0$ and $\sigma_{1}>0$ such that $|\Theta(y)| \lesssim|y|^{-\sigma_{0}}$ and $|\nabla \Theta(y)| \lesssim|y|^{-\sigma_{1}}$ for all $|y| \gg 1$, then $\Theta \equiv 0$ in \mathbb{R}^{2}.
(ii) Suppose $|\Theta(y)| \gtrsim 1$ and that there exists a real number $0 \leq \sigma_{1}<\beta-1$ such that $|\nabla \Theta(y)| \lesssim|y|{ }^{\sigma_{1}}$ for all $|y| \gg 1$, then the values of α admitting nontrivial profiles belong to the interval $\left[\beta-2-\sigma_{1}, \beta-1\right]$ and for each such α the corresponding profile Θ satisfies

$$
\int_{|y| \leq L}|\Theta(y)|^{p} d y \sim L^{2-p(1+\alpha-\beta)}
$$

for all L sufficiently large and $p \geq 2$.

Proof of Theorem 1

We start by showing that $\Theta \equiv 0$ on \mathbb{R}^{2}, for all $\alpha>\beta+\frac{2}{p}-1$. Fix $t \in[0, T)$ and denote $L=\rho(T-t)^{\frac{-1}{1+\alpha}}$. Invoking the local self-similarity (2), it follows that
$\left.\int_{|x| \leq \rho}\left|\theta(x, t)^{p} d x=\frac{1}{(T-t)^{p(1+\alpha-\alpha-\theta} 1+\alpha} \int_{|x| \leq \rho}\right| \Theta\left(\frac{x}{(T-t)^{\frac{1}{1+\alpha}}}\right)\right|^{p} d x=L^{p(1+\alpha-\beta)-2} \int_{|y| \leq L}|\Theta(y)|^{p} d y$. Since $H^{s}\left(\mathbb{R}^{2}\right) \subset L^{p}\left(\mathbb{R}^{2}\right)$ for $s>1+\beta$, we get

$$
\begin{equation*}
\int_{|y| \leq L}|\Theta(y)|^{p} d y \leq C L^{2-p(1+\alpha-\beta)} \tag{5}
\end{equation*}
$$

Hence, if $\alpha>\beta-1+\frac{2}{p}$, we may take the limit as $t \rightarrow T$ in (5) and conclude that $\Theta \equiv 0$ on \mathbb{R}^{2}.
In the next step, we also prove that for all $-1<\alpha<\beta-1+\frac{2-\gamma_{0}}{r}$ the corresponding profile $\Theta \equiv 0$ on \mathbb{R}^{2}. Let $\phi_{\frac{e}{4}}, \phi_{\rho} \in \mathcal{C}^{\infty}\left(\mathbb{R}^{2}\right)$ be cut-off functions with $0 \leq \phi_{\frac{\rho}{4}}, \phi_{\rho} \leq 1, \phi_{\frac{\rho}{4}} \equiv 1$ in $B_{\rho / 8}, \phi_{\frac{\rho}{4}} \equiv 0$ in $B_{\rho / 4}^{c}$, and $\phi_{\rho} \equiv 1$ in $B_{\rho / 2}, \phi_{\rho} \equiv 0$ in B_{ρ}^{c}. Since $\theta \in \mathcal{C}\left([0, T) ; H^{s}\left(\mathbb{R}^{2}\right)\right)$ for some $s>1+\beta$, yields $\int_{\mathbb{R}^{2}}\left|\theta\left(x, t_{2}\right)\right|^{p} \phi_{\frac{\rho}{4}}(x) d x-\int_{\mathbb{R}^{2}}\left|\theta\left(x, t_{1}\right)\right|^{p} \phi_{\frac{\rho}{4}}(x) d x=\int_{t_{1}}^{t_{2}} \int_{\mathbb{R}^{2}}\left(\mathbf{u}(x, t) \cdot \nabla \phi_{\frac{\rho}{4}}(x)\right)|\theta(x, t)|^{p} d x d t$, where $t_{1}, t_{2} \in(0, T)$ are fixed. By invoking the local self-similarity of θ, it follows that $\int_{\mathbb{R}^{2}}\left|\theta\left(x, t_{i}\right)\right|^{p} \phi_{\frac{\rho}{4}}(x) d x=l_{i}^{p(1+\alpha-\beta)-2} \int_{|y| \leq \frac{\rho}{4} l_{i}}|\Theta(y)|^{p} \phi_{\frac{\rho}{4}}\left(y l_{i}^{-1}\right) d y, \quad l_{i}=\left(T-t_{i}\right)^{-\frac{1}{1+\alpha}}, i=1,2 .(7)$
Decomposing the velocity field \mathbf{u} in a self-similarity region and outside of it, we can conclude that $\left.\left|\int_{t_{1}}^{t_{2}} \int_{\mathbb{R}^{2}}\right| \theta(x, t)\right|^{p}\left(\mathbf{u}(x, t) \cdot \nabla \phi_{\frac{\rho}{4}}(x)\right) d x d t \left\lvert\, \lesssim \int_{\frac{\rho}{8} l_{1} \leq|y| \leq \frac{\rho}{4} l_{2}} \frac{\left|\tilde{V}^{(1)}(y)\right||\Theta(y)|^{p}}{|y|^{2-\alpha-p(1+\alpha-\beta)}} d y+\int_{\frac{\rho}{8} l_{1} \leq|y| \leq \frac{\rho}{4} l_{2}} \frac{|\Theta(y)|^{p}}{|y|^{3+\alpha-p(1+\alpha-\beta)}} d y\right.$, where

