About the shadowing property for group actions on manifolds.

Liane Bordignon* & Jorge Iglesias** & Aldo Portela**

* Univerdidade Federal de São Carlos - Brasil ** Universidad de La República - Uruguay

liane@dm.ufscar.br

Abstract

We present an ongoing work on the relation between the C^0 -stability and the shadowing property for actions of free groups by homeomorphisms on manifolds. Following [2] and [1], we aim to find a characterization of actions on the circle that have the shadowing property. In this direction, we present some partial results, mainly related to conditions on the minimal set.

Introduction

• $d(\Phi_i(x), \Phi_i(y)) > 2d(x, y)$ for all $x, y \in B_{N_i}$, $i \in \{a, b\}$.

• $d(\Phi_i(x), \Phi_i(y)) < \frac{1}{2}d(x, y)$ for all $x, y \in B_{S_i}$, $i \in \{a, b\}$.

• $\Phi_i(\partial B_{N_i}) \subset B_{S_i}$, for all $i \in \{a, b\}$.

• $\overline{B_{N_b} \cup B_{S_b}} \subset (\overline{B_{N_a} \cup B_{S_a}})^C$. Let $I_a = \Phi_a(B_{N_a}), I_{a^{-1}} = \Phi_{a^{-1}}(B_{S_a}), I_b = \Phi_b((B_{N_b}))^c$ and $I_{b^{-1}} = \Phi_b^{-1}((B_{S_b}))^c$. Let $A_0 = I_a \cup I_{a^{-1}} \cup I_b \cup I_{b^{-1}}$ and $A_{n+1} = [\Phi_a(A_n) \cap \Phi_{a^{-1}}(A_n) \cap \Phi_b(A_n) \cap \Phi_{b^{-1}}(A_n)] \cap A_n$. The Cantor set $K = \bigcap_{n \ge 1} A_n$ is a minimal set for the system $(F_2, \mathbb{S}^1, \Phi)$ and the dynamical system has the shadowing property.

Shadowing or pseudo-orbit tracing is a well-developed topic in dynamical systems. We can find in [6] a comprehensive survey on the subject. This concept was generalized in [5] for finitely generated groups acting in a metric space. There are given conditions for the action of a finitely generated nilpotent group to have shadowing, so the following question is set: which groups admit an action satisfying the shadowing property? In [2] and [1], the shadowing property of action of free groups of rank $n \geq 2$ on a manifold M and its relation with C^0 -stability is established when the dimension of M is greater than 2 (see Theorem 2 below). Remark that for the usual dynamical system (the action of \mathbb{Z} by a homeomorphism) such relation was already known (see [7] and [8], for example). In [1], conditions about the minimal set are given for the action of the free group F_2 in \mathbb{S}^1 to have shadowing. Also in [1], an enlightening example is constructed. See Theorem 1 and Example 1 below. Based on these results, we present here some questions that, after our incipient studies, we believe can be answered - partially at least - affirmatively.

Discussions

Let G be a group and X be a topologial space. Let $\Phi : G \times X \to X$ be a map such that for each $g \in G$, $x \mapsto \Phi(g, x)$ is a homeomorphism (we denote this map by Φ_g) and $\Phi(g_1g_2, x) = \Phi(g_1(\Phi(g_2, x)))$, i.e., $\Phi_{g_1g_2}(x) = (\Phi_{g_1} \circ \Phi_{g_2})(x)$ for all $g_1, g_2 \in G$ and $x \in X$. We shall call the map Φ an *action of the group* G *on* X and the triplet (G, X, Φ) a *dynamical system*. We define an *orbit of* $x \in X$ *under* Φ as the set $O(x) := \{\Phi_g(x) : g \in G\}$. Given a group G, we call a G-sequence in X a function $g \mapsto x_g$, denoted by $\{x_g\}$. Let (X, d) be a metric space. For a finitely generated group G, with a symmetric generator S, given $\delta > 0$, we say that a G-sequence $\{x_g\}$ is a δ - pseudotrajectory if

Inspired by Theorem 1 and Example 1, we ask:

Question 1. If $(F_2, \mathbb{S}^1, \Phi)$ has a Cantor set K as its minimal set, and K is also the union of the sets of accumulation points of each and every orbit of Φ , is it true that the dynamical system has the shadowing property? About C^0 -stability and shadowing, we have [2, Theorem A]:

 $d(\Phi_s(x_g), x_{sg}) < \delta, \ \forall g \in G \ ext{and} \ \forall s \in S.$

Definition 1. Let (X, d) be a metric space, G be a finitely generated group and (G, X, Φ) be a dynamical system. We say that Φ has the shadowing property if for any $\varepsilon > 0$ there exists $\delta > 0$ such that for any δ -pseudotrajectory $\{x_g\}$ there exists a point $y \in X$ such that

 $d(x_g,\Phi_g(y))<arepsilon\,orall g\in G.$

A non-empty set $\Lambda \subset X$ is said to be *minimal for* Φ if $\overline{O(x)} = \Lambda$ for any $x \in \Lambda$.

