Invariant tori and boundedness of solutions of nonsmooth oscillators with Lebesgue integrable forcing term

Luan Vinicio de Mattos \& Douglas Duarte Novaes

State University of Campinas

Abstract

We consider the Duffing-type equation

$$
\begin{equation*}
\ddot{x}+\operatorname{sign}(x)=p(t) \tag{1}
\end{equation*}
$$

where sign stands for the standard sign function and \boldsymbol{p} is Lebesgue integrable and \boldsymbol{T}-periodic function.

We want to show that all solutions of (1) are bounded, provided that $p(t)$ has a vanishing average.

We achieve our aim by showing the existence of a infinite collection of nested invariant tori, which in turn are foliated by periodic orbits.

Statements and Main Result

The differential equation (1) can be seen as the vector field

$$
\left\{\begin{array}{l}
\phi^{\prime}=1 \tag{2}\\
x^{\prime}=y \\
y^{\prime}=-\operatorname{sign}(x)+p(\phi)
\end{array}\right.
$$

- The phase space is $M=\mathbb{S}^{1} \times \mathbb{R}^{2}$, with $\mathbb{S}^{1}=\mathbb{R} / T \mathbb{Z}$.
- We define the integrals

$$
P_{1}(t):=\int_{0}^{t} p(s) \mathrm{d} s \quad \text { and } \quad P_{2}(t):=\int_{0}^{t} P_{1}(s) \mathrm{d} s
$$

and, as usual, let \bar{p} denote the average of $\boldsymbol{p}(t)$, i.e.

$$
\bar{p}:=\frac{1}{T} \int_{0}^{T} p(s) \mathrm{d} s=\frac{P_{1}(T)}{T}
$$

Notice that the function $P_{1}(t)$ is continuous and the function $P_{2}(t)$ is continuously differentiable.
\bullet The plane $\Sigma:=\{(\phi, x, y) \in M: x=0\}$ is a region of discontinuity of the vector field (2).

- Solutions: Equation (1) matches all the necessary conditions to the existence and uniqueness of its solutions, which in turn are only continuous in t.

Theorem A. Suppose that $\boldsymbol{p}(\boldsymbol{t})$ is a Lebesgue integrable \boldsymbol{T} periodic function satisfying $\overline{\boldsymbol{p}}=0$. Then, there exists a sequence $\mathbb{T}_{n} \subset \mathbb{S}^{1} \times \mathbb{R}^{2}$ of nested invariant tori of the vector field (2) satisfying:

$$
M=\bigcup_{n \in \mathbb{N}} \operatorname{int}\left(\mathbb{T}_{n}\right)
$$

where $\operatorname{int}\left(\mathbb{T}_{n}\right)$ denotes the region enclosed by \mathbb{T}_{n}. In addition, for each $n \in \mathbb{N}$, the torus \mathbb{T}_{n} is foliated by periodic solutions.

Corollary 1. Suppose that $\boldsymbol{p}(\boldsymbol{t})$ is a Lebesgue integrable \boldsymbol{T}-periodic function satisfying $\overline{\boldsymbol{p}}=\mathbf{0}$. Then, for each $\left(t_{0}, x_{0}, \dot{x}_{0}\right) \in \mathbb{R} \times \mathbb{R}^{2}$,

$$
\sup _{t \in \mathbb{R}}\left\{\left|x\left(t ; t_{0}, x_{0}, \dot{x}_{0}\right)\right|+\left|\dot{x}\left(t ; t_{0}, x_{0}, \dot{x}_{0}\right)\right|\right\}<\infty
$$

where $\boldsymbol{x}\left(\boldsymbol{t} ; \boldsymbol{t}_{0}, \boldsymbol{x}_{0}, \dot{\boldsymbol{x}}_{0}\right)$ denotes the solution of (1) with initial condition $\left(t_{0}, x_{0}, \dot{x}_{0}\right)$.