$$
\begin{equation*}
\tilde{V}^{(1)}(y):=\int_{t_{1}}^{t_{2}}\left|\int_{\mathbb{R}^{2}} \frac{1}{|y-z|^{\beta}} \nabla^{\perp} \Theta(z) \phi_{\rho}\left(z(T-t)^{\frac{1}{1+\alpha}}\right) d z\right| \mathbb{1}_{B(y)}(t) d t \tag{8}
\end{equation*}
$$

and

Plugging this back into (6) and recalling (7), we get

$$
\begin{align*}
& \left.\left.\left|l_{2}^{p(1+\alpha-\beta)-2} \int_{\mathbb{R}^{2}}\right| \Theta(y)\right|^{p} \phi \frac{\rho}{4}\left(y l_{2}^{-1}\right) d y-l_{1}^{p(1+\alpha-\beta)-2} \int_{\mathbb{R}^{2}}|\Theta(y)|^{p} \phi_{\frac{\varrho}{4}}^{(}\left(y l_{1}^{-1}\right) d y \right\rvert\, \\
& \leq \int_{\frac{\rho_{8}}{8} \leq|y| \leq \frac{l_{2}}{2}} \frac{\left|\tilde{V}^{(1)}(y)\right||\Theta(y)|^{p}}{|y|^{2-\alpha-p(1+\alpha-\beta)}} d y+\int_{\frac{\rho_{8} l_{1} \leq|y| \leq l_{1}^{2}}{} l_{2}} \frac{|\Theta(x)|^{p}}{\mid y+\alpha-p(1+\alpha-\beta)} d y .
\end{align*}
$$

Taking the limit as $l_{2} \rightarrow \infty$ and recalling that $-1<\alpha<\beta-1+\frac{2-\gamma_{0}}{r}$, we get

$$
\begin{equation*}
\frac{1}{L^{2-p(1+\alpha-\beta)}} \int_{|y| \leq L}|\Theta(y)|^{p} d y \leq c \int_{|y| \geq L} \frac{\left|\tilde{V}^{(1)}(y)\right||\Theta(y)|^{p}}{|y|^{2-\alpha-p(1+\alpha-\beta)}} d y+c \int_{|y| \geq L} \frac{|\Theta(x)|^{p}}{|y|^{3+\alpha-p(1+\alpha-\beta)}} d y, \tag{9}
\end{equation*}
$$

