Weingarten Surfaces Associated to
 Laguerre Minimal Surfaces

Laredo Rennan \& Armando Mauro

Instituto Federal de Goiás; Universidade Federal de Goiás

INSTITUTO FEDERAL GOIÁS Câmpus Formosa

Abstract

In the work [2], the author shows that every hypersurface in Euclidean space is locally associated to the unit sphere by a sphere congruence, whose radius function \boldsymbol{R} is a geometric invariant of hypersurface. Here we define for any surface Σ its spherical mean curvature \boldsymbol{H}_{S} which depends on principal curvatures of $\boldsymbol{\Sigma}$ and the radius function \boldsymbol{R}. Then we consider two classes of surfaces: the ones with $\boldsymbol{H}_{S}=0$, called \boldsymbol{H}_{1}-surfaces, and the surfaces with spherical mean curvature of harmonic type, named \boldsymbol{H}_{2}-surfaces. We provide for each these classes a Weierstrass type representation depending on three holomorphic functions and we prove that the \boldsymbol{H}_{1}-surfaces are associated to the minimal surfaces, whereas the \boldsymbol{H}_{2}-surfaces are related to the Laguerre minimal surfaces. As application we provide a new Weierstrass type representation for the Laguerre minimal surfaces - and in particular for the minimal surfaces - in such a way that the same holomorphic data provide examples in \boldsymbol{H}_{1}-surface/minimal surface classes or in \boldsymbol{H}_{2}-surface/Laguerre minimal surface classes.

Introduction

An oriented surface S in the Euclidean space \mathbb{R}^{3} is called a Weingarten surface if there is a differentiable relationship \boldsymbol{W} between the Gaussian curvature \boldsymbol{K} and the mean curvature \boldsymbol{H} of \boldsymbol{S} such that $\boldsymbol{W}(\boldsymbol{H}, \boldsymbol{K}) \equiv \mathbf{0}$.

In the work [2] is established that for a hypersurface Σ in \mathbb{R}^{n+1} satisfying $\langle p, N(p)\rangle \neq 1$, for all $p \in \Sigma$, there exists a sphere congruence for which Σ and the unit sphere \mathbb{S}^{n} are envelopes. Such a surface Σ can be locally parameterized from a local parameterization of \mathbb{S}^{2} as below.
Theorem 1: Let Σ be a Riemann surface and $\boldsymbol{X}: \Sigma \rightarrow \mathbb{R}^{3}$ an immersion such that $\langle\boldsymbol{X}(\boldsymbol{p}), \boldsymbol{N}(\boldsymbol{p})\rangle \neq 1$, for all $\boldsymbol{p} \in \Sigma$, where \boldsymbol{N} is the normal Gauss map of \boldsymbol{X}. Consider also a parameterization $\boldsymbol{Y}: U \subset \mathbb{R}^{2} \rightarrow \mathbb{S}^{2}$ of the unit sphere given by $\boldsymbol{Y}=\pi_{-}^{-1} \circ \boldsymbol{g}$, where $\boldsymbol{g}: \mathbb{C} \rightarrow \mathbb{C}_{\infty}$ is a holomorphic function such that $g^{\prime} \neq 0$ and $\pi_{-}^{-1}: \mathbb{C} \rightarrow \mathbb{S}^{2} \backslash\left\{-e_{3}\right\}$ is the inverse of stereographic projection. Then there exists a differentiable function $h: U \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ associated to this parameterization, such that Σ can be locally parameterized by

$$
\begin{equation*}
X=\frac{1}{T}(2 g, 2-T)-\frac{2(h+c)}{S} \eta \tag{1}
\end{equation*}
$$

where c is a nonzero real constant, $T=1+|g|^{2}$ and

$$
\eta=\nabla_{L} h+h Y, \quad S=\langle\eta, \eta\rangle=\left|\nabla_{L} h\right|^{2}+h^{2}
$$

with
$L_{i j}=\left\langle Y_{, i}, Y_{, j}\right\rangle=\frac{4\left|g^{\prime}\right|^{2}}{T^{2}} \delta_{i j}, \quad T=1+|g|^{2}, 1 \leq i, j \leq 2$,
For such a hypersurface Σ, we define its spherical radial curvatures s_{i} associated to \mathbb{S}^{n} and spherical mean curvature \boldsymbol{H}_{S} associated to \mathbb{S}^{n}, as follows:

$$
s_{i}=\frac{1+k_{i}}{1-k_{i} R}, \quad H_{S}=\frac{1}{n} \sum_{i=1}^{n} s_{i}
$$

where k_{i} are the principal curvatures of $\Sigma, 1 \leqslant i \leqslant n$, and \boldsymbol{R} is a geometric invariant of Σ given by the radius function of the sphere congruence.

