Lefschetz properties and the Togliatti Surface Janaíne Martins Universidade Federal de Minas Gerais janainemastins33@gmail.com

Abstract

This work aims to present the Togliatti Surface, the first to relate the existence of non-homogeneous Artinian ideals that fail the Weak Lefschetz Property to the existence of projective varieties that satisfy at least one Laplace equation.

Laplace Equations

Let \mathcal{X} be a quasi-projective variety of dimension n contained in \mathbb{P}^{N} , and

Theorem: Let $I \subset R$ be an artinian ideal generated by r homogeneous polynomials F_1, \cdots, F_r of degree d, and let I^{-1} be a Macaulay inverse system. If $r \geq \binom{n+d-1}{n-1}$, the following statements are equivalent: 1. The ideal I fails the Weak Lefschetz Property (WLP) in degree d - 1.

- 2. On a general hyperplane $\mathbf{H} \subset \mathbb{P}^n$, the homogeneous forms are κ linearly independent.
- 3. Given a rational map $\varphi : \mathbb{P}^n \dashrightarrow \mathbb{P}^{\binom{n+d}{d}-r-1}$ associated with $(I^{-1})_d$, the variety $\mathcal{X} = \overline{\mathrm{Im}(\varphi)}$, of dimension n, satisfies at least one Laplace equation of order d-1.

let \boldsymbol{x} be a smooth point on $\boldsymbol{\mathcal{X}}$. We can choose a system of \boldsymbol{N} affine coordinates around \boldsymbol{x} , together with a local parameterization $\boldsymbol{\mathcal{U}}$ of \boldsymbol{x} , such that $f: \Delta \to \mathcal{U}$, where Δ is a multidisk. This allows us to define the tangent space $T_x(\mathcal{X})$ as a vector space generated by the *n* linearly independent vectors associated with the affine coordinates. Additionally, we can define the osculating space $T^s_x(\mathcal{X})$ as the space spanned by all partial derivatives of order less than or equal to \boldsymbol{s} .

Although the expected dimension of $T^s_x(\mathcal{X})$ is given by $\binom{n+s}{s} -1$, in general, the dimension is $\dim(T_r^{(s)}(\mathcal{X}))$ is less than or equal to this value. If, for all smooth points on \mathcal{X} , the actual dimension of $T^s_x(X)$ is strictly less than $\binom{n+s}{s} - 1 - \delta$ for some δ , we say that \mathcal{X} satisfies δ Laplace equations of order \boldsymbol{s} .

Example: The Togliatti surface \mathcal{X} is given by the closure of the image of the projection map:

> $arphi:\mathbb{P}^2\dashrightarrow\mathbb{P}^5$ $(x:y:z) \mapsto (x^2y:x^2z:xy^2:xz^2:y^2z:yz^2).$

We will see that $\boldsymbol{\mathcal{X}}$ satisfies a Laplace equation of order 2 given by:

$$x^2rac{\partial^2 arphi}{\partial x^2} - xyrac{\partial^2 arphi}{\partial x \partial y} - xzrac{\partial^2 arphi}{\partial x \partial z} + y^2rac{\partial^2 arphi}{\partial y^2} - yzrac{\partial^2 arphi}{\partial y \partial z} + z^2rac{\partial^2 arphi}{\partial z^2} = 0$$

Weak Lefschetz Property

Proof: See [3, Theorem 3.2].

Togliatti Systems

- Let $I \subset R = \kappa[x_0, \cdots, x_n]$ be an Artinian ideal generated by r forms, with $r \leq \binom{n+d-1}{n-1}$. We define:
- 1. I is a Togliatti system if it satisfies one, and consequently all three, conditions of the above Theorem;
- 2. *I* is a monomial Togliatti system if it can be generated by monomials;
- 3. I is a smooth Togliatti system if the variety \mathcal{X} is smooth;
- 4. *I* is a minimal Togliatti system if no proper subset of the set of generators defines a Togliatti system.

