Minimally immersed Klein bottles in $T^{1} \mathbb{S}^{2}$ Jackeline Conrado

Universidade do Estado do Rio de Janeiro

jackeline.conrado@ime.uerj.br

Abstract

For the area-minimizing vector fields on antipodally punctured unit 2-sphere with even Poincaré indexes, we prove that the topological closure of their image coincides with the image of minimally immersed Klein bottles in $T^{1} \mathbb{S}^{2}$.

1 Introduction

Let M be a closed oriented Riemannian manifold and \boldsymbol{V} a unit vector field on \boldsymbol{M}. Consider the unit tangent bundle $T^{1} M$ equipped with the Sasaki metric. The volume of a unit vector field V is defined as

$$
\operatorname{vol}(\boldsymbol{V})=\int_{M} \sqrt{\operatorname{det}\left(\mathrm{I}+(\nabla \mathrm{V})(\nabla \mathrm{V})^{*}\right)} \nu_{M}
$$

where I is the identity, and $\nabla \boldsymbol{V}$ is considered as an endomorphism of the tangent space with adjoint operator $(\nabla \boldsymbol{V})^{*}$
Theorem 1 (Gluck and Ziller). The unit vector fields of minimum volume on \mathbb{S}^{3} are precisely the Hopf vector fields and no others.

Intuitively speaking, one hopes that the visually best organized unit vector fields on \boldsymbol{M} are rewarded with minimum possible volume.
The Gil-Medrano and Llinhares-Fuster's result states that critical points are submanifolds which are minimal immersions:
Theorem 2 (Gil-Medrano and Llinhares-Fuster). An element $\boldsymbol{V} \in \mathcal{X}^{1}(\boldsymbol{M})$ is a critical point of the volume functional restricted to $\mathcal{X}^{1}(M)$ if and only if $V: M \rightarrow\left(T^{1} M, g^{\text {Sas }}\right)$ is a minimal immersion, where $\boldsymbol{g}^{\text {Sas }}$ is the Sasaki mectric.
I now report the most recent result about area-minimizing unit vector fields on $\mathbb{S}^{2} \backslash\{ \pm p\}$. It says that the volume of a unit vector field \boldsymbol{V} is bounded below by the length of an ellipse naturally associated to it:
Theorem 3 (Brito, - Gonçalves and Nicoli, [2]). Let V be a unit vector field defined on $\mathbb{S}^{2} \backslash\{N, S\}$. If $\boldsymbol{k}=$ $\max \left\{I_{V}(N), I_{V}(S)\right\}, k \neq 0, k \neq 2$, then

$$
\operatorname{vol}(V) \geq \pi L\left(\varepsilon_{k}\right)
$$

where $L\left(\varepsilon_{k}\right)$ is the length of the ellipse $\frac{x^{2}}{k^{2}}+\frac{y^{2}}{(k-2)^{2}}=1$ and $\boldsymbol{I}_{V}(\boldsymbol{p})$ stands for the Poincare index of \boldsymbol{V} around \boldsymbol{p}.

2 Area-minimizing unit vector fields on $\mathbb{S}^{2} \backslash\{N, S\}$

Let $\mathbb{S}^{2} \backslash\{N, S\}$ be the Euclidean sphere in which two antipodal points N and S are removed. Denote by \boldsymbol{g} the usual metric of \mathbb{S}^{2} induced from \mathbb{R}^{3}, and by ∇ the Levi-Civita connection associated to g. Consider the oriented orthonormal frame $\left\{e_{1}, e_{2}\right\}$ on $\mathbb{S}^{2} \backslash\{N, S\}$ such that e_{1} is tangent to the parallels and e_{2} to the meridians. Let \boldsymbol{k} be an integer number and define the angle function as

$$
\begin{aligned}
\theta_{k}: \mathbb{S}^{2} \backslash\{N, S\} & \longrightarrow \mathbb{R} \\
p & \longmapsto \theta_{k}(p)=(k-1) t+\frac{\pi}{2}
\end{aligned}
$$

where $t \in[0,2 \pi)$ is the longitude coordinate of $p=$ (x, y, z) in $\mathbb{S}^{2} \backslash\{N, S\}$. Note that if $\left\{e_{1}, e_{2}\right\}$ is the oriented orthonormal frame aforementioned,

$$
d \theta_{k}(p)\left(e_{1}\right)=\frac{k-1}{\sqrt{x^{2}+y^{2}}} \quad \text { and } \quad d \theta_{k}(p)\left(e_{2}\right)=0
$$

Definition 4. For $\boldsymbol{k} \in \mathbb{Z}$, define the unit vector field $\boldsymbol{V}_{k, 2-k}$ as $V_{k, 2-k}(p)=\cos \left(\theta_{k}(p)\right) e_{1}(p)+\sin \left(\theta_{k}(p)\right) e_{2}(p)$, where $p \in \mathbb{S}^{2} \backslash\{N, S\}, \theta_{k}$ is the angle function and $\left\{e_{1}, e_{2}\right\}$ is the oriented orthonormal frame on $\mathbb{S}^{2} \backslash\{N, S\}$ aforementioned.

