The Wecken property for n-valued maps of \mathbb{S}^{2}

Janaina de Santana Santos
Advisor: Prof. Dr. Daciberg Lima Gonçalves
Universidade de São Paulo (USP)

js.santos@ime.usp.br

dlgoncal@ime.usp.br

Introduction

An n-valued map $\phi: X \multimap Y$ is a continuous multivalued function that associates to each $x \in X$ an unordered subset of exactly n point of Y
Given an n-valued map $\phi: X \multimap Y$, there is a natural association with a single-valued map $\Phi: X \longrightarrow D_{n}(Y)$ so, the set of homotopy classes of n-valued maps from X to Y metric spaces is in one-to-one correspondence with the set $\left[X, D_{n}(Y)\right]$ of homotopy classes of maps from X to $D_{n}(Y)$. We say that ϕ is split if there are single-valued maps $f_{1}, \ldots, f_{n}: X \longrightarrow Y$ such that $\phi(x)=\left\{f_{1}(x), \ldots, f_{n}(x)\right\}$ for all $x \in X$. In this case, we can associate ϕ with a single val ued map $\hat{\Phi}: X \longrightarrow F_{n}(Y)$. It is well known that $\pi_{1}\left(D_{n}(Y)\right.$ is the braid group $B_{n}(Y)$ and $\pi_{1}\left(F_{n}(Y)\right)$ is the pure braid group $P_{n}(Y)$. Recall that $\pi: F_{n}(Y) \longrightarrow D_{n}(Y)$ is an $n!$-fold covering space, then $\pi_{k}\left(F_{n}(Y)\right) \cong \pi_{k}\left(D_{n}(Y)\right)$ for $k \geq 2$. A space X is Wecken for n-valued maps if every n-valued map $\phi: X \multimap X$ has the Wecken property i.e. there ex ists an n-valued map $\psi: X \multimap X$ homotopic to ϕ that has exactly $N(\phi)$ fixed points, where $N(\phi)$ stands for Nielsen number of ϕ. If $n=1$, it was proved that the surfaces with non-negative Euler characteristic are all Wecken, so \mathbb{S}^{2} is Wecken for single valued-maps. Recall that for a single valued map $f: \mathbb{S}^{2} \rightarrow \mathbb{S}^{2}$, if $L(f) \neq 0$ thus $N(f)=1$ and if $L(f)=0$ thus $N(f)=0$, where $L(f)$ is the Lefschetz index of f given by $L(f)=1+\operatorname{deg}(f)$.
In this work, we will verify that the Wecken property holds for n-valued maps of \mathbb{S}^{2} when $n \geq 2$. We firstly present this proof analysing the case $n>2$, followed by the case $n=2$. The author acknowledge the financial support given by CAPES.

The case $n>2$

With the purpose of classifiyng the homotopy classes of n valued maps of \mathbb{S}^{2}, we must consider the following result ([2], Theorem 3.1):
Theorem 1. (Splitting Characterization Theorem) Let ϕ $X \multimap Y$ a n-valued map, where X is connected and lo cally path-connected. Then ϕ is split if and only if the image of $\Phi_{\#}: \pi_{1}(X) \longrightarrow B_{n}(Y)$ is contained in the image of the homomorphism $\pi_{\#}: P_{n}(Y) \longrightarrow B_{n}(Y)$ induced by the projection $\pi: F_{n}(Y) \longrightarrow D_{n}(Y)$. In particular, if X is simply connected, then all n-valued maps $\phi: X \longrightarrow Y$ are split.
So for every n-valued map $\phi: \mathbb{S}^{2} \multimap \mathbb{S}^{2}$ there are singlevalued maps $f_{0}, \ldots, f_{n}: \mathbb{S}^{2} \longrightarrow \mathbb{S}^{2}$ such that $\phi(x)=$ $\left\{f_{1}(x), \ldots, f_{n}(x)\right\}$. Furthermore, by Schirmer ([5], Corollary 7.2), we have $N(\phi)=N\left(f_{1}\right)+\ldots, N\left(f_{n}\right)$.

