On minimal coverings and pairwise generation of some primitive groups

Júlia Almeida ${ }^{1}$ \& Martino Garonzi ${ }^{1}$

${ }^{1}$ Universidade de Brasília - UnB
julia_aredes_almeida@hotmail.com

UnB

1 Introduction

The covering number of a finite noncyclic group G, denoted $\sigma(G)$, is the smallest positive integer \boldsymbol{k} such that \boldsymbol{G} is a union of k proper subgroups. If G is 2 -generated, the generating graph of G is the simple graph whose vertices are the elements of G and two vertices are connected by an edge if together they generate G. A clique of a simple graph is a complete subgraph and its clique number is the maximal size of a clique. We denote by $\omega(\boldsymbol{G})$ the clique number of the generating graph of G, in other words $\omega(G)$ is the maximal size of a subset S of G with the property that $\langle x, y\rangle=G$ whenever $\boldsymbol{x}, \boldsymbol{y} \in \boldsymbol{S}$ and $\boldsymbol{x} \neq \boldsymbol{y}$. Since any proper subgroup of G can contain at most one element of such a set S, we have $\omega(G) \leqslant \sigma(G)$. It is very natural to ask whether equality occurs for some families of groups, at least asymptotically.
An example of equality is:

$$
\sigma\left(S_{n}\right)=\omega\left(S_{n}\right)=2^{n-1}
$$

for all odd $n \geqslant 17$ and $n \in\{7,11,13\}$.

2 Main Results

Let $\boldsymbol{G}=G_{n, m}$ be the semidirect product $A_{n}^{m} \rtimes\langle\gamma\rangle$ where $\gamma=(1, \ldots, 1, \tau) \delta \in S_{n}$ < S_{m}, with $\tau=\left(\begin{array}{ll}1 & 2\end{array}\right)$ and $\delta=(1 \ldots m)$. If $x_{1}, \ldots, x_{m} \in A_{n}$, we have $\left(x_{1}, \ldots, x_{m}\right)^{\gamma}=\left(x_{m}^{\tau}, x_{1}, \ldots, x_{m-1}\right)$.
We establish the following result, generalizing the main result of [3] about $\sigma\left(S_{n}\right)$, which corresponds to the case $m=$ 1.

Theorem 1 (J. Almeida, M. Garonzi). Let $G=G_{n, m}$, for $n \geqslant 30$ divisible by 6 and $m \geqslant 2$. Denote by $\alpha(x)$ the number of distinct prime factors of the positive integer \boldsymbol{x}. Then

$$
\sigma(G)=\alpha(2 m)+\left(\frac{1}{2}\binom{n}{n / 2}\right)^{m}+\sum_{i=1}^{n / 3-1}\binom{n}{i}^{m}
$$

Moreover, \boldsymbol{G} has a unique minimal covering consisting of maximal subgroups.
We also prove that:
Theorem 2 (J. Almeida, M. Garonzi). Set $G:=G_{n, m}$. For fixed $m \geqslant 2, \omega(G)$ is asymptotically equal to

$$
\left(\frac{1}{2}\binom{n}{n / 2}\right)^{m}
$$

for $n \rightarrow \infty, n$ even, and $\omega(G) / \sigma(G)$ tends to 1 as $n \rightarrow \infty, n$ even.

3 Strategy of the proof

3.1 The covering when $m=1$

In this case $G=S_{n}$. If $n \geqslant 30$ and n is divisible by 6, the collection \mathcal{C}_{n} that consist of all maximal subgroups of S_{n} isomorphic to one of the following: $S_{n / 2}$ 〕 S_{2}, A_{n}, or $S_{i} \times S_{n-i}, i=1, \ldots, n / 3-1$, is a cover of the elements of \boldsymbol{S}_{n}. To prove this, consider an element $\boldsymbol{g} \in \boldsymbol{S}_{n}$. If \boldsymbol{g} is an n-cycle, then \boldsymbol{g} preserves a decomposition of $\{1, \ldots, n\}$ into two sets of size $n / 2$, and hence \boldsymbol{g} is contained in a subgroup isomorphic to $S_{n / 2}$ 乙 S_{2}.

If \boldsymbol{g} has cycle structure $(\boldsymbol{j}, \boldsymbol{n}-\boldsymbol{j})$ for some $1 \leqslant j \leqslant$ $n / 2$, then \boldsymbol{g} is contained in \boldsymbol{A}_{n}. If \boldsymbol{g} fixes any element in $\{1, \ldots, n\}$, then g is contained in a subgroup isomorphic to S_{n-1}. If the cycle structure of \boldsymbol{g} contains an \boldsymbol{i}-cycle, where
$2 \leqslant i \leqslant n / 3-1$, then g is contained in a subgroup isomorphic to $S_{i} \times S_{n-i}$. Finally, if g has cycle structure $(n / 3, n / 3, n / 3)$, then since $n / 3$ is even, g stabilizes a decomposition of $\{1, \ldots, n\}$ into two sets of size $n / 2$ and is contained in a subgroup isomorphic $S_{n / 2} \backslash S_{2}$.
The size of collection \mathcal{C}_{n} is: $1+\frac{1}{2}\binom{n}{n / 2}+\sum_{i=1}^{n / 3-1}\binom{n}{i}$.