where $\frac{\rho}{8} l_{1}=L$. Next, we will use the following Lemma:
Lemma
Let $\Theta \in \mathcal{C}_{\text {loc }}^{1}\left(\mathbb{R}^{2}\right)$ and $T>0$. Suppose that for some $r>p$ and $\gamma>0$, it holds

$$
\int_{|y| \leq L}|\nabla \Theta|^{r} d y \lesssim L^{\gamma} . \quad \text { Then } \int_{L \leq|y| \leq 2 L}\left|\tilde{V}^{(1)}(y)\right|^{r} d y \lesssim L^{\gamma+r(1-\alpha-\beta)}, \quad L \gg 1
$$

Applying the dyadic decomposition together with Holder's inequality and Lemma, we obtain

$$
\begin{align*}
& \int_{|y| \geq L} \frac{\left|\tilde{V}^{(1)}(y)\right||\Theta(y)|^{p}}{\left.| |\right|^{-\alpha-p(1+\alpha-\beta)}} d y \leq \sum_{k=0}^{\infty} \frac{1}{\left(2^{k} L\right)^{2-\alpha-p(1+\alpha-\beta)}}\left(\int_{|y| \sim \sim^{k} L}|\Theta(y)|^{r} d y\right)^{\frac{p}{r}}\left(\int_{|y| \sim 2^{k} L}\left|\tilde{V}^{(1)}(y)\right|^{r} d y\right)^{\frac{1}{r}}\left(2^{k} L\right)^{2\left(1-\frac{++1}{r}\right)} \\
& \leq c L^{p(1+\alpha-\beta)-2-\beta+3+\frac{x-2}{r}+\frac{+(0-2) p}{r} .} \tag{10}
\end{align*}
$$

For the second term on the right-hand side of (9), we have that

$$
\begin{align*}
\int_{|y| \geq L} \frac{|\Theta(y)|^{p}}{|y|^{3+\alpha-p(1+\alpha-\beta)}} d y & \leq c \sum_{k=0}^{\infty} \frac{1}{\left(2^{k} L\right)^{3+\alpha-p(1+\alpha-\beta)}}\left(\int_{|y| \sim 2^{k} L}|\Theta(y)|^{r} d y\right)^{\frac{p}{r}}\left(2^{k} L\right)^{2\left(1-\frac{p}{r}\right)} \\
& \leq c L^{p(1+\alpha-\beta)-2+1-\alpha+\frac{(00-2) p}{r}}, \tag{11}
\end{align*}
$$

Combining (10) and (11) with (9), we conclude that

$$
\begin{equation*}
\int_{|y| \leq L}|\Theta(y)|^{p} d y \leq c L^{3-\beta+\frac{(y-2)}{r}+\frac{\left(00^{-2) p}\right.}{r}}+c L^{1-\alpha+\frac{(00-2) p}{r}} \leq c L^{a_{0}}, \tag{12}
\end{equation*}
$$

where $a_{0}:=\max \left\{1-\alpha+\frac{\left(\gamma_{0}-2\right) p}{r}, 3-\beta+\frac{\left(\gamma_{1}-2\right)}{r}+\frac{\left(\gamma_{0}-2\right) p}{r}\right\}$. Note that, if $a_{0}<0$, the proof is finished. Otherwise, if $a_{0} \geq 0$, we obtain by interpolation $(p<q<r)$ that

$$
\begin{equation*}
\int_{|y| \leq L}|\Theta(y)|^{q} d y \leq\left(\int_{|y| \leq L}|\Theta(y)|^{p} d y\right)^{\delta}\left(\int_{|y| \leq L}|\Theta(y)|^{r} d y\right)^{1-\delta} \leq C L^{a_{0} \delta+(1-\delta) \gamma_{0}}, \tag{13}
\end{equation*}
$$