Theorem 2. ([5],Corollary 7.2) Let $\phi=\left\{f_{1}, \ldots, f_{n}\right\}: X \longrightarrow$ Y be a split n-valued map, where X is a compact polyhe dron. Then $N(\phi)=N\left(f_{1}\right)+\cdots+N\left(f_{n}\right)$.
Lemma 1. If $n>2$, the set of homotopy classes of n-valued maps of \mathbb{S}^{2} possesses exactly one element.
Proof. It suffices to determine the set $\left[\mathbb{S}^{2}, D_{n}\left(\mathbb{S}^{2}\right)\right]$, which in turn is the orbit space of $\left[\mathbb{S}^{2}, D_{n}\left(\mathbb{S}^{2}\right)\right]_{0} \cong \pi_{2}\left(D_{n}\left(\mathbb{S}^{2}\right)\right.$) under the action of $\pi_{1}\left(D_{n}\left(\mathbb{S}^{2}\right)\right)$. By [4], Proposition 10 (b), for $n>$ 2, the universal covering of $F_{n}\left(\mathbb{S}^{2}\right)$ has the homotopy type of \mathbb{S}^{3}, which implies that $\pi_{2}\left(D_{n}\left(\mathbb{S}^{2}\right)\right) \cong \pi_{2}\left(F_{n}\left(\mathbb{S}^{2}\right)\right) \cong \pi_{2}\left(\mathbb{S}^{3}\right) \cong 1$ so $\left[\mathbb{S}^{2}, D_{n}\left(\mathbb{S}^{2}\right)\right]$ has only one element, which is the class of the constant map.
Proposition 1. The Wecken property holds for n-valued maps of \mathbb{S}^{2} for all $n>2$.
Proof. Let $\phi: \mathbb{S}^{2} \multimap \mathbb{S}^{2}$ an n-valued map with $n>2$ By Lemma 1, ϕ is homotopic to the constant map $x \mapsto$ $\left\{x_{1}, \ldots, x_{n}\right\}$. By Theorem 2, the Nielsen number of a constant map is n, since the constant single-valued map $x \mapsto x$ for $i=1, \ldots, n$ has degree 0 , which implies Lefschetz index 1 and Nielsen number equal to 1 . To complete the proof, it suffices to observe that the constant map has exactly n fixed points, namely x_{1},

