

The Wecken property for *n*-valued maps of \mathbb{S}^2

Janaina de Santana Santos Advisor: Prof. Dr. Daciberg Lima Gonçalves

Universidade de São Paulo (USP) js.santos@ime.usp.br dlgoncal@ime.usp.br

Introduction

An *n*-valued map $\phi : X \multimap Y$ is a continuous multivalued function that associates to each $x \in X$ an unordered subset of exactly n point of Y. Given an *n*-valued map $\phi : X \multimap Y$, there is a natural association with a single-valued map $\Phi : X \longrightarrow D_n(Y)$, so, the set of homotopy classes of n-valued maps from Xto Y metric spaces is in one-to-one correspondence with the set $[X, D_n(Y)]$ of homotopy classes of maps from X to $D_n(Y)$. We say that ϕ is *split* if there are single-valued maps $f_1, \ldots, f_n : X \longrightarrow Y$ such that $\phi(x) = \{f_1(x), \ldots, f_n(x)\}$ for all $x \in X$. In this case, we can associate ϕ with a single valued map $\Phi: X \longrightarrow F_n(Y)$. It is well known that $\pi_1(D_n(Y))$ is the braid group $B_n(Y)$ and $\pi_1(F_n(Y))$ is the pure braid group $P_n(Y)$. Recall that $\pi : F_n(Y) \longrightarrow D_n(Y)$ is an *n*!-fold covering space, then $\pi_k(F_n(Y)) \cong \pi_k(D_n(Y))$ for $k \ge 2$. A space X is Wecken for *n*-valued maps if every *n*-valued map $\phi : X \multimap X$ has the Wecken property i.e. there exists an *n*-valued map $\psi : X \multimap X$ homotopic to ϕ that has exactly $N(\phi)$ fixed points, where $N(\phi)$ stands for Nielsen number of ϕ . If n = 1, it was proved that the surfaces with non-negative Euler characteristic are all Wecken, so \mathbb{S}^2 is Wecken for single valued-maps. Recall that for a singlevalued map $f : \mathbb{S}^2 \to \mathbb{S}^2$, if $L(f) \neq 0$ thus N(f) = 1 and if L(f) = 0 thus N(f) = 0, where L(f) is the Lefschetz index of f given by $L(f) = 1 + \deg(f)$. In this work, we will verify that the Wecken property holds for *n*-valued maps of \mathbb{S}^2 when $n \ge 2$. We firstly present this proof analysing the case n > 2, followed by the case n = 2. The author acknowledge the financial support given by CAPES.

that, as in the case of single-valued maps, the degree of a 2-valued map defines which class it belongs to.

Proposition 2. Two 2-valued maps $\phi, \psi : \mathbb{S}^2 \longrightarrow \mathbb{S}^2$ are homotopic if and only if $deg(\phi) = deg(\psi)$. Thus, the homotopy classes of 2-valued maps of \mathbb{S}^2 are classified by degree.

Proof. As previously mentioned, the 2-valued homotopy classes of 2-valued maps of \mathbb{S}^2 are $[\mathbb{S}^2, D_2(\mathbb{S}^2)]$. Notice that the map $f: \mathbb{S}^2 \to F_2(\mathbb{S}^2)$ given by f(x) = (x, -x) is a homotopy equivalence that is \mathbb{Z}_2 -equivariant with respect to the action of the antipodal map on \mathbb{S}^2 and the action on $F_2(\mathbb{S}^2)$ given by permutation of coordinates. This gives rise to a homotopy equivalence between the corresponding orbit spaces, namely $\mathbb{R}P^2$ and $D_2(\mathbb{S}^2)$. Now, given a map $a: \mathbb{S}^2 \to \mathbb{R}P^2$, it lifts to two maps $\tilde{a}, -\tilde{a}: \mathbb{S}^2 \to \mathbb{S}^2$. Suppose $H: \mathbb{S}^2 \times [0,1] \to \mathbb{R}P^2$ a homotopy such that $H(\cdot,0) = a$ and $H(\cdot, 1) = b$, where $b : \mathbb{S}^2 \to \mathbb{R}P^2$ lifts to $\tilde{b}, -\tilde{b} : \mathbb{S}^2 \to \mathbb{S}^2$. If H is lifted to $\tilde{H}: \mathbb{S}^2 \times [0,1] \to \mathbb{S}^2$ such that $\tilde{H}(\cdot,0) = \tilde{a}$, then either $H(\cdot,0) = b$ or $H(\cdot,0) = -b$. Since, by the Hopf Classification Theorem, the homotopy classes of single-valued maps of \mathbb{S}^2 are determined by degree, the homotopy class of a is determined by the natural number $|deg(\tilde{a})| = |deg(-\tilde{a})|$. Now that we know the homotopy classes of 2-valued maps are classified by degree, to verify the Wecken property for 2-valued maps of \mathbb{S}^2 , it suffices to exhibit for each integer d a 2-valued map $\phi_d : \mathbb{S}^2 \longrightarrow \mathbb{S}^2$ of degree |d| that has $N(\phi_d)$ fixed points. By Theorem 2 and the observations made in section Introduction, $N(\phi) = 1$ if deg $(\phi) = 1$ and $N(\phi) = 2$, otherwise. For |d| = 0, we have a constant map $\phi_0 : \mathbb{S}^2 \longrightarrow \mathbb{S}^2$ with 2 fixed points. For |d| = 1, consider $\phi_1 = \{\overline{f}, -\overline{f}\}$, where $\bar{f}: \mathbb{S}^2 \to \mathbb{S}^2$ is a small deformation of $Id_{\mathbb{S}^2}$ i.e. \bar{f} satisfies $|x - \overline{f}(x)| < \pi/2$ for all $x \in \mathbb{S}^2$, and which has exactly one fixed point. Such map may be constructed using a vector field on \mathbb{S}^2 that possesses just one singular point (see for example Figure 1).

