Laplacian coflow of G_2 -structures

J. Saavedra-Ufc

Joint work with: H. Sá Earp-Unicamp & J. Lotay-Ofxord & A. Moreno-Unicamp

julieth.p.saavedra@gmail.com

UNIVERSIDADE FEDERAL DO CEARÁ

Abstract

This poster presents some results regarding the Laplacian coflow of two papers [3, 4]. In one of them, we show that the Laplacian coflow collapses (under normalized volume) on contact Calabi-Yau 7-manifolds to a lower-dimensional limit respect to the natural initial condition. Furthermore, it exhibits an infinite-time singularity of type IIB. In the other paper, we characterise the conditions for a vector field as an infinitesimal symmetry of a coclosed G_2 -structure, as well as the soliton condition for the Laplacian coflow.

Laplacian coflow on cCY manifold

In [3], we will consider the flows described above on a *contact* Calabi-Yau (cCY) 7-manifold $(M^7, g_0, \eta_0, \Upsilon_0)$, where (M^7, g_0) is a Sasakian 7-manifold with Riemannian metric g_0 , contact form η_0 and transverse Kähler form $\omega_0 = d\eta_0 \in \Omega^{1,1}(M)$, and $\Upsilon_0 \in \Omega^{3,0}(M)$ is a transverse holomorphic volume form; here (p,q) denotes basic bidegree with respect to the horizontal distribution $\mathcal{D}_0 = \ker \eta_0$.

Introduction

A G_2 -structure is defined by a positive 3-form φ , which, in turn, defines the metric g_{φ} and the corresponding Hodge dual 4-form $\psi := *_{\varphi} \varphi$. The main goal in G_2 -geometric is the study of *torsion free* G_2 -structures, i.e. $\nabla \varphi = 0$, which is equivalent to the *closed* $d\varphi = 0$ and the *coclosed* condition $d\psi = 0$. In [2] was introduced the Laplacian coflow of coclosed G_2 -structures given by

$$\frac{\partial \psi(t)}{\partial t} = \Delta_t \psi(t), \quad \psi(0) = \psi. \tag{1}$$

One immediate problem with the Laplacian coflow is that the 4-form $\psi = *_{\varphi} \varphi$ is generated by both the 3-forms φ and $-\varphi$: in particular, ψ does not determine the orientation on M. However, it is natural to fix an orientation throughout the flow, which is determined for example by a choice of G_2 structure dual to the initial 4-form.

As for many geometric flows, we are interested in consid-

On a cCY 7-manifold there exists a natural 1-parameter family of coclosed G_2 -structures defined, for each $\epsilon > 0$, by

$$\varphi_0 = \epsilon \eta_0 \wedge \omega_0 + Re\Upsilon_0, \tag{3}$$

with induced metric g_{φ_0} and corresponding dual 4-form

$$\psi_0 = *_{\varphi_0} \varphi_0 = \frac{1}{2} \omega_0^2 - \epsilon \eta_0 \wedge Im \Upsilon_0.$$
⁽⁴⁾

Theorem 1 (Laplacian coflow on contact Calabi–Yau 7-manifolds). The Laplacian coflow (1) on M^7 , with initial data determined by φ_0 , is solved by the following family of coclosed G_2 -structures φ_t , with associated metric g_t , volume form vol_t and dual 4-form ψ_t :

$$egin{aligned} arphi_t &= \epsilon p(t)^{-1} \eta_0 \wedge \omega_0 + p(t)^3 Re \Upsilon_0; \ \psi_t &= rac{1}{2} p(t)^4 \omega_0^2 - \epsilon \eta_0 \wedge Im \Upsilon_0; \ g_t &= \epsilon^2 p(t)^{-6} \eta_0^2 + p(t)^2 g_{\mathcal{D}_0}; \ arphi_t &= \epsilon p(t)^3 \eta_0 \wedge \mathrm{vol}_{\mathcal{D}_0}, \end{aligned}$$

where $p(t) = (1 + 10\epsilon^2 t)^{1/10}$ and $t \in (-\frac{1}{10\epsilon^2}, \infty)$. Hence, the solution of the Laplacian coflow is immortal, with a finite time singularity (backwards in time) at $t = -\frac{1}{10\epsilon^2}$.

Let Rm_t denote the Riemann curvature tensor of g_t and let $Rm_0^{\mathcal{D}_0}$ denote the curvature of the transverse connection on \mathcal{D}_0 induced by the Levi-Civita connection of g_0 . Then

ering self-similar solutions $\varphi(t) = \lambda(t)f(t)^*\varphi$ where $\lambda(t) \in$ $C^{\infty}(M)$ and $f(t) \in \text{Diff}(M)$, it means, solutions that evolves the initial data φ by diffeomorphisms and scalings, since these kind of solutions are expected to be related to singularities of the flow.

Main results

Soliton solution of Laplacian coflow

In [4], using the following Proposition which decomposes the Hodge Laplacian of ψ according to the G_2 -irreducible decomposition of Ω^4 .

