# On the number of rational points of Artin-Schreier curves and hypersurfaces 

## Daniela Alves de Oliveira

Let $\mathbb{F}_{q}$ be the finite field with $q=p^{s}$ elements, where $p$ is an odd prime. An important class of curves over finite fields is the class of Artin-Schreier curves. That are given by the equation $y^{q}-y=f(x)$ for some $f(x) \in \mathbb{F}_{q}[x]$. These curves have been extensively studied in several contexts and this type of curve can be generalized for several variables, i.e., the hypersurfaces of Artin-Schreier of the form $y^{q}-y=f(X)$, with $f(X) \in \mathbb{F}_{q}[X] \backslash\{0\}$ and $X=\left(x_{1}, \ldots, x_{r}\right)$. Information about the number of affine rational points of algebraic hypersurfaces over finite fields has many applications in coding theory, cryptography, communications and related areas.

In this presentation, we will determine the number of $\mathbb{F}_{q^{n}}$-rational points of the ArtinSchreier curve $\mathcal{C}_{i}$ given by

$$
\mathcal{C}_{i}: y^{q}-y=x\left(x^{q^{i}}-x\right)-\lambda
$$

where $i \in \mathbb{N}$ and $\lambda \in \mathbb{F}_{q^{n}}$. We denote by $N_{n}\left(\mathcal{C}_{i}\right)$ the number of $\mathbb{F}_{q^{n}}$-rational points of $\mathcal{C}_{i}$.
For $i \in \mathbb{N}$, we define $Q_{i}$ the map

$$
\begin{aligned}
Q_{i}: \mathbb{F}_{q^{n}} & \rightarrow \mathbb{F}_{q} \\
\alpha & \mapsto \operatorname{Tr}\left(\alpha\left(\alpha^{q^{i}}-\alpha\right)-\lambda\right),
\end{aligned}
$$

and $N_{n}\left(Q_{i}\right)$ denotes the number of zeroes of $Q_{i}$ in $\mathbb{F}_{q^{n}}$. Hilbert's Theorem 90 implies that

$$
N_{n}\left(\mathcal{C}_{i}\right)=q \cdot N_{n}\left(Q_{i}\right)
$$

Therefore, we observe that determine $N_{n}\left(\mathcal{C}_{i}\right)$ is equivalent to calculate $N_{n}\left(Q_{i}\right)$. Using the method, that consists in determine the number of solutions of the quadratic form $Q_{i}$ using appropriates permutation matrices, we compute the number $N_{n}\left(\mathcal{C}_{i}\right)$ and also determine conditions for the Artin-Schreier curve $C_{i}$ to be maximal or minimal with respect the Hasse-Weil bound.

Therefore we will determine the number of $\mathbb{F}_{q^{n}}$-rational points of the affine ArtinSchreier hypersurface $\mathcal{H}_{r}$ given by

$$
\begin{equation*}
\mathcal{H}_{r}: y^{q}-y=\sum_{j=1}^{r} a_{j} x_{j}\left(x_{j}^{q^{i}{ }_{j}}-x_{j}\right)-\lambda, \tag{1}
\end{equation*}
$$

where $a_{j} \in \mathbb{F}_{q}^{*}$ and $0<i_{j}<n$ for $1 \leq j \leq r$. We denote by $N_{n}\left(\mathcal{H}_{r}\right)$ the number of


$$
\begin{equation*}
\left|N_{n}\left(\mathcal{H}_{r}\right)-q^{r n}\right| \leq(q-1) \prod_{j=1}^{r} q^{i_{j}} q^{\frac{n r}{2}}=(q-1) q^{\frac{n r+2 I}{2}} \tag{2}
\end{equation*}
$$

where $I=\sum_{j=1}^{r} i_{j}$. The hypersurface $\mathcal{H}_{r}$ is called $\mathbb{F}_{q^{n} \text {-maximal }}\left(\mathbb{F}_{q^{n}}\right.$-minimal $)$ if $N_{n}\left(\mathcal{H}_{r}\right)$ attains the upper (lower) bound given in Equation (2). We provide necessary and sufficient conditions to this bound be attained. From the results about the curve $\mathcal{C}_{i}$, we can explicitly determine the number of rational points $N_{n}\left(\mathcal{H}_{r}\right)$ and the conditions to obtain the maximality or minimality of this hypersurface.