Preliminary results

For each $n \in \mathbb{N}$, define the functions $\boldsymbol{y}_{n}^{+}:[0, T] \rightarrow \mathbb{R}$ and $y_{n}^{-}:[0, T] \rightarrow \mathbb{R}$ by

$$
y_{n}^{ \pm}\left(\phi_{0}\right)= \pm \frac{n T}{2}+P_{1}\left(\phi_{0}\right)-\frac{P_{2}(T)}{T}
$$

and, for each $\boldsymbol{n} \in \mathbb{N}$, such that $\boldsymbol{y}_{n}^{-}\left(\phi_{0}\right)<\boldsymbol{y}_{n}^{+}\left(\phi_{0}\right)$ for every $\phi_{0} \in[0, T]$, define the surface

$$
\mathcal{T}_{n}:=\mathcal{T}_{n}^{+} \cup \mathcal{T}_{n}^{-}
$$

where
$\mathcal{T}_{n}^{ \pm}:=\left\{\left(\phi_{0}, \Psi_{n}^{ \pm}\left(\phi_{0}, y_{0}\right), y_{0}\right): \phi_{0} \in \mathbb{R}, y_{0} \in\left[y_{n}^{-}\left(\phi_{0}\right), y_{n}^{+}\left(\phi_{0}\right)\right]\right\}$,
and
$\Psi_{n}^{ \pm}\left(\phi_{0}, y_{0}\right):=\frac{1}{8}\left(\pm n^{2} T^{2} \mp 4 y_{0}^{2}-8 P_{2}\left(\frac{n T}{2} \pm y_{0} \mp P_{1}\left(\phi_{0}\right) \pm \frac{P_{2}(T)}{T}+\phi_{0}\right)\right.$

$$
\left.+4 P_{2}(T)\left(n \pm \frac{P_{2}(T)}{T^{2}}\right)-4 P_{1}\left(\phi_{0}\right)\left(\pm P_{1}\left(\phi_{0}\right) \mp 2 y_{0}\right)+8 P_{2}\left(\phi_{0}\right)\right) .
$$

Lemma 1 (Fundamental Lemma). Let $\boldsymbol{n} \in \mathbb{N}$ be fixed. Assume that, for every $\phi_{0} \in[0, T]$,

$$
\left|T P_{1}\left(\phi_{0}\right)-P_{2}(T)\right|<\frac{n T^{2}}{2}
$$

and
$\left|t P_{2}(T)+T P_{2}\left(\phi_{0}\right)-T P_{2}\left(t+\phi_{0}\right)\right|<\frac{T}{2} t(n T-t), t \in(0, n T)$.
Then, \mathcal{T}_{n} is an invariant torus of the vector field (2). Moreover, \mathcal{T}_{n} is foliated by $2 n T$-periodic orbits.

Proof of the Main Result

The proof of Theorem A will follow as an immediate consequence of the next result, which will provide the existence of $n^{*} \in \mathbb{N}$ such that the conditions of the Fundamental Lemma are satisfied for every $n \geq n^{*}$. Accordingly, the sequence of invariant tori stated by Theorem A will be given by $\mathbb{T}_{n}:=\mathcal{T}_{n+n^{*}}$, $n \in \mathbb{N}$.

Proposition 1. Let $\boldsymbol{p}(\boldsymbol{t})$ be a Lebesgue integrable T-periodic function such that $\overline{\boldsymbol{p}}=0$. Then, there exists $\boldsymbol{n}^{*} \in \mathbb{N}$ such that \mathcal{T}_{n} is an invariant torus of (2) for every $\boldsymbol{n} \geq \boldsymbol{n}^{*}$.

By assuming $p(t)$ to be an L^{∞}-function on $[0, T]$, instead of just Lebesgue integrable, we show that the surface \mathcal{T}_{n} is an invariant torus of (2) for every $n \in \mathbb{N}$ bigger than $\|p\|_{L^{\infty}}$.

Proposition 2. Let p be a T-periodic function with vanishing average and suppose that there exists $\boldsymbol{M}>0$ such that $\|p\|_{L^{\infty}}<M$. Then, the surface \mathcal{T}_{n} is an invariant torus of (2) for all $\boldsymbol{n} \in \mathbb{N}$ satisfying $\boldsymbol{n} \geq \boldsymbol{M}$.

References

[1] John E. Littlewood. Some problems in real and complex analysis. D. C. Heath and Company Raytheon Education Company, Lexington, Mass., 1968.
[2] Douglas D. Novaes and Luan V. M. F. Silva. Invariant tori and boundedness of solutions of non-smooth oscillators with lebesgue integrable forcing term, 2023.
[3] Yiqian Wang. Boundedness of solutions in a class of Duffing equations with a bounded restore force. Discrete Contin. Dyn. Syst., 14(4):783-800, 2006.

Acknowledgments

The first author is supported by São Paulo Research Foundation (FAPESP) grant, project numbers 2021/11515-8 and 2018/22398-0. The second author is supported by FAPESP grants 2022/09633-5, 2019/10269-3, and 2018/13481-0, and by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) grant 309110/2021-1.