Let $I \subset R = \kappa[x_0, \cdots, x_n]$ be a monomial Artinian ideal generated by monomials of degree d, and let I^{-1} be the Macaulay inverse system. We denote by Δ_n the *n*-dimensional standard simplex in the lattice \mathbb{Z}^{n+1} . We consider $d\Delta_n$ and define the polytope P_I as the convex hull of a finite subset $A_I \subset \mathbb{Z}^{n+1}$ corresponding to the monomials of degree d in I^{-1} .

Proposition: Let $I \subset R = \kappa[x_0, \cdots, x_n]$ be a monomial Artinian ideal generated by r monomials of degree d. Assume $r \leq \binom{n+d-1}{n-1}$. Then, **I** is a Togliatti system if and only if there exists a hypersurface of degree d-1 containing $A_I \subset \mathbb{Z}^{n+1}$. Moreover, I is a minimal Togliatti system if and only if any other hypersurface F does not contain an integral point of $d\Delta_n$ except possibly at the vertices of $d\Delta_n$. Proof: See [2, Proposition 3.4].

Consider the ring $\mathbf{R} = \kappa[\mathbf{x}_0, \cdots, \mathbf{x}_n]$, where κ is an algebraically closed field of characteristic 0, and let $A = \bigoplus A_i$ be a κ -algebra. We define the

Hilbert function as $\operatorname{Hilb}(A)(i) = \dim^{i=0} A_i$. If A is an Artinian algebra, the Hilbert function has a finite number of nonzero entries and is commonly referred to as the Hilbert vector of the algebra, denoted by h(A).

Let A be a standard graded algebra. We say that such an algebra has the Weak Lefschetz Property (WLP) if there exists a linear form L in Asuch that, for every integer i, the multiplicative map $\times L : A_i \to A_{i+1}$. It has maximum rank, that is, it is surjective or injective. In this case, we say that the linear map L is called a Lefschetz element of A.

Example: Consider the ring $\mathbf{R} = \kappa[x, y, z]$, the ideal $\mathbf{I} =$ (x^3, y^3, z^3, xyz) , the linear form L = ax + by + cz, and A = R/I. The Hilbert vector of A is: h(A) = (1, 3, 6, 6, 3). Note that a possible fail in the WLP lies in the map $\times L : A_2 \rightarrow A_3$. Note that, in fact, there exists a nontrivial element in the kernel of $\times L$, which is $f = a^2x^2 + b^2y^2 + c^2z^2 + abxy + acxz + bcyz$. Therefore, the map does not have maximum rank and, consequently, A fails the WLP.

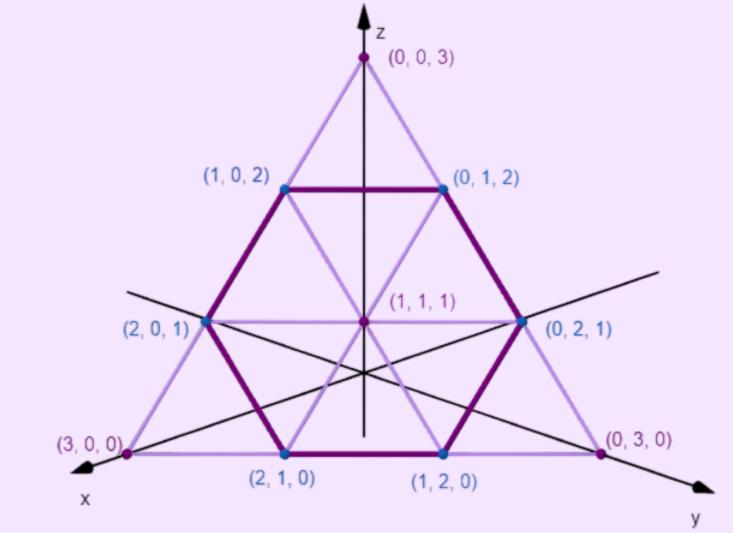
Macaulay's Inverse System

Let
$$V$$
 be a κ -vector space of dimension $n+1$, and let $R = \bigoplus_{i \ge 0} \operatorname{Sym}^i V^*$
and $Q = \bigoplus \operatorname{Sym}^i V$ Consider x_0, \dots, x_n and X_0, \dots, X_n as dual

