Mixing time for the asymmetric simple exclusion process in a random environment

Hubert LACOIN ${ }^{1}$

${ }^{1}$ IMPA, Brazil

We consider a particle system on a segment where the particle jumps are nearest neighbors, satisfying the exclusion rule - a particle cannot jump on an already occupied site. The particle on site x has jump rates to the right and left are respectively given by p_{x} and $1-p_{x}$ where $\left(p_{x}\right)$ is a fixed realization of a sequence of IID variables taking value in $[0,1]$. In this work we study the mixing time of the system: that is the time required for the system to reach its equilibrium distribution starting from an atypical initial configuration. We show that the mixing time behaves like a power of N , and provide a "conjecturally sharp" lower bound on the exponent.

