On minimal coverings and pairwise generation of some primitive groups

Júlia Almeida¹ & Martino Garonzi¹ ¹Universidade de Brasília - UnB

julia_aredes_almeida@hotmail.com

Introduction

The covering number of a finite noncyclic group G, denoted $\sigma(G)$, is the smallest positive integer k such that G is a union of k proper subgroups. If G is 2-generated, the generating graph of G is the simple graph whose vertices are the elements of G and two vertices are connected by an edge if together they generate G. A clique of a simple graph is a $2 \leqslant i \leqslant n/3 - 1$, then g is contained in a subgroup isomorphic to $S_i \times S_{n-i}$. Finally, if g has cycle structure (n/3, n/3, n/3), then since n/3 is even, g stabilizes a decomposition of $\{1, \ldots, n\}$ into two sets of size n/2 and is contained in a subgroup isomorphic $S_{n/2} \wr S_2$. The size of collection C_n is: $1 + \frac{1}{2} \binom{n}{n/2} + \sum_{i=1}^{n/3-1} \binom{n}{i}$.

complete subgraph and its clique number is the maximal size of a clique. We denote by $\omega(G)$ the clique number of the generating graph of G, in other words $\omega(G)$ is the maximal size of a subset S of G with the property that $\langle x, y \rangle = G$ whenever $x, y \in S$ and $x \neq y$. Since any proper subgroup of G can contain at most one element of such a set S, we have $\omega(G) \leq \sigma(G)$. It is very natural to ask whether equality occurs for some families of groups, at least asymptotically. An example of equality is:

$$\sigma(S_n)=\omega(S_n)=2^{n-1},$$

for all odd $n \ge 17$ and $n \in \{7, 11, 13\}$.

Main Results 2

Let $G = G_{n,m}$ be the semidirect product $A_n^m \rtimes \langle \gamma \rangle$ where $\gamma = (1, \ldots, 1, \tau) \delta \in S_n \wr S_m$, with $\tau = (1 \ 2)$ and $\delta = (1 \dots m)$. If $x_1, \dots, x_m \in A_n$, we have $(x_1,\ldots,x_m)^{\gamma} = (x_m{}^{\tau},x_1,\ldots,x_{m-1}).$

We establish the following result, generalizing the main result of [3] about $\sigma(S_n)$, which corresponds to the case m =1.

The covering when m=23.2

In this case $G = A_n^2 \rtimes \langle \gamma \rangle$. If $n \ge 30$ and n is divisible by 6, the collection \mathcal{C} that consist of all maximal subgroups of Gisomorphic to one of the following: $H = N_G(M \times M^a)$, where $a \in A_n$ and $N_{S_n}(M) \cong S_{n/2} \wr S_2$ or $N_{S_n}(M) \cong$ $S_i imes S_{n-i}, i = 1, \ldots, n/3 - 1$, or $H = A_n^2 imes \langle \gamma^2
angle$, is a cover of the elements of G. To prove this, consider an element $g = (x, y)\gamma^k \in G$ where $x, y \in A_n, k \in \{0, 1, 2, 3\}$. If k = 0 or 2, then g belongs to $A_n^2 \rtimes \langle \gamma^2 \rangle$. Since $\langle g \rangle = \langle g^{-1} \rangle$, we can assume that k = 1. Since \mathcal{C}_n is a covering of S_n , there exists $M \in \mathcal{C}_n$ such that the odd permutation $xy\tau$ belongs to $N_{S_n}(M)$ and $H = N_G(M \times M^x)$ is a member of \mathcal{C} containing g. If $H = N_G(M \times M^a)$, H is a maximal subgroup of G

supplementing the socle $N = A_n^2$ of G, and $H \cap N$ is conjugate to M^2 in N. It follows that $|H| = |G/N||H \cap N| =$ $4 \cdot |M|^2$ and H has $|G:H| = |A_n:M|^2$ conjugates in G. Therefore, the size of C equals $1 + \left(\frac{1}{2}\binom{n}{n/2}\right)^2 + \sum_{i=1}^{n/3-1} \binom{n}{i}^2$.

Generation when m=23.3

Theorem 1 (J. Almeida, M. Garonzi). Let $G = G_{n,m}$, for $n \ge 30$ divisible by 6 and $m \ge 2$. Denote by $\alpha(x)$ the number of distinct prime factors of the positive integer x. Then

$$\sigma(G)=lpha(2m)+\left(rac{1}{2}inom{n}{n/2}
ight)^m+\sum_{i=1}^{n/3-1}inom{n}{i}^m.$$

Moreover, G has a unique minimal covering consisting of maximal subgroups.

We also prove that:

Theorem 2 (J. Almeida, M. Garonzi). Set $G := G_{n,m}$. For fixed $m \ge 2$, $\omega(G)$ is asymptotically equal to

$$\left(rac{1}{2}inom{n}{n/2}
ight)^m$$

for $n \to \infty$, n even, and $\omega(G)/\sigma(G)$ tends to 1 as $n \to \infty$, *n* even.

Strategy of the proof 3

In this case $G = A_n^2 \rtimes \langle \gamma \rangle$. If *n* is even, we define $\mathcal{N} = \{N_G(M \times M^a) : M \in \mathcal{F}\}$, where \mathcal{F} is the family of maximal imprimitive subgroups of A_n with 2 blocks, $(S_{n/2} \wr S_2) \cap A_n$, and $a \in A_n$. Let B be the set of ncycles in S_n and let Π be the set of elements of G of the form $(x,y)\gamma$ with the property that $xy\tau \in B$. For $H \in \mathcal{N}$ define $C(H) = \Pi \cap H$. Using the Lovász Local Lemma, proved by Erdös and Lovász, which is a probabilistic result, we show that there exists a choice of g_H in each C(H), $H \in \mathcal{N}$, with the property that $\langle g_{H_1}, g_{H_2} \rangle = G$ for all $H_1 \neq H_2$ in \mathcal{N} , therefore these elements form a clique of the generating graph of G, in other words $\omega(G) \ge |\mathcal{N}|$.

Referências

3.1 The covering when m = 1

In this case $G = S_n$. If $n \ge 30$ and n is divisible by 6, the collection \mathcal{C}_n that consist of all maximal subgroups of S_n isomorphic to one of the following: $S_{n/2} \wr S_2, A_n$, or $S_i \times S_{n-i}, i = 1, \ldots, n/3 - 1$, is a cover of the elements of S_n . To prove this, consider an element $g \in S_n$. If g is an *n*-cycle, then *g* preserves a decomposition of $\{1, \ldots, n\}$ into two sets of size n/2, and hence g is contained in a subgroup isomorphic to $S_{n/2} \wr S_2$.

If g has cycle structure (j, n - j) for some $1 \leq j \leq j$ n/2, then g is contained in A_n . If g fixes any element in $\{1, \ldots, n\}$, then g is contained in a subgroup isomorphic to S_{n-1} . If the cycle structure of g contains an *i*-cycle, where

- [1] J. Almeida, M. Garonzi, On minimal coverings and pairwise generation of some primitive groups of wreath product type. doi: 10.1142/S0219498824501883. The complete work is available at arXiv:2301.03691.
- [2] F. Fumagalli, M. Garonzi, A. Maróti. "On the maximal number of elements pairwise generating the symmetric group of even degree." Discrete Mathematics, Volume 345, Issue 4, (2022), 112776.
- [3] E. Swartz. "On the Covering Number of Symmetric Groups Having Degree Divisible by Six." Discrete Math. 339:11 (2016), 2593–2604.

Acknowledgements

The authors acknowledge the support of Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and UnB.