r-PRIMITIVE *k*-NORMAL ELEMENTS IN ARITHMETIC PROGRESSIONS OVER FINITE FIELDS

JOSIMAR J.R. AGUIRRE UNIVERSIDADE FEDERAL DE UBERLÂNDIA MG - BRASIL

ABSTRACT. Let \mathbb{F}_{q^n} be a finite field with q^n elements. For a positive divisor r of $q^n - 1$, the element $\alpha \in \mathbb{F}_{q^n}^*$ is called r-primitive if its multiplicative order is $(q^n - 1)/r$. Also, for a non-negative integer k, the element $\alpha \in \mathbb{F}_{q^n}$ is k-normal over \mathbb{F}_q if $gcd(\alpha x^{n-1} + \alpha^q x^{n-2} + \ldots + \alpha^{q^{n-2}} x + \alpha^{q^{n-1}}, x^n - 1)$ in $\mathbb{F}_{q^n}[x]$ has degree k. In this talk we discuss the existence of elements in arithmetic progressions $\{\alpha, \alpha + \beta, \alpha + 2\beta, \ldots \alpha + (m-1)\beta\} \subset \mathbb{F}_{q^n}$ with $\alpha + (i-1)\beta$ being r_i -primitive and at least one of the elements in the arithmetic progression being k-normal over \mathbb{F}_q . We obtain asymptotic results for general k, r_1, \ldots, r_m and concrete results when $k = r_i = 2$ for $i \in \{1, \ldots, m\}$.