Example: Let $\mathbf{R} = \kappa[\mathbf{x}, \mathbf{y}, \mathbf{z}]$. Consider the Artinian ideal $\mathbf{I} \subset \mathbf{R}$ with $I = (x^3, y^3, z^3, xyz)$. Also, let $I^{-1} = (x^2y, x^2z, xy^2, xz^2, y^2z, yz^2)$ its Macaulay inverse system and $A_I \subset \mathbb{Z}^3$ given by $A_I = \{(2,1,0), (2,0,1), (1,2,0)(1,0,2), (0,2,1), (0,1,2)\}.$ We have

$$3 riangle_2 = A_I \cup \{(3,0,0), (0,3,0), (0,0,3), (1,1,1).$$

and thus we construct P_I , the polytope associated with the Togliatti system I



bases of V^* and V, respectively. Thus, we can express R and Q as $R = \kappa[x_0, \cdots, x_n]$ and $Q = \kappa[X_0, \cdots, X_n]$. In this way, the following action guarantees the existence of the product that gives R the structure of a Q-module:

$$egin{aligned} \operatorname{Sym}^i V \otimes \operatorname{Sym}^j V^* & o \operatorname{Sym}^{j-i} V\ lpha \otimes f & lpha(f). \end{aligned}$$

Let $I \subset Q$ be a homogeneous ideal. We define $I^{-1} := \{f \in R \}$ $\alpha(f) = 0$, for all α } as the Macaulay inverse system of I. Such I^{-1} is also a Q-submodule of R that inherits the grading of R.

Let $I \subset Q$ be a homogeneous ideal and $I^{-1} \subset R$ be a Macaulay inverse system. Consider a positive integer k and assume that $\dim I_k = r > 0$, where $I_k = \langle F_1, \cdots, F_r \rangle$.

Associated with the linear system $|I_k^{-1}|$ of dimension $N = \binom{n+k}{k} - \frac{n}{k}$ r-1, we have the rational map φ_k : $\mathbb{P}^n \dashrightarrow \mathbb{P}^N$ whose closure of the image, $\mathcal{X}_k = \overline{\varphi_{(I^{-1})_t}(\mathbb{P}^n)} \subset \mathbb{P}^N$, is the projection of the Veronese variety V(k, n), of dimension n, from the linear system $I_k = \langle F_1, \cdots, F_r
angle \subset \mid \mathcal{O}_{\mathbb{P}^n}(k) \mid_{\cdot}$

References

- [1] Charles Almeida, Aline V Andrade, and Rosa M Miró-Roig. Gaps in the number of generators of monomial togliatti systems. Journal of Pure and Applied Algebra, 223(4):1817–1831, 2019.
- [2] Emilia Mezzetti and Rosa M Miró-Roig. The minimal number of generators of a togliatti system. Annali di Matematica Pura ed Applicata (1923-), 195(6):2077-2098, 2016.
- [3] Emilia Mezzetti, Rosa M Miró-Roig, and Giorgio Ottaviani. Laplace equations and the weak lefschetz property. Canadian Journal of Mathematics, 65(3):634-654, 2013.
- [4] Mateusz Michałek and Rosa M Miró-Roig. Smooth monomial togliatti systems of cubics. Journal of Combinatorial Theory, Series A, 143:66–87, 2016.
- [5] Eugenio G. Togliatti. Alcuni esempî di superficie algebriche degli iperspazî che rappresentano un' equazione di Laplace. Comment. Math. Helv., 1(1):255–272, 1929.