Corollary 5. For $k \in \mathbb{Z} \backslash\{0,2\}$, the unit vector field $\boldsymbol{V}_{k, 2-k}$ on $\mathbb{S}^{2} \backslash\{\boldsymbol{N}, \boldsymbol{S}\}$ is area-minimizing if

$$
\operatorname{vol}\left(V_{k, 2-k}\right)=\pi L\left(\varepsilon_{k}\right)
$$

where $L\left(\varepsilon_{k}\right)$ is the length of the ellipse $\frac{x^{2}}{k^{2}}+\frac{y^{2}}{(k-2)^{2}}=1$.

3 Minimally immersed Klein bottles in $T^{1} \mathbb{S}^{2}$ arising from area-minimizing unit vector fields on $\mathbb{S}^{2} \backslash\{N, S\}$

For each class of index vector field, by Theorem 2, provide us a minimal surface in $T^{1} \mathbb{S}^{2}$. We pose the natural question:

What is the topological type of these minimal surfaces arising from area-minimizing vector fields on $\mathbb{S}^{2} \backslash\{ \pm p\}$?

In 2010, Borrelli and Gil-Medrano proved that the Pontryagin vector fields are area-minimizing on $\mathbb{S}^{2} \backslash\{p\}$. They obtained that the images of Pontryagin vector fields are homeomorphic to the projective plane:
Theorem 6 (Borrelli and Gil-Medrano). The only minimal surfaces in $T^{1} \mathbb{S}^{2}(r)$ homeomorphic to the projective plane arising from vector fields without boundary are Pontryagin cycles.
In 2022, for an area-minimizing unit vector field $V_{k, 2-k}$ on $\mathbb{S}^{2} \backslash\{ \pm p\}$ with $\left\{I_{V}(p), I_{V}(-p)\right\}=\{k, 2-k\}$, where $k \in 2 \mathbb{Z} \backslash\{0,2\}$ we proved that the topological closure of the image of $V_{k, 2-k}\left(\mathbb{S}^{2} \backslash\{N, S\}\right)$ is a minimally immersed Klein bottle in $T^{1} \mathbb{S}^{2}(1)$.
Theorem 7 (Brito, - , Gonçalves and Nunes, [1]). Let $V_{k, 2-k}$ be an area-minimizing unit vector field on $\mathbb{S}^{2} \backslash\{N, S\}$. If the Poincare index around the singularity N (or \boldsymbol{S}) is $\boldsymbol{k} \in \mathbf{Z} \backslash\{0,2\}$, then the topological closure of the image of $\boldsymbol{V}_{k, 2-k}\left(\mathbb{S}^{2} \backslash\{N, S\}\right)$ is a minimally immersed Klein bottle in $T^{1} \mathbb{S}^{2}(1)$.
Consider the decomposition $\mathbb{S}^{2}=\mathbb{S}_{+}^{2} \cup \mathbb{S}_{-}^{2}$, where \mathbb{S}_{+}^{2} and \mathbb{S}_{-}^{2} are respectively the northern and southern hemisphere.
Lemma 8. If Poincaré index $k \in 2 \mathbb{Z} \backslash\{0,2\}$ around the singularity \boldsymbol{N} (or \boldsymbol{S}) in \mathbb{S}^{2}, then the topological closure of $V_{k, 2-k}\left(\mathbb{S}_{+}^{2} \backslash\{N\}\right)$ (or $V_{k, 2-k}\left(\mathbb{S}_{-}^{2} \backslash\{S\}\right)$) in $T^{1} \mathbb{S}^{2}$ is the image of an immersed Moebius strips with boundary $V_{k, 2-k}\left(\boldsymbol{\partial}\left(\mathbb{S}_{+}^{2} \backslash\{N\}\right)\right)\left(\right.$ or $\left.\boldsymbol{V}_{k, 2-k}\left(\boldsymbol{\partial}\left(\mathbb{S}_{-}^{2} \backslash\{S\}\right)\right)\right)$.

An immersed Moebius strip in \mathbb{R}^{4} given by the topological closure of the image of $\boldsymbol{V}_{4,-2}$

Proof of the Theorem 7. A smooth immersion of the Klein bottle in $T^{1} \mathbb{S}^{2}(1)$ is obtained by gluing two images of the Moebius strip along their boundary given by Lemma 8. It follows from Corollary 5 that $\boldsymbol{V}_{k, 2-k}$ is area-minimizing vector field in its topological conjugation class. By Theorem 2 the section seen as surface in $T^{1} \mathbb{S}^{2}(1)$ is geometrically minimal, i.e., its has zero mean curvature. Therefore, the topological closure of $V_{k, 2-k}$ is a minimal surface in $T^{1} \mathbb{S}^{2}(1)$.

References

[1]Fabiano Brito, Jackeline Conrado, Icaro Gonçalves, and Giovanni Nunes. Minimally Immersed Klein Bottles in the Unit Tangent Bundle of the Unit 2-Sphere Arising from Area-Minimizing Unit Vector Fields on $\mathbb{S}^{2} \backslash\{N, S\}$. Journal of Geometric Analysis, 33(5):142, 2023.
[2] Fabiano Brito, Jackeline Conrado, Icaro Gonçalves, and Adriana Nicoli. Area minimizing unit vector fields on antipodally punctured unit 2 -sphere. Comptes Rendus Mathématique, 359-10:1225-1232, 2021.