Let S be a finite generator of a group G and (X, d) a compact metric space. We denote by Act(G, X) the set of actions of G in X and define a metric d_S on Act(G, X) by

$$d_S(\Phi,\Psi):=\sup_{\substack{x\in X\s\in S}}\{d(\Phi_s(x),\Psi_s(x))\},\ orall \Phi,\Psi\in {
m Act}(G,X).$$

We say that an action $\Phi \in \operatorname{Act}(G, X)$ is C^0 -stable if for every $\varepsilon > 0$, there exists $\delta > 0$ such that for all $\Psi \in \operatorname{Act}(G, X)$ satifying $d_S(\Phi, \Psi) < \delta$, there exists a continuous surjective map $h : X \to X$ such that $d(h(x), x) < \varepsilon$ for all $x \in X$ and $h \circ \Psi_g = \Phi_g \circ h$ for every $g \in G$. We denote by F_2 the free group of rank 2. By [3, Theorem 2.1.1], we know that a minimal set for a dynamical system (G, \mathbb{S}^1, Φ) , where Φ_g is an orientation preserving homeomorphism in \mathbb{S}^1 for all $g \in G$, there could be only one of three possibilities: a finite orbit of Φ ; \mathbb{S}^1 ; a Cantor set K. In the last case, K is the only minimal set for Φ and is contained in the set of accumulation points of every orbit. **Theorem 2.** Let M be a compact manifold of dimension greater than or equal to two and (F_2, M, Φ) be a dynamical system. If Φ is C^0 -stable then Φ has the shadowing property.

The proof of Theorem 2 uses the following lemma, [4, Lemma 13]:

Lemma 1. Let M be a compact manifold of dimension greater or equal to two. Suppose a finite collection $\{(p_i, q_i) \in M \times M \forall i = 1, ..., r\}$ is specified together with a small $\lambda > 0$ such that $d(p_i, q_i) < \lambda$ for all $1 \leq i \leq r$, and if $i \neq j$ then $p_i \neq p_j$ and $q_i \neq q_j$. Then there exists a diffeomorphism $f : M \to M$ such that $d_{C^0}(f, id) < 2\pi\lambda$ and $f(p_i) = q_i \forall 1 \leq i \leq r$.

Therefore, it is not possible to use the same approach to discuss whether the C^0 -stability of a dynamical system $(F_2, \mathbb{S}^1, \Phi)$ implies that it has the shadowing property. This is our main question:

Question 2. If a dynamical system $(F_2, \mathbb{S}^1, \Phi)$ is C^0 -stable, does it have the shadowing property?

In order to begin answering the Question 2, we may ask:

Question 3. If a dynamical system $(F_2, \mathbb{S}^1, \Phi)$ is C^0 -stable, is it true that for each $g \in G$, Φ_g is C^0 -stable?

Question 3 is interesting in itself. We have partial results that indicate that when for some $g \in G$, Φ_g has periodic points, then it is C^0 -stable.

Referências

The theorem and example below are from [1].

Theorem 1. Let $(F_2, \mathbb{S}^1, \Phi)$ be a dynamical system. If there exists a minimal set Λ for Φ and Λ is not a Cantor set, then Φ does not have the shadowing property.

Example 1. Let $S = \{a, b, a^{-1}, b^{-1}\}$ be a symmetric generator of F_2 . We define continuous maps $\Phi_a, \Phi_b : S^1 \to S^1$ with the following properties:

Φ_a and Φ_b are north-south pole type homeomorphisms. We denote the two fixed points of Φ_a as N_a and S_a as well the two fixed points of Φ_b as N_b and S_b. Recall that Ω(Φ_a) = {N_a, S_a} and Ω(Φ_b) = {N_b, S_b}.
 There exist four open balls: B_{Na} = B(Na, ra), B_{Sa} = B(Sa, la), B_{Nb} = B(Nb, rb) and B_{Sb} = B(Sb, lb), satisfying
 • B_{Ni} ∩ B_{Si} = Ø for all i ∈ {a, b}.

- [1] Jorge Iglesias and Aldo Portela. Shadowing property for the free group acting in the circle. *Dyn. Syst.*, 35(1):111–123, 2020.
- [2] Jorge Iglesias and Aldo Portela. C⁰-stability for actions implies shadowing property. Dyn. Syst., 36(2):305–316, 2021.
- [3] Andrés Navas. *Groups of circle diffeomorphisms*. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, spanish edition, 2011.
- [4] Z. Nitecki and M. Shub. Filtrations, decompositions, and explosions. *Amer. J. Math.*, 97(4):1029–1047, 1975.
- [5] Alexey V. Osipov and Sergey B. Tikhomirov. Shadowing for actions of some finitely generated groups. *Dyn. Syst.*, 29(3):337–351, 2014.
- [6] S. Yu. Pilyugin. Theory of pseudo-orbit shadowing in dynamical systems. *Differ. Equ.*, 47(13):1929–1938, 2011.
- [7] Peter Walters. On the pseudo-orbit tracing property and its relationship to stability. In *The structure of attractors in dynamical systems (Proc. Conf., North Dakota State Univ., Fargo, N.D., 1977)*, Lecture Notes in Math., 668, pages 231–244. , 1978.
- [8] Koichi Yano. Topologically stable homeomorphisms of the circle. *Na-goya Math. J.*, 79:145–149, 1980.