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Abstract

In this work we will show the existence and regularity of so-
lutions of a semilinear elliptic equation problem with singu-
lar nonlinearity, following the studies of Lucio Boccardo and
Luigi Orsina in [1]. In this specific case, we work with a
bounded open set of dimension greater than or equal to two,
any non-negative function belonging to some Lebesgue space
and a bounded elliptic matrix. To discuss the problem, we use
the method of approximation and results such as the Maxi-
mum Principle, Schauder’s fixed point theorem and other es-
timates made in [2].

Introduction

In this work, we will show the existence and regularity of so-
lutions to problem (1), following the studies of Lucio Boc-
cardo and Luigi Orsina [1].

−div(M(x)∇u) = f(x)
u

in Ω,

u > 0 in Ω,

u = 0 on ∂Ω

(1)

where Ω is an open subset of RN , with N ≥ 2, f is a non-
negative function belonging to a Lebesgue space and M is a
bounded elliptic matrix, i.e. α|ξ|2 ≤ M(x)ξ · ξ ∀ξ ∈ RN

and |M(x)| ≤ β.

Objectives

Our goals are to guarantee the existence of unical solution in
W 1,2

0 (Ω)∩L∞(Ω) for an approximate problem and to obtain
certain properties about it. Furthermore, using the approxima-
tion results, the main objective is to obtain answers about the
existence and regularity of the original problem.

Results

Approximate problem

Consider the following problem{
− div(M(x)∇un) = fn

un+
1
n

in Ω,

un = 0 on ∂Ω
(2)

where f is a non-negative measurable function, n ∈ N,
f = min{f(x), n} and M is a bounded elliptic matrix.
To guarantee (1), we need the following results on problem
(2):
Lemma 1. Problem (2) has unique non-negative solution
un ∈ W 1,2

0 (Ω) ∩ L∞(Ω). In addition, the following prop-
erties apply:
i)un is increasing with respect to n;
ii)un > 0 in Ω;
iii) For every Ω̂ ⊂⊂ Ω, there is a KΩ̂ > 0, regardless of
n, we have un(x) ≥ KΩ̂ > 0, for every x ∈ Ω and for
every n ∈ N.

In order to guarantee that un ∈ W 1,2
0 (Ω), Schauder’s fixed

point method and the Maximum Principle are used, and for
un ∈ L∞(Ω) estimates produced in [2] are used. In the sec-
ond part, item i), it is enough to choose an appropriate test
function on the hypothesis of ellipticity and use the weak for-
mulation of the problem. In items ii) and iii) the Strong Max-
imum Principle is needed.
Remark 1. The solution given by Lemma 1 is unique.
Since un is increasing in n, we define u as a point limit of
un. Since u ≥ un, then item iii) of the previous result is

valid for u, that is, u(x) ≥ KΩ̂ > 0 for all x ∈ Ω and for
all n ∈ N.

Existence and regularity of solution in (1)

After showing that there is a solution to the approximate prob-
lem, it is possible to prove the existence and regularity of the
solution to the original problem. For this, we guarantee that if
un is a solution of (2) and f ∈ L1(Ω), then un is bounded
by W 1,2

0 (Ω) . Adding this with the weak formulation of prob-
lem (2) and the fact that u is the point limit of un, we prove
the next theorem:
Theorem 1. Let f ∈ L1(Ω) be non-negative and not iden-

tically zero. Then there is a solution u ∈ W 1,2
0 (Ω) of (1), in

the sense that∫
Ω

M(x)∇u · ∇ϕ =

∫
Ω

fϕ

u
∀ϕ ∈ C1

0(Ω)

Since the integrability of u depends on f , we get the next
lemma.
Lemma 2. Let f ∈ Lm(Ω), with m ≥ 1. Then, the

solution u of (1) given by the previous theorem is such that:

i) If m > N
2

, then u ∈ L∞(Ω);

ii) If 1 ≤ m < N
2

, then u ∈ Ls(Ω), s = 2Nm
N−2m

.

To show item i) of Lemma 2, an appropriate test function is
chosen to use in the ellipticity hypothesis and concluded with
a result found in [2]. As for item ii), when m = 1, just use
Sobolev immersion, and when 1 < m < N

2
, using, again,

an appropriate test function in the hypothesis of ellipticity and
δ > 1, we guarantee the estimate:(∫

Ω

u2∗δ
n

) 2
2∗

≤ C∥f∥Lm(Ω)

(∫
Ω

u(2δ−2)m′

n

) 1
m′

Being 2
2∗ > 1

m′, it remains to choose a δ such that 2∗δ =

(2δ − 2)m′ to ensure that un is bounded at Ls(Ω). So
u ∈ Ls(Ω).

Conclusion

With the results from the approximate problem and using the
fact that un is bounded by W 1,2

0 (Ω), it was possible to es-
tablish the existence of a solution to problem (1) in W 1,2

0 (Ω)

and show that u ∈ Lp(Ω), where p = ∞ or p = 2Nm
N−2m

,
depending on the m where f ∈ Lm(Ω). It is noteworthy
that un being bounded by W 1,2

0 (Ω) gives us more regularity
than would be expected by the Classical Stampacchia Theory.
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