A characterization of pseudo-parallel Lorentzian surfaces in 4-dimensional pseudo-Riemannian space forms

Mynor Melara¹ & Guillermo Lobos² & Oscar Palmas³ ¹ Ph.D. student in PPGM-UFSCar, ² UFSCar, ³ UNAM, Mexico mynormelara@estudante.ufscar.br & lobos@ufscar.br &

oscar.palmas@ciencias.unam.mx

Abstract

We give a characterization of pseudo-parallel Lorentzian surfaces with non-flat normal bundle in 4-dimensional pseudo-Riemannian space forms as super-extremal surfaces, i.e., λ isotropic surfaces with vanishing mean curvature vector field. We also characterize this kind of surfaces using the concept of hyperbola of curvature. We show that any pseudo-parallel Lorentzian surface with non-flat normal bundle and constant pseudo-parallelism function in codimension two is, locally, a piece of a Lorentzian surface of the Veronese type, extending an analogous result by Asperti-Lobos-Mercuri for pseudoparallel surfaces in 4-dimensional Riemannian space forms. An isometric immersion $f: M_1^2 \to \mathbb{Q}_s^m(c)$ is λ -isotropic if $\langle \alpha(X, X), \alpha(X, X) \rangle = \lambda(x), \forall X \in T_x M_1^2$ with $\|X\| = \sqrt{|\langle X, X \rangle|} = 1, \forall x \in M_1^2$, where $\lambda: M_1^2 \to \mathbb{R}$ is a smooth function.

Results

A theorem of characterization (see [3]). An isometric immersion $f : M_1^2 \to \mathbb{Q}_s^4(c)$ with non-flat normal bundle on any open subset of M_1^2 is ψ -pseudo-parallel if and only if it is λ -isotropic. For such an immersion we have that s = 2, H = 0 and $\lambda = \frac{1}{2}(c - K) = K - \psi \neq 0$, where K is the Gaussian curvature of M_1^2 , H is the mean curvature vector field of f and λ is a smooth real-valued function on M_1^2 .

Instituto de Matemática Pura e Aplicada

Introduction

An isometric immersion $f : M \to \widetilde{M}$ between pseudo-Riemannian manifolds, with second fundamental form α , is: • parallel if $\overline{\nabla}_X \cdot \alpha = 0$;

• semi-parallel if $\overline{R}(X,Y) \cdot \alpha = 0$;

• pseudo-parallel if $\overline{R}(X,Y)\cdot lpha=\psi(X\wedge Y)\cdot lpha,$

for some smooth real-valued function ψ on M and any tangent vector fields X, Y on M, where $\overline{R} = R \oplus R^{\perp}$ is the curvature tensor corresponding to the Van der Waerden-Bortolotti connection $\overline{\nabla} = \nabla \oplus \nabla^{\perp}$ of f and $(X \wedge Y)Z =$ $\langle Y, Z \rangle X - \langle X, Z \rangle Y$.

Pseudo-parallel submanifolds were introduced by Asperti-Lobos-Mercuri as a generalization of semi-parallel submanifolds and as an extrinsic analogue of pseudo-symmetric maniCorollary 1 (see [3]). Let $f: M_1^2 \to \mathbb{Q}_s^4(c)$ be an isometric immersion. f is ψ -pseudo-parallel with $R^{\perp} \neq 0$ if and only if s = 2 and for each $x \in M_1^2$, the set $\mathcal{H}_x = \{\langle X, X \rangle \alpha(X, X) : X \in T_x M_1^2 \text{ with } \langle X, X \rangle = \pm 1\}$

is a non-degenerate *equilateral* hyperbola with center at 0 in the normal space to M_1^2 at x. In this case, H = 0 and the constant radius squared of the hyperbola is $\lambda(x) = K - \psi$.

Example 1: Lorentzian surfaces of the Veronese type. The isometric immersion $f : \mathbb{S}_1^2(1) \to \mathbb{S}_2^4(3)$ defined by

$$f(x,y,z) = \left(xy,xz,yz,rac{1}{2\sqrt{3}}(2x^2+y^2+z^2),rac{1}{2}(y^2-z^2)
ight),$$

corresponds to the Veronese immersion in Riemannian geometry. f is λ -isotropic with $\lambda = 1$ and ψ -pseudo-parallel with $\psi = 0$; in fact, f is a parallel immersion with $R^{\perp} \neq 0$. Hasegawa in [2] proved that f is an *isotropic with negative spin* immersion. Also, f is *extremal*, i.e., H = 0. Extremal and isotropic with negative spin immersions of the Veronese type from $\mathbb{Q}_1^2(\hat{c})$ to $\mathbb{Q}_2^4(3\hat{c}), \hat{c} \neq 0$, can be obtained from f.

folds. In [1], authors proved that ψ -pseudo-parallel surfaces with $R^{\perp} \neq 0$ in 4-dimensional Riemannian space forms are superminimal, i.e., minimal and λ -isotropic. Also, they classified such surfaces in codimension 2 with constant ψ .

