Simple Binary Lie Superalgebras Marina Rasskazova

Universidade Federal ABC (Brasil)
marinarasskazova@yandex.ru

Overview

A.Malcev in the paper [1] introduced the variety BL of binary Lie algebras ($B L$-algebras). By definition an algebra B is $B L$-algebra if any two elements from B generate a Lie subalgebra. It is clear that in every $B L$-algebra we have the identities $x^{2}=J(x, y, x y)=0$.
A.Gainov in the paper [2] was proved that those identities define the variety BL.
The main result about the structure of finite dimensional $B L$-algebras over C was obtained by A.Grishkov in 1980-86.
Recall that for given variety V we can define the corresponding variety of super V -algebras (SV - algebras) in the following way.
An algebra A is super V -algebra if $A=A_{0} \oplus A_{1}$ admits a Z_{2}-gradation such that $G(A)=A_{0} \otimes G_{0} \oplus A_{1} \otimes G_{1}$ is V -algebra, where $G=$ $G_{0} \oplus G_{1}$ is any Grassman algebra.
In the case of $B L$-algebras we get the following definition.
Definition 1. A Z_{2}-graded algebra $B=B_{0} \oplus B_{1}$ is called super $B L$ - algebra (SBL-algebra) if it satisfies the following graded identities.
$x y=(-1)^{1+x y} y x$,
$\left.(x y) z \cdot t-x \cdot(y(z t))+(-1)^{x y}\{y \cdot(x z \cdot t)+y \cdot(x \cdot z t)-(y \cdot x z) t)\right\}+$ $\left.(-1)^{z t}\{x \cdot(y t . z)-(x y) t . z)-(x . y t) z\right\}=0$,
here $x, y, z, t \in B_{0} \cup B_{1}$ and $(-1)^{x}=1$, if $x \in B_{0}$;
$(-1)^{x}=-1$, if $x \in B_{1}$.
Example 1 (I.Shestakov). Let $S B=k a \oplus k x, a^{2}=0, x^{2}=a$, $x a=-a x=x$.
This is unique simple $S B L$-algebra finite-dimensional over algebraically closed field k of characteristic 0 known until now.
Moreover, we have
Conjecture 1. Every simple $S B L$-algebra finite-dimensional over algebraically closed field k of characteristic 0 with non-trivial odd part is 2 -dimensional algebra from example of I.Shestakov.

Introduction

We propose the following strategy for proving Conjecture in four steps:
First Step. Reduction to the case when B_{0} is solvable.
Second Step. Reduction to the case when B_{0} is nilpotent.
Third Step. Reduction to the case when B_{0} is abelian.
Forth, last Step. To prove Conjecture.
We note that in Conjecture all conditions: basic field is of characteristic 0 . it is algebraically closed. superalgebra has finite dimension are nesessary. It we showed it in the paper [3], where we costructed three new examples simple $B L$-superalgebras ,which do not have these conditions.

Results

All results were obtaned with coloboration A.Grishkov and I. Shestakov. Recently (not published yet) we finish the proof of the First Step of this program.
We proved the theorem.

Theorem 1. Let $B=B_{0} \oplus B_{1}$ be a simple finite dimension super binaryLie algebra over an algebraically closed field \boldsymbol{k} of characteristic 0 . Then \boldsymbol{B}_{0} is a solvable binary Lie algebra, if $\boldsymbol{B}_{1} \neq 0$.
For proof we used the main result of A. Grishkov (1980-86) about structure of a finite dimensional $B L$-algebras.
Theorem 2. (Grishkov) Let B be a finite dimensional $B L$-algebra over the field C of complex numbers and G be a solvable radical of B and $\boldsymbol{R}(\boldsymbol{B})=0$. Then there exists a factor Levi - semisimple Malcev subalgebra $L \subseteq B$ such that $B=L \oplus G, G \cap L=0$. Moreover, $B=M+G_{0}$, where M is a Malcev ideal of B, G_{0} is solvable subalgebra of B.
As Corollary of this Theorem we have two important facts:
(1) Any non solvable finite dimensional $B L$-algebra over C has 3-dimensional simple Lie subalgebra.
(2) If $R(B)=0$, then B is a completely reducible S-module over every semisimple subalgebra $S \subset B$.
From those facts we hence the following "strategy" of the proof of the main Theorem.
1.) Choose a simple 3 -dimensional subalgebra S in the even part B_{0} of simple super binary Lie algebra $B=B_{0} \oplus B_{1}$.
2.) Decompose $B=\left(\sum_{i} \oplus L_{i}\right) \oplus\left(\sum_{j} \oplus M^{j}\right)$ as S-module, where L_{i} is an irreducible n_{i}-dimensional Lie S-module; M^{j} is 2-dimensional Malcev non-Lie S-module.
3.) Describe the products $L_{i} . L_{j}, L_{i} M^{j}$ and M^{i}. M^{j} as S-modules. We proved:
(i) $L_{i} \cdot L_{j} \subseteq L_{i} \otimes L_{j}$, where $L_{i} \otimes L_{j}$ is a standard tensor product of Lie S-modules.
(ii) $L_{i} M^{j}=0$, if $\operatorname{dim} L_{i} \neq 3$. If $\operatorname{dim} L_{i}=3$ then $L_{i} M^{j}=0$ or $L_{i} M^{j} \simeq M^{j}$.
(iii) $M^{i} \cdot M^{j}=0$ or $M^{i} \cdot M^{j} \simeq S \oplus V$, where S is adjoined S-module and $\operatorname{dim} V=1, V S=0$. Moreover, $V \subseteq R(B)$, hence $V=0$.
4.) We prove that ideal of $B=B_{0} \oplus B_{1}$, generated by Lie S-submodule $V \subset B$ without 3 -dimensional irreducible S-modules, is a Lie S-module. There we have two possibilities.
a) Ideal I, described in the Step 4 , is not 0 .
b) Any irreducible S-submodule W of \boldsymbol{B} has dimension 3 .
5.) Ideal I, described in the Step 4 , is not 0 . In this case we prove that B is a Lie superalgebra.
6.) Any irreducible Lie S-submodule of B has dimension 3 .

In this case we have that $B_{0}=B_{00} \oplus B_{01}, B_{1}=B_{10} \oplus B_{11}$, where $B_{00} \oplus B_{10}$ is a direct sum of irreducible S-modules of dimension 3 and $B_{01} \oplus B_{11}$ is a direct sum of irreducible non-Lie Malcev S-modules of dimension 2.

REFERENCE

1. A. Malcev Analytic loops, Mat.Sbornik, 1955
2. A. Gainov, Identities for BL-rings, Usp.mat., USSR, 1957, v.16, n.3, pp.141-146
3. A. Grishkov, M. Rasskazova, I. Shestakov New examples of simple super binary Lie algebras Algebra and Logic, 60, 6 (2021), 557-568.DOI: 10.33048/alglog.2021.60.603

Acknowledgement

The first author would like to thank FAPESP for the financial support of this work (process n. 2021/12820-9).