The case $n=2$

Lemma 2. If $\phi=\left\{f_{0}, f_{1}\right\}: \mathbb{S}^{2} \multimap \mathbb{S}^{2}$ is a 2 -valued map, then $\operatorname{deg}\left(f_{0}\right)=-\operatorname{deg}\left(f_{1}\right)$.
Proof. Since $f_{0}(x) \neq f_{1}(x)$, for all $x \in \mathbb{S}^{2}$, we can con sider the arc connecting the points $f_{0}(x)$ and $-f_{1}(x)$, so we have a homotopy between f_{0} and $-f_{1}$, and consequently $\operatorname{deg}\left(f_{0}\right)=-\operatorname{deg}\left(f_{1}\right)$
Lemma 2 allows us to define the degree of a 2-valued map $\phi=\left\{f_{0}, f_{1}\right\}: \mathbb{S}^{2} \multimap \mathbb{S}^{2}$ as being $\operatorname{deg}(\phi)=|d|$, where d is either $\operatorname{deg}\left(f_{0}\right)$ or $\operatorname{deg}\left(f_{1}\right)$. The following proposition states
that, as in the case of single-valued maps, the degree of a 2 -valued map defines which class it belongs to.
Proposition 2. Two 2-valued maps $\phi, \psi: \mathbb{S}^{2} \multimap \mathbb{S}^{2}$ are homotopic if and only if $\operatorname{deg}(\phi)=\operatorname{deg}(\psi)$. Thus, the homotopy classes of 2-valued maps of \mathbb{S}^{2} are classified by degree.
Proof. As previously mentioned, the 2 -valued homotopy classes of 2-valued maps of \mathbb{S}^{2} are $\left[\mathbb{S}^{2}, D_{2}\left(\mathbb{S}^{2}\right)\right]$. Notice that the map $f: \mathbb{S}^{2} \rightarrow F_{2}\left(\mathbb{S}^{2}\right)$ given by $f(x)=(x,-x)$ is a homotopy equivalence that is \mathbb{Z}_{2}-equivariant with respect to the action of the antipodal map on \mathbb{S}^{2} and the action on $F_{2}\left(\mathbb{S}^{2}\right)$ given by permutation of coordinates. This gives rise to a homotopy equivalence between the corresponding orbit spaces, namely $\mathbb{R} P^{2}$ and $D_{2}\left(\mathbb{S}^{2}\right)$. Now, given a map $a: \mathbb{S}^{2} \rightarrow \mathbb{R} P^{2}$, it lifts to two maps $\tilde{a},-\tilde{a}: \mathbb{S}^{2} \rightarrow \mathbb{S}^{2}$. Suppose $H: \mathbb{S}^{2} \times[0,1] \rightarrow \mathbb{R} P^{2}$ a homotopy such that $H(\cdot, 0)=a$ and $H(\cdot, 1)=b$, where $b: \mathbb{S}^{2} \rightarrow \mathbb{R} P^{2}$ lifts to $\tilde{b},-\tilde{b}: \mathbb{S}^{2} \rightarrow \mathbb{S}^{2}$. If H is lifted to $\tilde{H}: \mathbb{S}^{2} \times[0,1] \rightarrow \mathbb{S}^{2}$ such that $\tilde{H}(\cdot, 0)=\tilde{a}$, then either $\tilde{H}(\cdot, 0)=\tilde{b}$ or $\tilde{H}(\cdot, 0)=-\tilde{b}$. Since, by the Hopf Classification Theorem, the homotopy classes of single-valued maps of \mathbb{S}^{2} are determined by degree, the homotopy class of a is determined by the natural number $|\operatorname{deg}(\tilde{a})|=|\operatorname{deg}(-\tilde{a})|$.
Now that we know the homotopy classes of 2 -valued maps are classified by degree, to verify the Wecken property for 2 -valued maps of \mathbb{S}^{2}, it suffices to exhibit for each integer d a 2 -valued $\operatorname{map} \phi_{d}: \mathbb{S}^{2} \multimap \mathbb{S}^{2}$ of degree $|d|$ that has $N\left(\phi_{d}\right)$ fixed points. By Theorem 2 and the observations made in section Introduction, $N(\phi)=1$ if $\operatorname{deg}(\phi)=1$ and $N(\phi)=2$, otherwise. For $|d|=0$, we have a constant map $\phi_{0}: \mathbb{S}^{2} \multimap \mathbb{S}^{2}$ with 2 fixed points. For $|d|=1$, consider $\phi_{1}=\{\bar{f},-\bar{f}\}$, where $\bar{f}: \mathbb{S}^{2} \rightarrow \mathbb{S}^{2}$ is a small deformation of $I d_{\mathbb{S}^{2}}$ i.e. \bar{f} satisfies $|x-\bar{f}(x)|<\pi / 2$ for all $x \in \mathbb{S}^{2}$, and which has exactly one fixed point. Such map may be constructed using a vector field on \mathbb{S}^{2} that possesses just one singular point (see for example Figure 1).

Figure 1: Vector field on \mathbb{S}^{2} with only one singular point.

Proposition 3. For each integer d with $|d| \geq 2$, there exists a 2-valued map $\phi_{d}=\left\{f_{0}, f_{1}\right\}$ such that deg $\left(\phi_{d}\right)=|d|$ and ϕ_{d} has $N\left(\phi_{d}\right)=2$ fixed points.
Proof. We start this proof considering the tangent bundle of $\mathbb{S}^{2}, p: T \mathbb{S}^{2} \longrightarrow \mathbb{S}^{2}$, with fibre $T_{x} \approx \mathbb{R}^{2}$ and the normal bundle of $\mathbb{S}^{2}, q: N \mathbb{S}^{2} \longrightarrow \mathbb{S}^{2}$, with fibre $N_{x} \approx \mathbb{R}$ (Figure 2 ilustrates these bundles)

Figure 2: Normal and tangent bundles at $x \in \mathbb{S}^{2}$.

