Separating the edges of a graph by a linear number of paths

Fábio Botler¹, Marthe Bonamy², François Dross², Tássio Naia³, Jozef Skokan⁴

¹ Universidade Federal do Rio de Janeiro

 2 Université de Bordeaux

 3 Universidade de São Paulo

 $^{\rm 4}$ London School of Economics and Political Science

A separating path system of a graph G is a set \mathcal{P} of paths in G with the following property: for every pair (e, f) of edges in E(G) there exists a path in \mathcal{P} that contains e but not f. In 2022, Letzter proved that any graph of order n admits a separating path system with $O(n \log^* n)$ paths. We improve this upper bound to 19n, thus answering a question of Katona (2013) and confirming a conjecture independently posed by Balogh, Csaba, Martin, and Pluhár (2016) and by Falgas-Ravry, Kittipassorn, Korándi, Letzter, and Narayanan (2014). In essence, our proof uses Pósa rotation–extension to reduce the general problem to graphs that contain Hamiltonian paths. This is a joint work with Marthe Bonamy, François Dross, Tássio Naia, and Jozef Skokan.