Some properties of the Bieri-Strebel invariant Melissa Luiz & Dessislava Kochloukova IMECC, Unicamp

melissadesousaluiz@gmail.com & desi@unicamp.br

Introduction

A group G is said to be metabelian if there is an exact sequence of groups

 $A \hookrightarrow G \twoheadrightarrow Q$.

where A and Q are abelian. In 1980, Bieri and Strebel defined a geometric invariant $\Sigma_A(Q)$ and with it they proved a necessary and sufficient condition for the metabelian group Gto be finitely presented. In this work, we present the invariant Σ and some results which are usefull to calculate it.

Some properties of the invariant

Now, we'll explore three usefull results to calculate $\Sigma_A(Q)$ or $\Sigma^c_A(Q)$.

Theorem 2 (1.1, [3]). Let \mathbf{R} be a Noetherian ring and \mathbf{A} a finitely generated RQ-module. If P_1, P_2, \ldots, P_m are the minimal prime ideals over Ann(A), then

 $\Sigma_A = \Sigma_{RQ/P_1} \cap \Sigma_{RQ/P_2} \cap \ldots \cap \Sigma_{RQ/P_m}.$

We call $H \subset S(Q)$ a rational closed hemisphere if we can write it as $H = \{ [\chi] \mid \chi(q) \ge 0 \}$, for some $q \in Q$ of infinite order and we call $C \subseteq S(Q)$ a convex rational spherical polyhedron if we can write it as a finite intersection of rational closed hemispheres. And we say that $\Delta \subseteq S(Q)$ is a rational spherical polyhedron if it can be written as a finite union of convex rational spherical polyhedrons. **Theorem 3** (8.3, [1]). Σ_A^c is a rational spherical polyhedron. Now, let B be an algebra over RQ given by the ring homomorphism $\kappa: RQ \to B$ and let $v: R \to \mathbb{R}_{\infty}$ be a valuation of R. We define the set $\Delta_B^v(Q) \subseteq \operatorname{Hom}(Q,\mathbb{R})$ as the set of all characters χ such that there is a valuation $w: B
ightarrow \mathbb{R}_{\infty}$ satisfying $w\kappa|_R = v$ and $w\kappa|_Q = \chi$. **Theorem 4** (8.1, [1]). Let A be a finitely generated RQmodule and $B = RQ / \operatorname{Ann}_{RQ}(A)$. Then $\Sigma^c_A = igcup [\Delta^v_B(Q)],$

The Bieri-Strebel invariant

Let Q be a finitely generated abelian group and R be a commutative ring with $1 \neq 0$. We call a character of Q a homomorphism $\chi : Q \to \mathbb{R}$, where \mathbb{R} is considered an aditive group. Each character $\chi: Q \to \mathbb{R}$ can be extended to a valuation $v_{\chi}: RQ \to \mathbb{R}_{\infty}$ defining $v_{\chi}(0) = \infty$ and

 $v_{\chi}(\lambda) = \min\{\chi(q) \mid \lambda_q \neq 0\},$

where $\lambda = \Sigma \lambda_q q \in RQ$. Now, writing $Q \simeq \operatorname{tor} Q \oplus \mathbb{Z}^n$, note that

 $\operatorname{Hom}(Q,\mathbb{R})\simeq\operatorname{Hom}(\mathbb{Z}^n,\mathbb{R})\simeq\mathbb{R}^n.$

We say two characters χ_1 and χ_2 are equivalent if, and only if, there's a positive real number r such that $\chi_1 = r \chi_2$ and we denote $\chi_1 \sim \chi_2$. Thus, we define the character sphere

$$S(Q) = rac{\mathrm{Hom}(Q,\mathbb{R})\setminus\{0\}}{\sim}\simeq S^{n-1},$$

where S^{n-1} is the unit sphere in \mathbb{R}^n . We also denote by $[\chi]$ the equivalence class of the character χ . For each character, we define the monoid

where v runs on all valuations $v: R
ightarrow \mathbb{R}_{\infty}$ such that $v(R) \geq 0.$

Example

Consider $A = \mathbb{Z}[x, x^{-1}, (x+1)^{-1}]$ and $Q = \langle x, y \rangle \simeq$ \mathbb{Z}^2 , where Q acts in A via conjugation, $x \in Q$ acts as multiplication by x and $y \in Q$ acts as multiplication by x + 1. Here $S(Q) \simeq S^1$. We want to calculate

 $Q_{\chi} = \{q \in Q \mid \chi(q) \ge 0\}.$

Note that if χ_1 and χ_2 are two equivalent characters, then their respective monoids coincide

 $Q_{\chi_1} = Q_{\chi_2}.$

Now, let A be a RQ-module. We define the Bieri-Strebel invariant by

$$\Sigma_A(Q) := \{ [\chi] \in S(Q) \mid A ext{ is fin. gen. over } RQ_\chi \}.$$

It can also be proved that

$$\Sigma_A(Q) = igcup_{\lambda \in C(A)} \{ [\chi] \in S(Q) \mid v_\chi(\lambda) > 0 \},$$

where C(A) is the centralizer of A in RQ.

Finitely presented metabelian groups

Lets start this section with the definition of tame module. **Definition 1.** We call a $\mathbb{Z}Q$ -module A tame, if A is finitely generated and $\Sigma_A(Q) \cup -\Sigma_A(Q) = S(Q)$.

$$\Sigma^c_A = igcup_v [\Delta^v_A(Q)].$$

Now, note that, if $\chi \in \Delta^v_A(Q)$, then there is a valuation $w: A \to \mathbb{R}_{\infty}$ such that $\chi(y) = w\kappa(y)$. So $\chi(y) = w(x+1) \ge \min\{w(x), w(1)\} = \min\{\chi(x), 0\}.$ Now, if $\chi(x) \neq 0$, then $\chi(y) = \min\{\chi(x), 0\}$, so we can divide the problem in three cases: • If $\chi(x) = 0$, then $\chi(y) \ge 0$; • If $\chi(x) > 0$, then $\chi(y) = 0$; • If $\chi(x) < 0$, then $\chi(y) = \chi(x)$. Therefore, $\Sigma_A^c(Q)$ is given by, at best three points:

Equivalently, A is tame if, and only if, $\Sigma^c_A(Q) := S(Q) \setminus$ $\Sigma_A(Q)$ contains no pair of antipodal points.

Proposition 1 (2.5(i),[2]). If the $\mathbb{Z}Q$ -module A is tame, then every submodule of A, every homomorphic image of A and every product of finitely many copies of A are also tame.

Now let G be a finitely generated group and A and Q be two finitely generated abelian groups such that the short sequence

 $A \hookrightarrow G \twoheadrightarrow Q$

is exact. Define an action of $Q \simeq G/A$ in A by conjugation and consider A as a $\mathbb{Z}Q$ -module. The first main result proved by Bieri and Strebel is

Theorem 1 (5.1,[2]). Let G be a finitely generated group and let $A \triangleleft G$ be a normal subgroup such that both A and Q = G/A are abelian. Then G is finitely presented if and only if A is tame as a $\mathbb{Z}Q$ -module

References

- [1] Robert Bieri and JRJ Groves. The geometry of the set of characters induced by valuations. J. Reine Angew. Math., 347:168–195, 1984.
- [2] Robert Bieri and Ralph Strebel. Valuations and finitely presented metabelian groups. Proceedings of the London Mathematical Society, 3(3):439–464, 1980.
- [3] Robert Bieri and Ralph Strebel. A geometric invariant for modules over an abelian group. J. Reine Angew. Math., 322:170–189, 1981.

Acknowledgments

To CNPq, for financial support.