H_{1}-Surfaces and H_{2}-Surfaces

Let Σ be a surface and $\boldsymbol{X}: \Sigma \rightarrow \mathbb{R}^{3}$ an immersion such that $\langle\boldsymbol{X}(p), N(p)\rangle \neq 1$, for all $p \in \Sigma$, where N is the normal Gauss map of \boldsymbol{X}. The surface Σ is called a surface of null spherical mean curvature, in short \boldsymbol{H}_{1}-surface, if holds
$\boldsymbol{H}_{S}=\mathbf{0}$ and $\boldsymbol{\Sigma}$ is called a surface with spherical mean curvature of harmonic type, in short \boldsymbol{H}_{2}-surface, if it satisfies

$$
\Delta_{\sigma}\left[\frac{H_{S}}{\Psi-1}\right]=0
$$

where \boldsymbol{H}_{S} is the spherical mean curvature of Σ and $\sigma=$ $I+2 R I I+R^{2} I I I$, with $I, I I, I I I$ the fundamental forms of Σ.

Main Results

Next we have a characterization for the \boldsymbol{H}_{1} and \boldsymbol{H}_{2}-surfaces.

1. Let $\boldsymbol{\Sigma}$ be a surface as in Theorem 1 . Then $\boldsymbol{\Sigma}$ is a \boldsymbol{H}_{1}-surface if and only if

$$
\begin{equation*}
h=\frac{\langle 1, A\rangle+\langle g, B\rangle}{1+|g|^{2}}, \tag{2}
\end{equation*}
$$

where \boldsymbol{A} is a holomorphic function and \boldsymbol{B} is a holomorphic function such that $B(z)=\int\left(A^{\prime}(z) g(z)-A(z) g^{\prime}(z)+\right.$ $\left.i c_{1} g^{\prime}(z)\right) d z$, for c_{1} a real constant.
2. Let Σ be a surface as in Theorem 1. Then Σ is a \boldsymbol{H}_{2}-surface if and only if

$$
\begin{equation*}
h=\frac{\langle 1, A\rangle+\langle g, B\rangle}{1+|g|^{2}} \tag{3}
\end{equation*}
$$

where $\boldsymbol{A}, \boldsymbol{B}$ are holomorphic functions.
3. In the conditions of Theorem $1, \Sigma$ is a \boldsymbol{H}_{1}-surface if and only if $\boldsymbol{\eta}$ is a minimal surface.
4. In the conditions of Theorem $\mathbf{1}, \boldsymbol{\Sigma}$ is a \boldsymbol{H}_{2}-surface if and only if $\boldsymbol{\eta}$ is a Laguerre minimal surface.
5. For \boldsymbol{h} given as in (2), \boldsymbol{X} is a Weierstrass type representation for the \boldsymbol{H}_{1}-surfaces, whereas for \boldsymbol{h} given as in (3), \boldsymbol{X} is a Weierstrass type representation for the \boldsymbol{H}_{2}-surfaces.

In the conditions of Theorem (1), η can be rewrite as

$$
\begin{equation*}
\eta=\left(\frac{T}{2} \frac{\nabla h}{\left|g^{\prime}\right|^{\prime}} g^{\prime}-g\left\langle\nabla h, \frac{g}{g^{\prime}}\right\rangle+\frac{2 h}{T} g, \frac{(2-T)}{T} h-\left\langle\nabla h, \frac{g}{g^{\prime}}\right\rangle\right) \tag{4}
\end{equation*}
$$

6. From (3), we have that the expression (4) above is an alternative Weierstrass representation for the minimal surfaces when the function \boldsymbol{h} is given as in (2).
7. From (4), we conclude that the expression (4) is a Weierstrass representation for the Laguerre minimal surfaces when \boldsymbol{h} is given as in (3).

Conclusion

- The study of \boldsymbol{H}_{1}-surfaces allows obtaining an alternative Weierstrass representation for the minimal surfaces depending on three holomorphic functions.
- The study of \boldsymbol{H}_{2}-surfaces allows obtaining an alternative Weierstrass representation for the Laguerre minimal surfaces depending on three holomorphic functions.

References

[1]DiAs, D. G.,Classes of generalized Weingarten surfaces in the Euclidean 3-space, Advances in Geometry, 16(1):4555; 2016.
[2]Pereira, L., Hypersurfaces associated to \mathbb{S}^{n} by a sphere congruence, Selecciones Matemticas, 6(2):225-237, 2019.
[3]Riveros, C. M. C.; Corro, A. M. V., A Class of Solutions of the n-Dimensional Generalized Helmholtz Equation which Describes Generalized Weingarten Hypersurfaces, preprint.
[4]Riveros, C. M. C.; Corro, A. M. V., Generalized Helmholtz Equation, Selecciones Matemáticas, 6(1):19-25, 2019.