Note that there is a homeomorphism $h: N \mathbb{S}^{2} \oplus T \mathbb{S}^{2} \longrightarrow$ $\mathbb{S}^{2} \times \mathbb{R}^{3}$, given that for all $x \in \mathbb{S}^{2}$, every $y \in \mathbb{R}^{3}$ is uniquely written as a sum $r x+w$, where $\langle w, x\rangle=0$ and $r \in \mathbb{R}$. Furthermore, the Withney sum $N \mathbb{S}^{2} \oplus T \mathbb{S}^{2}$ is a trivial bundle over \mathbb{S}^{2} with fibre $N_{x} \times T_{x} \approx \mathbb{R}^{3}$. Therefore, we can consider the trivial sphere bundle $\bar{p}: S\left(N \mathbb{S}^{2} \oplus T \mathbb{S}^{2}\right) \rightarrow \mathbb{S}^{2}$ and the homeomorphism $h: S\left(N \mathbb{S}^{2} \oplus T \mathbb{S}^{2}\right) \rightarrow \mathbb{S}^{2} \times \mathbb{S}^{2}$. Given a section $s: \mathbb{S}^{2} \longrightarrow S\left(N \mathbb{S}^{2} \oplus T \mathbb{S}^{2}\right)$ it can be associated with a $\operatorname{map} f_{s}: \mathbb{S}^{2} \longrightarrow \mathbb{S}^{2}$, since $\bar{h} \circ s(x) \in\{x\} \times \mathbb{S}^{2}$. Denote each element $((x, r x),(x, w)) \in S\left(N \mathbb{S}^{2} \oplus T \mathbb{S}^{2}\right)$ by $(x,(r, w))$. Note that the constant section $x \mapsto(x,(1, \mathbf{0}))$, where $\mathbf{0} \in T_{x}$ is the zero vector, is associated with the identity map $I d_{\mathbb{S}^{2}}$, since $\bar{h}(x,(1, \mathbf{0}))=(x, 1 \cdot x+\mathbf{0})=(x, x)$. Each element $x \in \mathbb{S}^{2}$
can be written uniquely as $x=(t, u)$, where $-1 \leq t \leq 1$ $u=\left(1-t^{2}\right)^{1 / 2} v$ and $v \in S\left(\mathbb{R}^{2}\right)=\left\{\left(x_{1}, x_{2}, 0\right) \in \mathbb{R}^{3} \mid x_{1}^{2}+x_{2}^{2}=\right.$ 1\}. According to this notation, we define the northern and southern hemispheres of \mathbb{S}^{2}, respectively, by
$S_{+}=\left\{(t, u) \in \mathbb{S}^{2} \mid t \geq 0\right\}$ and $S_{-}=\left\{(t, u) \in \mathbb{S}^{2} \mid t \leq 0\right\}$.
To define the sections s_{0} and s_{1} such that $f_{s_{0}}=f_{0}$ and $f_{s_{1}}=f_{1}$, as in the statement, we still need to choose orthogonal trivializations $\theta_{+}: p^{-1}\left(S_{+}\right) \longrightarrow S_{+} \times \mathbb{R}^{2}$ and $\theta_{-}: p^{-1}\left(S_{-}\right) \longrightarrow S_{-} \times \mathbb{R}^{2}$ such that when we consider \mathbb{R}^{2} as the subspace of \mathbb{R}^{3} generated by $e_{1}=(1,0,0)$ and $e_{2}=(0,1,0)$ we have that θ_{+}preserves the base at the north pole $(1, \mathbf{0})$ and $\theta_{\text {- }}$ preserves the base at the south pole $(-1, \mathbf{0})$ (Figure 3 illustrates an example of pair $\left(\theta_{+}, \theta_{-}\right)$).

Figure 3: In each point, the image of the vector e_{1} is red and the image of vector e_{2} is blue. Extending this continuously we get θ_{+}and θ_{-}

