Images of multilinear graded polynomials on upper triangular matrices

Pedro Fagundes \& Plamen Koshlukov

State University of Campinas
pedro.fagundes@ime.unicamp.br
UNICAMP

Abstract

In 2022, Gargate and de Mello classified the images of multilinear polynomials on upper triangular matrices. The aim of this poster is to present a graded version of Gargate and de Mello's result. More precisely we provide a classification of the images of multilinear graded polynomials on upper triangular matrices endowed with certain $\mathbb{Z}_{q^{-}}$-gradings. We also consider the cases of 2×2 and 3×3 upper triangular matrices, and we show that the image of multilinear graded polynomials on these algebras are always a homogeneous vector space.

Introduction

Images of polynomials on algebras appear in many branches of Ring Theory, for instance in algebras with polynomial identities (PI-algebras). Nowadays, the main problem concerning such objects is perhaps the following conjecture:
Conjecture 1 (L'vov-Kaplansky). The image of a multilinear polynomial on the full matrix algebra $\boldsymbol{M}_{n}(\boldsymbol{F})$ is a vector space.
The conjecture above is equivalent to say that the image is one of the four options: $\{0\}, \boldsymbol{F}$ (the space of scalar matrices), $s l_{n}(\boldsymbol{F})$ (the space of traceless matrices) or $M_{n}(\boldsymbol{F})$.
Despite several tries in having a complete solution of the conjecture above (sucessfully done in small cases), variations of it have been considered in the past few years. For instance, we mention
Theorem 2 (Gargate, de Mello-2022). Let \boldsymbol{F} be an infinite field. Then the image of a multilinear polynomial on the upper triangular matrix algebra $\boldsymbol{U} \boldsymbol{T}_{n}(\boldsymbol{F})$ is either $\boldsymbol{U} \boldsymbol{T}_{n}(\boldsymbol{F})$ or some power of \boldsymbol{J} (the Jacobson radical of $\boldsymbol{U} \boldsymbol{T}_{n}$).
In next we introduce the main definitions and tools for presenting a graded version of Gargate and de Mello's theorem.

Preliminares

We start by recalling that a grading on an algebra \mathcal{A} by a group G is a decomposition $\mathcal{A}=\bigoplus_{g \in G} \mathcal{A}_{g}$ of \mathcal{A} into a direct sum of vector spaces such that $\mathcal{A}_{g} \mathcal{A}_{h} \subset \mathcal{A}_{g h}$, for all $g, h \in G$.

- \mathcal{A}_{g} is called homogeneous component of degree \boldsymbol{g};
- $a \in \mathcal{A}_{g} \leftrightarrow \operatorname{deg}(a)=g$.

A subspace $\mathcal{V} \subset \mathcal{A}$ is said homogeneous if it inherits the grading from \mathcal{A}.
Example 3. Let $X=\left\{x_{i}^{(g)} \mid g \in G, i=1,2, \ldots\right\}$ and set $\boldsymbol{F}\langle\boldsymbol{X} \mid \boldsymbol{G}\rangle$ as the free associative algebra generated by \boldsymbol{X}. This algebra has a \boldsymbol{G}-grading defined by setting the homogeneous component of degree g as the subspace spanned by monomials of the form

$$
x_{1}^{\left(g_{1}\right)} \cdots x_{m}^{\left(g_{m}\right)} \text { where } g_{1} \cdots g_{m}=g
$$

The elements from $\boldsymbol{F}\langle\boldsymbol{X} \mid \boldsymbol{G}\rangle$ are called \boldsymbol{G}-graded polynomials.
Example 4. $\boldsymbol{f}=\boldsymbol{f}\left(\boldsymbol{x}_{1}^{\left(g_{1}\right)}, \ldots, \boldsymbol{x}_{m}^{\left(\boldsymbol{g}_{m}\right)}\right) \in \boldsymbol{F}\langle\boldsymbol{X} \mid \boldsymbol{G}\rangle$ is said multilinear if

$$
f=\sum_{\sigma \in S_{m}} \alpha_{\sigma} x_{\sigma(1)}^{\left(g_{\sigma(1)}\right)} \cdots x_{\sigma(m)}^{\left(g_{\sigma(m)}\right)} \quad\left(\alpha_{\sigma} \in F\right)
$$

Example 5. A sequence $\left(g_{1}, \ldots, g_{n}\right) \in G^{n}$ defines a G grading on $U T_{n}$ by taking $\operatorname{deg}\left(e_{i j}\right)=g_{i}^{-1} g_{j}$, where $e_{i j}$ is the standard matrix unit. This grading is called elementary G-grading induced by the sequence $\left(g_{1}, \ldots, g_{n}\right)$.
Let $\boldsymbol{q} \leq \boldsymbol{n}$. Taking $\boldsymbol{G}=\mathbb{Z}_{\boldsymbol{q}}$ and

$$
(\overline{0}, \overline{1}, \ldots, \overline{q-2}, \overline{q-1}, \ldots, \overline{q-1})
$$

in the previous example we have

$$
\begin{equation*}
U T_{n}=\bigoplus_{\bar{l} \in \mathbb{Z}_{q}} \mathcal{A}_{\bar{l}} \tag{1}
\end{equation*}
$$

where each $\mathcal{A}_{\bar{l}}$ can be regarded as

$$
\left(\begin{array}{cc}
A & C \\
0 & B
\end{array}\right)
$$

$\boldsymbol{A} \in \boldsymbol{U} \boldsymbol{T}_{q-1}, \boldsymbol{B} \in \boldsymbol{U} \boldsymbol{T}_{n-q+1}$ and $\boldsymbol{C} \in \boldsymbol{M}_{q-1, n-q+1}$. Precisely,