can be written uniquely as x = (t, u), where $-1 \le t \le 1$, $u = (1 - t^2)^{1/2}v$ and $v \in S(\mathbb{R}^2) = \{(x_1, x_2, 0) \in \mathbb{R}^3 \mid x_1^2 + x_2^2 = 1\}$. According to this notation, we define the northern and southern hemispheres of \mathbb{S}^2 , respectively, by

 $S_{+} = \{(t, u) \in \mathbb{S}^{2} \mid t \ge 0\} \text{ and } S_{-} = \{(t, u) \in \mathbb{S}^{2} \mid t \le 0\}.$

To define the sections s_0 and s_1 such that $f_{s_0} = f_0$ and $f_{s_1} = f_1$, as in the statement, we still need to choose orthogonal trivializations $\theta_+ : p^{-1}(S_+) \longrightarrow S_+ \times \mathbb{R}^2$ and $\theta_- : p^{-1}(S_-) \longrightarrow S_- \times \mathbb{R}^2$ such that when we consider \mathbb{R}^2 as the subspace of \mathbb{R}^3 generated by $e_1 = (1, 0, 0)$ and $e_2 = (0, 1, 0)$ we have that θ_+ preserves the base at the north pole (1, 0) and θ_- preserves the base at the south pole (-1, 0) (Figure 3 illustrates an example of pair (θ_+, θ_-)).

The case n > 2

With the purpose of classifying the homotopy classes of n-valued maps of \mathbb{S}^2 , we must consider the following result ([2], *Theorem 3.1*):

Figure 3: In each point, the image of the vector e_1 is red and the image of vector e_2 is blue. Extending this continuously we get θ_+ and θ_- .

Let $\kappa : S(\mathbb{R}^2) \longrightarrow O(\mathbb{R}^2)$ the clutching map on the equator that satisfies $\kappa(v)\theta_+(x)v = \theta_-(x)v$ for $v \in S(\mathbb{R}^2)$, where $O(\mathbb{R}^3)$ the orthogonal transformations of \mathbb{R}^2 . Let $g : S(\mathbb{R}^2) \longrightarrow \mathbb{R}^2$ such that $\deg(g) = d + 1$. So we define s_0 and s_1 as follows: for $v \in S(\mathbb{R}^2)$, $0 \ge t \ge 1$ and $x = (t, (1 - t^2)^{1/2}v)$ let

Theorem 1. (Splitting Characterization Theorem) Let ϕ : $X \multimap Y$ a *n*-valued map, where X is connected and locally path-connected. Then ϕ is split if and only if the image of $\Phi_{\#} : \pi_1(X) \longrightarrow B_n(Y)$ is contained in the image of the homomorphism $\pi_{\#} : P_n(Y) \longrightarrow B_n(Y)$ induced by the projection $\pi : F_n(Y) \longrightarrow D_n(Y)$. In particular, if X is simply connected, then all *n*-valued maps $\phi : X \longrightarrow Y$ are split. So for every *n*-valued map $\phi : \mathbb{S}^2 \longrightarrow \mathbb{S}^2$ there are singlevalued maps $f_0, \ldots, f_n : \mathbb{S}^2 \longrightarrow \mathbb{S}^2$ such that $\phi(x) =$ $\{f_1(x), \ldots, f_n(x)\}$. Furthermore, by Schirmer ([5], Corollary 7.2), we have $N(\phi) = N(f_1) + \ldots, N(f_n)$.

