Instanton bundles on contact Fano manifolds

Gaia Comaschi (joint with V. Benedetti, D. Faenzi, M. Jardim)

IMECC (Unicamp)- IMB (Dijon)

gaia.comaschi@gmail.com

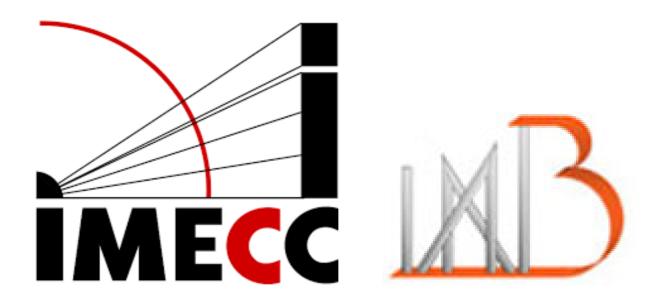
Abstract

In their seminal work Atiyah, Drinfeld, Hitchin and Manin established a correspondence between the ASD solutions of the Yang-Mills equations on the four-sphere S^4 and certain holomorphic vector bundles, referred to as *instantons*, on its twistor space \mathbb{P}^3 . Both twistor geometry and Yang Mills theory can be generalized to a 4n-dimensional Quaternion Kähler manifold M; this allows to define instantons on the

The family of ASD instantons F with $ch(F) = ch(F_0)$, defined as **1-instantons**, and admitting a monadic representation is actually *complete*.

Theorem (Nagatomo). Every 1-instanton F on Z is the cohomology of a monad of the form (3).

Moduli spaces of 1-instantons on $G_2/U(1) \cdot SU(2)$



twistor space Z, a so called *contact Fano* manifold. We study instantons and their moduli in the case $M = G_2/SO(4)$ and $Z = G_2/U(1) \cdot SU(2)$.

Quaternion Kähler and contact Fano manifolds

A Riemannian manifold (M,g) of real dimension 4n is Quaternion Kähler if $Hol(M) \subset Sp(n) \cdot Sp(1)$. This holds $\iff \exists \mathcal{G} \subset \operatorname{End}(TM)$ a rank 3 bundle satisfying:

- • \mathcal{G} is preserved by the connection induced by the Riemannian connection;
- \mathcal{G} is locally spanned by 3 almost complex structures I, J, Ksuch that $I^2 = J^2 = -1$, IJ = -JI = K and such that g is Hermitian with respect to I, J, K.

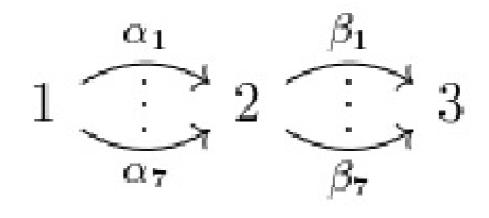
The sphere subbundle Z of \mathcal{G} , consisting of the aI+bJ+cKof unit norm is the *twistor space of* M.

If *M* positive QK (i.e. has positive scalar curvature) $\Rightarrow Z$ is a contact Fano manifold namely K_Z is ample and TZ fits in

$$0 \to F \to TZ \xrightarrow{\theta} L \to 0 \tag{1}$$

with $d\theta_F : \bigwedge^2 F \to L$ nowhere degenerate.

We can then construct the moduli space of 1-instantons as a Quiver moduli space (as done in [3] for instantons on \mathbb{P}^3). To each monad (3) we associate a representation of the quiver Q:



(subjected to relations imposed by the condition $g \circ f = 0$). These quiver moduli depend on the choice of a stability parameter $\theta = (\alpha, \beta, \gamma) \in \mathbb{Z}^3$ orthogonal to the dimension vector (1, 7, 1) of our representations. The space of stability parameters, which identifies with the (α, γ) plane, has a wall and chamber decomposition: the moduli space is unaltered as soon as the stability parameter varies in a chamber whilst it is subject to a birational transformation when we cross a wall.

Theorem. • The moduli space of θ -semistable representations is empty outside the 4-th quadrant of the (α, γ) plane.