- $\mathcal{A}_{\overline{0}}-\boldsymbol{A}$ diagonal matrix, \boldsymbol{B} arbitrary and $\boldsymbol{C}=\mathbf{0}$;
- $\mathcal{A}_{\bar{l}}-\boldsymbol{A}$ is $(l+1)$-diagonal matrix, $\boldsymbol{B}=0$ and \boldsymbol{C} is $(q-l)$ row matrix.
Definition 6. Let $f=\boldsymbol{f}\left(\boldsymbol{x}_{1}^{\left(g_{1}\right)}, \ldots, \boldsymbol{x}_{m}^{\left(\boldsymbol{g}_{m}\right)}\right) \in \boldsymbol{F}\langle\boldsymbol{X} \mid \boldsymbol{G}\rangle$ and let \mathcal{A} be an \boldsymbol{F}-algebra. The image of \boldsymbol{f} on \mathcal{A} is defined as

$$
f(\mathcal{A})=\left\{f\left(a_{1}, \ldots, a_{m}\right) \mid a_{i} \in \mathcal{A}_{g_{i}}\right\}
$$

Main results

For $r=1, \ldots, n-q$, we set the following homogeneous subspaces from $\mathcal{A}_{\bar{l}}$:

$$
\mathcal{B}_{\bar{l}, r}=\operatorname{span}\left\{e_{q-l, j} \mid j=q+r, \ldots, n\right\}
$$

Theorem 7. Let \boldsymbol{F} be an infinite field. Then the image of a multilinear \boldsymbol{f} on $\boldsymbol{U} \boldsymbol{T}_{n}$ endowed with the grading (1) is one of the following homogeneous subspaces: $\{0\}, J^{r}, \mathcal{B}_{\bar{l}, r}$ or $\mathcal{A}_{\bar{l}}$, where \boldsymbol{J} stands for the Jacobson radical of the neutral component.
Corollary 8. Let char $(\boldsymbol{F})=0$ and let $\boldsymbol{f} \in \boldsymbol{F}\langle\boldsymbol{X}\rangle$ be a (non-graded) multilinear polynomial. Assume that

$$
f\left(x_{1}^{(0)}, \ldots, x_{m-1}^{(0)}, x_{m}^{(i)}\right)
$$

is not an identity for $\boldsymbol{U} \boldsymbol{T}_{n}$ with the \mathbb{Z}-natural grading, $\boldsymbol{i}=$ $1, \ldots, n-1$. Then $f\left(M_{n}(F)\right) \supset s l_{n}(F)$.
Example 9. Take the polynomial

$$
f=\sum_{\sigma \in S_{m-1}} \alpha_{\sigma}\left[x_{m}, x_{\sigma(1)}, \ldots, x_{\sigma(m-1)}\right]
$$

where $\sum \alpha_{\sigma} \neq 0$. Then $f\left(M_{n}(F)\right)=s l_{n}(F)$. In particular, we recover the old result from Shoda about commutators in matrix algebras.
By a well known result from Valenti and Zaicev, gradings on $\boldsymbol{U} \boldsymbol{T}_{n}$ are essentially elementary. Hence the following result tells us that in dealing with images of graded polynomials on $\boldsymbol{U} \boldsymbol{T}_{n}$, one should only care about the elementary gradings.
Proposition 10. Let $f \in \boldsymbol{F}\langle\boldsymbol{X} \mid \boldsymbol{G}\rangle$. If $\boldsymbol{f}(\mathcal{A})$ is a homogeneous vector space, then the same holds for any graded homomorphic image of \mathcal{A}.
As a consequence we have
Theorem 11. The image of a multilinear graded polynomial on $\boldsymbol{U} \boldsymbol{T}_{\mathbf{2}}$ is always a homogeneous vector space. Analogous conclusion for the graded algebra $\boldsymbol{U} \boldsymbol{T}_{3}$. In case $\boldsymbol{U} \boldsymbol{T}_{3}$ is endowed with the trivial grading we additionally require $|F| \geq 3$.

References

[1] I. Gargate, T. de Mello, Images of multilinear polynomials on $\boldsymbol{n} \times \boldsymbol{n}$ upper triangular matrices over infinite fields, Israel J. Math. 252 (2022), 337-354.
[2] P. Fagundes, P. Koshlukov. Images of multilinear graded polynomials on upper triangular matrix algebras, accepted in Canad. J. Math.

Funding

The first author was supported by FAPESP Grant No. 2019/16994-1. The second author was supported by FAPESP Grant No. 2018/ 23690-6 and CNPq Grant No. 302238/20190 .