Theorem 2. ([5], Corollary 7.2) Let $\phi = \{f_1, \ldots, f_n\} : X \longrightarrow Y$ be a split *n*-valued map, where X is a compact polyhedron. Then $N(\phi) = N(f_1) + \cdots + N(f_n)$.

Lemma 1. If n > 2, the set of homotopy classes of n-valued maps of \mathbb{S}^2 possesses exactly one element.

Proof. It suffices to determine the set $[\mathbb{S}^2, D_n(\mathbb{S}^2)]$, which in turn is the orbit space of $[\mathbb{S}^2, D_n(\mathbb{S}^2)]_0 \cong \pi_2(D_n(\mathbb{S}^2))$ under the action of $\pi_1(D_n(\mathbb{S}^2))$. By [4], *Proposition 10 (b)*, for n > 2, the universal covering of $F_n(\mathbb{S}^2)$ has the homotopy type of \mathbb{S}^3 , which implies that $\pi_2(D_n(\mathbb{S}^2)) \cong \pi_2(F_n(\mathbb{S}^2)) \cong \pi_2(\mathbb{S}^3) \cong 1$, so $[\mathbb{S}^2, D_n(\mathbb{S}^2)]$ has only one element, which is the class of the constant map.

Proposition 1. The Wecken property holds for *n*-valued maps of \mathbb{S}^2 for all n > 2.

Proof. Let $\phi : \mathbb{S}^2 \longrightarrow \mathbb{S}^2$ an *n*-valued map with n > 2. By Lemma 1, ϕ is homotopic to the constant map $x \mapsto \{x_1, \ldots, x_n\}$. By Theorem 2, the Nielsen number of a constant map is *n*, since the constant single-valued map $x \mapsto x_i$

Figure 1: Vector field on \mathbb{S}^2 with only one singular point.

Proposition 3. For each integer d with $|d| \ge 2$, there exists a 2-valued map $\phi_d = \{f_0, f_1\}$ such that $deg(\phi_d) = |d|$ and ϕ_d has $N(\phi_d) = 2$ fixed points.

Proof. We start this proof considering the tangent bundle of \mathbb{S}^2 , $p: T\mathbb{S}^2 \longrightarrow \mathbb{S}^2$, with fibre $T_x \approx \mathbb{R}^2$ and the normal bundle of \mathbb{S}^2 , $q: N\mathbb{S}^2 \longrightarrow \mathbb{S}^2$, with fibre $N_x \approx \mathbb{R}$ (Figure 2 ilustrates these bundles).


```
(1 \oplus \theta_+(x)) \circ p_2 \circ s_0(t, (1 - t^2)^{1/2}v) = (t, (1 - t^2)^{1/2}g(v))
```

 $(1 \oplus \theta_+(x)) \circ p_2 \circ s_1(t, (1 - t^2)^{1/2}v) = (-t, -(1 - t^2)^{1/2}g(v))$ and for $-1 \le t \le 0$ let

 $(1 \oplus \theta_{-}(x)) \circ p_{2} \circ s_{0}(t, (1 - t^{2})^{1/2}v) = (t, (1 - t^{2})^{1/2}\kappa(v)g(v))$

 $(1 \oplus \theta_{-}(x)) \circ p_{2} \circ s_{1}(t, (1 - t^{2})^{1/2}v) = (-t, -(1 - t^{2})^{1/2}\kappa(v)g(v)),$

where $p_2(x, (r, w)) = (r, w)$. By construction, $s_0(x) \neq s_1(x)$ for all $x \in \mathbb{S}^2$. Furthermore, $s_0(x) = (x, (1, \mathbf{0}))$ if and only if $x = (1, \mathbf{0})$ and $s_1(x) = (x, (-1, \mathbf{0}))$ if and only if $x = (-1, \mathbf{0})$. Thus, the north pole $(1, \mathbf{0})$ is the single fixed point of f_{s_0} and the south pole is the single fixed point of f_{s_1} . In a small enough neighborhood of (1, 0), the trivialization θ_+ slightly changes the images of the base elements e_1 and e_2 . Then, in this neighborhood, the map f_{s_0} can be described in suitable coordinates by the self-map of \mathbb{R}^2 that takes rv, for $r \ge 0$ and $v \in S(\mathbb{R}^2)$, to rv + rg(v) so that its fixed point is $\mathbf{0} \in \mathbb{R}^2$. Therefore, the index of f_{s_0} is equal to the degree of the map $-g : S(\mathbb{R}^2) \longrightarrow S(\mathbb{R}^2)$, that is, $I(f_{s_0}) = deg(g) = d+1$. By calculation, the Lefschetz number of f_{s_0} is $L(f_{s_0}) = 1 + \deg(f_{s_0})$. Using the Lefschetz-Hopf Theorem we obtain $\deg(g) = 1 + \deg(f_{s_0}) \Rightarrow \deg(f_{s_0}) = d$ and consequentely deg $(f_{s_1}) = -d$ by Lemma 2; thus $f_0 = f_{s_0}$ and $f_1 = f_{s_1}$ are the maps we are looking for.

