Some properties of the Bieri-Strebel invariant

Melissa Luiz \& Dessislava Kochloukova
IMECC, Unicamp

UNICAMP

Introduction

A group G is said to be metabelian if there is an exact sequence of groups

$$
A \hookrightarrow G \rightarrow Q
$$

where \boldsymbol{A} and \boldsymbol{Q} are abelian. In 1980, Bieri and Strebel defined a geometric invariant $\Sigma_{A}(Q)$ and with it they proved a necessary and sufficient condition for the metabelian group G to be finitely presented. In this work, we present the invariant Σ and some results which are usefull to calculate it.

The Bieri-Strebel invariant

Let Q be a finitely generated abelian group and \boldsymbol{R} be a commutative ring with $1 \neq 0$. We call a character of Q a homomorphism $\chi: Q \rightarrow \mathbb{R}$, where \mathbb{R} is considered an aditive group. Each character $\chi: Q \rightarrow \mathbb{R}$ can be extended to a valuation $v_{\chi}: R Q \rightarrow \mathbb{R}_{\infty}$ defining $v_{\chi}(0)=\infty$ and

$$
v_{\chi}(\lambda)=\min \left\{\chi(q) \mid \lambda_{q} \neq 0\right\}
$$

where $\lambda=\Sigma \lambda_{q} q \in R Q$.
Now, writing $Q \simeq \operatorname{tor} Q \oplus \mathbb{Z}^{n}$, note that

$$
\operatorname{Hom}(Q, \mathbb{R}) \simeq \operatorname{Hom}\left(\mathbb{Z}^{n}, \mathbb{R}\right) \simeq \mathbb{R}^{n}
$$

We say two characters χ_{1} and χ_{2} are equivalent if, and only if, there's a positive real number r such that $\chi_{1}=r \chi_{2}$ and we denote $\chi_{1} \sim \chi_{2}$. Thus, we define the character sphere

$$
S(Q)=\frac{\operatorname{Hom}(Q, \mathbb{R}) \backslash\{0\}}{\sim} \simeq S^{n-1}
$$

where S^{n-1} is the unit sphere in \mathbb{R}^{n}. We also denote by $[\chi]$ the equivalence class of the character χ.
For each character, we define the monoid

$$
Q_{\chi}=\{q \in Q \mid \chi(q) \geq 0\}
$$

Note that if χ_{1} and χ_{2} are two equivalent characters, then their respective monoids coincide

$$
Q_{\chi_{1}}=Q_{\chi_{2}}
$$

Now, let \boldsymbol{A} be a $R Q$-module. We define the Bieri-Strebel invariant by

$$
\Sigma_{A}(Q):=\left\{[\chi] \in S(Q) \mid A \text { is fin. gen. over } R Q_{\chi}\right\}
$$

It can also be proved that

$$
\Sigma_{A}(Q)=\bigcup_{\lambda \in C(A)}\left\{[\chi] \in S(Q) \mid v_{\chi}(\lambda)>0\right\}
$$

where $C(A)$ is the centralizer of A in $R Q$.

Finitely presented metabelian groups

Lets start this section with the definition of tame module.
Definition 1. We call a $\mathbb{Z} Q$-module \boldsymbol{A} tame, if \boldsymbol{A} is finitely generated and $\Sigma_{A}(Q) \cup-\Sigma_{A}(Q)=S(Q)$.
Equivalently, A is tame if, and only if, $\Sigma_{A}^{c}(Q):=S(Q) \backslash$ $\Sigma_{A}(Q)$ contains no pair of antipodal points.
Proposition 1 (2.5(i),[2]). If the $\mathbb{Z} \boldsymbol{Q}$-module \boldsymbol{A} is tame, then every submodule of \boldsymbol{A}, every homomorphic image of \boldsymbol{A} and every product of finitely many copies of \boldsymbol{A} are also tame.
Now let G be a finitely generated group and A and Q be two finitely generated abelian groups such that the short sequence

$$
A \hookrightarrow G \rightarrow Q
$$

is exact. Define an action of $Q \simeq G / A$ in A by conjugation and consider \boldsymbol{A} as a $\mathbb{Z} Q$-module. The first main result proved by Bieri and Strebel is
Theorem 1 (5.1,[2]). Let G be a finitely generated group and let $\boldsymbol{A} \triangleleft \boldsymbol{G}$ be a normal subgroup such that both \boldsymbol{A} and $Q=G / \boldsymbol{A}$ are abelian. Then \boldsymbol{G} is finitely presented if and only if \boldsymbol{A} is tame as a $\mathbb{Z} \boldsymbol{Q}$-module