- In the 4-th quadrant of the (α, γ) plane there exists a unique wall of equation $\alpha = -\gamma$;
- Representations of Q corresponding to ASD-instantons are

ASD connections and **ASD** instanton bundles

The bundle $\bigwedge^2 T^*M$ has the following decomposition:

 $igwedge T^*M=S^2\mathsf{H}\oplus S^2\mathrm{E}\oplus (S^2\mathsf{H}\oplus S^2\mathrm{E})^ot$ (2)

for **H** and **E** the bundles associated with the standard representations of Sp(1) and Sp(n), respectively.

Let us now consider a connection ∇ on a complex vector bundle F on M. We say that ∇ is *anti-self-dual* if its curvature R_{∇} belongs to $End(F) \otimes S^2 \mathsf{E}$. Pulling back complex vector bundles endowed with ASD connections via $Z \xrightarrow{\pi} M$ we establish the following 1-1 correspondence:

Ward correspondence. There exists a 1-1 correspondence between complex vector bundles **F** with ASD connections on M and holomorphic vector bundles F on Z such that:

• $F|_{\pi^{-1}(x)}$ is trivial $\forall x \in M$;

• \exists an anti-holomorphic isomorphism $au: ilde{F} \xrightarrow{\simeq} \sigma^* ilde{F}^*$

where σ denotes the real structure on Z induced by the quaternionic structure on M.

everywhere stable in the 4-th quadrant of the (α, γ) -plane. A more detailed description can be given of the moduli in the two chambers

Theorem. The moduli spaces in the 4th quadrant of the (α, γ) -plane are both isomorphic to \mathbb{P}^7 . Moreover:

- For $\alpha < -\gamma$ this \mathbb{P}^7 is a component of the Gieseker-Maruyama moduli space. This moduli consists of
- 1. A family of μ -stable vector bundles (containing the ASD) instantons) isomorphic to $\mathbb{P}^7 \setminus (\mathbb{P}^6 \cup Q^6)$
- 2. A family of strictly μ -semistable (but stable) vector bundles isomorphic to $\mathbb{P}^6 \setminus Q^5$;
- 3. A family of strictly μ -semistable (but stable) sheaves Fsuch that $F^{\vee\vee} \simeq \mathcal{O}^3$ and singular along a F(0, 1, 2), isomorphic to Q_6 .
- The wall crossing "replaces" the strictly μ -semistable sheaves F with $\operatorname{RHom}(F, \mathcal{O})$.

Next goals

• How to extend the definition of instanton in order to include all objects appearing in the quiver moduli?

The holomorphic bundles $ilde{F}=\pi^*(F)$ on Z obtained in this way are referred to as an ASD instanton bundles.

Instantons on $G_2/U(1) \cdot SU(2)$

We focus our attention on the case $M = G_2/SO(4)$ and $Z = G_2/U(1) \cdot SU(2)$. Mamone and Capria proved the existence of a rank 3 G_2 -homogeneous instanton bundle F_0 on Z. Later, Nagatomo proved that, like it is the case for the projective space \mathbb{P}^3 , F_0 can be represented as the cohomology of a monad of the form:

$$\mathcal{U} \xrightarrow{f} V \otimes \mathcal{O} \xrightarrow{g} \mathcal{U}^*$$
 (3)

where V is the standard 7-dimensional representation of G_2 and \mathcal{U} is the pullback of the tautological rank 2 bundle on Gr(2,V) via $Z = Gr(2,V) \cap \mathbb{P}(\mathfrak{g}_2) \hookrightarrow Gr(2,V).$

- What about different values of ch(F)? Are ASD instantons still cohomologies of monads?
- •On $G_2/U(1)$ · SU(2) instantons share several common features with instantons on \mathbb{P}^3 . Is this still true on other contact Fano manifolds?

References

- [1] M.Mamone Capria, S.M.Salamon, Yang-Mills fields on quaternionic spaces, Nonlinearity1 (1988)517–530
- [2] Nagatomo, Y. Instanton moduli on the quaternion Kähler manifold of type G2 and singular set. Mathematische Zeitschrift, (2003)
- [3] Jardim, M, Silva, D. Instanton sheaves and representations of quivers. Proceedings of the Edinburgh Mathematical Society, (2020)