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SETTING OF THE PROBLEM

One of the main interest in control theory is to understand how some
feedback mechanism acts in the asymptotic behavior for water waves
systems which are modeled by PDEs.

Here, we deal with the stabilization problem for two dispersive systems
with localized damping and delay terms posed on a bounded domain
Ω = (0, L) × (0, L) ⊂ R2:
1. The Kawahara-Kadomtsev-Petviashvili (K-KP-II) equation deduced

in [3, 4]
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2. Motivated by [1] we study the so-called µi-system
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where µ1 > µ2 are positive real numbers.
Here, h > 0 is the time delay, α > 0, γ > 0 and β < 0
are real constants. Additionally, define the operator ∂−1

x as follows
∂−1
x φ(x, y, t) = ψ(x, y, t) such that ψ(L, y, t) = 0 and
∂xψ(x, y, t) = φ(x, y, t) and let us consider the following assumption
Assumption 1. Consider a, b ∈ L∞(Ω) non-negative real functions.
Moreover, a(x, y) ≥ a0 > 0 a.e. in a nonempty open subset ω ⊂ Ω.

Both systems (1) and (2) are equipped with boundary conditions
u(0, y, t) = u(L, y, t) = 0, y ∈ (0, L),

∂xu(L, y, t) = ∂xu(0, y, t) = 0, y ∈ (0, L),

∂2
xu(L, y, t) = 0, y ∈ (0, L),

u(x, L, t) = u(x, 0, t) = 0, x ∈ (0, L)

(3)

and initial data{
u(x, y, 0) = u0(x, y),

u(x, y, t) = z0(x, y, t), t ∈ (−h, 0).
(4)

The energy associated to (1) and (2) with boundary conditions (3) are
given respectively by
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where ξ > 0 satisfies

hµ2 < ξ < h(2µ1 − µ2). (7)

We are mainly concerned to solve the next question: Does Eu(t) → 0
as t → ∞? If it is the case, can we give the decay rate?

STABILIZATION RESULTS

Throughout this section, we assume that Assumption 1 is satisfied.
Theorem 1 (Optimal local stabilization). Let L > 0, ξ > 1, 0 < µ < 1
and T0 given by
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. Then, there exists δ > 0, r > 0, C > 0 and

γ, depending on Tmin, ξ, L, h, such that if ∥b∥∞ ≤ δ, then for every
(u0, z0) ∈ H = L2(Ω)×L2(Ω×(0, 1)) satisfying ∥(u0, z0)∥H ≤ r,
the energy (5) satisfies

Eu(t) ≤ Ce−γtEu(0), for all t > Tmin.

Theorem 2 (Local stabilization). Let L > 0. Assume that (7) holds and
β < − 1
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such that for every (u0, z0(·, ·,−h(·))) ∈ H satisfying
∥(u0, z0(·, ·,−h(·)))∥H ≤ r, the energy defined in (6) decays

exponentially. More precisely, there exists two positives constants θ and
κ such that Eu(t) ≤ κEu(0)e

−2θt for all t > 0. Here,
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,

κ = 1 + max{2ηL, σ}
and η and σ are positive constants such that
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Theorem 3 (Global stabilization). Suppose that µ1 > µ2 satisfies (7). Let
R > 0, then there exists C = C(R) > 0 and ν = ν(R) > 0 such
that Eu, defined in (6) decays exponentially as t tends to infinity, when
∥(u0, z0)∥H ≤ R.

BRIEF RESUME OF THE PROOFS

• The well-posedness of the systems (1) and (2) are obtained using
semigroup theory. Specifically, since the energy is not decreasing we use
a perturbation argument to be able to use the Lummer-Phillips theorem
and then a classical application of the Banach fixed point theorem
guarantees the result. On the other hand, the regularity of the solutions
follows from a standard application of the Morawetz multipliers.

• Theorems 1 and 2 are obtained choosing a suitable functional that
is equivalent to the energy and therefore applying the Gronwall’s
inequality. We point up that the result is first obtained for 0 < t < T
and then extended for every t > 0 using a boot-strap and induction
arguments.

• Theorem 3 follows from the classical compactness uniqueness argument
wich reduces our problem to prove an observability inequality and
removes the hypotheses that the initial data are small enough.

MAIN REMARKS

• We highlight two important aspects for the Lyapunov’s method:
1. Due to nature of the nonlinearity we are able to apply directly for the

nonlinear system
2. It is possible to give an explicit (and optimal) decay rate, however, the

initial data needs to be sufficiently small.
• In comparison with the one-dimensional version analyzed in [1], the

absence of the drift term ux allow us to get stabilization results without
restriction on the length of the spatial domain.

• With a slightly different estimate we can obtain another result for
exponential stability without restriction in the parameter β but with
restriction in the length L of the domain.

Theorem 4 (Local stabilization-bis). Let 0 < L < 4

√
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C
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that a(x, y) ∈ L∞(Ω) is a non-negative function and that the relation
(7) holds. Then, there exists 0 < r <
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such that for every
(u0, z0(·, ·,−h(·))) ∈ H satisfying ∥(u0, z0(·, ·,−h(·)))∥H ≤ r,
the energy defined in (6) decays exponentially. More precisely, there
exists two positives constants θ andκ such thatEu(t) ≤ κEu(0)e

−2θt

for all t > 0, where θ, κ, η and σ are positive constants defined as in
Theorem 2.

• It is possible to take a time-varying delay u(x, y, t − h(t)) for h(t)
a suitable real function and obtain asymptotic behavior results for 0 <
t < T using the Lyapunov’s approach, however, the extension to t > 0
is still an open problem.

This work contain recent results presented in [2] and is part of the Ph.D.
thesis of Muñoz at the Department of Mathematics of the Universidade
Federal de Pernambuco.
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