Images of multilinear graded polynomials on upper triangular matrices

Pedro Fagundes & Plamen Koshlukov

State University of Campinas

pedro.fagundes@ime.unicamp.br

Abstract

In 2022, Gargate and de Mello classified the images of multilinear polynomials on upper triangular matrices. The aim of this poster is to present a graded version of Gargate and de Mello's result. More precisely we provide a classification of the images of multilinear graded polynomials on upper triangular matrices endowed with certain \mathbb{Z}_q -gradings. We also consider the cases of 2×2 and 3×3 upper triangular matrices, and we show that the image of multilinear graded polynomials on these algebras are always a homogeneous vector space.

where each $A_{\bar{l}}$ can be regarded as

$$\begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$$
,

 $A \in UT_{q-1}, B \in UT_{n-q+1}$ and $C \in M_{q-1,n-q+1}$. Precisely,

• $\mathcal{A}_{\overline{0}}$ - A diagonal matrix, B arbitrary and C = 0; • $\mathcal{A}_{\bar{l}}$ - A is (l+1)-diagonal matrix, B = 0 and C is (q-l)row matrix.

Introduction

Images of polynomials on algebras appear in many branches of *Ring Theory*, for instance in algebras with polynomial identities (*PI-algebras*). Nowadays, the main problem concerning such objects is perhaps the following conjecture:

Conjecture 1 (L'vov-Kaplansky). The image of a multilinear polynomial on the full matrix algebra $M_n(F)$ is a vector space.

The conjecture above is equivalent to say that the image is one of the four options: $\{0\}$, F (the space of scalar matrices), $sl_n(F)$ (the space of *traceless matrices*) or $M_n(F)$. Despite several tries in having a complete solution of the conjecture above (successfully done in small cases), variations of it have been considered in the past few years. For instance, we mention

Theorem 2 (Gargate, de Mello - 2022). Let **F** be an infinite field. Then the image of a multilinear polynomial on the upper triangular matrix algebra $UT_n(F)$ is either $UT_n(F)$ or some power of J (the Jacobson radical of UT_n).

Definition 6. Let $f = f(x_1^{(g_1)}, \ldots, x_m^{(g_m)}) \in F\langle X | G \rangle$ and let \mathcal{A} be an F-algebra. The *image* of f on \mathcal{A} is defined as

$$f(\mathcal{A}) = \{f(a_1,\ldots,a_m) | a_i \in \mathcal{A}_{g_i}\}.$$

Main results

For $r = 1, \ldots, n - q$, we set the following homogeneous subspaces from $\mathcal{A}_{\overline{i}}$:

$$\mathcal{B}_{\overline{l},r} = span\{e_{q-l,j}|j=q+r,\ldots,n\}$$

Theorem 7. Let **F** be an infinite field. Then the image of a multilinear f on UT_n endowed with the grading (1) is one of the following homogeneous subspaces: $\{0\}, J^r, \mathcal{B}_{\bar{l},r}$ or $\mathcal{A}_{\bar{l}}$, where J stands for the Jacobson radical of the neutral component.

Corollary 8. Let char(F) = 0 and let $f \in F\langle X \rangle$ be a (non-graded) multilinear polynomial. Assume that

$$f(x_1^{(0)},\ldots,x_{m-1}^{(0)},x_m^{(i)})$$

is not an identity for UT_n with the \mathbb{Z} -natural grading, i =

In next we introduce the main definitions and tools for presenting a graded version of Gargate and de Mello's theorem.

Preliminares

We start by recalling that a grading on an algebra \mathcal{A} by a group G is a decomposition $\mathcal{A} = \bigoplus_{g \in G} \mathcal{A}_g$ of \mathcal{A} into a direct sum of vector spaces such that $\mathcal{A}_{g}\mathcal{A}_{h} \subset \mathcal{A}_{gh}$, for all $g,h\in G$.

• \mathcal{A}_q is called *homogeneous component* of degree g;

• $a \in \mathcal{A}_q \leftrightarrow deg(a) = g$.

A subspace $\mathcal{V} \subset \mathcal{A}$ is said *homogeneous* if it inherits the grading from \mathcal{A} .

Example 3. Let $X = \{x_i^{(g)} | g \in G, i = 1, 2, ...\}$ and set $F\langle X|G\rangle$ as the free associative algebra generated by X. This algebra has a G-grading defined by setting the homogeneous component of degree *g* as the subspace spanned by monomials of the form

$$x_1^{(g_1)} \cdots x^{(g_m)}$$
 where $a_1 \cdots a_m = a$.

 $1, \ldots, n-1$. Then $f(M_n(F)) \supset sl_n(F)$.

Example 9. Take the polynomial

$$f = \sum_{\sigma \in S_{m-1}} lpha_\sigma[x_m, x_{\sigma(1)}, \dots, x_{\sigma(m-1)}]$$

where $\sum \alpha_{\sigma} \neq 0$. Then $f(M_n(F)) = sl_n(F)$. In particular, we recover the old result from Shoda about commutators in matrix algebras.

By a well known result from Valenti and Zaicev, gradings on UT_n are essentially elementary. Hence the following result tells us that in dealing with images of graded polynomials on UT_n , one should only care about the elementary gradings. **Proposition 10.** Let $f \in F\langle X | G \rangle$. If $f(\mathcal{A})$ is a homogeneous vector space, then the same holds for any graded homomorphic image of $\boldsymbol{\mathcal{A}}$.

As a consequence we have

Theorem 11. The image of a multilinear graded polynomial on UT_2 is always a homogeneous vector space. Analogous conclusion for the graded algebra UT_3 . In case UT_3 is endowed with the trivial grading we additionally require

The elements from $F\langle X|G\rangle$ are called *G*-graded polynomials.

Example 4. $f = f(x_1^{(g_1)}, \ldots, x_m^{(g_m)}) \in F\langle X | G \rangle$ is said multilinear if

$$f = \sum_{\sigma \in S_m} lpha_\sigma x^{(g_{\sigma(1)})}_{\sigma(1)} \cdots x^{(g_{\sigma(m)})}_{\sigma(m)} \ \ (lpha_\sigma \in F).$$

Example 5. A sequence $(g_1, \ldots, g_n) \in G^n$ defines a Ggrading on UT_n by taking $deg(e_{ij}) = g_i^{-1}g_j$, where e_{ij} is the standard matrix unit. This grading is called *elementary* G-grading induced by the sequence (g_1, \ldots, g_n) .

Let
$$q \leq n$$
. Taking $G = \mathbb{Z}_q$ and
 $(\overline{0}, \overline{1}, \dots, \overline{q-2}, \overline{q-1}, \dots, \overline{q-1})$

in the previous example we have

$$UT_n = \bigoplus_{\bar{l} \in \mathbb{Z}_q} \mathcal{A}_{\bar{l}} \tag{1}$$

$$F| \geq 3.$$

References

- [1] I. Gargate, T. de Mello, *Images of multilinear polyno*mials on $n \times n$ upper triangular matrices over infinite fields, Israel J. Math. 252 (2022), 337–354.
- [2] P. Fagundes, P. Koshlukov. *Images of multilinear graded* polynomials on upper triangular matrix algebras, accepted in Canad. J. Math.

Funding

The first author was supported by FAPESP Grant No. 2019/16994-1. The second author was supported by FAPESP Grant No. 2018/23690-6 and CNPq Grant No. 302238/2019-()