r-PRIMITIVE k-NORMAL ELEMENTS IN ARITHMETIC PROGRESSIONS OVER FINITE FIELDS

JOSIMAR J.R. AGUIRRE
UNIVERSIDADE FEDERAL DE UBERLÂNDIA
MG - BRASIL

Abstract

Let $\mathbb{F}_{q^{n}}$ be a finite field with q^{n} elements. For a positive divisor r of $q^{n}-1$, the element $\alpha \in \mathbb{F}_{q^{n}}^{*}$ is called r-primitive if its multiplicative order is $\left(q^{n}-1\right) / r$. Also, for a non-negative integer k, the element $\alpha \in \mathbb{F}_{q^{n}}$ is k-normal over \mathbb{F}_{q} if $\operatorname{gcd}\left(\alpha x^{n-1}+\alpha^{q} x^{n-2}+\ldots+\alpha^{q^{n-2}} x+\alpha^{q^{n-1}}, x^{n}-1\right)$ in $\mathbb{F}_{q^{n}}[x]$ has degree k. In this talk we discuss the existence of elements in arithmetic progressions $\{\alpha, \alpha+\beta, \alpha+2 \beta, \ldots \alpha+(m-1) \beta\} \subset \mathbb{F}_{q^{n}}$ with $\alpha+(i-1) \beta$ being r_{i}-primitive and at least one of the elements in the arithmetic progression being k-normal over \mathbb{F}_{q}. We obtain asymptotic results for general k, r_{1}, \ldots, r_{m} and concrete results when $k=r_{i}=2$ for $i \in\{1, \ldots, m\}$.

