Spectral study about Bopp-Podolsky equationns with Landesman-Lazer condition

Lorena Soriano H \& Giovany M Figueiredo

Universidade de Brasília

loresohe199@gmail.com

Abstact

In this paper we are concerned in the problem

$$
\begin{array}{r}
\begin{cases}\alpha \Delta^{2} u+\beta \Delta u=\mu u+\tau h(x, u) & \text { in } \Omega, \\
\mathcal{B} u=0 & \text { on } \partial \Omega\end{cases} \tag{BL}\\
\mathcal{B} u= \begin{cases}u, & \text { if } \alpha=0 \\
u=\Delta u, & \text { if } \alpha>0\end{cases}
\end{array}
$$

where Ω is bounded smooth domain of $\mathbb{R}^{N}, \alpha \geq 0$ and $-\infty<\beta<\alpha \lambda_{1}$ where λ_{1} is the first eigenvalue of the classical Dirichlet problem.
We study the existence of solutions in the intervals where (BL) presents resonance, where the solutions are near the first eigenvalue, of the Bi-harmonic problem $\alpha \Delta^{2} u+\boldsymbol{\beta} \boldsymbol{\Delta} \boldsymbol{u}$ in \mathbb{H}, and the parameters $\boldsymbol{\mu}$ and $\boldsymbol{\tau}$ are near the zero.

A minimization Problem

Let $h: \bar{\Omega} \times \mathbb{R} \rightarrow \mathbb{R}$ be a Carathéodory function that satisfies:

- Boundedness. There exists $f \in L^{\sigma}(\Omega)$, such that $|h(x, s)| \leq f(x)$, for every $s \in \mathbb{R}$, a. e. in Ω.
\cdot Lipschitz continuity. There exists $\zeta \in L^{\sigma}(\Omega)$, such that $\left|h\left(x, s_{1}\right)-h\left(x, s_{2}\right)\right| \leq \zeta(x)\left|s_{1}-s_{2}\right|$, for every $s_{1}, s_{2} \in \mathbb{R}$, a. e. in Ω,
with $\sigma>\left\{\frac{N}{2}, 1\right\}$.

Landesman-Lazer conditions.

There exist $k \in \mathbb{N}$ and $t_{i} \in \mathbb{R}, t_{i}<t_{i+1}, i=1, \ldots, k$, such that

$$
\begin{equation*}
\left[\int_{\Omega} h\left(x, t_{i} \phi_{1}\right) \phi_{1} d x\right]\left[\int_{\Omega} h\left(x, t_{i+1} \phi_{1}\right) \phi_{1} d x\right]<0 \tag{LL}
\end{equation*}
$$

where ϕ is a positive eigenfunction associated to μ_{1}. There exist real numbers t_{1} and t_{2}, with $t_{1}<t_{2}$. such that
$\int_{\Omega} h\left(x, t_{1} \phi_{1}\right) \phi_{1} d x>0>\int_{\Omega} h\left(x, t_{2} \phi_{1}\right) \phi_{1} d x$. (LL-1) $\int_{\Omega} h\left(x, t_{1} \phi_{1}\right) \phi_{1} d x<0<\int_{\Omega} h\left(x, t_{2} \phi_{1}\right) \phi_{1} d x$. (LL-2) Weak solutions of (BL) are critical points of the functional

$$
I_{\mu, \tau}(u)=\frac{1}{2}\|u\|_{\alpha, \beta}^{2}-\frac{\mu}{2}|u|_{2}^{2}-\tau \int_{\Omega} H(x, u) d x
$$

where $\boldsymbol{H}(x, t)=\int_{0}^{t} h(x, s) d s$ and $0<\mu<\mu_{1}$. Due to boundedness the functional $\boldsymbol{I}_{\mu, \tau}$ is of class $\boldsymbol{C}^{1}(\mathbb{H})$ and weakly lower semi-continuous.
The space $\mathbb{H}:=\boldsymbol{H}_{0}^{1}(\Omega) \cap \boldsymbol{H}^{2}(\Omega)$ endowed with the scalar product

$$
(u, v)_{\alpha, \beta}=\alpha \int_{\Omega} \Delta u \Delta v d x-\beta \int_{\Omega} \nabla u \nabla v d x
$$

is a Hilbert, reflexive and separable space. Throughout this work, we denote by

$$
|u|_{p}:=\left(\int_{\Omega}|u|^{p} d x\right)^{\frac{1}{p}} \text { and }\|\phi\|:=\left(\int_{\Omega}|\nabla \phi|^{2} d x\right)^{\frac{1}{2}}
$$

the norms of the spaces $L^{p}(\Omega)$ and $\boldsymbol{H}_{0}^{1}(\Omega)$ respectively.
We are going to prove the following result.
Theorem 1. Assume that boundedness and LL-1 hold. Then there exists positive constants τ^{*} and $\boldsymbol{\theta}^{*}$ such that, for every $\tau \in\left(0, \tau^{*}\right)$ and $\left|\boldsymbol{\mu}-\mu_{1}\right|<\tau \boldsymbol{\theta}^{*}$, Problem (BL) has a weak solution $u_{\tau}=\kappa \phi_{1}+\boldsymbol{v}$, with $\kappa \in\left(t_{1}, t_{2}\right)$ and $\boldsymbol{v} \in\langle\phi\rangle^{\perp}$.

