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We propose the follow parametric class of iterative schemes
for approximating the solutions of nonlinear systems:
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−1
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−1
+

+ γ F ′(y(i))
−1

+ µF ′(z(i))
−1

+

+ δ F ′(z(i))
−1
F ′(y(i))F ′(z(i))

−1
)
F (z(i))

(1)

where α, β, γ, µ, δ ∈ R should be chosen in order to obtain
the four-order of convergence, established by next theorem.

Theorem 1. Let F : D ⊆ Rn→ Rn be sufficiently differen-
tiable at each point of an open neighborhood D of z̄ ∈ Rn,
that is a solution of the system F (x) = 0 and the initial esti-
mation z(0) is close enough to z̄. Let us suppose that F ′(x) is
continuous and nonsingular in z̄. Then, sequence {z(i)}i≥0

obtained from expression (1) converges to z̄, with order 4,

when α = 2
3
, β = 3

8
− γ

3
, µ = 5

8
− γ and δ = γ

3
, with

parameter γ.

Stability analysis

By using real multidimensional dynamics tools we determine
the elements of these family that posses better performance,
in terms of their convergence on the initial estimations used.

We denote by Op4(x, γ) this parametric family applied to
n-variable polynomial system pi(x) = x2

i − 1 = 0.

x∗ is a fixed point if Op4(x∗, γ) = x∗, and it is strange
fixed point when it is not a root of p(x) = 0.

The stability of the fixed points x∗ depends on the eigenva-
lues λi of the Jacobian matrix of Op4(x∗, γ). It is attracting
if all |λj| < 1, repelling if all |λj| > 1, and saddle if at least
one |λj0

| > 1.

Theorem 2. The rational function Op4(x, γ) has 2n supe-
rattracting fixed points whose components are roots of p(x).
This operator also has real strange fixed points whose com-
ponents are combinations of the real roots of polynomial
q(t) = t6(8γ − 423) + t4(−24γ − 180) + t2(24γ − 45)− 8γ

depending on γ, denoted by qi(γ) and the roots of p(x):
• If γ < 0 or γ > 423

8
the roots qi(γ), i = 1, 2, are real.

Moreover, their eigenvalues of the Jacobian matrix are gre-
ater than one ( in absolute value). So, the strange fixed point
are repulsive. Moreover, if at least one of the components of
the strange fixed point (but not all) are equal to 1 or−1, it
will be a saddle fixed point.

• If 0 < γ < 423
8

, then the roots of polynomial q(t) are
complex and there not exist any real strange fixed point.

We obtain the critical points of Op4(x, γ) i. e. the values
of x that make all the eigenvalues of its Jacobian matrix null.
When this critical point is not a solution of p(x) = 0, are
free critical point. In order to analyze other attracting beha-
vior, as attracting periodic orbits or even strange attractors, we
can analyze the orbits of the free critical points, if they exist.

Theorem 3. The components of the free critical points of
Op4(x, γ) are the real roots zi(γ) 6= 0 of the polynomial
z(s) = s4(16γ + 306) + s2(152γ + 45) + 24γ for some γ :

• If γ ≤ −153
8

, γ = −177
64

or γ ≥ 0, then there not exist free
critical points, i. e, the critical points are the roots of p(x).

• If −153
8
< γ < −177

64
or −177

64
< γ < 0, then the free

critical points are combinations of zi(γ), i = 1, 2 or ±1

(but not all±1).

In the particular case n = 2, we can see in Figure 1 that for
γ = 10 there exists only one connected component of each
basin of attraction, but γ = −20 have infinite connected
components.
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Figura 1: Stable dynamical planes (γ = 10, γ = −20)

Most of the free critical points converges to the roots, only
the case (z1(γ), z1(γ)) when−153

8
< γ < −177

64
, present a

black small region around γ = −18.75 and a narrower one
around γ = −16.9.
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Figura 2: Parameter line for−153
8
< γ < −177

64
,

We use Feigenbaum diagrams to analyze the bifurcations,
starting with each free critical points and observing the γ
behavior after 500 iterations in a mesh of 3000 subintervals.
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Figura 3: Feigenbaum diagram for −153
8
< γ < −177

64
and strange at-

tractors for γ = −18.75

Left Figure 3 corresponds to the bifurcation diagrams in the
black area for −153

8
< γ < −177

64
. In general, we ob-

serve convergence to one of the roots, but in a small inter-
val around γ = −18.75 several period-doubling cascades
appear. Right Figure 3 show, with 2500 different initial esti-
mations the (x1, x2)-space the orbit of x(0) = (0.29, 0.29)

by Op4 ((x1, x2), γ), for γ = −18.75. This unstable per-
formance, can be checked by plotting the associated dyna-
mical planes associated of γ in the black regions of the pa-
rameter line (Figure 2). For example, the phase space for
γ = −18.45 and γ = −16.91 in Figure 4. In them, 4-
period orbits appear linked by yellow lines. In all cases, more
attracting orbits exist, with symmetric coordinates.
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Figura 4: Unstable dynamical planes (γ = −18.75, γ = −16.91)

Conclusion

The main performance of this class of iterative methods on
this kind of polynomial systems is very stable. Some nume-
rical tests show the performance of the new methods, con-
firm the theoretical results and allow to compare the proposed
schemes with other known ones.
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