3.2 The covering when $m=2$

In this case $G=A_{n}^{2} \rtimes\langle\gamma\rangle$. If $n \geqslant 30$ and n is divisible by 6, the collection \mathcal{C} that consist of all maximal subgroups of G isomorphic to one of the following: $\boldsymbol{H}=\boldsymbol{N}_{G}\left(M \times M^{a}\right)$, where $a \in A_{n}$ and $N_{S_{n}}(M) \cong S_{n / 2}$ < S_{2} or $N_{S_{n}}(M) \cong$ $S_{i} \times S_{n-i}, i=1, \ldots, n / 3-1$, or $\boldsymbol{H}=A_{n}^{2} \rtimes\left\langle\gamma^{2}\right\rangle$, is a cover of the elements of \boldsymbol{G}. To prove this, consider an element $g=(x, y) \gamma^{k} \in G$ where $x, y \in A_{n}, k \in\{0,1,2,3\}$. If $k=0$ or 2 , then g belongs to $A_{n}^{2} \rtimes\left\langle\gamma^{2}\right\rangle$. Since $\langle\boldsymbol{g}\rangle=\left\langle\boldsymbol{g}^{-1}\right\rangle$, we can assume that $\boldsymbol{k}=1$. Since \mathcal{C}_{n} is a covering of S_{n}, there exists $M \in \mathcal{C}_{n}$ such that the odd permutation $x y \tau$ belongs to $N_{S_{n}}(M)$ and $\boldsymbol{H}=N_{G}\left(M \times M^{x}\right)$ is a member of \mathcal{C} containing \boldsymbol{g}.
If $\boldsymbol{H}=N_{G}\left(M \times M^{a}\right), \boldsymbol{H}$ is a maximal subgroup of \boldsymbol{G} supplementing the socle $\boldsymbol{N}=\boldsymbol{A}_{n}^{2}$ of \boldsymbol{G}, and $\boldsymbol{H} \cap \boldsymbol{N}$ is conjugate to M^{2} in N. It follows that $|\boldsymbol{H}|=|G / N||H \cap N|=$ $4 \cdot|\boldsymbol{M}|^{2}$ and \boldsymbol{H} has $|\boldsymbol{G}: \boldsymbol{H}|=\left|\boldsymbol{A}_{n}: \boldsymbol{M}\right|^{2}$ conjugates in \boldsymbol{G}. Therefore, the size of \mathcal{C} equals $1+\left(\frac{1}{2}\binom{n}{n / 2}\right)^{2}+\sum_{i=1}^{n / 3-1}\binom{n}{i}^{2}$.
3.3 Generation when $m=2$

In this case $G=A_{n}^{2} \rtimes\langle\gamma\rangle$. If n is even, we define $\mathcal{N}=\left\{N_{G}\left(M \times M^{a}\right): M \in \mathcal{F}\right\}$, where \mathcal{F} is the family of maximal imprimitive subgroups of \boldsymbol{A}_{n} with 2 blocks, $\left(S_{n / 2} \backslash S_{2}\right) \cap A_{n}$, and $\boldsymbol{a} \in \boldsymbol{A}_{n}$. Let \boldsymbol{B} be the set of \boldsymbol{n} cycles in S_{n} and let Π be the set of elements of G of the form $(x, y) \gamma$ with the property that $\boldsymbol{x} \boldsymbol{y} \tau \in \boldsymbol{B}$. For $\boldsymbol{H} \in \mathcal{N}$ define $\boldsymbol{C}(\boldsymbol{H})=\Pi \cap \boldsymbol{H}$. Using the Lovász Local Lemma, proved by Erdös and Lovász, which is a probabilistic result, we show that there exists a choice of $\boldsymbol{g}_{\boldsymbol{H}}$ in each $\boldsymbol{C}(\boldsymbol{H})$, $\boldsymbol{H} \in \mathcal{N}$, with the property that $\left\langle g_{H_{1}}, g_{H_{2}}\right\rangle=\boldsymbol{G}$ for all $\boldsymbol{H}_{1} \neq \boldsymbol{H}_{2}$ in \mathcal{N}, therefore these elements form a clique of the generating graph of G, in other words $\omega(G) \geqslant|\mathcal{N}|$.

Referências

[1]J. Almeida, M. Garonzi, On minimal coverings and pairwise generation of some primitive groups of wreath product type. doi: $10.1142 / \mathrm{S} 0219498824501883$. The complete work is available at arXiv:2301.03691.
[2]F. Fumagalli, M. Garonzi, A. Maróti. "On the maximal number of elements pairwise generating the symmetric group of even degree." Discrete Mathematics, Volume 345, Issue 4, (2022), 112776.
[3]E. Swartz. "On the Covering Number of Symmetric Groups Having Degree Divisible by Six." Discrete Math. 339:11 (2016), 2593-2604.

Acknowledgements

The authors acknowledge the support of Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and UnB.

