## Invariant tori and boundedness of solutions of nonsmooth oscillators with Lebesgue integrable forcing term

# Luan Vinicio de Mattos & Douglas Duarte Novaes

State University of Campinas

luanmattos@ime.unicamp.br

### UNICAMP

#### Abstract

We consider the Duffing-type equation

$$\ddot{x} + \operatorname{sign}(x) = p(t), \qquad (1)$$

where sign stands for the standard sign function and p is Lebesgue integrable and T-periodic function.

We want to show that all solutions of (1) are bounded,

and  

$$\begin{split}
\Psi_n^{\pm}(\phi_0, y_0) &:= \frac{1}{8} \left( \pm n^2 T^2 \mp 4y_0^2 - 8P_2 \left( \frac{nT}{2} \pm y_0 \mp P_1(\phi_0) \pm \frac{P_2(T)}{T} + \phi_0 \right) \\
&+ 4P_2(T) \left( n \pm \frac{P_2(T)}{T^2} \right) - 4P_1(\phi_0) (\pm P_1(\phi_0) \mp 2y_0) + 8P_2(\phi_0) \right).
\end{split}$$

**Lemma 1** (Fundamental Lemma). Let  $n \in \mathbb{N}$  be fixed. Assume that, for every  $\phi_0 \in [0, T]$ ,

,  $nT^2$ 

#### provided that p(t) has a vanishing average.

We achieve our aim by showing the existence of a infinite collection of nested invariant tori, which in turn are foliated by periodic orbits.

#### **Statements and Main Result**

The differential equation (1) can be seen as the vector field

$$\begin{cases} \phi' = 1, \\ x' = y, \\ y' = -\operatorname{sign}(x) + p(\phi). \end{cases}$$
(2)

- The phase space is  $M = \mathbb{S}^1 \times \mathbb{R}^2$ , with  $\mathbb{S}^1 = \mathbb{R}/T\mathbb{Z}$ .
- We define the integrals

$$P_1(t):=\int_0^t p(s)\mathrm{d}s$$
 and  $P_2(t):=\int_0^t P_1(s)\mathrm{d}s,$ 

and, as usual, let  $\overline{p}$  denote the average of p(t), i.e.

$$\overline{p} := rac{1}{T} \int_0^T p(s) \mathrm{d}s = rac{P_1(T)}{T}$$

Notice that the function  $P_1(t)$  is continuous and the function

$$ig|TP_1(\phi_0) - P_2(T)ig| < rac{mr}{2}$$

and

 $ig|tP_2(T)+TP_2(\phi_0)-TP_2(t+\phi_0)ig|<rac{T}{2}t(nT-t),\,\,t\in(0,nT).$ 

Then,  $\mathcal{T}_n$  is an invariant torus of the vector field (2). Moreover,  $\mathcal{T}_n$  is foliated by 2nT-periodic orbits.



#### **Proof of the Main Result**

The proof of Theorem A will follow as an immediate conse-

 $P_2(t)$  is continuously differentiable.

•The plane  $\Sigma := \{(\phi, x, y) \in M : x = 0\}$  is a region of discontinuity of the vector field (2).

• Solutions: Equation (1) matches all the necessary conditions to the existence and uniqueness of its solutions, which in turn are only continuous in t.

**Theorem A.** Suppose that p(t) is a Lebesgue integrable Tperiodic function satisfying  $\overline{p} = 0$ . Then, there exists a sequence  $\mathbb{T}_n \subset \mathbb{S}^1 \times \mathbb{R}^2$  of nested invariant tori of the vector field (2) satisfying:

 $M = igcup_{n \in \mathbb{N}} \operatorname{int}(\mathbb{T}_n),$ 

where  $int(\mathbb{T}_n)$  denotes the region enclosed by  $\mathbb{T}_n$ . In addition, for each  $n \in \mathbb{N}$ , the torus  $\mathbb{T}_n$  is foliated by periodic solutions.

**Corollary 1.** Suppose that p(t) is a Lebesgue integrable *T*-periodic function satisfying  $\overline{p} = 0$ . Then, for each  $(t_0, x_0, \dot{x}_0) \in \mathbb{R} \times \mathbb{R}^2$ ,

 $\sup_{t\in \mathbb{R}} \{ |x(t;t_0,x_0,\dot{x}_0)| + |\dot{x}(t;t_0,x_0,\dot{x}_0)| \} < \infty,$ 

quence of the next result, which will provide the existence of  $n^* \in \mathbb{N}$  such that the conditions of the Fundamental Lemma are satisfied for every  $n \ge n^*$ . Accordingly, the sequence of invariant tori stated by Theorem A will be given by  $\mathbb{T}_n := \mathcal{T}_{n+n^*}$ ,  $n \in \mathbb{N}$ .

**Proposition 1.** Let p(t) be a Lebesgue integrable T-periodic function such that  $\overline{p} = 0$ . Then, there exists  $n^* \in \mathbb{N}$  such that  $\mathcal{T}_n$  is an invariant torus of (2) for every  $n \ge n^*$ .

By assuming p(t) to be an  $L^{\infty}$ -function on [0, T], instead of just Lebesgue integrable, we show that the surface  $\mathcal{T}_n$  is an invariant torus of (2) for every  $n \in \mathbb{N}$  bigger than  $||p||_{L^{\infty}}$ .

**Proposition 2.** Let p be a T-periodic function with vanishing average and suppose that there exists M > 0 such that  $\|p\|_{L^{\infty}} < M$ . Then, the surface  $\mathcal{T}_n$  is an invariant torus of (2) for all  $n \in \mathbb{N}$  satisfying  $n \geq M$ .

#### References

[1] John E. Littlewood. *Some problems in real and complex analysis*. D. C. Heath and Company Raytheon Education

where  $x(t; t_0, x_0, \dot{x}_0)$  denotes the solution of (1) with initial condition  $(t_0, x_0, \dot{x}_0)$ .

#### **Preliminary results**

For each  $n \in \mathbb{N}$ , define the functions  $y_n^+ : [0,T] \to \mathbb{R}$  and  $y_n^- : [0,T] \to \mathbb{R}$  by

$$y_n^{\pm}(\phi_0) = \pm rac{nT}{2} + P_1(\phi_0) - rac{P_2(T)}{T}$$

and, for each  $n \in \mathbb{N}$ , such that  $y_n^-(\phi_0) < y_n^+(\phi_0)$  for every  $\phi_0 \in [0,T]$ , define the surface

$$\mathcal{T}_n := \mathcal{T}_n^+ \cup \mathcal{T}_n^-$$

where

 $\mathcal{T}_n^\pm := \{(\phi_0, \Psi_n^\pm(\phi_0, y_0), y_0): \phi_0 \in \mathbb{R}, \; y_0 \in [y_n^-(\phi_0), y_n^+(\phi_0)]\},$ 

- Company, Lexington, Mass., 1968.
- [2] Douglas D. Novaes and Luan V. M. F. Silva. Invariant tori and boundedness of solutions of non-smooth oscillators with lebesgue integrable forcing term, 2023.
- [3] Yiqian Wang. Boundedness of solutions in a class of Duffing equations with a bounded restore force. *Discrete Contin. Dyn. Syst.*, 14(4):783–800, 2006.

#### Acknowledgments

The first author is supported by São Paulo Research Foundation (FAPESP) grant, project numbers 2021/11515-8 and 2018/22398-0. The second author is supported by FAPESP grants 2022/09633-5, 2019/10269-3, and 2018/13481-0, and by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) grant 309110/2021-1.