Separating the edges of a graph by a linear number of paths

Fábio Botler ${ }^{1}$, Marthe Bonamy ${ }^{2}$, François Dross ${ }^{2}$, Tássio Naia ${ }^{3}$, Jozef Skokan ${ }^{4}$
${ }^{1}$ Universidade Federal do Rio de Janeiro
${ }^{2}$ Université de Bordeaux
${ }^{3}$ Universidade de São Paulo
${ }^{4}$ London School of Economics and Political Science

Abstract

A separating path system of a graph G is a set \mathcal{P} of paths in G with the following property: for every pair (e, f) of edges in $E(G)$ there exists a path in \mathcal{P} that contains e but not f. In 2022, Letzter proved that any graph of order n admits a separating path system with $O\left(n \log ^{\star} n\right)$ paths. We improve this upper bound to $19 n$, thus answering a question of Katona (2013) and confirming a conjecture independently posed by Balogh, Csaba, Martin, and Pluhár (2016) and by Falgas-Ravry, Kittipassorn, Korándi, Letzter, and Narayanan (2014). In essence, our proof uses Pósa rotation-extension to reduce the general problem to graphs that contain Hamiltonian paths. This is a joint work with Marthe Bonamy, François Dross, Tássio Naia, and Jozef Skokan.