Let $\kappa: S\left(\mathbb{R}^{2}\right) \longrightarrow O\left(\mathbb{R}^{2}\right)$ the clutching map on the equator that satisfies $\kappa(v) \theta_{+}(x) v=\theta_{-}(x) v$ for $v \in S\left(\mathbb{R}^{2}\right)$ where $O\left(\mathbb{R}^{3}\right)$ the orthogonal transformations of \mathbb{R}^{2}. Le $g: S\left(\mathbb{R}^{2}\right) \longrightarrow \mathbb{R}^{2}$ such that $\operatorname{deg}(g)=d+1$. So we define s_{0} and s_{1} as follows: for $v \in S\left(\mathbb{R}^{2}\right), 0 \geq t \geq 1$ and $x=\left(t,\left(1-t^{2}\right)^{1 / 2} v\right)$ let
$\left(1 \oplus \theta_{+}(x)\right) \circ p_{2} \circ s_{0}\left(t,\left(1-t^{2}\right)^{1 / 2} v\right)=\left(t,\left(1-t^{2}\right)^{1 / 2} g(v)\right)$
$\left(1 \oplus \theta_{+}(x)\right) \circ p_{2} \circ s_{1}\left(t,\left(1-t^{2}\right)^{1 / 2} v\right)=\left(-t,-\left(1-t^{2}\right)^{1 / 2} g(v)\right)$ and for $-1 \leq t \leq 0$ let
$\left(1 \oplus \theta_{-}(x)\right) \circ p_{2} \circ s_{0}\left(t,\left(1-t^{2}\right)^{1 / 2} v\right)=\left(t,\left(1-t^{2}\right)^{1 / 2} \kappa(v) g(v)\right)$
$\left(1 \oplus \theta_{-}(x)\right) \circ p_{2} \circ s_{1}\left(t,\left(1-t^{2}\right)^{1 / 2} v\right)=\left(-t,-\left(1-t^{2}\right)^{1 / 2} \kappa(v) g(v)\right)$ where $p_{2}(x,(r, w))=(r, w)$. By construction, $s_{0}(x) \neq s_{1}(x)$ for all $x \in \mathbb{S}^{2}$. Furthermore, $s_{0}(x)=(x,(1, \mathbf{0}))$ if and only i $x=(1, \mathbf{0})$ and $s_{1}(x)=(x,(-1, \mathbf{0}))$ if and only if $x=(-1, \mathbf{0})$ Thus, the north pole $(1,0)$ is the single fixed point of $f_{s_{0}}$ and the south pole is the single fixed point of $f_{s_{1}}$. In a small enough neighborhood of ($1, \mathbf{0}$), the trivialization θ_{+} slightly changes the images of the base elements e_{1} and e_{2}. Then, in this neighborhood, the map $f_{s_{0}}$ can be described in suitable coordinates by the self-map of \mathbb{R}^{2} that takes $r v$, for $r \geq 0$ and $v \in S\left(\mathbb{R}^{2}\right)$, to $r v+r g(v)$ so that its fixed point is $0 \in \mathbb{R}^{2}$. Therefore, the index of $f_{S_{0}}$ is equal to the degree of the map $-g: S\left(\mathbb{R}^{2}\right) \longrightarrow S\left(\mathbb{R}^{2}\right)$, that is $\mathrm{I}\left(f_{s_{0}}\right)=\operatorname{deg}(g)=d+1$. By calculation, the Lefschetz number of $f_{s_{0}}$ is $\mathrm{L}\left(f_{s_{0}}\right)=1+\operatorname{deg}\left(f_{s_{0}}\right)$. Using the Lefschetz-Hopf Theorem we obtain $\operatorname{deg}(g)=1+\operatorname{deg}\left(f_{s_{0}}\right) \Rightarrow \operatorname{deg}\left(f_{s_{0}}\right)=d$ and consequentely $\operatorname{deg}\left(f_{s_{1}}\right)=-d$ by Lemma 2 ; thus $f_{0}=f_{s_{0}}$ and $f_{1}=f_{s_{1}}$ are the maps we are looking for

References

[1] Brown, R. F.; Crabb, M.; Ericksen, A.; Stimpson, M.. The -sphere is Wecken for n-valued maps. Journal of Fixed Points Theory and Applications, 21 no. 2, Art. 55, 6 pp, 2019.
[2] Brown, R. F.; Gonçalves, D. L.. On the topology on n valued maps. Advances in Fixed Point Theory, 8 No 2, 255-258, 2018.
[3] Goncalves, D. L.; Guaschi, J. Fixed points of n-valued maps on surfaces and the Wecken property: a configuration space approach. Science China Mathematics, 60 (9), 1561-1574, 2017
[4] Gonçalves, D. L.; Guaschi, J. The classification of the virtually cyclic subgroups of of the sphere braid groups. SpringerBriefs in Mathematics, 2013.
[5] Schimer, H. An index and Nielsen number for n-valued multifunctions. Fund .Math., 121, 201-219, 1984