Existence of a minimum solution

Lemma 1. Assume the boundedness condition. Then for every $\tau>0$, the functional $\boldsymbol{I}_{\mu, \tau}$ is bounded from below and coercive on

$$
C:=\left\{u=\kappa \phi_{1}+v ; \kappa \in\left[t_{1}, t_{2}\right], v \in\langle\phi\rangle^{\perp}\right\}
$$

Corollary 1. For every $\boldsymbol{\tau}>0$, there exists $\boldsymbol{u}_{\boldsymbol{\tau}} \in C$ such that $\boldsymbol{I}_{\mu, \tau}\left(u_{\tau}\right)=m_{C}$. Moreover, for every $\tau>0$ and $\kappa \in\left[t_{1}, t_{2}\right]$, there exist $v_{\tau} \in\left\langle\phi_{1}\right\rangle^{\perp}$ such that $I_{\mu, \tau}\left(\kappa \phi+v_{\tau}\right)=m_{\kappa}$.
Lemma 2. Assume that boundedness. Then, given $\delta>0$, there exists $\tau_{1}>0$ such that $\|v\|<\delta$, for every
$v \in S_{t_{1}} \cup S_{t_{2}}$.
Following the last result we can assume that the parameter $\boldsymbol{\mu}$ is around of $\boldsymbol{\mu}_{1}$. We will look for estimates to calculate the interval we will consider the interval $\left|\boldsymbol{\mu}-\boldsymbol{\mu}_{1}\right|$.

End of the proof of Theorem 1.

By Corollary 1 , for every $\tau>0$ there exists a weak solution of BL, $u_{\kappa}=\kappa \phi_{1}+v_{\tau} \in C$, then $m_{C}=I_{\mu, \tau}\left(u_{\kappa}\right)$. Because \boldsymbol{C} is a convex set and \boldsymbol{I} is coercive and weak lower semicontinuous \boldsymbol{m}_{C} is unique, then $\boldsymbol{m}_{C}=\boldsymbol{m}_{\kappa}$. It remains to prove that there exists $\boldsymbol{\tau}^{*}>0$ and $\boldsymbol{\theta}^{*}>\mathbf{0}$ such that \boldsymbol{u}_{τ} is inside of C and $\left|\mu-\mu_{1}\right|<\tau \theta^{*}$.
The condition implies that the functional

$$
Q(u)=\int_{\Omega} h(x, u) \phi_{1} d x, \text { with } u \in \mathbb{H}
$$

is continuous. By the hypothesis LL-1, implies that for some $a>0$ and $\delta>0$ such that for every $v \in\langle v\rangle^{\perp}$ with $\|v\|<\delta$,

$$
\begin{align*}
& \int_{\Omega} h\left(x, t_{1} \phi_{1}+v\right) \phi_{1} d x>a>0 \\
& >-a>\int_{\Omega} h\left(x, t_{2} \phi_{1}+v\right) \phi_{1} d x . \tag{1}
\end{align*}
$$

Given $\delta>0$ above, by Lemma 2 there exists $\tau^{*}=\tau_{1}$ by Considering $\tau \in\left(0, \tau^{*}\right)$, such that $v \in S_{t_{1}} \cup S_{t_{2}}$ and $\|v\|_{\alpha, \beta}<\delta$. Since $t_{1}<t_{2}$, being ϕ_{1} the first eigenfunction of the eigenvalue problem BL, taking $0<\mu<\mu_{1}$ and using the inequality (1) we obtain that

$$
\begin{array}{r}
\left\langle I_{\mu, \tau}^{\prime}\left(t_{1} \phi_{1}+v\right)-I_{\mu, \tau}^{\prime}\left(t_{2} \phi_{1}+v\right), \phi_{1}\right\rangle \\
=\left\langle t_{1} \phi_{1}, \phi_{1}\right\rangle-\mu \int_{\Omega}\left(t_{1} \phi_{1}+v\right) \phi_{1}-\tau \int_{\Omega} h\left(x, t_{1} \phi_{1}+v\right) \phi_{1} \\
-\left\langle t_{2} \phi_{1}, \phi_{1}\right\rangle+\mu \int_{\Omega}\left(t_{2} \phi_{1}+v\right) \phi_{1}+\tau \int_{\Omega} h\left(x, t_{2} \phi_{1}+v\right) \phi_{1} \\
<\left(t_{1}-t_{2}\right)\left\|\phi_{1}\right\|_{\alpha, \beta}^{2}-\frac{\mu}{\mu_{1}}\left(t_{1}-t_{2}\right)\left\|\phi_{1}\right\|_{\alpha, \beta}^{2}-2 a \tau \\
=\left(t_{1}-t_{2}\right)\left(1-\frac{\mu}{\mu_{1}}\right)\left\|\phi_{1}\right\|_{\alpha, \beta}^{2}-2 a \tau<0 \tag{2}
\end{array}
$$

then $\left|\mu_{1}-\mu\right|<\tau \frac{2 a \mu_{1}}{t_{2}-t_{1}}$.
For the existence of solution under hypothesis (LL-1) and \boldsymbol{h} $L^{\sigma}(\Omega)$-locally bounded is used an approximation technique, the existence of a solution for the original problem is obtained by finding a local minimum for the functional associated with an appropriated truncation for \boldsymbol{h}. Under the hypothesis (LL2), the solution is obtained via Lyapunov-Schmidt reduction method.

Referências

[1]D. Arcoya, M. C. M. Rezende and E. A. B. Silva, Quaselinear problems under local LandesmanLazer condition, Calculus of Variations, (2019), 1-27.
[2] M. C. M. Rezende P. M. Sanchez A. and E. A. B. Silva, A Landesman-Lazer Local condition for semilinear Elliptic Problems, Bull Braz Math Soc, (2019).

Acknowledgment

INCTMat. and CNP-q.

