Production Cost Functionals in Adaptation Models to Environmental Changes

Nelson Leal dos Santos Júnior & Solange Rutz

Universidade Federal de Pernambuco

nelson.leal@ufpe.br solange.rutz@ufpe.br

Introduction

We model the dynamics of biological phenomena by simplifying them into basic mechanisms such as: growth of the populations N^i , interaction between species, external influences and productivity.

We use Volterra Hamilton (VH) systems,

Results

Theorem 1 (Adaptation Theorem). *Consider a local spray* (2) and a Finsler norm F such that $\frac{dF}{ds} = 0$ along (2). A conform norm $\overline{F} = e^{\phi_k(x)x^k}F$ satisfy $\frac{d\overline{F}}{dp} = 0$ along of the projective spray (3) if and 1 is in $\frac{d\overline{F}}{dp} = 0$ along of the

$$\begin{cases} \frac{dx^{i}}{dt} = k_{(i)}N^{i} \\ \frac{dN^{i}}{dt} = -G^{i}_{jk}N^{j}N^{k} + r^{i}_{j}N^{j} + e^{i} \end{cases}, \quad (1)$$

for $i, j, k = 1, \dots, n$, combined with the production dynamics $x^{i}(t) = k_{(i)} \int_{0}^{t} N^{i}(\tau) d\tau + x(0)$ of Volterra [3] and the population growth dynamics of Hutchinson [2].

We consider that a cost is generated from productivity, and that such cost is given as a function of the size of the population and the production, hence, we introduce Finsler metrics $F(x^i, N^i)$ to calculate such cost.

Definition 1. A Finsler metric is a function $F : TM \to \mathbb{R}$ such that:

(i) F is C^{∞} in $TM - \mathbb{O}$ and continuous in the null section \mathbb{O} ; (ii) F is positive definite at $TM - \mathbb{O}$;

(iii) \mathbf{F} is p-homogeneous of degree 1 in the second variable; (iv) The matrix with coefficients $g_{ij}(x,y) = \frac{1}{2} \frac{\partial^2 F^2}{\partial y^i \partial y^j}$ is positive definite at $TM - \mathbb{O}$.

From the homogeneity of F, the cost is proportional. Fur-

projective spray (3) if, and only if, the function of the projective transformation is

$$\psi(x,y)=rac{1}{2}\phi_k(x)y^k.$$

In the Adaptation Theorem, if (2) is the geodesic spray of a Berwald space (M, F) and $\phi_k(x) = \sigma_k$ with σ_k constants, the projective spray solutions are autoparallel curves of a Wagner space (M, \overline{F}) with Wagner connection

$$ar{W}\Gamma = \left(N^i_j + y^i \sigma_j, \Gamma^i_{jk} + \delta^i_j \sigma_k, C^i_{jk}
ight),$$

where $N_{j}^{i}, \Gamma_{jk}^{i}, C_{jk}^{i}$ are they coefficients of the Cartan connection of (M, F).

For dynamics between two species, the Finsler Gate derived from the classifications of Antonelli and Matsumoto [1] present Finsler metrics approprietad:

thermore, if a dynamic is represented by the Euler-Lagrange equations of F, then the process is optimized.

Starting with a constant environment, that is, $e^i = 0$, by parameter change, the system (1) becomes a spray

$$\frac{d^2x^i}{ds^2} + G^i_{jk} \frac{dx^j dx^k}{ds \ ds} = 0, \qquad (2)$$

with $y := \frac{dx}{ds}$. In biological processes of development or evolution, which have a predetermined sequence or not, each stage is approached through a VH system (1).

The passage to a next stage is understood as the introduction of a projective change

 $G^i(x,y)
ightarrow ar{G}^i(x,\xi) = G^i(x,\xi) + \psi(x,\xi)\xi^i,$

which turns the spray (2) into projective spray

$$\frac{d^2x^i}{dp^2} + \bar{G}^i_{jk} \frac{dx^j dx^k}{dp \ dp} = 0, \qquad (3)$$

for
$$\overline{G}_{jk}^i(x,\xi) := G_{jk}^i(x,y) + \delta_j^i \psi_k + \delta_k^i \psi_j + y^i \psi_{jk},$$

 $\psi_j := \frac{\partial \psi(x,y)}{\partial \omega_j^i}, \ \psi_{jk} := \frac{\partial \psi_j}{\partial \omega_k^k}, \ \xi := \frac{dx}{dx} \text{ and } \psi(x,\xi) \text{ is }$

Conclusion

- The Adaptation Theorem ensure that the incorporation of an external influences of the gradient type is equivalent the passage from present stage to a new stage of the process;
- The Finsler metrics obtained by Finsler Gate represent famous dynamics in the literature.

References

- [1] ANTONELLI, P. L.; MATSUMOTO, M. y-berwald spaces of dimension two and associated heterochronic systems. Publ. Math. Debrecen, v. 47, p. 193-201, 1995.
- [2] HUTCHINSON, G. An Introduction to Population Ecology. Yale University Press, 1978.
- [3] VOLTERRA, V. Principes de biologie mathematique. Mathematical Essays on Growth and the Emergen of Form, Univ. Alberta Press, p. 269-309, 1936.

 ∂y^{j} ∂y^{κ} dpfunction p-homogeneus of degree 1 in ξ .

Objective

The structure of VH systems ensure that the growth of a specie is influenced by interaction with other species, and so arises a question: are there other relations between the basic mechanisms we are considering? We seek to response that question!

Acknowledgements

Thanks are given to the CAPES for financial support. Work presented in memory of Solange da Fonseca Rutz **21/02/1961** ★ **30/06/2023** +