where $\delta:=\frac{r-q}{r-p} \in(0,1)$. Next, proceeding similarly as in (10) and (11), we obtain
$\int_{|y| \geq L} \frac{\left|\tilde{V}^{(1)}(y)\right||\Theta(y)|^{p}}{|y|^{2-\alpha-p(1+\alpha-\beta)}} d y \leq L^{p(1+\alpha-\beta)-2+a_{0}-a_{1}}$ and $\int_{|y| \geq L} \frac{|\Theta(y)|^{p}}{|y|^{3+\alpha-p(1+\alpha-\beta)}} d y \leq L^{p(1+\alpha-\beta)-2+a_{0}-(1+\alpha)}$
where $a_{1}>0$. Plugging this back into (9), we deduce that

$$
\int_{|y| \leq L}|\Theta(y)|^{p} d y \leq c L^{a_{0}-a_{1}}+c L^{a_{0}-(1+\alpha)} \leq c L^{a_{0}-b_{0}}, \quad \text { where } b_{0}:=\min \left\{a_{1}, 1+\alpha\right\} .
$$

Now we repeat this process until

$$
\begin{equation*}
\int_{|y| \leq L}|\Theta(y)|^{p} d y \leq c L^{\sigma}, \tag{14}
\end{equation*}
$$

for some $\sigma<0$. Therefore, we conclude that $\Theta \equiv 0$ on \mathbb{R}^{2} if $-1<\alpha<\beta-1+\frac{2-\gamma_{0}}{r}$.
Finally, we prove that if $\beta-1+\frac{2-\gamma_{0}}{r}<\alpha<\beta-1+\frac{2}{p}$, then either $\equiv 0$ or

$$
\begin{equation*}
c_{1} L^{2-p(1+\alpha-\beta)} \leq \int_{|y| \leq L}|\Theta(y)|^{p} d y \leq c_{2} L^{2-p(1+\alpha-\beta)}, \quad c_{1}, c_{2}>0 . \tag{15}
\end{equation*}
$$

Assume $\Theta \not \equiv 0$, then in view of (5) it suffices to prove the lower bound of (15). Supposing that the lower bound does not hold, then there exists a sequence $L_{i}>0, i \in \mathbb{N}$, such that

$$
\frac{1}{L_{i}^{2-p(1+\alpha-\beta)}} \int_{|y| \leq L}|\Theta(y)|^{p} d y \rightarrow 0, \text { as } L_{i} \rightarrow \infty .
$$

Setting $l_{2}=L_{i}, \frac{\rho}{8} l_{1}=L$ and taking $l_{2} \rightarrow \infty$ in (9), we obtain

$$
\frac{1}{L^{2-p(1+\alpha-\beta)}} \int_{|y| \leq L}|\Theta(y)|^{p} d y \leq c \int_{|y| \geq L} \frac{\left|\tilde{V}^{(1)}(y)\right||\Theta(y)|^{p}}{|y|^{2-\alpha-p(1+\alpha-\beta)}} d y+c \int_{|y| \geq L} \frac{|\Theta(x)|^{p}}{|y|^{3+\alpha-p(1+\alpha-\beta)}} d y .
$$

Now we proceed with similar arguments as in the previous case, namely by applying a dyadic decomposition together with bootstrapping method, and then arrive at the contradiction that $\Theta \equiv 0$.

References

[1] CHAE, Dongho; CONSTANTIN, Peter; WU, Jiahong. Inviscid models generalizing the two-dimensional Euler and the surface quasi-geostrophic equations. Archive for rational mechanics and analysis, v. 202, n. 1, p. 35-62, 2011
[2] HU, Weiwei; KUKAVICA, Igor; ZIANE, Mohammed. Sur l'existence locale pour une équation de scalaires actifs. Comptes Rendus Mathematique, v. 353, n. 3, p. 241-245, 2015.
[3] YU, Huan; ZHANG, Wanwan. Local Well-posedness of Two-Dimensional SQG Equation and Related Models. arXiv preprint arXiv:2102.10563, 2021.
[4] XUE, Liutang. On the locally self-similar solution of the surface quasi-geostrophic equation with decaying or non-decaying profiles. Journal of Differential Equations, v. 261, n. 10, p. 5590-5608, 2016.