Preliminaries and notations

Let \mathbb{E}_s^N be the *N*-dimensional pseudo-Euclidean space with the metric of index *s* given by

$$\langle x,y
angle = \langle (x_1,\ldots,x_N),(y_1,\ldots,y_N)
angle = -\sum_{i=1}^s x_iy_i + \sum_{i=s+1}^N x_iy_i.$$

We use $\mathbb{Q}_s^m(c)$ to refer the *m*-dimensional pseudo-Riemannian space form with constant sectional curvature cand metric of index s, such that:

 $\mathbb{Q}_{s}^{m}(c) = \begin{cases} \mathbb{H}_{s}^{m}(c) \subset \mathbb{E}_{s+1}^{m+1}, \text{ if } c < 0, \text{ (pseudo-hyperbolic space)} \\ \mathbb{E}_{s}^{m}, \text{ if } c = 0, \\ \mathbb{S}_{s}^{m}(c) \subset \mathbb{E}_{s}^{m+1}, \text{ if } c > 0. \qquad \text{(pseudo-sphere)} \end{cases}$

Proposition (Hasegawa [2]). Let $f : M_1^2 \to \mathbb{Q}_2^4(c)$ be an extremal and isotropic with negative spin immersion of constant Gaussian curvature K. If $K \neq c$, then $c = 3K \neq 0$ and f is an open set of the Veronese type surface given in Example 1.

Corollary 2 (see [3]). Let $f : M_1^2 \to \mathbb{Q}_s^4(c)$ be an isometric immersion with $R^{\perp} \neq 0$. If f is ψ -pseudo-parallel with constant ψ , then $s = 2, c = 3K \neq 0, \psi = 0$ and f is an open set of the Veronese type surface in Example 1.

Conjecture: There are pseudo-parallel Lorentzian surfaces with $R^{\perp} \neq 0$ in $\mathbb{Q}_2^4(c)$ which are not semi-parallel.

References

Figure 1: Equilateral hyperbolas in Lorentz-Minkowsky plane \mathbb{E}_1^2 . Let $f: M_1^2 \to \mathbb{Q}_s^m(c)$ be an isometric immersion from a Lorentzian surface M_1^2 . By Fundamental Equations we get

$$K = c - \langle \alpha_{11}, \alpha_{22} \rangle + \langle \alpha_{12}, \alpha_{12} \rangle, \qquad (1$$

$$R^{\perp}(e_1, e_2)\xi = ((\alpha_{11} + \alpha_{22}) \wedge \alpha_{12})\xi, \qquad (2)$$

and for the pseudo-parallelism condition we get the relations:

$$R^{\perp}(e_1, e_2)\alpha_{11} = R^{\perp}(e_1, e_2)\alpha_{22} = 2(\psi - K)\alpha_{12}, \qquad (3)$$

$$R^{\perp}(e_1, e_2)\alpha_{12} = (\psi - K)(\alpha_{11} + \alpha_{22}), \qquad (4)$$

where $\{e_1, e_2\}$ is an orthonormal frame for M_1^2 , $\alpha_{ij} = \alpha(e_i, e_j)$, ξ is any normal vector to M_1^2 and K is the Gaussian curvature of M_1^2 .

- [1] A. C. Asperti, G. A. Lobos, and F. Mercuri. Pseudoparallel submanifolds of a space form. *Adv. Geom.*, 2:57– 71, 2002.
- [2] K. Hasegawa. A Lorentzian surface in a four-dimensional manifold of neutral signature and its reflector lift. *J. Geom. Symmetry Phys.*, 26:71–83, 2012.
- [3] G.A. Lobos, M. Melara, and O. Palmas. Pseudo-parallel Lorentzian surfaces in pseudo-Riemannian space forms. *Results Math.*, 72(2):39, 2023.

Acknowledgements

The first author is partially supported by CNPq Proc. No. 141496/2020-7, Brazil. The second author is partially supported by FAPESP Proc. No. 2016/23746-6, Brazil. The third author is partially supported by UNAM under Project PAPIIT-DGAPA IN101322, Mexico.