Weingarten Surfaces Associated to Laguerre Minimal Surfaces

Laredo Rennan & Armando Mauro

Instituto Federal de Goiás; Universidade Federal de Goiás

laredo.santos@ifg.edu.br; corro@ufg.br

Abstract

In the work [2], the author shows that every hypersurface in Euclidean space is locally associated to the unit sphere by a sphere congruence, whose radius function R is a geometric invariant of hypersurface. Here we define for any surface Σ its spherical mean curvature H_S which depends on principal curvatures of Σ and the radius function R. Then we con-

 $H_S = 0$ and Σ is called a *surface with spherical mean cur*vature of harmonic type, in short H_2 -surface, if it satisfies

$$\Delta_{\sigma}\left[rac{H_S}{\Psi-1}
ight]=0,$$

where H_S is the spherical mean curvature of Σ and $\sigma = I + 2RII + R^2III$, with I, II, III the fundamental forms of Σ .

sider two classes of surfaces: the ones with $H_S = 0$, called H_1 -surfaces, and the surfaces with spherical mean curvature of harmonic type, named H_2 -surfaces. We provide for each these classes a Weierstrass type representation depending on three holomorphic functions and we prove that the H_1 -surfaces are associated to the minimal surfaces, whereas the H_2 -surfaces are related to the Laguerre minimal surfaces. As application we provide a new Weierstrass type representation for the Laguerre minimal surfaces - and in particular for the minimal surfaces - in such a way that the same holomorphic data provide examples in H_1 -surface/minimal surface classes or in H_2 -surface/Laguerre minimal surface classes.

Introduction

An oriented surface S in the Euclidean space \mathbb{R}^3 is called a **Weingarten surface** if there is a differentiable relationship W between the Gaussian curvature K and the mean curvature H of S such that $W(H, K) \equiv 0$.

In the work [2] is established that for a hypersurface Σ in

Main Results

Next we have a characterization for the H₁ and H₂-surfaces.
1. Let Σ be a surface as in Theorem 1. Then Σ is a H₁-surface if and only if

$$h = \frac{\langle 1, A \rangle + \langle g, B \rangle}{1 + |g|^2}, \qquad (2)$$

where A is a holomorphic function and B is a holomorphic function such that $B(z) = \int (A'(z)g(z) - A(z)g'(z) + ic_1g'(z)) dz$, for c_1 a real constant.

2. Let Σ be a surface as in Theorem 1. Then Σ is a H_2 -surface if and only if

$$h = \frac{\langle 1, A \rangle + \langle g, B \rangle}{1 + |g|^2}, \qquad (3)$$

where A, B are holomorphic functions.

- 3. In the conditions of Theorem 1, Σ is a H_1 -surface if and only if η is a minimal surface.
- 4. In the conditions of Theorem 1, Σ is a H_2 -surface if and

 \mathbb{R}^{n+1} satisfying $\langle p, N(p) \rangle \neq 1$, for all $p \in \Sigma$, there exists a sphere congruence for which Σ and the unit sphere \mathbb{S}^n are envelopes. Such a surface Σ can be locally parameterized from a local parameterization of \mathbb{S}^2 as below.

Theorem 1: Let Σ be a Riemann surface and $X : \Sigma \to \mathbb{R}^3$ an immersion such that $\langle X(p), N(p) \rangle \neq 1$, for all $p \in \Sigma$, where N is the normal Gauss map of X. Consider also a parameterization $Y : U \subset \mathbb{R}^2 \to \mathbb{S}^2$ of the unit sphere given by $Y = \pi_-^{-1} \circ g$, where $g : \mathbb{C} \to \mathbb{C}_\infty$ is a holomorphic function such that $g' \neq 0$ and $\pi_-^{-1} : \mathbb{C} \to \mathbb{S}^2 \setminus \{-e_3\}$ is the inverse of stereographic projection. Then there exists a differentiable function $h : U \subset \mathbb{R}^2 \to \mathbb{R}$ associated to this parameterization, such that Σ can be locally parameterized by

$$X = \frac{1}{T} \left(2g, 2 - T \right) - \frac{2(h+c)}{S} \eta, \qquad (1$$

where c is a nonzero real constant, $T=1+|g|^2$ and

$$\eta =
abla_L h + hY, \quad S = \langle \eta, \eta
angle = ig|
abla_L h ig|^2 + h^2,$$

with

$$L_{ij} = \langle Y_{,i}, Y_{,j}
angle = rac{4|g'|^2}{T^2} \delta_{ij}, \hspace{2mm} T = 1 + |g|^2, \hspace{2mm} 1 \leq i,j \leq 2,$$

only if η is a Laguerre minimal surface.

5. For h given as in (2), X is a Weierstrass type representation for the H_1 -surfaces, whereas for h given as in (3), X is a Weierstrass type representation for the H_2 -surfaces.

In the conditions of Theorem (1), η can be rewrite as

$$\eta = \left(\frac{T}{2}\frac{\nabla h}{|g'|^2}g' - g\left\langle \nabla h, \frac{g}{g'} \right\rangle + \frac{2h}{T}g, \frac{(2-T)}{T}h - \left\langle \nabla h, \frac{g}{g'} \right\rangle \right)$$
(4)

- 6. From (3), we have that the expression (4) above is an alternative Weierstrass representation for the minimal surfaces when the function h is given as in (2).
- 7. From (4), we conclude that the expression (4) is a Weiers-trass representation for the Laguerre minimal surfaces when *h* is given as in (3).

Conclusion

- The study of H_1 -surfaces allows obtaining an alternative Weierstrass representation for the minimal surfaces depending on three holomorphic functions.
- The study of H_2 -surfaces allows obtaining an alternative Weierstrass representation for the Laguerre minimal surfaces depending on three holomorphic functions.

For such a hypersurface Σ , we define its **spherical radial curvatures** s_i **associated to** \mathbb{S}^n and **spherical mean curvature** H_S **associated to** \mathbb{S}^n , as follows:

where k_i are the principal curvatures of Σ , $1 \leq i \leq n$, and R is a geometric invariant of Σ given by the radius function of the sphere congruence.

H_1 -Surfaces and H_2 -Surfaces

Let Σ be a surface and $X : \Sigma \to \mathbb{R}^3$ an immersion such that $\langle X(p), N(p) \rangle \neq 1$, for all $p \in \Sigma$, where N is the normal Gauss map of X. The surface Σ is called a *surface of null spherical mean curvature*, in short H_1 -surface, if holds

References

[1]DIAS, D. G., *Classes of generalized Weingarten surfaces in the Euclidean 3-space*, Advances in Geometry, 16(1):45-55; 2016.

[2] PEREIRA, L., *Hypersurfaces associated to* \mathbb{S}^n *by a sphere congruence*, Selecciones Matemticas, 6(2):225-237, 2019.

[3]RIVEROS, C. M. C.; CORRO, A. M. V., A Class of Solutions of the n-Dimensional Generalized Helmholtz Equation which Describes Generalized Weingarten Hypersurfaces, preprint.

[4]RIVEROS, C. M. C.; CORRO, A. M. V., *Generalized Helmholtz Equation*, Selecciones Matemáticas, 6(1):19-25, 2019.