Some properties of the invariant

Now, we'll explore three usefull results to calculate $\Sigma_{A}(Q)$ or $\Sigma_{A}^{c}(Q)$.
Theorem 2 (1.1, [3]). Let \boldsymbol{R} be a Noetherian ring and \boldsymbol{A} a finitely generated $R Q$-module. If $P_{1}, P_{2}, \ldots, P_{m}$ are the minimal prime ideals over $\operatorname{Ann}(\boldsymbol{A})$, then

$$
\Sigma_{A}=\Sigma_{R Q / P_{1}} \cap \Sigma_{R Q / P_{2}} \cap \ldots \cap \Sigma_{R Q / P_{m}} .
$$

We call $H \subset S(Q)$ a rational closed hemisphere if we can write it as $H=\{[\chi] \mid \chi(q) \geq 0\}$, for some $q \in Q$ of infinite order and we call $C \subseteq S(Q)$ a convex rational spherical polyhedron if we can write it as a finite intersection of rational closed hemispheres. And we say that $\Delta \subseteq S(Q)$ is a rational spherical polyhedron if it can be written as a finite union of convex rational spherical polyhedrons.
Theorem 3 (8.3, [1]). Σ_{A}^{c} is a rational spherical polyhedron.
Now, let B be an algebra over $R Q$ given by the ring homomorphism $\kappa: R Q \rightarrow B$ and let $v: R \rightarrow \mathbb{R}_{\infty}$ be a valuation of \boldsymbol{R}. We define the set $\Delta_{B}^{v}(Q) \subseteq \operatorname{Hom}(Q, \mathbb{R})$ as the set of all characters χ such that there is a valuation $w: B \rightarrow \mathbb{R}_{\infty}$ satisfying $\left.w \kappa\right|_{R}=v$ and $\left.w \kappa\right|_{Q}=\chi$.
Theorem 4 (8.1, [1]). Let \boldsymbol{A} be a finitely generated $R Q$ module and $B=R Q / \operatorname{Ann}_{R Q}(A)$. Then

$$
\Sigma_{A}^{c}=\bigcup_{v}\left[\Delta_{B}^{v}(Q)\right]
$$

where v runs on all valuations $v: R \rightarrow \mathbb{R}_{\infty}$ such that $v(R) \geq 0$.

Example

Consider $A=\mathbb{Z}\left[x, x^{-1},(x+1)^{-1}\right]$ and $Q=\langle x, y\rangle \simeq$ \mathbb{Z}^{2}, where Q acts in A via conjugation, $x \in Q$ acts as multiplication by x and $y \in Q$ acts as multiplication by $x+1$. Here $S(Q) \simeq S^{1}$.
We want to calculate

$$
\Sigma_{A}^{c}=\bigcup_{v}\left[\Delta_{A}^{v}(Q)\right] .
$$

Now, note that, if $\chi \in \Delta_{A}^{v}(Q)$, then there is a valuation $w: A \rightarrow \mathbb{R}_{\infty}$ such that $\chi(y)=w \kappa(y)$. So
$\chi(y)=w(x+1) \geq \min \{w(x), w(1)\}=\min \{\chi(x), 0\}$.
Now, if $\chi(x) \neq 0$, then $\chi(y)=\min \{\chi(x), 0\}$, so we can divide the problem in three cases:

- If $\chi(x)=0$, then $\chi(y) \geq 0$;
- If $\chi(x)>0$, then $\chi(y)=0$;
- If $\chi(x)<0$, then $\chi(y)=\chi(x)$.

Therefore, $\Sigma_{A}^{c}(Q)$ is given by, at best three points:

References

[1] Robert Bieri and JRJ Groves. The geometry of the set of characters induced by valuations. J. Reine Angew. Math., 347:168-195, 1984.
[2] Robert Bieri and Ralph Strebel. Valuations and finitely presented metabelian groups. Proceedings of the London Mathematical Society, 3(3):439-464, 1980.
[3] Robert Bieri and Ralph Strebel. A geometric invariant for modules over an abelian group. J. Reine Angew. Math., 322:170-189, 1981.

Acknowledgments

To CNPq, for financial support.