for i = 1, ..., n has degree 0, which implies Lefschetz index 1 and Nielsen number equal to 1. To complete the proof, it suffices to observe that the constant map has exactly nfixed points, namely $x_1, ..., x_n$.

The case n = 2

Lemma 2. If $\phi = \{f_0, f_1\} : \mathbb{S}^2 \multimap \mathbb{S}^2$ is a 2-valued map, then $deg(f_0) = -deg(f_1)$.

Proof. Since $f_0(x) \neq f_1(x)$, for all $x \in \mathbb{S}^2$, we can consider the arc connecting the points $f_0(x)$ and $-f_1(x)$, so we have a homotopy between f_0 and $-f_1$, and consequently $\deg(f_0) = -\deg(f_1)$.

Lemma 2 allows us to define the *degree* of a 2-valued map $\phi = \{f_0, f_1\} : \mathbb{S}^2 \multimap \mathbb{S}^2$ as being $deg(\phi) = |d|$, where d is either $deg(f_0)$ or $deg(f_1)$. The following proposition states

Figure 2: Normal and tangent bundles at $x \in \mathbb{S}^2$.

Note that there is a homeomorphism $h: N\mathbb{S}^2 \oplus T\mathbb{S}^2 \longrightarrow \mathbb{S}^2 \times \mathbb{R}^3$, given that for all $x \in \mathbb{S}^2$, every $y \in \mathbb{R}^3$ is uniquely written as a sum rx + w, where $\langle w, x \rangle = 0$ and $r \in \mathbb{R}$. Furthermore, the Withney sum $N\mathbb{S}^2 \oplus T\mathbb{S}^2$ is a trivial bundle over \mathbb{S}^2 with fibre $N_x \times T_x \approx \mathbb{R}^3$. Therefore, we can consider the trivial sphere bundle $\bar{p}: S(N\mathbb{S}^2 \oplus T\mathbb{S}^2) \to \mathbb{S}^2$ and the homeomorphism $\bar{h}: S(N\mathbb{S}^2 \oplus T\mathbb{S}^2) \to \mathbb{S}^2$. Given a section $s: \mathbb{S}^2 \longrightarrow S(N\mathbb{S}^2 \oplus T\mathbb{S}^2)$ it can be associated with a map $f_s: \mathbb{S}^2 \longrightarrow \mathbb{S}^2$, since $\bar{h} \circ s(x) \in \{x\} \times \mathbb{S}^2$. Denote each element $((x, rx), (x, w)) \in S(N\mathbb{S}^2 \oplus T\mathbb{S}^2)$ by (x, (r, w)). Note that the constant section $x \mapsto (x, (1, \mathbf{0}))$, where $\mathbf{0} \in T_x$ is the zero vector, is associated with the identity map $Id_{\mathbb{S}^2}$, since $\bar{h}(x, (1, \mathbf{0})) = (x, 1 \cdot x + \mathbf{0}) = (x, x)$. Each element $x \in \mathbb{S}^2$ [1] Brown, R. F.; Crabb, M.; Ericksen, A.; Stimpson, M.. *The* 2-sphere is Wecken for n-valued maps. Journal of Fixed Points Theory and Applications, **21** no. 2, Art. 55, 6 pp, 2019.

[2] Brown, R. F.; Gonçalves, D. L.. *On the topology on nvalued maps*. Advances in Fixed Point Theory, **8** No 2, 255-258, 2018.

 [3] Gonçalves, D. L.; Guaschi, J. Fixed points of n-valued maps on surfaces and the Wecken property: a configuration space approach. Science China Mathematics, 60 (9), 1561-1574, 2017.

[4] Gonçalves, D. L.; Guaschi, J. *The classification of the virtually cyclic subgroups of of the sphere braid groups*. SpringerBriefs in Mathematics, 2013.

[5] Schimer, H. An index and Nielsen number for *n*-valued multifunctions. Fund .Math., **121**, 201-219, 1984.