Proposition 1.[1] Let φ be a coclosed G_2 -structure on a manifold M with associated metric g. Then,

$$egin{aligned} \Delta_\psi\psi&=rac{2}{7}((\operatorname{tr} T)^2+|T|^2)\psi\oplus(d\operatorname{tr} T)\wedgearphi\ &\oplussta_arphi i_arphi\Big(\operatorname{Ric}-rac{1}{2}T\circ T-(\operatorname{tr} T)T+rac{1}{14}ig((\operatorname{tr} T)^2+|T|^2ig)gig). \end{aligned}$$

and computing the decomposition of the Lie derivative with respect to any vector field.

Proposition 2. Let φ be a coclosed G_2 -structure on M^7 , with associated metric g, and let X be a vector field on M. Then, if $\psi = *\varphi$,

 $|Rm_t|^2_{a_t} = (1+10\epsilon^2 t)^{-2/5} |Rm_0^{\mathcal{D}_0}|^2_{a_0} + c_0\epsilon^4 (1+10\epsilon^2 t)^{-2}$

for some constant $c_0 > 0$ and the associated metric g_t is uniformly continuous (in t) on any compact interval contained in $(-\frac{1}{10\epsilon^2},\infty)$, but it is not uniformly continuous on $(-\frac{1}{10\epsilon^2},S)$ or (S,∞) for any S.

Theorem 2 (Singularities of the Laplacian flow and coflow). Let M^7 be compact contact calabi-Yau manifold. Then, the Laplacian coflow solution in the above Theorem has an infinite-time Type IIb singularity, unless the transverse metric on \mathcal{D}_0 is flat, in which case it has an infinite-time Type III singularity.

The *full torsion tensor* T is defined locally by the formula $\nabla_i \varphi_{jkl} = T_i^m \psi_{mjkl}$. Therefore the full torsion tensor T_t of the solution to the Laplacian coflow

$$T_t = = -rac{3}{2} \epsilon^3 (1+10 \epsilon^2 t)^{-11/10} \eta_0^2 + rac{1}{2} \epsilon (1+10 \epsilon^2 t)^{-3/10} g_{\mathcal{D}_0}.$$

Then,

$$|T_t|_{g_t}^2 = rac{15}{4} \epsilon^2 (1+10 \epsilon^2 t)^{-1}, \quad |
abla_t T_t|_{g_t}^2 = c_0 \epsilon^4 (1+10 \epsilon^2 t)^{-2}$$

Question: Are there any flows on cCY 7-manifolds that converge to a torsion-free G_2 -structure?

$$egin{aligned} \mathcal{L}_X\psi =& rac{4}{7}(\mathrm{div}X)\psi \oplus (-rac{1}{2}\operatorname{curl}X + X \lrcorner T)^{lat} \wedge arphi \ \oplus *i_arphi \Big(rac{1}{7}(\mathrm{div}X)g - rac{1}{2}(\mathcal{L}_Xg)\Big) \in \Omega_1^4 \oplus \Omega_7^4 \oplus \Omega_{27}^4. \end{aligned}$$

In particular, X is an infinitesimal symmetry of ψ if and only if X is a Killing vector field of g and satisfies $\operatorname{curl}(X) =$ $2X \lrcorner T$.

We recall that the vector field X is called an *infinitesimal* symmetry of ψ , if $\mathcal{L}_X \psi = 0$. Then, we have the following proposition.

Proposition 3. Let φ be a coclosed G_2 -structure on M with associated metric g. If (φ, X, λ) is a soliton of the Laplacian coflow, then its full torsion tensor T satisfies

$$\operatorname{div} T = -\frac{1}{2} (\operatorname{curl} X)^{\flat} + X \lrcorner T,$$
$$-\operatorname{Ric} + \frac{1}{2} T \circ T + (\operatorname{tr} T) T = \frac{\lambda}{4} g + \frac{1}{2} \mathcal{L}_X g.$$
$$(2)$$

References

- [1] GRIGORIAN, S. Short-time behaviour of a modified Laplacian coflow of G₂-structures. Adv. Math 248 (2013), 378–415.
- [2] KARIGIANNIS, S., MCKAY, B., AND TSUI, M.-P. Soliton solutions for the Laplacian coflow of some G_2 -structures with symmetry. *Differ*. Geom. Appl. 30 (2012), 318–333.
- [3] LOTAY, J., SÁ EARP, H., AND SAAVEDRA, J. Flows of G_2 -structures on contact calabi-yau 7-manifolds. Annals of Global Analysis and Geometry 62, 2 (2022), 367–389.
- [4] MORENO, A., AND SAAVEDRA, J. On the laplacian coflow of invariant G_2 -structures and its solitons. *arXiv preprint arXiv:2304.14930* (2023).

Agradecimentos

J. Saavedra was supported by the Coordination for the Improvement of Higher Education Personnel-Brazil (CAPES), [88882.329037/2019-1] [88887.648550/2021-00] and now is supported by Serrapilheira project.