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Abstract

We consider the Duffing-type equation

ẍ+ sign(x) = p(t), (1)

where sign stands for the standard sign function and p is
Lebesgue integrable and T -periodic function.

We want to show that all solutions of (1) are bounded,
provided that p(t) has a vanishing average.

We achieve our aim by showing the existence of a infinite col-
lection of nested invariant tori, which in turn are foliated by
periodic orbits.

Statements and Main Result

The differential equation (1) can be seen as the vector field
φ′ = 1,

x′ = y,

y′ = −sign(x) + p(φ).

(2)

• The phase space isM = S1 × R2, with S1 = R/TZ.
•We define the integrals

P1(t) :=

∫ t

0

p(s)ds and P2(t) :=

∫ t

0

P1(s)ds,

and, as usual, let p denote the average of p(t), i.e.

p :=
1

T

∫ T

0

p(s)ds =
P1(T )

T
.

Notice that the function P1(t) is continuous and the function
P2(t) is continuously differentiable.
•The plane Σ := {(φ, x, y) ∈ M : x = 0} is a region of
discontinuity of the vector field (2).
• Solutions: Equation (1) matches all the necessary conditions
to the existence and uniqueness of its solutions, which in turn
are only continuous in t.

Theorem A. Suppose that p(t) is a Lebesgue integrable T -
periodic function satisfying p = 0. Then, there exists a
sequence Tn ⊂ S1×R2 of nested invariant tori of the vector
field (2) satisfying:

M =
⋃
n∈N

int(Tn),

where int(Tn) denotes the region enclosed by Tn. In addi-
tion, for each n ∈ N, the torus Tn is foliated by periodic
solutions.

Corollary 1. Suppose that p(t) is a Lebesgue integrable
T -periodic function satisfying p = 0. Then, for each
(t0, x0, ẋ0) ∈ R× R2,

sup
t∈R
{|x(t; t0, x0, ẋ0)|+ |ẋ(t; t0, x0, ẋ0)|} <∞,

where x(t; t0, x0, ẋ0) denotes the solution of (1) with initial
condition (t0, x0, ẋ0).

Preliminary results

For each n ∈ N, define the functions y+
n : [0, T ] → R and

y−n : [0, T ]→ R by

y±n (φ0) = ±
nT

2
+ P1(φ0)−

P2(T )

T

and, for each n ∈ N, such that y−n (φ0) < y+
n (φ0) for every

φ0 ∈ [0, T ], define the surface

Tn := T +
n ∪ T

−
n ,

where
T ±n := {(φ0,Ψ

±
n (φ0, y0), y0) : φ0 ∈ R, y0 ∈ [y−n (φ0), y

+
n (φ0)]},

and

Ψ±n (φ0, y0) :=
1

8

(
±n2T 2 ∓ 4y2

0 − 8P2

(
nT

2
± y0 ∓ P1(φ0)±

P2(T )

T
+ φ0

)
+ 4P2(T )

(
n±

P2(T )

T 2

)
− 4P1(φ0)(±P1(φ0)∓ 2y0) + 8P2(φ0)

)
.

Lemma 1 (Fundamental Lemma). Let n ∈ N be fixed. Assume
that, for every φ0 ∈ [0, T ],∣∣TP1(φ0)− P2(T )

∣∣ < nT 2

2
and∣∣tP2(T ) + TP2(φ0)− TP2(t+ φ0)

∣∣ < T

2
t(nT − t), t ∈ (0, nT ).

Then, Tn is an invariant torus of the vector field (2). Moreover,
Tn is foliated by 2nT -periodic orbits.
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Proof of the Main Result

The proof of Theorem A will follow as an immediate conse-
quence of the next result, which will provide the existence of
n∗ ∈ N such that the conditions of the Fundamental Lemma
are satisfied for everyn ≥ n∗. Accordingly, the sequence of in-
variant tori stated by Theorem A will be given by Tn := Tn+n∗,
n ∈ N.

Proposition 1. Let p(t) be a Lebesgue integrable T -periodic
function such that p = 0. Then, there exists n∗ ∈ N such
that Tn is an invariant torus of (2) for every n ≥ n∗.

By assuming p(t) to be an L∞-function on [0, T ], instead
of just Lebesgue integrable, we show that the surface Tn is an
invariant torus of (2) for every n ∈ N bigger than ‖p‖L∞.

Proposition 2. Let p be a T -periodic function with vanishing
average and suppose that there exists M > 0 such that
‖p‖L∞ < M . Then, the surface Tn is an invariant torus of
(2) for all n ∈ N satisfying n ≥M .
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