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Abstract

The game of Nim on Graphs [1] is played by moving a
single token on a weighted undirected graph. Each player must
move the token to a neighboring vertex following an edge with
positive weight and reduce the weight of that edge in at least
one. Following the normal play convention, the player who is
not able to move the token in his turn loses. When all edges
have unit weight, the game is equivalent to undirected edge
geography, which is PSPACE-complete [2]. In this work, we
introduce a variation where there are multiple tokens and show
winning strategies for some simple unit-weight graphs.

1 Introduction

The game of Nim on Graphs is a variation of the game
of Nim with the following rules. The game is played on an
undirected graph with integer weights on its edges. A token is
placed on one of its vertices. Two players take turns moving
the token along an edge with positive weight and reducing its
weight to some strictly smaller integer. The player that finds
himself unable to play in his turn loses. An edge that reaches a
non-positive weight may be removed from the graph.

We propose a generalization by allowing for k tokens to
be placed in a vertex each. A player is not allowed to make
a move that would place two tokens in the same vertex, or to
move more than one token in his turn. For this game, two vari-
ations can be considered: a partial version where each player
has a distinct set of tokens that may be moved and an impartial
version where both players can move any of the tokens. In this
work, we are concerned with the impartial variation. It is worth
noting that if the graph consists of multiple connected com-
ponents, each component may be considered an independent
subgame, such that a player may only play in one subgame per
turn.

For any impartial combinatorial game, a position can be
said to be a winning position or p-position if there’s some
strategy that may be followed by the next player to always
win the game. Similarly, a position can be said to be a losing
position or 0-position if no move from the next player can lead
to a victory against an optimal player. If a player is able to
determine whether any position is a p-position, this may be
used to determine his optimal moves.

Such positions may be identified by means of the Sprague-
Grundy theorem. This is done by attributing to each position
of the game a Grundy number. Positions that have no possible
moves receive the Grundy number 0. The Grundy number of
any other position is the least non-negative integer that is not
the Grundy number of any position that can be reached in a
single movement from it. If a position can be described as a
set of independent subgames, then its Grundy number can also
be calculated as the XOR sum of the Grundy numbers of each
subgame. Calculating these values can take a long time. In fact,
when all edges have unit weight, Nim on Graphs is equivalent
to undirected edge geography, which is PSPACE-complete.

Thus, we are concerned with finding the Grundy numbers
and some of the winning strategies for simple graphs where all
edges have unit weight.

2 Paths with a single token

While our main interest is for multiple tokens, calculat-
ing the Grundy numbers for paths with a single token is also
necessary, as some moves may divide the tokens in separate
connected components. That said, consider a path with a single
token in one of its vertices. By removing the vertex containing
the token, we would divide the graph in two paths with x and

y vertices each. For such a graph, the Grundy numbers are
as presented in Table 1. Note that the values of x and y are
interchangeable.

x y Grundy numbers

0 Odd 1

Even, x > 0 Odd 2

Even Even 0

Odd Odd 1

Table 1: Grundy numbers for paths with 1 token.

3 Paths with two tokens

Now we consider the case of paths containing two tokens.
Let x and y be the amount of vertices in the paths from a
token to one of the extremities of the graph, such that the path
does not contain a token and z be the amount of vertices in
the path between the two tokens, such that the graph contains
n = x + y + z + 2 vertices. Then, the Grundy numbers of
such graph are as presented in Table 2. Note that the values of
x and y are interchangeable.

x y z Grundy numbers

0 0 Even 0

0 Even 0 0

0 Even, y > 0 Even, z > 0 3

Even, x > 0 Even Even 0

0 0 Odd 1

0 Even, y > 0 Odd 2

Even, x > 0 Even, y > 0 Odd 0

0 Odd Even, z > 0 0

Even, x > 0 Odd Even, z > 0 3

Even Odd 0 1

0 Odd Odd 1

Even, x > 0 Odd 1 2

Even, x > 0 Odd Odd, z > 1 1

Odd Odd Even 0

Odd Odd Odd 1

Table 2: Grundy numbers for paths with 2 tokens.

4 Cycles with two tokens

Now we consider the case of cycles containing two tokens.
Let x and y be the amount of vertices in the two possible paths
between the two tokens. Then the Grundy numbers of such
graph are as presented in Table 3. Note that the values of x
and y are interchangeable.

x y Grundy numbers

Even Even 0

0 1 0

0 Odd, y > 1 1

Even, x > 0 1 1

Even, x > 0 Odd, y > 1 1

1 1 1

1 Odd, y > 1 0

Odd, x > 1 Odd, y > 1 0

Table 3: Grundy numbers for cycles with 2 tokens.
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